• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced permeation performance of polyether-polyamide block copolymer membranes through incorporating ZIF-8 nanocrystals☆

    2017-05-29 01:39:12LongweiXuLongXiangChongqingWangJianYuLixiongZhangYichangPan

    Longwei Xu,Long Xiang,Chongqing Wang*,Jian Yu,Lixiong Zhang,Yichang Pan*

    State Key Laboratory of Materials-Oriented Chemical Engineering,College of Chemical Engineering,Nanjing Tech University,Nanjing 210009,China

    1.Introduction

    Removing CO2from natural and flue-gas is of great importance to cut down the emissions of greenhouse gas.Membrane-based CO2separation is a promising alternative in terms of energy and environmental issues to conventional cryogenic distillation and reversible adsorption techniques[1,2].The majority of commercially available polymeric membranes for CO2separation is made from glassy polymers,for example,polyimide,cellulose acetate and poly(phenylene oxide)[3,4].However,the permeation rates of CO2on those membranes are not sufficient for large-scale separation applications,even if they have good selectivity.As emphasized by Merkel and co-workers[5],very high selectivity is not of the primary concern for industrial membrane application,because the downstream concentration of the more permeable component plateaus increases as the selectivity continues.

    Polyether-polyamide block copolymers(Pebax),a series of commercial and low-cost copolymer materials,have great potential for use in CO2separation because of their excellent selectivity but moderate CO2permeability[6-9].For example,Pebax?1657,composited of 60 wt%polyethylene oxide(PEO)and 40 wt%polyamide(PA6),is of a satis fied selectivity for CO2/CH4but a relatively low CO2permeability(several tens of Barrer)[9-11].In order to enhance the gas permeability of polymeric membranes,one of the most promising strategies was developed to incorporate highly permeable fillers into the polymer matrices,leading to a hybrid materials referred as mixed matrix membranes(MMMs)[12].When the gas permeability on inorganic fillers is two-order higher than that on the polymer matrix[13,14],the gas permeability on the resulting MMMs,free of interfacial defects,will be substantially improved.However,the compatibility between conventional inorganic fillers(zeolites and carbon molecular sieves)and polymeric matrix for interfacial adhesion is challenging,always resulting in an increase of the gas permeability but a sharp decrease of the gas selectivity.

    This issue can be effectively mitigated using porous metal-organic framework(MOF)materials as fillers,because the organic linkers in MOFs can provide better affinity with polymer matrix[11,15-20].In this sense,ZIF-8[21],constructed from zinc(II)cations and 2-methylimidazole anions was selected to be served as the filler to improve the intrinsic CO2permeability of Pebax?1657 matrices,because of its high porosity and high CO2permeability(~3000 Barrer)[22].In addition,ZIF-8 with ultra-microporous window is also attractive for its facile synthesis procedure and low-cost precursor,as well as its exceptional thermal and chemical stability,and thus has been extensively applied in gas-based adsorbents,separating membranes and sensors[23-27].Besides,blending of ZIF-8 nano- fillers in polymeric membranes has also been demonstrated for enhancing either gas permeability or selectivity(or sometimes both)of the parentpolymeric matrices[28-35].However,almost all reports are focused on the glassy polymeric matrices,such as polyimide and polysulfone,which are of intrinsic low gas permeability.Recently,Na fisi and H?gg have incorporated ZIF-8 fillers into the high-permeable Pebax?2533 matrices,which is composited of 80 wt%polytetramethylene oxide(PTMO)and 20 wt%polyamide(PA12)[36].Even though the CO2permeability was further improved,the selectivity for CO2/CH4(~9)is not satis fied for the potential separation application.Compared with Pebax?2533,Pebax?1657 not only exhibits higher CO2/light-gas selectivity but also provides stronger mechanical strength due to its higher content of polyamide[8].Therefore,in this study,rubbery Pebax?1657 polymeric membrane with relative-high gas permeability was blended with ZIF-8 nano- fillers to further enhance the gas permeation.The good interfacial interaction between ZIF-8 fillers and Pebax matrices was verified by several physical measurements.The CO2permeability on the 18 wt%ZIF-8/Pebax membrane was improved to 178 Barrer,which is 300%higher than that on pristine Pebax membrane,and the CO2/CH4selectivity still maintained at~18.The transport mechanism on the ZIF-8/Pebax MMMs was also explored.The mixed-gas separation performance for CO2/CH4mixtures on the ZIF-8/Pebax MMMs is very close to the Roberson upper bound,and thus is technologically attractive for purification of natural gas.Finally,the mixed-gas permeation performances on the optimized 18 wt%ZIF-8/Pebax membrane were also investigated.

    2.Experimental

    2.1.Materials

    Allchemicals were used as received withoutfurtherpurification.Both zinc nitrate hexahydrate(Zn(NO3)26H2O,99%)and 2-methylimidazole(Hmim,99%)were purchased from Sigma-Aldrich.Pebax?1657 was purchased from Arkema Inc.,France.Analytical grade ethanol was supplied from Sinopharm Chemical Reagent Co.,Ltd.The water used in all experiments was treated by the Millipore Milli-Q purification system.

    2.2.Synthesis of ZIF-8 nanocrystals

    ZIF-8 nanocrystals were synthesized following our reported procedure[37].In a typical synthesis,Zn(NO3)2·6H2O(1.17 g)and Hmim(22.70 g)were dissolved in deionized(DI)water(88 ml),and the resulting mixture was stirred at room temperature(~25°C)for 6 h.The as-prepared turbid solution was centrifuged and washed with DI water three times,followed by directly re-dispersing in ethanol/water mixture(mass ratio 7:3).

    2.3.Fabrication of ZIF-8/Pebax MMMs

    The flat-sheet dense ZIF-8/Pebax MMMs with different ZIF-8 loadings were fabricated using a solution-casting method.Firstly,Pebax polymer pellets were dissolved in an ethanol/water mixture(mass ratio 7:3)under re flux at 80°C for 2 h to prepare an 8 wt%Pebax solution.Secondly,proper amount of above ZIF-8 suspension was added to the Pebax solution,followed by an indirect ultrasonic dispersion for 30 min.Finally,the bubble-free casting solution was rapidly casted onto a Te flon plate with a doctor-blade knife at ambient condition.The just-casted film was dried atroomtemperature forsolventevaporation,followed by further drying in a vacuum oven at 70°C for 24 h.As a comparison,pristine Pebax membranes were also fabricated from pure Pebax solution using above same casting and drying processes.The weight loading of ZIF-8 in the MMMs was de fined as:

    while the volume fraction of ZIF-8 in MMMs was de fined as:

    where ρPebaxand ρZIF-8refer to the density of polymer Pebax and ZIF-8 crystals,and are 1.14 and 0.95 g·cm-3[10,14].

    2.4.Characterization

    X-ray diffraction(XRD)patterns of all samples were acquired on a Rigaku Smartlab TM 9 kW powder diffractometer(CuKαsource)at 40 kV and 40 mA.The BET surface area of ZIF-8 nanocrystals was derived from the nitrogen adsorption isotherms at 77 K using a BELSORP-max machine.The particle size distribution of ZIF-8 nanocrystals in the water/ethanol suspension was measured by means ofdynamic lightscattering(DLS)using a Brookhaven 90 plus particle size analyzer at 25°C.Thermogravimetric analysis(TGA)was conducted on a NETZSCHSTA 449 instrument under air atmosphere from 25 to 800°C with a heating rate of 10 °C·min-1.Scanning electron microscope(SEM)characterization was performed on a ZEISS SUPRA 55 at 10 kV to examine the morphology of ZIF-8 crystals and membranes.The membrane samples were artificially broken in liquid nitrogen to investigate the cross-sectional morphology.Energy dispersive X-ray spectroscopy(EDX)wasused to analyze the TGAresidues of ZIF-8 and mixed matrix membrane samples.All samples were coated with Au using a Denton Vacuum Desk II sputter coater before SEM analysis.Differential scanning calorimeter(DSC)measurements were conducted on NETZSCHDSC 204 F1 Phoenix to determine the glass transition temperature(Tg)ofallmembrane samples.The measurement was operated under nitrogen from-80 to 250°C using a standard heating-cooling-heating procedure with a rate of 10 °C·min-1.Density measurements of the MMMs were performed using hydrostatic weighing with a density determination kit(Mettler Toledo).High-pressure adsorption isotherms of N2,CH4and CO2on membrane samples were recorded on a Belsorp-HP adsorption apparatus at 298-323 K with pressure up to 1 MPa.Prior to the test,membrane sample(~300 mg)cut into small pieces was activated under vacuum(10-5Torr)at 100°C for 24 h.At each point,an equilibration time of at least 1 h was used.

    2.5.Gas permeation experiments

    Both single and mixed gas permeation experiments were conducted on a home-made setup by the Wicke-Kallenbach technique,as shown in Fig.1.Allgases with 99.99%purity were supplied by Nanjing Sanle group Co.,Ltd.A flat-sheet permeation cell with effective membrane area of 2.84 cm2was used for all tests.Helium was used as the sweep gas.In all tests,the stage-cut(i.e.,ratio of permeate flow to feed flow)less than 1%was maintained to avoid the concentration polarization.Unless otherwise specified,the feeding pressure was maintained at 0.4 MPa.The compositions of the steady-state feed,retentate and permeate were all tested by gas chromatography(Agilent 7890)equipped with a thermal conductive detector.To guarantee the reliability of testing,three duplicated membrane samples fabricated under the same condition were used for permeation.The permeation results were averaged as the final data with deviations.Prior to the test,residual gas present in the membranes and the pipeline was removed by vacuum pump.The gas permeation under the steady-state can be written as:

    whereLrefers to the membrane thickness(cm),measured with a digital micrometer(Mitutoyo,Japan),Niis the flux through the film(cm3·s-1).TheArepresents the effective membrane area(cm2),the pressure drop,Δpi,is the difference between the feed and permeate side(cmHg,1 cmHg=1333.22 Pa).The unit of permeability(Pi)and permeance(Ji)are commonly expressed as Barrer and GPU,respectively(1 Barrer=10-10cm3(STP)·cm·(cm2·s·cmHg)-1,1 GPU=1 × 10-6cm3(STP)·(cm2·s·cmHg)-1).The gas permeation experiments for each membrane sample were repeated for three times.The measurement results of three samples were averaged as the final data with deviations shown in table as error bars.The ideal selectivity and separation factor of a membrane were calculated as shown in the equation below:

    Fig.1.Schematic diagram of the set-up for gas permeation measurements.

    3.Results and Discussion

    3.1.Characterization of ZIF-8 fillers

    The as-synthesized ZIF-8 fillers were firstly characterized by various physical measurements.As shown in Fig.2(a),XRD patterns of the synthesized fillers are excellent agreement with the simulated pure-phase ZIF-8 structure[21].The DLS measurement shows that the particle size of as-synthesized fillers ranges from 80 to 200 nm with a mean particle size of 129 nm(Fig.2(b)).The fillers from SEM images exhibit the polyhedral morphology(Fig.2(c)).The N2adsorption measurement of ZIF-8 fillers exhibits a type I isotherm(Fig.2(d)).The BET surface area is calculated to be 1608 m2·g-1,which is close to the previous reported values of ZIF-8 nanocrystals[31,38,39].From above characterizations,it was concluded that highly crystalline ZIF-8 nanocrystals were successfully prepared.

    3.2.Characterization of ZIF-8/Pebax MMMs

    Robust Pebax membranes containing various ZIF-8 loadings were successfully fabricated.The fresh as-synthesized ZIF-8 nanocrystals without drying were used as fillers,because drying process was prone to induce the non-reversible agglomeration of fillers[40,41].In order to determine the accurate loadings ofZIF-8 in MMMs,TGA characterizations of the membrane samples in air were firstly conducted(Fig.3(a)).The final solid residues were only zinc oxide by EDX analysis[42].Table 1 lists the determined mass percentages of ZnO by TGA and calculated ZIF-8 loadings in corresponding MMMs.Higher mass percentage of zinc was found in the final residues,indicating that higher ZIF-8 loadings are in the MMMs.The mass percentage of zinc elements in pure ZIF-8 fillers determined by TGA(27.67%)was close to the theoretical mass percentage calculated by molecular mass(28.5%).The actual mass loadings of ZIF-8 fillers in MMMs are 11 wt%,18 wt%,21 wt%and 33 wt%,respectively,in good agreement with the nominal calculated compositions,and are employed in the remaining discussion.

    The interfacial interaction between fillers and polymeric matrices was first investigated by DSC measurements.As shown in Fig.3(b),the glass transition temperature(Tg)of the ZIF-8/Pebax MMMs gradually increases with the ZIF-8 loadings,suggesting a favorable interfacial interaction between fillers and matrix.TheTgvalue ofthe pristine Pebaxmembrane is-55.5°C,consistent with the values from other reports[6-9].TheTgvalue of MMMs shifts to-52.9°C when the ZIF-8 loading increases to 33 wt%.This positive shift is due to the reduced mobility of polymer chain and the rigidification of polymer chains on the filler's surface[41].We speculate that this interaction comes from the hydrogen bonding between imidazolate group of ZIF-8 fillers and ether group in the Pebax polymer.

    Table 1Analysis results of TGA residues and calculated ZIF-8 loadings

    Fig.3.(a)TGA curves in air,(b)DSC curves,(c)density testing and(d)XRD patterns of ZIF-8 nanocrystals,pristine Pebax membrane and ZIF-8/Pebax MMMs with various filler loadings.

    In addition,the good interfacial interaction was also con firmed by the bulk density measurements.As shown in Fig.3(c),the MMMs exhibit a clear linear relationship between density and ZIF-8 loading,suggesting that voids or “sieve-in-a-cage”are not presented in the fabricated MMMs.Furthermore,it is also found that XRD patterns of ZIF-8 fillers after integrating into the Pebax matrices are slightly different with those of the original ZIF-8 structure(Fig.3(d)).The crystal structure of ZIF-8 fillers inside the Pebax matrices at(112)and(013)becomes the strongest diffraction intensity,while the diffraction peaks at(011)and(112)are the strongest in the original ZIF-8 structure.This change of XRD patterns from the crystal orientation should be eliminated,because of the random distribution of spherical fillers inside the matrices.On the contrary,this phenomenon is attributed to the chemical interaction between Pebax and ZIF-8 crystals,as demonstrated by the facilitated preparation of ZIF-8 crystals with the aid of Pebax polymer[43].Cross-sectional SEM images of the membranes(Fig.4)also show the good interfacial interaction between fillers and polymer,owing to the inherently organic property of ZIF-8 framework.The small white spots are the spherical ZIF-8 nanocrystals,and homogeneously dispersed in the polymer matrices.Even the loading of ZIF-8 fillers up to 33 wt%,larger clusters or aggregates of fillers were not observed,which bene fits from the utilization of undried and fresh as-synthesized ZIF-8 nanocrystals.However,further increasing ZIF-8 loadings will result in the mechanical failure of the MMMs.Overall,above characterizations present the good interfacial interaction between ZIF-8 nanocrystals and Pebax matrices.

    3.3.Separation performance on ZIF-8/Pebax MMMs

    Table 2 lists the single-gas permeation results of CO2,CH4and N2on the pristine Pebax and ZIF-8/Pebax MMMs with various ZIF-8 loadings.The permeation temperature and feeding pressure are 25°C and 0.4 MPa,respectively.The permeability of all gases experiences the same increase-and-decrease pattern.As the ZIF-8 loading increases up to 18 wt%,the permeability of all gases increases to three times compared with that on the pristine Pebax membrane.Further increasingthe ZIF-8 loading to 21 wt%,the permeability of all gases on MMMs obviously decreases,butstillexhibitnearly 2.5-fold higherthan thaton the pristine Pebax membrane.However,the simultaneous amplification of gas permeability on MMMs results in the similar selectivity for both CO2/N2and CO2/CH4to the pristine Pebax membrane.However,when the ZIF-8 loading was increased to 33 wt%,the permeability of CO2sharply decreases from 137.8 to 84.4 Barrer.This phenomenon is possibly attributed to the rigidification of polymer chains on the filler's surface[12],as demonstrated by the obvious increase of Tg value(Fig.3(b)).In contrast,the permeability of both CH4and N2decreases moderately,resulting in an obvious reduction of selectivity for both CO2/N2and CO2/CH4.

    Table 2Single-gas permeation results of CO2,CH4 and N2 on the pristine Pebax membrane and ZIF-8/Pebax MMMs with various ZIF-8 loadings

    3.4.Transport mechanism on ZIF-8/Pebax MMMs

    In order to understand the transport role of the added ZIF-8 filler,the diffusion and solubility coefficients of all gases through MMMs were investigated.As shown in Fig.5,high-pressure adsorption isotherms of all gases on the pristine Pebax membrane and ZIF-8/Pebax MMMs all exhibit linear shape,and the concentration of adsorbed gas increases with the ZIF-8 loading in MMMs.Therefore,the solubility coefficient of the gas was determined by the following equations[44]:

    whereCi(cm3·cm-3)is the concentration for adsorbed componenti,p(cmHg)is the gas pressure at adsorptive equilibrium,kD(cm3·cm-3·cmHg-1)is the Henry's solubility coefficient.Si(cm3·cm-3·cmHg-1)is the solubility coefficient.

    Based on the solution-diffusion mechanism in polymeric membrane,the diffusion coefficient of the gas can be determined by:

    whereDiis the average effective diffusion coefficient(cm2·s-1),andPiis the gas permeability obtained from the single-gas permeation.As shown in Fig.6(a),the solubility coefficients of all gases in MMMs increase with the ZIF-8 loadings,attributed to the higher adsorption capacities of gas in ZIF-8 than those in Pebax.In contrast,the diffusion coefficients of three gases exhibit slightly different trends as a function of ZIF-8 loading,although they all experience an increase-and-decrease pattern (Fig.6(b)).Compared with the pristine Pebax membrane,both diffusion and solubility coefficients raise on the 18 wt%ZIF-8/Pebax MMMs,resulting in the significant improvement of gas permeability.However,the diffusion coefficients of all gases sharply decrease with the increase of ZIF-8 loading from 21 wt%to 33 wt%.This phenomenon is possibly due to the rigidification or blockage of filler's pores by the polymer chain[12].

    In order to further understand the permeation performance in the ZIF-8/Pebax MMMs,we perform analysis using the Maxwell model[45],which is often applied to predict the gas permeation behavior of MMMs with spherical fillers.

    Fig.5.High-pressure sorption isotherms of CO2,N2 and CH4 on pristine Pebax membrane and ZIF-8/Pebax MMMs at 25°C.

    wherePeffis the effective permeability ofthe MMMs,PcandPdrepresent the permeability of the continuous(polymer)and dispersed phase( fillers),respectively.The intrinsic permeability of CO2,N2and CH4on ZIF-8 fillers(Pd)was 3300,1000 and 270 Barrer,respectively,reported by Koros'group[22].

    Fig.6.(a)Solubility coefficients and(b)diffusion coefficients of all gases at 4 bar and 25°C as a function of ZIF-8 loadings in MMMs.

    As shown in Fig.7(a),when the ZIF-8 loading in MMMs is below 12 vol%,the experimental permeability of all gases matches well with the Maxwell prediction.With increasing of ZIF-8 loading from 21 vol%to 24 vol%,the experimental values of gas permeability are above the Maxwell prediction,possibly due to the good interfacial interaction between ZIF-8 and Pebax matrices.However,as the loading furtherincreases to 37 vol%,the experimentalvalue of CO2permeability falls below the Maxwell curve.On the other hands,the experimental selectivity for both CO2/N2and CO2/CH4on MMMs also matches well with the Maxwell prediction,with the exception of those on membrane with 37 vol%loading(Fig.7(b)).The almost constant selectivity is possibly attributed to the large difference ofgas permeability between polymer matrix and porous fillers[13].In contrast,the severely decreased selectivity on MMMs with 37 vol%loading could arise from one of two possibilities.First is the rigidification or blockage of filler's pores by the polymer chain,as demonstrated by above the gas permeation tests and physical measurements.Second is thatthe volume fraction of fillers in MMMs is far beyond the application threshold of the Maxwell model(~20 vol%)[45].

    3.5.Effect of temperature on separation performance

    The effectofpermeating temperature(298-323 K)on the separation performance of the pristine Pebax membrane as well as ZIF-8/Pebax MMMs was further explored.As shown in Figs.8 and 9,the permeability of N2,CH4and CO2all increases with the permeating temperature,whereas the selectivity for both CO2/CH4and CO2/N2decreases.The increase in gas permeability with temperature indicates that diffusion dominates the transport of gas through the membrane,instead of solubility,because adsorption of gases is all greatly reduced with the increase of temperature.However,the increase in CO2permeability was less than that of other gases(CH4or N2),resulting in a decrease in selectivity for both CO2/CH4and CO2/N2.The relationship between gas permeability and temperature can be described with the Arrhenius equation in terms of the permeation activation energy:

    wherePois the pre-exponential factor,Epis the apparent activation energy for permeation (kJ·mol-1),Ris the gas constant(8.314 J·K-1·mol-1),andTis the absolute temperature(K).

    Fig.7.Comparison between Maxwell model and experimental data of ZIF-8/Pebax MMMs with various ZIF-8 loadings:(a)gas permeability and(b)selectivity.

    Table 3 presents the calculatedEpfor all gases through the pristine Pebax membrane and ZIF-8/Pebax MMMs with various ZIF-8 loadings.TheEpvalues of CO2,CH4and N2on the pristine Pebax membrane are 23.8,40.8 and 44.4 kJ·mol-1,respectively,which are consistent with the reported values for Pebax?1657 membrane[46].In addition,theEpvalues ofallgases on ZIF-8/Pebax MMMs with various ZIF-8 loadings are all lower than those on the pristine Pebax membrane,indicating that the addition of ZIF-8 fillers can facilitate the permeation of gas through the polymer matrices[47].Furthermore,due to its smallestEpvalue for CO2,it was the least favorable for CO2when temperature increased compared with CH4and N2.Therefore,the raise of CO2permeability was less than that of other gases(CH4and N2)with increase in permeating temperature,resulting in a decrease in selectivity for both CO2/CH4and CO2/N2systems.

    Fig.8.Effect of operating temperature on the gas permeability through pristine Pebax membrane and MMMs with various ZIF-8 loadings:(a)N2,(b)CH4,and(c)CO2.

    Fig.9.Effect of operating temperature on selectivity through pristine Pebax membrane and MMMs with various ZIF-8 loadings:(a)CO2/CH4 and(b)CO2/N2.

    3.6.Mixed-gas permeation

    The mixed-gas permeation on the 18 wt%ZIF-8/Pebax MMMs was also conducted at 25°C to probe the CO2permeation in the presence of another component.Compared with the single-gas permeation,a reduction in CO2permeability is observed,whereas the permeability of both N2and CH4are slightly higher in the mixed-gas permeation(Fig.10(a and b)).As a result,the separation factor is slightly lower than the ideal selectivity.The observed slight difference between single-component and mixed-gas permeations was also found in several duplicated membranes from different batches.Therefore,this phenomenon should be attributed to the multicomponent competitive sorption[48],rather than the experimental deviation.The presence of CH4(or N2)with CO2in gas mixture could prevent further adsorption of CO2on ZIF-8 fillers and also prohibit the extra condensation of CO2,resulting in the reduction of CO2solubility.As shown in Fig.10(c),the mixed-gas separation performance for CO2/CH4is very close to the Roberson upper bound[49,50],and thus are technologically attractive for purification ofnatural gas.

    4.Conclusions

    In summary,enhanced permeation performance of CO2on Pebax?1657 polymeric membranes by incorporating ZIF-8 nano-fillers was successfully achieved,without compromising the separating selectivity.The interfacial interaction between ZIF-8 fillers and Pebax matrices was satis fied,as demonstrated by several physical characterizations.The CO2permeability on the 18 wt%ZIF-8/Pebax membrane can reach to 178 Barrer,~300%higher than that on the pristine Pebax membrane,and the CO2/CH4selectivity still maintains at 18.The improved gas permeability on the 18 wt%MMMs was attributed to the raise of both gas solubility and diffusivity by the addition of ZIF-8 nano- fillers.For the mixed-gas(CO2/CH4)permeation,the separation performances are very close to the Roberson upper bound,and thus are technologically attractive for purification of natural gas.

    Table 3Activation energies of permeation for CO2,CH4 and N2 on all membranes

    Fig.10.(a,b)Single and mixed-gas permeation results on the 18 wt%ZIF-8/Pebax MMMs at 25°C and(c)comparison with Roberson upper bound[49].

    Nomenclature

    Aeffective membrane area,cm2

    Ciconcentration for adsorbed gas,cm3·cm-3

    Diaverage effective diffusion coefficient,cm2·s-1

    Epapparent activation energy for permeation,kJ·mol-1

    Jigas permeance,GPU

    kDHenry's solubility coefficient,cm3·cm-3·cmHg-1

    Lmembrane thickness,cm

    mmass,g

    Niflux through the film,cm3·s-1

    Pcpermeability of the continuous phase,Barrer

    Pdpermeability of the dispersed phase,Barrer

    Peffeffective gas permeability of the MMMs,Barrer

    Pigas permeability,Barrer

    ΔPidifference between the feed and permeate side,cmHg-1

    ppressure at adsorptive equilibrium,cmHg-1

    Rgas constant(=8.314 J·K-1·mol-1)

    Sisolubility coefficient,cm3·cm-3·cmHg-1

    Tabsolute temperature,K

    αA/Bgas selectivity on the membrane

    ρ density,g·cm-3

    ?volume fraction of ZIF-8 in mixed matrix membrane

    ω mass loading of ZIF-8 in the MMMs

    [1]R.W.Baker,K.Lokhandwala,Natural gas processing with membranes:An overview,Ind.Eng.Chem.Res.47(2008)2109-2121.

    [2]P.Bernardo,E.Drioli,G.Golemme,Membrane gas separation:A review/state of the art,Ind.Eng.Chem.Res.48(2009)4638-4663.

    [3]R.W.Baker,Future directions of membrane gas separation technology,Ind.Eng.Chem.Res.41(2002)1393-1411.

    [4]A.D.Ebner,J.A.Ritter,State-of-the-art adsorption and membrane separation processes for carbon dioxide production from carbon dioxide emitting industries,Sep.Sci.Technol.44(2009)1273-1421.

    [5]T.C.Merkel,H.Q.Lin,X.T.Wei,R.Baker,Power plant post-combustion carbon dioxide capture:An opportunity for membranes,J.Membr.Sci.359(2010)126-139.

    [6]V.I.Bondar,B.D.Freeman,I.Pinnau,Gas transportproperties of poly(ether-b-amide)segmented block copolymers,J.Polym.Sci.Polym.Phys.38(2000)2051-2062.

    [7]J.H.Kim,Y.M.Lee,Gas permeation properties of poly(amide-6-b-ethylene oxide)-silica hybrid membranes,J.Membr.Sci.193(2001)209-225.

    [8]S.L.Liu,L.Shao,M.L.Chua,C.H.Lau,H.Wang,S.Quan,Recent progress in the design of advanced PEO-containing membranes for CO2removal,Prog.Polym.Sci.38(2013)1089-1120.

    [9]Y.Y.Wang,H.Y.Li,G.X.Dong,C.Scholes,V.Chen,Effect of fabrication and operation conditions on CO2separation performance of PEO-PA block copolymer membranes,Ind.Eng.Chem.Res.54(2015)7273-7283.

    [10]L.Xiang,Y.C.Pan,G.F.Zeng,J.L.Jiang,J.Chen,C.Q.Wang,Preparation of poly(etherblock-amide)/attapulgite mixed matrix membranes for CO2/N2separation,J.Membr.Sci.500(2016)66-75.

    [11]T.Li,Y.C.Pan,K.V.Peinemann,Z.P.Lai,Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano- fillers,J.Membr.Sci.425(2013)235-242.

    [12]T.S.Chung,L.Y.Jiang,Y.Li,S.Kulprathipanja,Mixed matrix membranes(MMMs)comprising organic polymers with dispersed inorganic fillers for gas separation,Prog.Polym.Sci.32(2007)483-507.

    [13]C.M.Zimmerman,A.Singh,W.J.Koros,Tailoring mixed matrix composite membranes for gas separations,J.Membr.Sci.137(1997)145-154.

    [14]S.Kanehashi,G.Q.Chen,C.A.Scholes,B.Ozcelik,C.Hua,L.Ciddor,P.D.Southon,D.M.D'Alessandro,S.E.Kentish,Enhancing gas permeability in mixed matrix membranes through tuning the nanoparticle properties,J.Membr.Sci.482(2015)49-55.

    [15]E.V.Perez,K.J.Balkus,J.P.Ferraris,I.H.Musselman,Mixed-matrix membranes containing MOF-5 for gas separations,J.Membr.Sci.328(2009)165-173.

    [16]T.H.Bae,J.S.Lee,W.L.Qiu,W.J.Koros,C.W.Jones,S.Nair,A high-performance gasseparation membrane containing submicrometer-sized metal-organic framework crystals,Angew.Chem.Int.Ed.49(2010)9863-9866.

    [17]S.Basu,A.Cano-Odena,I.F.J.Vankelecom,Asymmetric Matrimid?/[Cu3(BTC)2]mixed-matrix membranes for gas separations,J.Membr.Sci.362(2010)478-487.

    [18]H.B.T.Jeazet,C.Staudt,C.Janiak,Metal-organic frameworks in mixed-matrix membranes for gas separation,Dalton Ttrans.41(2012)14003-14027.

    [19]T.Rodenas,I.Luz,G.Prieto,B.Seoane,H.Miro,A.Corma,F.Kapteijn,F.X.L.I.Xamena,J.Gascon,Metal-organic framework nanosheets in polymer composite materials for gas separation,Nat.Mater.14(2015)48-55.

    [20]T.Rodenas,M.van Dalen,E.Garcia-Perez,P.Serra-Crespo,B.Zornoza,F.Kapteijn,J.Gascon,Visualizing MOF mixed matrix membranes at the nanoscale:Towards structure-performance relationships in CO2/CH4separation over NH2-MIL-53(Al)@PI,Adv.Funct.Mater.24(2014)249-256.

    [21]K.S.Park,Z.Ni,A.P.Cote,J.Y.Choi,R.D.Huang,F.J.Uribe-Romo,H.K.Chae,M.O'Keeffe,O.M.Yaghi,Exceptional chemical and thermal stability of zeolitic imidazolate frameworks,Proc.Natl.Acad.Sci.U.S.A.103(2006)10186-10191.

    [22]C.Zhang,R.P.Lively,K.Zhang,J.R.Johnson,O.Karvan,W.J.Koros,Unexpected molecular sieving properties of zeolitic imidazolate framework-8,J.Phys.Chem.Lett.3(2012)2130-2134.

    [23]G.Lu,J.T.Hupp,Metal-organic frameworks as sensors:A ZIF-8 based Fabry-Perot device as a selective sensor for chemical vapors and gases,J.Am.Chem.Soc.132(2010)7832-7833.

    [24]Y.C.Pan,Z.O.Lai,Sharp separation of C2/C3hydrocarbon mixtures by zeolitic imidazolate framework-8(ZIF-8)membranes synthesized in aqueous solutions,Chem.Commun.47(2011)10275-10277.

    [25]Y.C.Pan,T.Li,G.Lestari,Z.P.Lai,Effective separation of propylene/propane binary mixtures by ZIF-8 membranes,J.Membr.Sci.390(2012)93-98.

    [26]A.J.Brown,N.A.Brunelli,K.Eum,F.Rashidi,J.R.Johnson,W.J.Koros,C.W.Jones,S.Nair,Interfacial micro fluidic processing of metal-organic framework hollow fiber membranes,Science345(2014)72-75.

    [27]J.F.Yao,H.T.Wang,Zeolitic imidazolate framework composite membranes and thin films:synthesis and applications,Chem.Soc.Rev.43(2014)4470-4493.

    [28]M.J.C.Ordonez,K.J.Balkus,J.P.Ferraris,I.H.Musselman,Molecular sieving realized with ZIF-8/Matrimid?mixed-matrix membranes,J.Membr.Sci.361(2010)28-37.

    [29]K.Díaz,M.López-González,L.F.del Castillo,E.Riande,Effect of zeolitic imidazolate frameworks on the gas transport performance of ZIF8-poly(1,4-phenylene etherether-sulfone)hybrid membranes,J.Membr.Sci.383(2011)206-213.

    [30]J.A.Thompson,K.W.Chapman,W.J.Koros,C.W.Jones,S.Nair,Sonication-induced Ostwald ripening of ZIF-8 nanoparticles and formation of ZIF-8/polymer composite membranes,Microporous Mesoporous Mater.158(2012)292-299.

    [31]Q.Song,S.K.Nataraj,M.V.Roussenova,J.C.Tan,D.J.Hughes,W.Li,P.Bourgoin,M.A.Alam,A.K.Cheetham,S.A.Al-Muhtaseb,E.Sivaniah,Zeolitic imidazolate framework(ZIF-8)based polymer nanocomposite membranes for gas separation,Energy Environ.Sci.5(2012)8359.

    [32]A.F.Bushell,M.P.Att field,C.R.Mason,P.M.Budd,Y.Yampolskii,L.Starannikova,A.Rebrov,F.Bazzarelli,P.Bernardo,J.Carolus Jansen,M.Lan?,K.Friess,V.Shantarovich,V.Gustov,V.Isaeva,Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8,J.Membr.Sci.427(2013)48-62.

    [33]N.A.H.M.Nordin,A.F.Ismail,A.Mustafa,R.S.Murali,T.Matsuura,The impact of ZIF-8 particle size and heat treatment on CO2/CH4separation using asymmetric mixed matrix membrane,RSC Adv.4(2014)52530-52541.

    [34]A.Bhaskar,R.Banerjee,U.Kharul,ZIF-8@PBI-BuI composite membranes:Elegant effects of PBI structural variations on gas permeation performance,J.Mater.Chem.A2(2014)12962.

    [35]N.A.H.M.Nordin,S.M.Racha,T.Matsuura,N.Misdan,N.A.Abdullah Sani,A.F.Ismail,A.Mustafa,Facile modification of ZIF-8 mixed matrix membrane for CO2/CH4separation:Synthesis and preparation,RSC Adv.5(2015)43110-43120.

    [36]V.Na fisi,M.B.Hagg,Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2capture,J.Membr.Sci.459(2014)244-255.

    [37]Y.Pan,Y.Liu,G.Zeng,L.Zhao,Z.Lai,Rapid synthesis of zeolitic imidazolate framework-8(ZIF-8)nanocrystals in an aqueous system,Chem.Commun.47(2011)2071-2073.

    [38]Y.C.Pan,D.Heryadi,F.Zhou,L.Zhao,G.Lestari,H.B.Su,Z.P.Lai,Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants,CrystEngComm13(2011).

    [39]J.Cravillon,S.Munzer,S.J.Lohmeier,A.Feldhoff,K.Huber,M.Wiebcke,Rapid roomtemperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework,Chem.Mater.21(2009)1410-1412.

    [40]T.X.Yang,Y.C.Xiao,T.S.Chung,Poly-/metal-benzimidazole nano-composite membranes for hydrogen purification,Energy Environ.Sci.4(2011)4171-4180.

    [41]N.C.Su,D.T.Sun,C.M.Beavers,D.K.Britt,W.L.Queen,J.J.Urban,Enhanced permeation arising from dual transportpathways in hybrid polymer-MOF membranes,Energy Environ.Sci.9(2016)922-931.

    [42]C.Zhang,Y.Dai,J.R.Johnson,O.Karvan,W.J.Koros,High performance ZIF-8/6FDADAM mixed matrix membrane for propylene/propane separations,J.Membr.Sci.389(2012)34-42.

    [43]A.Jomekian,R.M.Behbahani,T.Mohammadi,A.Kargari,Utilization of Pebax 1657 as structure directing agent in fabrication of ultra-porous ZIF-8,J.Solid State Chem.235(2016)212-216.

    [44]T.C.Merkel,V.I.Bondar,K.Nagal,B.D.Freeman,I.Pinnau,Gas sorption,diffusion,and permeation in poly(dimethylsiloxane),J.Polym.Sci.Polym.Phys.38(3)(2000)415-434.

    [45]R.H.B.Bouma,A.Checchetti,G.Chidichimo,E.Drioli,Permeation through a heterogeneous membrane:The effect of the dispersed phase,J.Membr.Sci.128(1997)141-149.

    [46]A.Car,C.Stropnik,W.Yave,K.-V.Peinemann,Pebax?/polyethylene glycol blend thin film composite membranes for CO2separation:Performance with mixed gases,Sep.Purif.Technol.62(2008)110-117.

    [47]A.E.Amooghin,M.Omidkhah,A.Kargari,Enhanced CO2transport properties of membranes by embedding nano-porous zeolite particles into Matrimid?5218 matrix,RSC Adv.5(2015)8552-8565.

    [48]S.Shahid,K.Nijmeijer,Performance and plasticization behavior of polymer-MOF membranes for gas separation at elevated pressures,J.Membr.Sci.470(2014)166-177.

    [49]L.M.Robeson,The upper bound revisited,J.Membr.Sci.320(2008)390-400.

    [50]L.M.Robeson,Correlation of separation factor versus permeability for polymeric membranes,J.Membr.Sci.62(1991)165-185.

    一级作爱视频免费观看| 久久精品人妻少妇| 亚洲精品成人久久久久久| 他把我摸到了高潮在线观看| 九九热线精品视视频播放| 噜噜噜噜噜久久久久久91| 亚洲七黄色美女视频| 天天躁日日操中文字幕| 国产精品美女特级片免费视频播放器| 蜜桃亚洲精品一区二区三区| 国产成人a区在线观看| 午夜视频国产福利| 老熟妇乱子伦视频在线观看| 色哟哟哟哟哟哟| 日韩成人在线观看一区二区三区| 亚洲精品粉嫩美女一区| 中亚洲国语对白在线视频| 1024手机看黄色片| 日本三级黄在线观看| 窝窝影院91人妻| 手机成人av网站| 欧美一区二区精品小视频在线| 麻豆一二三区av精品| 亚洲国产精品合色在线| 两个人的视频大全免费| 免费无遮挡裸体视频| 久久香蕉精品热| 免费看光身美女| 内射极品少妇av片p| 九九在线视频观看精品| 亚洲欧美日韩无卡精品| 精品人妻一区二区三区麻豆 | 国产亚洲精品久久久久久毛片| 免费人成在线观看视频色| 在线天堂最新版资源| 久久亚洲精品不卡| 99国产精品一区二区蜜桃av| 欧美极品一区二区三区四区| 欧美最新免费一区二区三区 | 免费av毛片视频| 69av精品久久久久久| 少妇的丰满在线观看| 亚洲一区二区三区不卡视频| eeuss影院久久| 天美传媒精品一区二区| 欧美成人免费av一区二区三区| 中文字幕高清在线视频| 精品人妻1区二区| 舔av片在线| 99热6这里只有精品| 国产精品野战在线观看| 亚洲乱码一区二区免费版| 综合色av麻豆| 又爽又黄无遮挡网站| 欧美日韩国产亚洲二区| 亚洲国产精品sss在线观看| 国产精品女同一区二区软件 | 麻豆成人午夜福利视频| 真人做人爱边吃奶动态| 免费看a级黄色片| 俄罗斯特黄特色一大片| 老司机午夜福利在线观看视频| 一本综合久久免费| 在线观看一区二区三区| 日韩高清综合在线| 99热精品在线国产| 亚洲专区中文字幕在线| 18禁在线播放成人免费| 国产精品亚洲av一区麻豆| 国产伦一二天堂av在线观看| 欧美bdsm另类| 欧美成人a在线观看| 欧洲精品卡2卡3卡4卡5卡区| 精品国产超薄肉色丝袜足j| 亚洲av免费在线观看| 午夜精品在线福利| 小蜜桃在线观看免费完整版高清| 91av网一区二区| 搡老妇女老女人老熟妇| 国产成人啪精品午夜网站| 网址你懂的国产日韩在线| 精品国产三级普通话版| www.www免费av| 最新美女视频免费是黄的| 久久香蕉精品热| 男女床上黄色一级片免费看| 最近在线观看免费完整版| 啦啦啦韩国在线观看视频| 欧美一区二区精品小视频在线| 亚洲无线在线观看| 91麻豆av在线| av福利片在线观看| 国产精品,欧美在线| 国产成人影院久久av| 真实男女啪啪啪动态图| 亚洲 国产 在线| 欧美性猛交╳xxx乱大交人| av片东京热男人的天堂| 亚洲av五月六月丁香网| 美女黄网站色视频| 国产精品美女特级片免费视频播放器| 99久久99久久久精品蜜桃| 最好的美女福利视频网| 久久精品91无色码中文字幕| 免费观看精品视频网站| 亚洲欧美日韩无卡精品| 日韩欧美精品免费久久 | 国产极品精品免费视频能看的| 88av欧美| 国产亚洲欧美98| 日韩国内少妇激情av| 国产不卡一卡二| 国产精品久久视频播放| 国产精品电影一区二区三区| 最好的美女福利视频网| 欧美在线一区亚洲| 国内精品久久久久精免费| 好男人电影高清在线观看| 听说在线观看完整版免费高清| 国产麻豆成人av免费视频| 中文资源天堂在线| 久久精品国产亚洲av香蕉五月| 男人的好看免费观看在线视频| xxx96com| 午夜福利在线在线| 中国美女看黄片| 国产成人av激情在线播放| 国产乱人视频| 女人十人毛片免费观看3o分钟| 精品久久久久久久久久久久久| 身体一侧抽搐| av视频在线观看入口| 久久久久精品国产欧美久久久| 亚洲精品在线美女| 午夜福利免费观看在线| 亚洲国产精品久久男人天堂| 老熟妇仑乱视频hdxx| 欧美性猛交╳xxx乱大交人| 成人亚洲精品av一区二区| 亚洲专区国产一区二区| 国产一区二区亚洲精品在线观看| 老司机福利观看| 波野结衣二区三区在线 | 蜜桃亚洲精品一区二区三区| 亚洲人成网站在线播放欧美日韩| 少妇的逼好多水| 免费在线观看亚洲国产| 久久香蕉精品热| 欧美一区二区国产精品久久精品| 欧美国产日韩亚洲一区| 亚洲 国产 在线| 男女之事视频高清在线观看| 人妻丰满熟妇av一区二区三区| 日韩人妻高清精品专区| 51午夜福利影视在线观看| 国产成人啪精品午夜网站| 欧美区成人在线视频| 国产欧美日韩精品亚洲av| 国内精品久久久久久久电影| 黄色成人免费大全| 一个人免费在线观看的高清视频| 级片在线观看| 国产午夜精品久久久久久一区二区三区 | 国产黄a三级三级三级人| aaaaa片日本免费| 少妇熟女aⅴ在线视频| 精品国产美女av久久久久小说| 亚洲欧美日韩高清专用| 日本熟妇午夜| 国产精品久久久久久人妻精品电影| 国内久久婷婷六月综合欲色啪| 成人av一区二区三区在线看| 亚洲黑人精品在线| 麻豆一二三区av精品| 精华霜和精华液先用哪个| 久久天躁狠狠躁夜夜2o2o| 一级毛片女人18水好多| 国产真人三级小视频在线观看| www.www免费av| 精品久久久久久久人妻蜜臀av| 在线视频色国产色| 真人一进一出gif抽搐免费| 亚洲国产日韩欧美精品在线观看 | 尤物成人国产欧美一区二区三区| 99国产极品粉嫩在线观看| 亚洲黑人精品在线| 99久久99久久久精品蜜桃| 热99在线观看视频| aaaaa片日本免费| 亚洲专区国产一区二区| 我要搜黄色片| 国产av麻豆久久久久久久| 啦啦啦免费观看视频1| 给我免费播放毛片高清在线观看| 两性午夜刺激爽爽歪歪视频在线观看| АⅤ资源中文在线天堂| 亚洲avbb在线观看| 日韩精品青青久久久久久| 亚洲黑人精品在线| 久久久久免费精品人妻一区二区| 老汉色av国产亚洲站长工具| 中出人妻视频一区二区| 午夜福利高清视频| 夜夜爽天天搞| 亚洲在线自拍视频| 久久精品国产自在天天线| 国模一区二区三区四区视频| 好看av亚洲va欧美ⅴa在| 男女下面进入的视频免费午夜| 日韩亚洲欧美综合| 精品福利观看| 乱人视频在线观看| 亚洲在线观看片| 精品久久久久久,| 国产亚洲av嫩草精品影院| 国产亚洲精品综合一区在线观看| 国产成年人精品一区二区| 亚洲一区高清亚洲精品| 国产高清视频在线播放一区| 欧美xxxx黑人xx丫x性爽| 波多野结衣巨乳人妻| 男女下面进入的视频免费午夜| 亚洲人成电影免费在线| 久久香蕉精品热| 欧美一区二区亚洲| 日日摸夜夜添夜夜添小说| av欧美777| 可以在线观看的亚洲视频| 又黄又爽又免费观看的视频| 嫩草影院精品99| 中文在线观看免费www的网站| 精品人妻1区二区| 十八禁人妻一区二区| 一本综合久久免费| 琪琪午夜伦伦电影理论片6080| svipshipincom国产片| 成人国产一区最新在线观看| 真人一进一出gif抽搐免费| 又黄又爽又免费观看的视频| 深爱激情五月婷婷| 麻豆一二三区av精品| 他把我摸到了高潮在线观看| 成人亚洲精品av一区二区| 日韩人妻高清精品专区| 亚洲av免费高清在线观看| 欧美激情久久久久久爽电影| 俄罗斯特黄特色一大片| 啦啦啦观看免费观看视频高清| 亚洲国产精品999在线| tocl精华| 99久久九九国产精品国产免费| 亚洲无线在线观看| 成人一区二区视频在线观看| 男女做爰动态图高潮gif福利片| 亚洲人与动物交配视频| 人妻夜夜爽99麻豆av| 一个人观看的视频www高清免费观看| 免费一级毛片在线播放高清视频| 亚洲熟妇中文字幕五十中出| 在线播放国产精品三级| 国产不卡一卡二| 99热6这里只有精品| 亚洲电影在线观看av| 日本a在线网址| 天堂av国产一区二区熟女人妻| 搡女人真爽免费视频火全软件 | 国产爱豆传媒在线观看| 免费观看的影片在线观看| 少妇熟女aⅴ在线视频| 久久久国产精品麻豆| 九色国产91popny在线| 亚洲精品日韩av片在线观看 | 精品不卡国产一区二区三区| 99国产精品一区二区蜜桃av| 免费看光身美女| 九九热线精品视视频播放| 真实男女啪啪啪动态图| 香蕉av资源在线| 亚洲精品456在线播放app | 一区二区三区激情视频| 最近最新免费中文字幕在线| 搞女人的毛片| 淫秽高清视频在线观看| 成人欧美大片| 长腿黑丝高跟| 国产在线精品亚洲第一网站| 色综合亚洲欧美另类图片| 老司机午夜福利在线观看视频| 久久精品人妻少妇| 国产成人aa在线观看| 久久香蕉精品热| 日韩av在线大香蕉| 国产探花极品一区二区| 深爱激情五月婷婷| 看片在线看免费视频| 亚洲av美国av| 国产 一区 欧美 日韩| 搡老岳熟女国产| 非洲黑人性xxxx精品又粗又长| 老汉色∧v一级毛片| 在线观看午夜福利视频| 亚洲最大成人中文| 听说在线观看完整版免费高清| 脱女人内裤的视频| 亚洲熟妇中文字幕五十中出| 天堂网av新在线| 欧美午夜高清在线| 日本在线视频免费播放| 欧美bdsm另类| 成熟少妇高潮喷水视频| 国产真人三级小视频在线观看| 免费在线观看亚洲国产| 午夜福利高清视频| 熟女人妻精品中文字幕| 人妻夜夜爽99麻豆av| 高清毛片免费观看视频网站| 女同久久另类99精品国产91| 岛国在线免费视频观看| 成人高潮视频无遮挡免费网站| a级毛片a级免费在线| 啦啦啦观看免费观看视频高清| 免费电影在线观看免费观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 色吧在线观看| 中文在线观看免费www的网站| 欧美在线黄色| 精品日产1卡2卡| 国产av在哪里看| 狂野欧美白嫩少妇大欣赏| 两个人的视频大全免费| 成人性生交大片免费视频hd| 免费在线观看影片大全网站| 午夜免费激情av| 欧美日韩瑟瑟在线播放| 51午夜福利影视在线观看| 一本综合久久免费| 国产黄色小视频在线观看| 69av精品久久久久久| 日韩国内少妇激情av| 免费大片18禁| 免费看光身美女| 在线观看美女被高潮喷水网站 | av福利片在线观看| 日韩欧美精品免费久久 | 久久精品国产清高在天天线| 午夜久久久久精精品| 久久精品国产亚洲av香蕉五月| 欧美日韩亚洲国产一区二区在线观看| 国产一区二区在线观看日韩 | av天堂在线播放| 三级毛片av免费| 日韩免费av在线播放| 精品欧美国产一区二区三| 成年女人看的毛片在线观看| 1024手机看黄色片| 国内少妇人妻偷人精品xxx网站| 久久午夜亚洲精品久久| 一区二区三区高清视频在线| 午夜精品在线福利| 国产极品精品免费视频能看的| 男人的好看免费观看在线视频| 国产精品亚洲一级av第二区| 亚洲最大成人手机在线| 成人av一区二区三区在线看| 亚洲人与动物交配视频| 日本五十路高清| 欧美色欧美亚洲另类二区| av天堂在线播放| 亚洲欧美激情综合另类| 欧美av亚洲av综合av国产av| 国产精品久久久久久久久免 | 亚洲18禁久久av| 男女那种视频在线观看| 九色成人免费人妻av| 国产色婷婷99| 成人特级av手机在线观看| 丁香六月欧美| 国产一区二区三区在线臀色熟女| 搞女人的毛片| 母亲3免费完整高清在线观看| 国产毛片a区久久久久| 亚洲av熟女| 老司机在亚洲福利影院| 十八禁人妻一区二区| 亚洲 欧美 日韩 在线 免费| 麻豆国产av国片精品| 老熟妇仑乱视频hdxx| 国产成人aa在线观看| 亚洲精品亚洲一区二区| 欧美3d第一页| 国产成人系列免费观看| 亚洲不卡免费看| 久久精品国产亚洲av香蕉五月| 99久久成人亚洲精品观看| 色吧在线观看| 成人欧美大片| 深爱激情五月婷婷| 成人国产综合亚洲| 亚洲精品久久国产高清桃花| 精品国产超薄肉色丝袜足j| 好男人在线观看高清免费视频| 欧美日韩黄片免| 1024手机看黄色片| 国产三级中文精品| 又爽又黄无遮挡网站| 欧美在线黄色| 中文字幕人妻熟人妻熟丝袜美 | 国产亚洲精品av在线| 亚洲av一区综合| 757午夜福利合集在线观看| 99久久无色码亚洲精品果冻| 欧美区成人在线视频| 久久九九热精品免费| 日韩欧美 国产精品| 在线观看免费午夜福利视频| 欧美日本亚洲视频在线播放| 午夜福利成人在线免费观看| 国产精品,欧美在线| 啦啦啦观看免费观看视频高清| 久久久久久国产a免费观看| netflix在线观看网站| 香蕉丝袜av| 日本熟妇午夜| 日韩高清综合在线| 午夜福利高清视频| 久久久国产成人精品二区| 最新中文字幕久久久久| 真实男女啪啪啪动态图| 欧美一区二区国产精品久久精品| 内射极品少妇av片p| 免费人成视频x8x8入口观看| 久久精品91蜜桃| 别揉我奶头~嗯~啊~动态视频| 此物有八面人人有两片| 色综合欧美亚洲国产小说| 久久精品夜夜夜夜夜久久蜜豆| 午夜久久久久精精品| 国产欧美日韩精品亚洲av| 一区二区三区国产精品乱码| 91在线精品国自产拍蜜月 | 一本一本综合久久| 人人妻,人人澡人人爽秒播| 成人av在线播放网站| 全区人妻精品视频| 男人的好看免费观看在线视频| 一区二区三区高清视频在线| 国产淫片久久久久久久久 | 老熟妇仑乱视频hdxx| 国产视频内射| 在线观看一区二区三区| 精品久久久久久久久久免费视频| 久久久久久国产a免费观看| 窝窝影院91人妻| 欧美性感艳星| av福利片在线观看| 午夜精品久久久久久毛片777| 午夜免费成人在线视频| 蜜桃久久精品国产亚洲av| 欧美黄色片欧美黄色片| 看黄色毛片网站| 亚洲七黄色美女视频| 国产视频一区二区在线看| 欧美日韩一级在线毛片| 97人妻精品一区二区三区麻豆| 亚洲第一电影网av| 亚洲内射少妇av| 国产亚洲精品一区二区www| 丝袜美腿在线中文| 国产一区二区三区视频了| 免费在线观看亚洲国产| 久久精品夜夜夜夜夜久久蜜豆| 日本一本二区三区精品| 听说在线观看完整版免费高清| 少妇高潮的动态图| 久久午夜亚洲精品久久| 国产野战对白在线观看| 精品人妻一区二区三区麻豆 | 天堂网av新在线| 嫩草影院精品99| 欧美日韩精品网址| 国产欧美日韩一区二区精品| 女人高潮潮喷娇喘18禁视频| 日本三级黄在线观看| 少妇的逼好多水| 熟妇人妻久久中文字幕3abv| a在线观看视频网站| 好男人电影高清在线观看| 99久久综合精品五月天人人| 在线免费观看的www视频| 午夜日韩欧美国产| 日韩av在线大香蕉| 成人av一区二区三区在线看| 欧美一级毛片孕妇| 99精品欧美一区二区三区四区| 亚洲国产日韩欧美精品在线观看 | 欧美一区二区精品小视频在线| 国产69精品久久久久777片| 丰满的人妻完整版| 人人妻人人看人人澡| 色播亚洲综合网| 国产99白浆流出| 国产69精品久久久久777片| 日韩欧美一区二区三区在线观看| 麻豆一二三区av精品| 99国产精品一区二区蜜桃av| 每晚都被弄得嗷嗷叫到高潮| 欧美成人免费av一区二区三区| 亚洲精品色激情综合| 久久久久免费精品人妻一区二区| 在线观看午夜福利视频| 久久欧美精品欧美久久欧美| 色尼玛亚洲综合影院| 国产黄a三级三级三级人| 亚洲va日本ⅴa欧美va伊人久久| 18禁裸乳无遮挡免费网站照片| 97碰自拍视频| 高清在线国产一区| 噜噜噜噜噜久久久久久91| 免费av不卡在线播放| 可以在线观看的亚洲视频| 色噜噜av男人的天堂激情| 看免费av毛片| 69av精品久久久久久| 12—13女人毛片做爰片一| 欧美3d第一页| 国产成年人精品一区二区| 亚洲人成网站高清观看| 99国产综合亚洲精品| 一级黄色大片毛片| 欧美黑人巨大hd| 免费av不卡在线播放| 成人av在线播放网站| 国产精品香港三级国产av潘金莲| 丁香六月欧美| 日本 欧美在线| 亚洲一区二区三区色噜噜| 国产成人欧美在线观看| 国产成年人精品一区二区| 熟妇人妻久久中文字幕3abv| 久久午夜亚洲精品久久| 五月伊人婷婷丁香| 免费观看精品视频网站| 69av精品久久久久久| 欧美一区二区精品小视频在线| 熟女少妇亚洲综合色aaa.| 亚洲国产欧美人成| 黄色成人免费大全| aaaaa片日本免费| 国产精品,欧美在线| 午夜免费男女啪啪视频观看 | 波多野结衣高清无吗| 国产高清videossex| 99国产综合亚洲精品| 成人特级黄色片久久久久久久| 色视频www国产| 欧美黑人欧美精品刺激| 成人高潮视频无遮挡免费网站| 99在线视频只有这里精品首页| 国产真人三级小视频在线观看| 国产精品电影一区二区三区| 男女视频在线观看网站免费| 国产精品影院久久| 欧美大码av| 国产黄色小视频在线观看| 99久久久亚洲精品蜜臀av| 99热这里只有精品一区| 国产精品日韩av在线免费观看| 亚洲色图av天堂| 18禁黄网站禁片午夜丰满| 丰满的人妻完整版| 成人永久免费在线观看视频| 久9热在线精品视频| 久久亚洲精品不卡| 9191精品国产免费久久| 亚洲五月婷婷丁香| 亚洲国产精品sss在线观看| 99热精品在线国产| 色精品久久人妻99蜜桃| 亚洲乱码一区二区免费版| 午夜精品一区二区三区免费看| 亚洲aⅴ乱码一区二区在线播放| 日韩人妻高清精品专区| 午夜久久久久精精品| 国产黄色小视频在线观看| 91久久精品电影网| 高清在线国产一区| 欧美日韩乱码在线| 成人av一区二区三区在线看| svipshipincom国产片| 叶爱在线成人免费视频播放| 亚洲精品在线美女| 精品99又大又爽又粗少妇毛片 | 哪里可以看免费的av片| 欧美不卡视频在线免费观看| 免费在线观看成人毛片| 国产高清视频在线观看网站| 欧美不卡视频在线免费观看| 国产日本99.免费观看| 久久久久久久久久黄片| 少妇高潮的动态图| xxxwww97欧美| 欧美黑人欧美精品刺激| 亚洲av五月六月丁香网| e午夜精品久久久久久久| 国产av不卡久久| 在线a可以看的网站| 欧美黄色淫秽网站| 亚洲精品国产精品久久久不卡| 国产视频一区二区在线看| 99久久综合精品五月天人人| 综合色av麻豆| 午夜福利在线观看免费完整高清在 | 两个人看的免费小视频| 亚洲aⅴ乱码一区二区在线播放| 婷婷精品国产亚洲av在线|