• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling of U-shaped Ba0.5Sr0.5Co0.8Fe0.2O3-δhollow- fiber membrane for oxygen permeation☆

    2017-05-29 01:39:20HuiqiXieYanyingWeiHaihuiWang

    Huiqi Xie,Yanying Wei*,Haihui Wang*

    School of Chemistry and Chemical Engineering,South China University of Technology,Guangzhou 510640,China

    1.Introduction

    Mixed ionic-electronic conducting(MIEC)[1]oxides are one kind of materials which exhibit good oxygen permeability and selectivity when used as the oxygen separation membranes.The MIEC oxides are widely studied for application in catalytic membrane reactors for hydrocarbon conversion and solid oxide fuel cells(SOFCs)[2-8].At elevated temperatures,oxygen can be transported through dense MIEC membranes in the form of oxygen ions under an oxygen partial-pressure gradient across the membrane.Perovskite-type(normally in the form of ABO3)[9-13]MIEC membranes always present relatively higher oxygen permeation fluxes among various MIEC membranes due to their higher ambi-polarconductivity forionic and electronic.So far,MIEC membranes in different geometries such as disk,tubular and hollow- fiber[14-18]have been widely studied.Modeling has become a useful tool for oxygen permeation process simulation and theoretical analysis for perovskite oxides[19-21].Xu and Thomson[22]developed an explicit model for La0.6Sr0.4Co0.2Fe0.8O3-δdisk based on the permeation resistance analysis.They found that the controlling step of oxygen permeation is surface reaction at low temperatures(750°C)but is bulk diffusion at high temperatures(950°C)for their disk membrane.Wanget al.[23]used a mathematicalmodelto simulate the Ba0.5Sr0.5Co0.8Fe0.2O3-δmembrane tube under co-current or cross- flow patterns with purge or vacuum operation.They suggested a sufficiently high air flow rate on the sweep side to fully utilize the separation capacity of a tubular membrane.Tan and Li[24]investigated the oxygen permeation flux through a La0.6Sr0.4Co0.2Fe0.8O3-δlinearhollow- fiber module under various conditions with a mathematicalmodel.Theirresults revealed thatthe vacuum operation on the lumen side of the membrane is the most efficient operation module to achieve high oxygen productivity.However,there is no modeling study focused on the U-shaped hollow- fiber membrane in literatures.

    In this study,a mathematical model is developed to simulate the oxygen separation from air with a Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCF)U-shaped hollow- fiber membrane.BSCF is prepared by partially substituting SrCoO3-δwith Ba and Fe[25],and it is selected because of its high oxygen permeability and good chemical stability[25-30].The experimental data are compared with the ones calculated from the model in order to determine the diffusion coefficient and check the feasibility of the model.This work is aimed to develop a feasible model to predict the oxygen permeation ofBSCF membrane under vacuumoperation and provide a useful reference for industrial applications.

    2.Model Development

    The previous experimental study[30]has revealed that the oxygen permeation process ofU-shaped BSCFhollow- fiber membrane was controlled by both of the bulk diffusion and surface reaction at the temperatures range from 750 °C to 950 °C.

    As is known,there are five steps(Fig.1)for oxygen permeation through a MIEC ceramic membrane.The permeation process includes:(1)diffusion of gaseous oxygen onto the membrane surface near the side ofrelatively high oxygen partial-pressure;(2)oxygen molecule decomposition and surface exchange between oxygen molecules and oxygen vacancies on high oxygen partial-pressure side;(3)bulk diffusion of oxygen vacancies through the ceramic membrane,while electrons move to the opposite direction forcharge compensation;(4)surface exchange between oxygen ions and electron-holes on low oxygen partialpressure side;and(5)mass transfer of oxygen to the gas stream on low oxygen partial-pressure side.

    The resistances in steps 1 and 5 are negligible compared to that of steps 2,3 and 4,as discussed in the literatures[8,15,20,22].Therefore,only surface exchange between the oxygen molecules and oxygen vacancies and bulk diffusion are considered in this work.

    Oxygen vacancies and electron holes are two of the charged species inside the perovskite membrane.The electronic conductivity of the BSCF perovskite is over 20 times of the ionic conductivity.An overwhelming electronic conductivity has negligible in fluence while the increase of ionic conductivity greatly increases the oxygen permeation flux[25,29].Therefore,the diffusion of oxygen vacancies is the ratelimiting step of oxygen permeation in the perovskite membrane[20,22].The oxygen permeation flux can be described by the flux of oxygen vacancies in Nernst-Planck equation as:

    where σVis the conductivity of oxygen vacancy,?μVand ?φVare the gradients of chemical potential and the gradients of the electric field,respectively.

    Since the electron-holes move too fast to establish a steady-state electric field,then inside the open-circuit membrane,

    The chemical potential can be expressed by the concentration of oxygen vacancies in the formula

    With Eqs.(2),(3)and(4),Eq.(1)can be transformed to the form offick's law:

    DVandCVare the diffusion coefficient and concentration of oxygen vacancies,respectively.Based on the classical diffusion theories,DVcan be considered as constant under certain temperature.The oxygen permeation flux can be expressed byJVas

    whereRoutandRinare the outerand innerradii of the U-shaped hollowfiber.C′VandCV″are the concentration of oxygen vacancies on the high and low oxygen pressure sides,respectively.They also can be governed by surface exchange kinetics for surface reactions in step 2 and step 4:

    where OOxrepresents lattice oxygen in the perovskite crystalstructure,kfandkrare the forward and reverse reaction rate constants for the surface reactions,respectively.Because of the high electronic conductivity,the electron holes are essentially constant at both membrane surfaces,and thus the forward and reverse reaction rates of the surface reactions are pseudo zero-order at steady state under isothermal conditions.Therefore,these two reactions can be considered as elementary reactions and the law of mass action is applicable.The mole flow rate of oxygen can be expressed as:

    Solve Eqs.(7),(8)and(9)simultaneously,the steady-state oxygen permeation flux can be correlated to the oxygen partial pressures on the two sides of the membrane:

    In the mathematical model,purge operation and vacuum operation are simulated since they are widely used in industry.As shown in Fig.2,sweep gas is introduced into the shellside ofthe U-shaped hollow- fiber.

    The following assumptions have been adopted:

    1.The membrane reactor is under steady-state isothermal operation.

    2.The charged species are diffused only in the radial direction of the hollow- fiber and negligible in axial direction.

    3.Ideal gas law can be used to describe the gas behavior of singlecomponent and gas mixture.

    4.The gas-phase mass-transfer resistances are negligible.Therefore,the oxygen partial pressures on the membrane surfaces are identical to the oxygen partialpressures in both shell and lumen,respectively.5.The feed gas mixed so rapidly in the reactor that the gas composition at the shell side remains the same.

    Based on the assumptions above,the oxygen permeation equations for U-shaped hollow- fiber membrane can be derived as follows:

    Overall mass balances:

    wherebis the volume ratio of O2in the feed gas.

    Pressure drop at the lumen side can be described by the Hagen-Poiseuille equation:

    The equations derived above are a group of ordinary differential equations.They can be solved by the Runge-Kutta method.The oxygen partial pressure and oxygen permeation rate can be deduced based on the component of feed gas and operation conditions.

    3.Results and Discussion

    The parameters of the U-shaped BSCF hollow- fiber membrane and operation conditions are listed in Table 1.The calculated results were compared with experimental data from our previous work[30].The oxygen permeation fluxes under vacuum operating condition were predicted using the above mathematic model.

    Table 1Parameters used in the simulation of the U-shaped hollow- fiber membrane

    3.1.Effect of feed gas flow rate

    Fig.3 shows the dependence of oxygen permeation flux through the BSCF membrane on the air flow rate at different temperatures.The helium flow rate was kept at 60 ml·min-1in both experiment and calculation.The trends of the simulation results are in good agreement with the experimental data.With the increasing air flow rate,the oxygen permeation flux increases rapidly with the air flow rates lower than 100 ml·min-1but nearly remains constant at the air flow rates higher than 150 ml·min-1.It means that when the air flow rate is higher than 150 ml·min-1,surface diffusion of oxygen on the membrane surface near the shell side is notthe rate-limiting step.The results indicate that air should be supplied sufficiently during the oxygen permeation operation.The simulation results are much lower than the experimental data at the air flow rate of 40 ml·min-1.The reason may be that the calculated resistant is larger than the real resistant during the oxygen permeation process.Although the U-shaped hollow- fiber is sintered to dense,there may be some pore structures inside the membrane wall and it helps in reducing the resistances of bulk diffusion.Therefore,the oxygen permeation flux in experiment is higher than simulation.

    Fig.3.Dependence ofoxygen flux on the air flow rate under purge operation(helium flow rate:60 ml·min-1).

    3.2.Effect of sweep gas flow rate

    Fig.4 shows the simulation results and experimental data of the oxygen flux through the U-shaped BSCF hollow- fiber under different helium flow rates and temperatures.In this study,the air flow rate was kept at 150 ml·min-1in both experiment and simulation.The calculated results have shown the same trend as experimental data.At higher temperature,the helium flow rate increment has a greater impact on the oxygen permeation fluxes.A dramatic increase of the oxygen permeation flux is observed in the calculated results when the helium flow rate is increased from 20 ml·min-1to 100 ml·min-1.The oxygen permeation flux increases by 47%,64%,75%,97%and 115%at 750 °C,800 °C,850 °C,900 °C,and 950 °C,respectively.

    Fig.4.Dependence of oxygen flux on the sweep helium flow rate with purge operation(air flow rate:150 ml·min-1).

    Fig.5.Dependence of oxygen permeation flux on the oxygen partial pressure on the shell side(feed gas flow rate:300 ml·min-1,helium flow rate:100 ml·min-1,operating pressure:1.013×105 Pa).

    3.3.Effect of oxygen partial-pressure on the shell side

    The dependence of oxygen permeation flux on the oxygen partial pressure on the shell side has also been investigated.Fig.5 compares the experimental data with the calculated results based on the model.The feed gas consists of different ratios of N2and O2under corresponding oxygen partial pressure.The trend of the simulation results agrees well with the experimental data and the numerical value fits better at lower temperatures of 750 °C and 800 °C.As expected,the oxygen flux is increased dramatically with the increase of oxygen partial pressure on the shellside.Itcan be understood easily thatthe increase ofoxygen partial pressure enlarges the oxygen partial pressure gradient between the shell side and the lumen side,giving an increase driving force for oxygen permeation across the membrane.It can be seen in both Figs.4 and 5 that the gap between the simulation results and experimentaldata at950°C is wider than the lower temperatures.This behavior may be attributed to the reducing of surface reaction resistances at higher temperature in experiment.

    3.4.Effect of vacuum pressure and temperature under vacuum operation

    Calculated results for the effectofvacuum pressure and temperature based on the model are given in Fig.6.The operating pressure on the shell side is kept at 1.013×105Pa in the simulation.In Fig.6a,oxygen permeation flux is plotted against the vacuum pressure at the lumen side.As the vacuum level increased(the vacuum pressure dropt),the oxygen permeation flux is increased.But the vacuum pressure does not affect the oxygen permeation flux anymore when the vacuum level is higher than a certain value.It can be observed clearly in Fig.6b,the oxygen permeation flux is almost the same at the vacuum pressure of1.013×102Pa,5.066×102Pa and 1.013×103Pa.Therefore,1.013×103Pa can be expected as the effective vacuum pressure in this case.It also can be seen in Fig.6b that the increase of vacuum pressure has a relatively even effecton all temperatures.When the vacuum pressure drops from 1.013×104Pa to 1.013×103Pa(effective vacuum pressure),the oxygen permeation flux is increased by more than 44%.The vacuumoperation under 1.013×103Pa at all the five temperatures studied is much more advantageous than that of purge operation.

    3.5.Effect of operating pressure on the shell side

    Fig.7 plots the effect of operating pressure on the oxygen permeation flux when the lumen side pressure is kept at 1.013×105Pa but without any sweep gases.The elevation of the operating pressure at the shell side presents a positive effect on the oxygen permeation flux.Comparing the effectofoperating pressure on the shellside and the vacuum pressure on the lumen side,it can be seen thata high vacuum level on the lumen side is much bene ficial for oxygen permeation.When the vacuumpressure at the lumen side is reduced to 1.013×104Pa,the oxygen permeation flux is about3.5 ml·min-1·cm2at950 °C.Such an oxygen permeation flux could not be achieved by elevating the operating pressure to 3.040×106Pa atthe same temperature.Therefore,reducing the vacuumpressure atthe lumen side is preferable forgas separation in the U-shaped hollow- fiber membrane to get higher oxygen permeation flux.

    Fig.6.Dependence of oxygen permeation flux on(a)the vacuum pressure and(b)temperature under vacuum operation(feed gas flow rate:300 ml·min-1,p=1.013 × 105 Pa).

    Fig.7.Dependence of oxygen permeation flux on the operating pressure on the shell side(feed flow rate:300 ml·min-1,pv=1.013 × 105 Pa).

    4.Conclusions

    A mathematical model based on Nernst-Planck has been developed for a ceramic oxygen permeable membrane with U-shaped geometry under different operating conditions.The air separation process under purge and vacuum operation in a U-shaped BSCF hollow- fiber membrane has been simulated in this work.The trend of calculated results under purge operation is in good agreement with the experimental data.Parametric study under purge operation reveals that the air flow rate and helium flow rate have a great effect on oxygen permeation flux.Temperature is also another important factor in both purge and vacuum operation.It is found that the oxygen partial pressure gradient affects the driving force for oxygen permeation directly.Further study on the effect of oxygen partial pressure on the shell side proves that the U-shaped BSCF hollow- fiber membrane has a large capacity for oxygen separation.Vacuumoperation is more efficientto separate oxygen from air than purge operation.The calculated results based on the model indicate that 1.013×103Pa is the effective vacuum pressure on the lumen side under vacuum operation.Increase of the oxygen permeation flux can be achieved more easily by increasing vacuum levelon the lumen side than elevating operating pressure at the shell side.

    Nomenclature

    Ammembrane area,cm2

    bthe volume ratio of O2in the feed gas

    CVconcentration of oxygen vacancy,mol·cm-3

    CV′ concentration ofoxygen vacancy on the high oxygen pressure side,mol·cm-3

    CV″concentration of oxygen vacancy on the low oxygen pressure side,mol·cm-3

    DVdiffusion coefficient of oxygen vacancy,cm2·s-1

    JO2oxygen permeation flux across the membrane,mol·cm-2·s-1

    JVoxygen vancancy across the membrane,mol·cm-2·s-1

    kfforward reaction rate constant for the surface reactions,mol·cm-2·s-1

    krreverse reaction rate constant for the surface reactions,cm·Pa-0.5·s-1

    Llength of U-shaped hollow- fiber membrane,cm

    llength variable ofU-shaped hollow- fibermembrane model,cm

    Nffeed gas flow rate,mol·s-1

    NRmolar flow rate of residual gas,mol·s-1

    NR,outmolar flow rate of residual gas at the exit of the reactor,mol·s-1

    NO2molar flow rate of oxygen on the lumen side of the hollowfiber,mol·s-1

    NO2,outmolar flow rate of oxygen at the exit of the hollow- fiber,mol·s-1

    poperating pressure on the shell side,Pa

    pO2oxygen partial pressure on the shell side,Pa

    p′O2oxygen partial pressure on the shell side,Pa

    p″O2oxygen partial pressure on the lumen side,Pa

    pvvacuum pressure on the lumen side,Pa

    Rgas constant,Pa·cm3·mol-1·K-1

    Rininner radius of U-shaped hollow- fiber,cm

    Routouter radius of U-shaped hollow- fiber,cm

    rradius variable of U-shaped hollow- fiber,cm

    Toperating temperature,°C

    xmembrane thickness variable,cm

    μ oxygen viscosity,g·cm-1·s-1

    σVconductivity of oxygen vacancy

    [1]J.Sunarso,S.Baumann,J.M.Serra,W.A.Meulenberg,S.Liu,Y.S.Lin,J.C.Diniz da Costa,Mixed ionic-electronic conducting(MIEC)ceramic-based membranes for oxygen separation,J.Membr.Sci.320(2008)13-41.

    [2]X.Tan,Y.Liu,K.Li,Mixed conducting ceramic hollow- fiber membranes for air separation,AIChE J.51(2005)1991-2000.

    [3]P.N.Dyer,R.E.Richards,S.L.Russek,D.M.Taylor,Ion transport membrane technology for oxygen separation and syngas production,Solid State Ionics134(2000)21-33.

    [4]H.J.M.Bouwmeester,Dense ceramic membranes for methane conversion,Catal.Today82(2003)141-150.

    [5]Y.Zeng,Y.S.Lin,S.L.Swartz,Perovskite-type ceramic membrane:Synthesis,oxygen permeation and membrane reactor performance for oxidative coupling of methane,J.Membr.Sci.150(1998)87-98.

    [6]Z.Shao,H.Dong,G.Xiong,Y.Cong,W.Yang,Performance of a mixed-conducting ceramic membrane reactor with high oxygen permeability for methane conversion,J.Membr.Sci.183(2001)181-192.

    [7]Z.Shao,S.M.Haile,A high-performance cathode for the next generation of solidoxide fuel cells,Nature431(2004)170-173.

    [8]V.V.Kharton,A.A.Yaremchenko,E.N.Naumovich,Research on the electrochemistry of oxygen ion conductors in the former Soviet Union.II.Perovskite-related oxides,J.Solid State Electrochem.3(1999)303-326.

    [9]L.Qiu,T.H.Lee,L.M.Liu,Y.L.Yang,A.J.Jacobson,Oxygen permeation studies of SrCo0.8Fe0.2O3-δ,Solid State Ionics76(1995)321-329.

    [10]P.Zeng,R.Ran,Z.Chen,W.Zhou,H.Gu,Z.Shao,S.Liu,Efficient stabilization of cubic perovskite SrCoO3-δby B-site low concentration scandium doping combined with sol-gel synthesis,J.Alloys Compd.455(2008)465-470.

    [11]C.H.Chen,H.J.M.Bouwmeester,R.H.E.van Doorn,H.Kruidhof,A.J.Burggraaf,Oxygen permeation of La0.3Sr0.7CoO3-δ,Solid State Ionics98(1997)7-13.

    [12]V.V.Kharton,L.Shuangbao,A.V.Kovalevsky,A.P.Viskup,E.N.Naumovich,A.A.Tonoyan,Oxygen permeability and thermal expansion of SrCo(Ti)O3-δperovskites,Mater.Chem.Phys.53(1998)6-12.

    [13]V.V.Kharton,A.A.Yaremchenko,A.V.Kovalevsky,A.P.Viskup,E.N.Naumovich,P.F.Kerko,Perovskite-type oxides for high-temperature oxygen separation membranes,J.Membr.Sci.163(1999)307-317.

    [14]S.Liu,X.Tan,Z.Shao,J.C.Diniz da Costa,Ba0.5Sr0.5Co0.8Fe0.2O3-δceramic hollowfiber membranes for oxygen permeation,AIChE J.52(2006)3452-3461.

    [15]H.Wang,Y.Cong,W.Yang,Oxygen permeation study in a tubular Ba0.5Sr0.5Co0.8Fe0.2O3-δoxygen permeable membrane,J.Membr.Sci.210(2002)259-271.

    [16]M.Salehi,F.Clemens,E.M.Pfaff,S.Diethelm,C.Leach,T.Graule,B.Grobéty,A case study of the effect of grain size on the oxygen permeation flux of BSCF diskshaped membrane fabricated by thermoplastic processing,J.Membr.Sci.382(2011)186-193.

    [17]X.Zhu,S.Sun,Y.Cong,W.Yang,Operation of perovskite membrane under vacuum and elevated pressures for high-purity oxygen production,J.Membr.Sci.345(2009)47-52.

    [18]H.Pan,L.Li,X.Deng,B.Meng,X.Tan,K.Li,Improvement of oxygen permeation in perovskite hollow fibre membranes by the enhanced surface exchange kinetics,J.Membr.Sci.428(2013)198-204.

    [19]C.Hamel,A.Seidel-Morgenstern,T.Schiestel,S.Werth,H.Wang,C.Tablet,J.Caro,Experimental and modeling study of the O2-enrichment by perovskite fibers,AIChE J.52(2006)3118-3125.

    [20]A.Behrouzifar,A.A.Asadi,T.Mohammadi,A.Pak,Experimentalinvestigation and mathematical modeling of oxygen permeation through dense Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCF)perovskite-type ceramic membranes,Ceram.Int.38(2012)4797-4811.

    [21]M.A.Habib,R.Ben Mansour,M.A.Nemit-allah,Modeling of oxygen permeation through a LSCF ion transport membrane,Comput.Fluids76(2013)1-10.

    [22]S.J.Xu,W.J.Thomson,Oxygen permeation rates through ion-conducting perovskite membranes,Chem.Eng.Sci.54(1999)3839-3850.

    [23]H.Wang,R.Wang,D.T.Liang,W.Yang,Experimental and modeling studies on Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCF)tubular membranes for air separation,J.Membr.Sci.243(2004)405-415.

    [24]X.Tan,K.Li,Modeling of air separation in a LSCF hollow- fiber membrane module,AIChE J.48(2002)1469-1477.

    [25]Z.Shao,W.Yang,Y.Cong,H.Dong,J.Tong,G.Xiong,Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3-δoxygen membrane,J.Membr.Sci.172(2000)177-188.

    [26]L.Wang,R.Merkle,J.Maier,T.Acartürk,U.Starke,Oxygen tracer diffusion in dense Ba0.5Sr0.5Co0.8Fe0.2O3-δfilms,Appl.Phys.Lett.94(2009)071908.

    [27]E.Bucher,A.Egger,P.Ried,W.Sitte,P.Holtappels,Oxygen nonstoichiometry and exchange kinetics of Ba0.5Sr0.5Co0.8Fe0.2O3-δ,Solid State Ionics179(2008)1032-1035.

    [28]S.McIntosh,J.F.Vente,W.G.Haije,D.H.A.Blank,H.J.M.Bouwmeester,Oxygen stoichiometry and chemical expansion of Ba0.5Sr0.5Co0.8Fe0.2O3-δmeasured by in situ neutron diffraction,Chem.Mater.18(2006)2187-2193.

    [29]P.Zeng,Z.Chen,W.Zhou,H.Gu,Z.Shao,S.Liu,Re-evaluation ofBa0.5Sr0.5Co0.8Fe0.2O3-δperovskite as oxygen semi-permeable membrane,J.Membr.Sci.291(2007)148-156.

    [30]Y.Wei,H.Liu,J.Xue,Z.Li,H.Wang,Preparation and oxygen permeation of U-shaped perovskite hollow- fiber membranes,AIChE J.57(2011)975-984.

    一个人观看的视频www高清免费观看| 亚洲欧美日韩另类电影网站 | 久久久色成人| 成人鲁丝片一二三区免费| 国产探花在线观看一区二区| 人人妻人人澡人人爽人人夜夜| 欧美亚洲 丝袜 人妻 在线| 日韩av免费高清视频| 国语对白做爰xxxⅹ性视频网站| 亚洲人成网站在线播| 日韩成人伦理影院| 精品人妻偷拍中文字幕| 爱豆传媒免费全集在线观看| 六月丁香七月| 蜜桃亚洲精品一区二区三区| 18+在线观看网站| 国内精品美女久久久久久| 麻豆久久精品国产亚洲av| 久久久成人免费电影| 久久久久久久久大av| 亚洲av一区综合| 最近的中文字幕免费完整| 国产亚洲av片在线观看秒播厂| 国产欧美亚洲国产| 黄片无遮挡物在线观看| 欧美国产精品一级二级三级 | 六月丁香七月| 在线亚洲精品国产二区图片欧美 | 亚洲欧美清纯卡通| 别揉我奶头 嗯啊视频| 国产欧美亚洲国产| 亚洲熟女精品中文字幕| 偷拍熟女少妇极品色| 亚洲欧美一区二区三区国产| 日韩电影二区| 国产成人精品久久久久久| 最近最新中文字幕免费大全7| 亚洲高清免费不卡视频| 在线亚洲精品国产二区图片欧美 | 国产精品嫩草影院av在线观看| 新久久久久国产一级毛片| 精品酒店卫生间| 国产一区二区三区av在线| 亚洲av电影在线观看一区二区三区 | 一级毛片aaaaaa免费看小| 午夜福利在线观看免费完整高清在| 国产成人免费观看mmmm| 午夜福利视频精品| 特大巨黑吊av在线直播| 在线精品无人区一区二区三 | 美女xxoo啪啪120秒动态图| 午夜激情福利司机影院| 80岁老熟妇乱子伦牲交| 中文天堂在线官网| 高清av免费在线| 在线 av 中文字幕| 亚洲av成人精品一区久久| 99视频精品全部免费 在线| 亚洲国产精品专区欧美| 精品久久久久久久末码| 亚洲精品一区蜜桃| av天堂中文字幕网| 亚洲国产av新网站| av卡一久久| 内地一区二区视频在线| 精品酒店卫生间| 一区二区av电影网| 男男h啪啪无遮挡| 熟妇人妻不卡中文字幕| 成人高潮视频无遮挡免费网站| 午夜福利网站1000一区二区三区| 日产精品乱码卡一卡2卡三| 日韩大片免费观看网站| 69人妻影院| 国产91av在线免费观看| 黄色日韩在线| 亚洲伊人久久精品综合| 欧美成人一区二区免费高清观看| 高清在线视频一区二区三区| 人妻系列 视频| 免费人成在线观看视频色| 国产女主播在线喷水免费视频网站| 中文精品一卡2卡3卡4更新| 男人和女人高潮做爰伦理| 国产成人a区在线观看| 免费观看在线日韩| 精品国产乱码久久久久久小说| 一级a做视频免费观看| 中文精品一卡2卡3卡4更新| 国产精品精品国产色婷婷| 亚洲精品影视一区二区三区av| 免费在线观看成人毛片| 国产91av在线免费观看| 国产精品久久久久久久久免| 精品视频人人做人人爽| 一个人看的www免费观看视频| 国产成人91sexporn| 18禁裸乳无遮挡免费网站照片| 丝袜喷水一区| 日本黄大片高清| 精品久久久久久久久av| 日韩 亚洲 欧美在线| 国产精品人妻久久久久久| 自拍偷自拍亚洲精品老妇| 校园人妻丝袜中文字幕| 午夜精品国产一区二区电影 | 亚洲精品色激情综合| 老司机影院成人| 青春草视频在线免费观看| 精品人妻偷拍中文字幕| a级毛片免费高清观看在线播放| 简卡轻食公司| 欧美高清成人免费视频www| 久久99精品国语久久久| 久久久久久久精品精品| 99热这里只有精品一区| 国产男女超爽视频在线观看| 国产成年人精品一区二区| 国产美女午夜福利| 熟女av电影| 中文欧美无线码| 精品少妇久久久久久888优播| 如何舔出高潮| 黄色日韩在线| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲四区av| 成人综合一区亚洲| 亚洲精品视频女| 黄色怎么调成土黄色| 国产精品伦人一区二区| 伦理电影大哥的女人| 久久久久久伊人网av| 男插女下体视频免费在线播放| 日韩电影二区| 久久99精品国语久久久| 免费观看无遮挡的男女| 丝袜喷水一区| 男女啪啪激烈高潮av片| 观看美女的网站| 高清毛片免费看| 精品熟女少妇av免费看| 国产一区二区亚洲精品在线观看| 性色av一级| 久久女婷五月综合色啪小说 | 高清在线视频一区二区三区| 麻豆久久精品国产亚洲av| 嫩草影院精品99| 极品教师在线视频| 国产老妇女一区| 久久久国产一区二区| 国产乱来视频区| 九草在线视频观看| 97超视频在线观看视频| 狂野欧美白嫩少妇大欣赏| 国产精品99久久久久久久久| 亚洲国产av新网站| 国产淫片久久久久久久久| 中文资源天堂在线| 成人国产麻豆网| 99久国产av精品国产电影| 赤兔流量卡办理| 国产 一区精品| 精品久久久久久久末码| 成人一区二区视频在线观看| 国产黄色免费在线视频| 69人妻影院| 最近最新中文字幕大全电影3| 亚洲激情五月婷婷啪啪| 国产高清有码在线观看视频| 最近最新中文字幕大全电影3| 亚洲一区二区三区欧美精品 | 在线看a的网站| 欧美一区二区亚洲| 亚洲美女搞黄在线观看| 三级国产精品欧美在线观看| 18禁在线播放成人免费| 极品少妇高潮喷水抽搐| 亚洲精品视频女| 一个人观看的视频www高清免费观看| 中文字幕久久专区| 亚洲欧美精品专区久久| 国模一区二区三区四区视频| 亚洲av中文字字幕乱码综合| 五月伊人婷婷丁香| 大香蕉97超碰在线| 久久亚洲国产成人精品v| 亚洲伊人久久精品综合| 51国产日韩欧美| 精品酒店卫生间| 国产黄a三级三级三级人| 极品教师在线视频| 大话2 男鬼变身卡| 午夜亚洲福利在线播放| 在线观看人妻少妇| 久久久午夜欧美精品| 嫩草影院入口| av专区在线播放| 在线观看一区二区三区| 久久久久精品性色| 白带黄色成豆腐渣| 国产成人福利小说| 国产一级毛片在线| av.在线天堂| 成人漫画全彩无遮挡| 久久精品国产a三级三级三级| 91久久精品电影网| av在线播放精品| 欧美97在线视频| 97人妻精品一区二区三区麻豆| 春色校园在线视频观看| 人人妻人人爽人人添夜夜欢视频 | 国产免费福利视频在线观看| 在线观看美女被高潮喷水网站| 中文在线观看免费www的网站| 国产男人的电影天堂91| 97精品久久久久久久久久精品| 色综合色国产| 男女边吃奶边做爰视频| 欧美成人午夜免费资源| 国产乱人视频| 大片免费播放器 马上看| 人妻 亚洲 视频| 在线观看一区二区三区| 欧美xxxx性猛交bbbb| h日本视频在线播放| 男女边吃奶边做爰视频| 久久久久久久久久久丰满| 亚洲精品日韩在线中文字幕| 国语对白做爰xxxⅹ性视频网站| 91精品一卡2卡3卡4卡| 一级毛片 在线播放| 啦啦啦啦在线视频资源| 寂寞人妻少妇视频99o| 69人妻影院| 精品亚洲乱码少妇综合久久| 国产白丝娇喘喷水9色精品| 国产成人91sexporn| 色婷婷久久久亚洲欧美| 又黄又爽又刺激的免费视频.| 免费大片黄手机在线观看| 亚洲欧美一区二区三区黑人 | 1000部很黄的大片| 男男h啪啪无遮挡| 在线播放无遮挡| 99久久中文字幕三级久久日本| 成人鲁丝片一二三区免费| 日本黄大片高清| 亚洲欧美日韩卡通动漫| av专区在线播放| 亚洲国产av新网站| 色视频www国产| 我的老师免费观看完整版| 毛片一级片免费看久久久久| 国产又色又爽无遮挡免| 99热网站在线观看| 久久99热6这里只有精品| 午夜福利在线观看免费完整高清在| 国产av国产精品国产| 亚洲丝袜综合中文字幕| 久久久成人免费电影| 免费看av在线观看网站| 国产高潮美女av| 亚洲色图综合在线观看| 亚洲人成网站在线观看播放| 免费不卡的大黄色大毛片视频在线观看| 美女视频免费永久观看网站| 国产乱人视频| 毛片女人毛片| 在线精品无人区一区二区三 | 日本猛色少妇xxxxx猛交久久| 三级国产精品片| kizo精华| 国产欧美另类精品又又久久亚洲欧美| 亚洲人成网站在线播| 国产精品国产三级专区第一集| 日本欧美国产在线视频| 白带黄色成豆腐渣| 美女xxoo啪啪120秒动态图| 大又大粗又爽又黄少妇毛片口| 久久久久精品久久久久真实原创| 三级国产精品片| 边亲边吃奶的免费视频| 日韩欧美精品免费久久| 天天一区二区日本电影三级| 狂野欧美激情性xxxx在线观看| 国产成人a区在线观看| 亚洲av成人精品一二三区| 日本黄色片子视频| 久久久久久九九精品二区国产| 欧美日韩国产mv在线观看视频 | 又大又黄又爽视频免费| 欧美丝袜亚洲另类| 三级国产精品欧美在线观看| 亚洲国产最新在线播放| 久久鲁丝午夜福利片| 综合色av麻豆| 欧美97在线视频| 日日撸夜夜添| 高清毛片免费看| 日本色播在线视频| 99热6这里只有精品| 永久网站在线| 91精品伊人久久大香线蕉| 欧美日本视频| 国产国拍精品亚洲av在线观看| 老师上课跳d突然被开到最大视频| 国产 一区精品| 免费在线观看成人毛片| 久久热精品热| 亚洲四区av| 99视频精品全部免费 在线| 亚洲国产精品成人综合色| 特级一级黄色大片| 成人漫画全彩无遮挡| 成人午夜精彩视频在线观看| 爱豆传媒免费全集在线观看| av黄色大香蕉| 国内揄拍国产精品人妻在线| 免费看日本二区| 国产精品偷伦视频观看了| 最近的中文字幕免费完整| 午夜福利网站1000一区二区三区| 女人十人毛片免费观看3o分钟| 新久久久久国产一级毛片| 国内精品美女久久久久久| 青春草亚洲视频在线观看| 18禁动态无遮挡网站| h日本视频在线播放| 精品国产三级普通话版| 亚洲天堂国产精品一区在线| 夫妻性生交免费视频一级片| 久久精品综合一区二区三区| 在线亚洲精品国产二区图片欧美 | 国产精品成人在线| 亚洲精品久久午夜乱码| 日韩一区二区三区影片| 三级男女做爰猛烈吃奶摸视频| 国产亚洲91精品色在线| 下体分泌物呈黄色| 岛国毛片在线播放| 国产男人的电影天堂91| 国产精品久久久久久精品古装| 熟女电影av网| 亚洲av一区综合| 亚洲人成网站高清观看| 亚洲自拍偷在线| 国产精品熟女久久久久浪| 看免费成人av毛片| 麻豆国产97在线/欧美| 久久久久久久大尺度免费视频| 成人毛片60女人毛片免费| 久久久久久久精品精品| 成人综合一区亚洲| 久久精品久久久久久噜噜老黄| 水蜜桃什么品种好| 高清视频免费观看一区二区| av又黄又爽大尺度在线免费看| 国产精品久久久久久精品古装| 亚洲av日韩在线播放| 国产高清有码在线观看视频| 秋霞伦理黄片| 亚洲av男天堂| 欧美成人精品欧美一级黄| 日韩av不卡免费在线播放| 在线观看美女被高潮喷水网站| 中文资源天堂在线| 深爱激情五月婷婷| 中文资源天堂在线| 青青草视频在线视频观看| 各种免费的搞黄视频| 中文在线观看免费www的网站| 亚洲av.av天堂| videos熟女内射| 高清日韩中文字幕在线| 真实男女啪啪啪动态图| 国产精品一及| 久久久a久久爽久久v久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | av网站免费在线观看视频| 久久久久精品性色| 国产乱人视频| 久久人人爽人人片av| 午夜日本视频在线| 一级黄片播放器| 免费看a级黄色片| 久久99热6这里只有精品| 国产精品成人在线| 亚洲精品456在线播放app| av免费观看日本| 女的被弄到高潮叫床怎么办| 日韩精品有码人妻一区| 亚洲av在线观看美女高潮| 精品久久久久久久久亚洲| 午夜精品国产一区二区电影 | 国产精品伦人一区二区| 黄片wwwwww| 美女视频免费永久观看网站| 最新中文字幕久久久久| 久久久久久久久久久丰满| 亚洲av.av天堂| 国产精品麻豆人妻色哟哟久久| 黑人高潮一二区| 大又大粗又爽又黄少妇毛片口| 日本猛色少妇xxxxx猛交久久| 少妇的逼水好多| 国产精品爽爽va在线观看网站| 国产精品不卡视频一区二区| 亚洲av一区综合| 黄色配什么色好看| 久久精品久久精品一区二区三区| 国产白丝娇喘喷水9色精品| 欧美xxxx黑人xx丫x性爽| 熟女电影av网| 亚洲国产色片| 日产精品乱码卡一卡2卡三| 干丝袜人妻中文字幕| 少妇被粗大猛烈的视频| 国产久久久一区二区三区| 99热网站在线观看| 国产色婷婷99| 精品一区在线观看国产| 国产毛片在线视频| 69av精品久久久久久| 久久女婷五月综合色啪小说 | 亚洲色图av天堂| 王馨瑶露胸无遮挡在线观看| 亚洲第一区二区三区不卡| 亚洲国产精品成人久久小说| 汤姆久久久久久久影院中文字幕| 91精品国产九色| 国产精品av视频在线免费观看| av黄色大香蕉| 国产国拍精品亚洲av在线观看| 赤兔流量卡办理| 亚洲av一区综合| 国产白丝娇喘喷水9色精品| 国语对白做爰xxxⅹ性视频网站| 在线看a的网站| 亚洲精品第二区| 欧美亚洲 丝袜 人妻 在线| 如何舔出高潮| 高清日韩中文字幕在线| 成人欧美大片| 视频中文字幕在线观看| 国产黄片美女视频| 国内精品宾馆在线| 久久精品人妻少妇| 91精品国产九色| 亚洲伊人久久精品综合| 国产淫语在线视频| av在线天堂中文字幕| 国产成人精品福利久久| 最近手机中文字幕大全| 22中文网久久字幕| 国产精品伦人一区二区| 国产成人91sexporn| 国产淫语在线视频| 青青草视频在线视频观看| h日本视频在线播放| 99久国产av精品国产电影| 亚洲精品自拍成人| 如何舔出高潮| 一本色道久久久久久精品综合| 可以在线观看毛片的网站| 超碰av人人做人人爽久久| 色综合色国产| 色婷婷久久久亚洲欧美| 国产精品偷伦视频观看了| 欧美成人午夜免费资源| 久久久久精品性色| 在线观看av片永久免费下载| 欧美3d第一页| 高清日韩中文字幕在线| 国产又色又爽无遮挡免| 久久韩国三级中文字幕| 国内精品美女久久久久久| 麻豆精品久久久久久蜜桃| 精品久久久久久久久亚洲| 免费黄频网站在线观看国产| a级毛片免费高清观看在线播放| 日韩国内少妇激情av| videossex国产| 国内少妇人妻偷人精品xxx网站| 亚洲成人一二三区av| 美女国产视频在线观看| 国产伦精品一区二区三区四那| 在线观看美女被高潮喷水网站| 老司机影院毛片| 丝袜脚勾引网站| 国产午夜精品久久久久久一区二区三区| 成年av动漫网址| 亚洲精品色激情综合| 亚洲欧美成人精品一区二区| 好男人视频免费观看在线| 男的添女的下面高潮视频| 国产v大片淫在线免费观看| 国产精品一及| 欧美老熟妇乱子伦牲交| 91精品伊人久久大香线蕉| 纵有疾风起免费观看全集完整版| 国产精品久久久久久精品古装| 一级毛片 在线播放| 18+在线观看网站| 亚洲精品影视一区二区三区av| 91久久精品电影网| 成人亚洲精品av一区二区| 免费不卡的大黄色大毛片视频在线观看| kizo精华| 精品久久久精品久久久| 亚洲精品久久久久久婷婷小说| 九九爱精品视频在线观看| 久久久国产一区二区| 国产成人freesex在线| 2021少妇久久久久久久久久久| 国产精品偷伦视频观看了| 高清在线视频一区二区三区| 国产高清国产精品国产三级 | 99热网站在线观看| 国产精品不卡视频一区二区| 一区二区三区乱码不卡18| 男人舔奶头视频| 久久精品国产亚洲av天美| 日韩三级伦理在线观看| 免费人成在线观看视频色| a级毛片免费高清观看在线播放| 亚洲欧美成人精品一区二区| 91久久精品国产一区二区三区| 尾随美女入室| 卡戴珊不雅视频在线播放| av福利片在线观看| 精品久久久精品久久久| 亚洲欧美精品自产自拍| 简卡轻食公司| 人妻夜夜爽99麻豆av| 欧美激情在线99| 高清视频免费观看一区二区| 国产黄a三级三级三级人| 波多野结衣巨乳人妻| 一级二级三级毛片免费看| 日本熟妇午夜| 久久久久精品性色| 亚洲欧美成人综合另类久久久| 久久这里有精品视频免费| 丝袜美腿在线中文| 亚洲av欧美aⅴ国产| 中文字幕制服av| 国产av不卡久久| 99久久九九国产精品国产免费| 乱系列少妇在线播放| 草草在线视频免费看| 80岁老熟妇乱子伦牲交| av国产久精品久网站免费入址| 日日啪夜夜撸| 真实男女啪啪啪动态图| 日本爱情动作片www.在线观看| 我的老师免费观看完整版| 久久久久久久国产电影| 丰满乱子伦码专区| 九九在线视频观看精品| 麻豆精品久久久久久蜜桃| 97超视频在线观看视频| 国产一区二区三区综合在线观看 | 日本一本二区三区精品| 最近中文字幕高清免费大全6| 麻豆久久精品国产亚洲av| 91精品国产九色| 国产av不卡久久| 三级经典国产精品| 秋霞在线观看毛片| 少妇人妻久久综合中文| 国产精品不卡视频一区二区| 性色avwww在线观看| 2021天堂中文幕一二区在线观| av在线老鸭窝| 亚洲,一卡二卡三卡| 男女啪啪激烈高潮av片| 国产综合懂色| 国产精品女同一区二区软件| 三级国产精品欧美在线观看| 亚洲久久久久久中文字幕| 国产精品爽爽va在线观看网站| 三级经典国产精品| a级毛色黄片| 777米奇影视久久| 看十八女毛片水多多多| 少妇熟女欧美另类| 国产一区亚洲一区在线观看| 欧美激情久久久久久爽电影| 亚洲精品成人av观看孕妇| 亚洲精品乱久久久久久| 日韩,欧美,国产一区二区三区| 2021少妇久久久久久久久久久| 精品国产乱码久久久久久小说| 另类亚洲欧美激情| 国产亚洲av嫩草精品影院| 成人黄色视频免费在线看| 秋霞伦理黄片| 插阴视频在线观看视频| 亚洲精品成人久久久久久| 亚洲av中文字字幕乱码综合| 97热精品久久久久久| 亚洲天堂av无毛| 99久久精品一区二区三区| 男男h啪啪无遮挡| 国产极品天堂在线| 午夜精品一区二区三区免费看| 在线观看免费高清a一片| 精品人妻偷拍中文字幕| 免费黄频网站在线观看国产| 亚洲,一卡二卡三卡| 男女啪啪激烈高潮av片| 国产高清三级在线| 一个人观看的视频www高清免费观看| 亚洲av国产av综合av卡| 国产色婷婷99|