• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Integration strategies of hydrogen network in a refinery based on operational optimization of hydrotreating units☆

    2017-05-29 10:48:08LeWuXiaoqiangLiangLixiaKangYongzhongLiu

    Le Wu ,Xiaoqiang Liang ,Lixia Kang ,Yongzhong Liu ,2,*

    1 Department of Chemical Engineering,Xi'an Jiaotong University,Xi'an 710049,China

    2 Key Laboratory of Thermo-Fluid Science and Engineering,Ministry of Education,Xi'an 710049,China

    1.Introduction

    Hydrogen is commonly used in hydrotreating(HDT)units in refineries to produce clean products.HDT units are key devices to improve the quality of fuel products by removing impurities in crude oil,such as sulfur,nitrogen,aromatics and olefins.The hydrogen demand of refinery is becoming even larger with processing inferior and heavy crude oiland increasing demand ofclean fuels.Itis imperative to reduce huge hydrogen consumption while satisfying the stringent regulations of clean fuels.

    At present,the pinch analysis methods[1,2]and mathematical programming methods[3,4]are often used for the integration of hydrogen network.To couple the HDT processes with the hydrogen network,Wanget al.[5]extended the concentration potential concepts from water-using networks to the synthesis of hydrogen networks with multiple contaminants.Zhouet al.[6]presented a mixed integer nonlinearprogramming(MINLP)modelforhydrogen network with consideration of H2S removal by proposing an optimal desulfurization ratio in the absorber.The hydrogen network was effectively optimized with removing H2S in the recycle network.Based on this work,Jia and Liu[7]extended the desulfurization ratio to the removal of H2S,NH3and CH4in the recycle hydrogen,which enhanced the practicability of optimal hydrogen network.However,in the abovementioned work,the optimization of hydrogen network was usually conducted under the assumption that the hydrogen demand of each sink is fixed.In other words,the hydrogenation reactions in HDT processes are often ignored,which determine the hydrogen demands in the HDT units.To resolve this problem,Maoet al.[8]proposed a method for the optimization of hydrogen network,in which the hydrogen consumption of vacuum gas oil hydro-cracking reactor was considered,and the quantitative relationship between the hydrogen utility consumption and the sulfur concentration of the feed oil was proposed.In Umanaet al.'s work[9],the hydrodesulfurization(HDS)reaction was incorporated into the optimization of the hydrogen network,and the effect of hydro-cracking reaction was also analyzed[10].Nevertheless,the hydrogen consumption are underestimated because the hydrodenitrogenation(HDN),hydrodearomatization(HDA),hydrodeoxygenation and demetalation[11]are not taken into consideration.This is to say that all these reactions associated with hydrogen consumption in the HDT units in refineries should be considered if much more rigorous hydrogen consumption is involved,especially for the hydrogen consumed by HDS,HDN and HDA reactions[12].

    In this work,to resolve the problem mentioned above,we proposed an integration strategy of hydrogen network optimization coupled with an operational optimization for hydrogen sinks,which features that before the optimization of all HDT units,an operational optimization modelofthe HDT units is established to optimize the operational conditions of HDT units and to determine the parameters of hydrogen sinks base on the characteristics of reaction kinetics of HDS,HDN and HDA processes.An example of a refinery with annual process capacity of eight million tons is adopted to demonstrate the feasibility of the proposed strategy and the related optimization models.

    2.Integration Strategy of Hydrogen Network Based on the Operational Optimization of HDT Units

    The hydrogen network in a refinery consists of hydrogen sources and hydrogen sinks.The demand of hydrogen sink depends on the hydrogenation reactions.In the HDT processes,hydrogen is mainly consumed to remove sulfur,nitrogen,aromatics and other impuritieset al.Therefore,the operational conditions of HDT units should be optimized before the hydrogen consumption of the hydrogen network is minimized.

    In this work,an integration strategy of hydrogen network and an operational optimization model of HDT units are proposed.The relationship between these two models is shown in Fig.1.In general,the hydrogen network optimization model is a MINLP model.When the hydrogen network optimization model is coupled with the HDS,HDN and HDA reaction kinetics,it is extremely difficult to obtain the optimal solution because a large amount of non-linear terms are included in the reaction kinetics[13,14].To overcome this difficulty,the proposed integration strategy in this work is to segregate the hydrogenation kinetics from the hydrogen network optimization model.To this end,there are two steps ofthis strategy.Thefirststep is thata nonlinearprogramming(NLP)modelis established to optimize the operationalconditions ofthe HDT units in the refinery,in which the HDS,HDN and HDA reaction kinetics are included.Hence,the hydrogen consumption for each HDT unit is optimized.Thereafter,the parameters of hydrogen sinks of the hydrogen network are determined for the hydrogen network optimization.The second step is that the MINLP model for hydrogen network optimization is solved to achieve the optimal structure and operational conditions of the hydrogen network,in which the parameters of hydrogen sinks are obtained by the previous step.And the cost of the hydrogen network is minimized.

    Fig.1.Diagram of a hydrogen network and HDT units.

    3.Mathematics Models for the Proposed Strategy

    3.1.Optimization ofoperational conditions ofHDT units and determination of the parameters of hydrogen sinks

    3.1.1.Hydrogen consumption of HDT units

    In a HDT unit,hydrogen and the impurities in the distillate or fuel oil react at high temperature and high pressure to remove sulfur,nitrogen and aromatics.Acertain amountofhydrogen is also dissolved in the distillate and involved in some fast reactions,olefin saturation and demetalation,for examples.Therefore,the hydrogen consumption of a certain HDT unit or hydrogen sink(SK),denoted byi,can be calculated by[15]

    whereFdenotes the flowrate of hydrogen consumption in a HDT unit(or hydrogen sink),in Nm3·h-1;i∈SK;The superscripts S,N,A,D and O stand for the processes of desulfuration,denitrification,aromatic hydrogenation,dissolution and other processes that consume hydrogen.

    For a certain HDT unit,the hydrogen consumption of HDS can be calculated by[16]

    wherevfieedis the volumetric flowrate of feed in the HDT unit,in m3·h-1;SfeedandSprodare sulfur concentration in feed and product,in μg·g-1.

    The hydrogen consumption of HDN can be represented by[16]

    whereNdenotes nitrogen concentration in stream,in μg·g-1.

    The hydrogen consumption of HDA can be calculated by[16]

    whereAdenotes aromatic concentration in stream,in%.

    The dissolved hydrogen can be calculated by[16]

    wheredidenotes dissolution coefficient in the HDT unit.

    In a HDT unit,apart from the hydrogen consumption mentioned above,the remaining hydrogen consumption mainly attributes to the processes of olefin saturation and demetalation.Because the process of olefin saturation is a fast reaction and the metal concentrations in streams are much less than other impurities,we assumed that the termFiOin Eq.(1)is constantalthough the reactions occurunder differentoperational conditions[17,18].Therefore,in practice,if the total hydrogen consumption of a certain HDT unit in the original hydrogen network is known,the termFiOcan be calculated by subtracting the hydrogen consumption of the processes of desulfuration,denitrification,aromatic hydrogenation and dissolution from the total hydrogen consumption.

    3.1.2.Characteristics of hydrogenation reaction kinetics

    In this paper,the processes ofHDS,HDNand HDAare mainly considered,their kinetics characteristics are listed in Table 1.

    Table 1Kinetics of HDS,HDN and HDA

    In Table 1,kdenotes the kinetic constant;K1,K2andK3are the inhibition coefficient of three-ring aromatics,nitrogen and sulfur concentration in feed on HDS reaction;3+R,N and S are the concentrations of threering aromatics,nitrogen and sulfur in feed,in μg·g-1;pH2is the partial pressure of hydrogen,in MPa;α denotes the coefficient of pressure;LHSV is liquid hourly space velocity,in h-1;Xis the conversion of aromatics,in%;The superscripts fand rare the forward and reverse reactions of HDA.

    whereAis the pre-exponential factor;Edenotes the activation energy,in kJ·kmol-1;Trepresents the reaction temperature,in K.

    3.1.3.Minimization ofhydrogen consumption ofHDTunitsand optimization of hydrogen sinks

    In this work,we assume the hydrogen purities of inlet streams of HDT units are kept constant.Then,the total hydrogen consumption of HDT units in a refinery can be minimized by optimizing the operational conditions of each HDT unit coupled with the reactions kinetics of hydrogenation process.For the HDT units in a refinery,the objective is to minimize the hydrogen consumption of the entire HDT system,i.e.

    When the operational conditions and the removal rates of impurities are optimized,the specifications on feedsand products should be satis fied.

    1.The concentrations of sulfur,nitrogen and aromatic in products

    When the hydrogen consumption ofthe HDT units is minimized,the operational conditions would be changed according to the characteristics of reaction kinetics.To make these changes feasible,we can adjust the temperatures and pressures of the hydrogenation reactions within the allowable ranges.

    These above equations(Eqs.(1)–(14))are a NLP model.It can be solved to obtain the hydrogen flowrate of each HDT unit,the parameters of hydrogen sinks and operational temperatures and pressures.

    3.2.The integration of hydrogen network based on optimal parameters of hydrogen sinks

    3.2.1.Objective function

    The cost of the hydrogen utility and the benefit of fuel gas are taken as the objective function.

    whereCH2denotes the cost of hydrogen utility,in CNY·a-1;Cfuelis the revenue of fuel gas,in CNY·a-1.

    The cost of the hydrogen utility can be calculated by

    3.2.2.Constraints

    The constraints in this model are mass balance,hydrogen balance,hydrogen purity and demand constraints.

    Mass balance

    wherezi,jdenotes the connection betweenith hydrogen sink andjth hydrogen source,0 or1;Fi,jisthe hydrogenflow rate fromjth hydrogen source toith hydrogen sink,in mol·s-1.

    The optimal structure and operational conditions of the hydrogen network can be obtained by solving the model mentioned above that is a MINLP model.

    4.Case Study

    4.1.Fundamental data of a refi nery

    For a typical refinery with annual process capacity of 8 million tons,the optimization of the hydrogen network in the refinery is conducted based on the actual running data with the proposed strategies in the previous sections.

    In this refinery,the crude oil is distilled to separate kerosene(K),straight-run diesel(SD)and vacuum gas oil(VGO)in the atmospherevacuum distillation unit.VGO are refined in the VGO HDT unit with annual process capacity of 2.6 Mt,and the refined VGO enters into a fluid catalytic cracker to obtain the cracked diesel(CD)and the cracked gasoline(CG),which are refined in the CD HDT unit with annual process capacity of 0.8 Mt.and the CG HDT unit with the annual process capacity 1.4 Mt.And the kerosene(K)and the straight-run diesel(SD)enter the K HDT unit with 0.8 Mt annual process capacity and SD HDT unit with 2.6 Mt annual process capacity to obtain the qualified products.In short,there are 5 hydrogen sinks of the hydrogen network in this refinery.The hydrogen utility of the hydrogen network is provided by the continuous catalytic reformer(CCR).The properties of streams and the operational conditions are listed in Table 2.In addition,the ranges of operational conditions and specifications are listed in Table 3.

    The hydrogen sinks and hydrogen sources are listed in Table 4.In the original hydrogen network,the hydrogen stream from CCR is used to satisfy all the demand of hydrogen sinks,which is 599.5 mol·s-1.And the off gas streams from VGO,CD and SD HDT units discharge to the fuel system.The original structure of hydrogen network is shown in Fig.2.

    Table 4Original parameters of hydrogen sources and sinks

    Fig.2.Original hydrogen network of the refinery.

    Table 2Properties and operation conditions

    Table 3Ranges of operational conditions and specifications

    4.2.Comparisons of three integration strategies for hydrogen network

    In this work,three strategies are proposed to study the effects of hydrogenation reactions on the hydrogen network.These strategies are as follows.

    Strategy A:Optimization of the hydrogen network is performed on the basis of the original data of the hydrogen network in refinery.This means that based on original data we directly solve the MINLP model for the hydrogen network,as shown in Section 3.2;

    Strategy B:Minimization of hydrogen consumption of the refinery is based on the reactions kinetics of HDS,HDN and HDA processes in the HDT units.This implies that the NLP model shown in Section 3.1 is solely solved to minimize of entire hydrogen consumption of the refinery;

    Strategy C:Optimization of the hydrogen network based on the optimal parameters of hydrogen sinks based on Strategy B.In this strategy,the MINLP model shown in Section 3.2 is solved based on the optimal parameters of hydrogen sinks obtained by solving the NLP model shown in Section 3.1.

    The comparisons of the three strategies on the hydrogen consumption of each HDT unit are shown in Fig.3.

    Fig.3.Comparison of the hydrogen consumption of HDT units.

    As shown in the figure,the hydrogen consumption of each HDT unit is remarkably reduced when Strategy A is applied.The hydrogen consumption in the VGO HDT unit accounts for 90.3%of the hydrogen consumption in the originalhydrogen network.The hydrogen consumption of the CD,SD and K HDT units reduce approximately 25%of the original hydrogen consumption,and the hydrogen consumption in the CG HDT unit is only 66.1%of the original consumption.

    When Strategy B is applied,the hydrogen consumption is also decreased.Results show that the hydrogen consumptions in the VGO and CG HDT units are 93.4%and 76.8%of the original ones.It implies that the hydrogen consumption of each HDT unit can be reduced by merely optimizing its operational conditions.

    Strategy C can be considered a combination of Strategy A and Strategy B.When Strategy C is used,the hydrogen network is optimized with the operational optimization of the HDT units in the entire system.The results show that the hydrogen consumption of the VGO and CG HDT units are only 84.3%and 50.6%of the original ones,respectively.This indicates that the hydrogen consumption of a refinery can be effectively reduced when the hydrogen network is integrated with the operational optimization of the system of the HDT units.

    In this context,these results also reveal that the operational optimization ofthe HDT units in refineries should be imposed to determine the parameters of hydrogen sinks base on the characteristics of reaction kinetics ofthe hydrogenation processes before the optimization ofthe hydrogen network is performed through the source-sink matching methods.In the next section,the effects of the optimization by Strategy B will be further analyzed and discussed to clarify the hydrogen consumptions of the HDS,HDN and HDA processes in the HDT units.

    4.3.Analysis of the operational optimization of HDT units

    According to Strategy B,the NLP model proposed in Section 3.1 is solved on GAMS software package with the solver KNITRO under thefixed impurities concentrations in feed oil of each HDT unit to optimize operational conditions and determine the parameters of hydrogen sinks.

    The optimal parameters of hydrogen sinks and the operational conditions are listed in Tables 5 and 6.And the hydrogen consumption for the removal of different impurities in each HDT unit is shown in Fig.4.The results from Tables 4 and 5 show that the hydrogen flowrate from the CCR unit reduces from 599.5 mol·s-1to 527.3 mol·s-1with 72.2 mol·s-1reduction,which accounts for 12%of the original hydrogen consumption,when Strategy B is applied.

    Table 5Optimal hydrogen flowrates of hydrogen sinks

    Table 6Optimal operation conditions of HDT units

    From Fig.4 we can see that Tables 4 and 5 show the hydrogen consumed to remove sulfur,nitrogen and aromatics takes 90%proportion of the total hydrogen consumption of the VGO and SD HDT units,for instance,in the original data the hydrogen consumed in HDS,HDN and HDA reactions in VGO HDT unit is 222.1 mol·s-1and the total consumption is 246.6 mol·s-1,whereas the proportion in the K,CD and CG HDT units is over 50%.This indicates that the hydrogen consumption would be underestimated if the hydrogen consumption of the HDS process is only considered.In other words,the hydrogen consumption of HDS,HDN and HDA reactions in the VGO and SD HDT units must be taken into consideration,and these three reactions,the olefins saturation,and dissolved hydrogen should be also considered when calculating the hydrogen consumptions of the K,CD and CG HDT units.

    From Fig.4 and Table 6 we can see that the hydrogen consumed in the HDS and HDA processes can be reducedviathe optimization of operationalconditions ofthe HDT units.The reason is thatthe HDAprocess is a reversible reaction of which the conversion is higher under higher temperatures.Therefore,as long as the specifications are satis fied in the refinery,the aromatics in products should be increased by lowering the reaction temperature to obtain a low conversion,which can decrease the hydrogen consumption in the HDA process.In this context,low temperature may lead to the increase of sulfur concentration in product,but the process can be enhanced by increasing the reaction pressure.Despite thatthese adjustments may increase the degree ofdenitrification and lead to the increase of hydrogen consumption in the HDN process,the total hydrogen consumption is reduced.This point can be verified by the data in Fig.5,which presents the comparisons of sulfur,nitrogen and aromatics concentrations of products in HDT units with the original data.

    Itcan be seen from Fig.5 thatthe sulfurand aromatic concentrations ofproducts in allHDT units increase by a certain amountcompared with the originaldata.In the VGOHDT unit,the nitrogen concentration ofthe refined VGO increases.Thus its hydrogen consumption reduces.On the other hand,in other HDT units,the hydrogen consumption for denitri fication increases due to the decrease of nitrogen concentration in their products.However,the total hydrogen consumption of each HDT unit reduces accordingly.

    Fig.4.Comparison of hydrogen consumptions of HDS,HDN and HDA reactions in HDT units.

    4.4.Analysis of the integration of hydrogen network with operational optimization of HDT units

    In this section,the effects of Strategy C is further analyzed and discussed.

    According to Strategy C,the MINLP model proposed in Section 3.2 is solved on GAMS software package with the solver SCIP by using the optimal parameters of hydrogen sinks in Table 5 to optimize the hydrogen network of the refinery.The optimal structure of the hydrogen network is shown in Fig.6,and comparisons between the results obtained by Strategy C and those in the original network are listed in Table 7.

    It can be seen from Fig.6 and Table 7 that when Strategy C is employed,the hydrogen consumption of CCR is further reduced from 527.3 mol·s-1to 429.9 mol·s-1with 97.4 mol·s-1reduction,the annual hydrogen cost reduction is 5.73×107CNY from 3.173×108CNY to 2.600×108CNY.Compared with the original hydrogen network,and the reduction proportion reaches 28.2%.Furthermore,although the benefit of fuel gas reduces to 2.260 × 107CNY·a-1by the VGO off gas recovery,it leads to the decrease of the total annual cost by 3.21 × 107CNY·a-1,reduced by 11.9%.Consequently,the hydrogen consumption of the refinery could be effectively reduced by using Strategy C in this work.

    Fig.5.Comparisons of sulfur(a),nitrogen(b)and aromatics(c)concentration of product in HDT units.

    Fig.6.Optimal structure of the hydrogen network.

    Table 7Comparisons between the results of Strategy C and the original network

    5.Conclusions

    An integration strategy of hydrogen network and an operational optimization modelofHDT unitsare proposed based on the characteristics of reaction kinetics of HDT units.Three strategies are proposed to analyze the effects of hydrogenation reactions in HDT units on the hydrogen network integration.For Strategy A,the hydrogen network is integrated by the conventional method;For Strategy B,a NLP model is established to minimize of the hydrogen consumption of the HDT units in the refinery;For Strategy C,the hydrogen network is integrated by the combination ofStrategy Aand Strategy B,in which a MINLP modelcoupling with the hydrogenation reactions kinetics is used.

    A practical refinery with annual processing capacity of eight million tons is taken as an example to demonstrate the feasibility and effectiveness of the proposed strategies and the model.The results show that the HDS,HDN and HDA reactions are major sources of the hydrogen consumption in the HDTunits.The hydrogen consumption is underestimated if the HDN and HDA reactions are neglected during the integration of hydrogen network.The total hydrogen consumption is reduced by 18.9%by applying the conventional hydrogen network optimization.When the hydrogen network is optimized after the operational optimization ofHDT units is performed,the hydrogen consumption is reduced by 28.2%.When the benefit of the fuel gas recovery is further considered,the total annual cost of hydrogen network can be reduced by 3.21× 107CNY·a-1,decreased by 11.9%.

    In conclusion,the proposed strategy and the related model could effectively reduce the hydrogen consumption of a refinery.And the operational optimization of the HDT units in refineries should be performed prior to the conventional optimization of hydrogen network during when the entire hydrogen network is optimized.

    Nomenclature

    Aaromatic concentration,μg·g-1

    Ccost,CNY·a-1

    ddissolve

    Eactivation energy,kJ·kmol-1

    Fhydrogen flowrate,mol·s-1

    ΔHcalorific value,kJ·mol-1

    HSinternal hydrogen sources

    HU hydrogen utilities

    Kinhibition coefficient to HDS reaction

    kkinetic constant

    LHSV liquid hourly space velocity,h-1

    Mratio between non-aromatics and aromatics

    Nnitrogen concentration,μg·g-1

    Putilities prices,CNY·mol-1or CNY·kJ-1

    preaction pressure,MPa

    Ssulfur concentration,μg·g-1

    SK hydrogen sinks

    SR hydrogen sources

    Treaction temperature,°C

    vvolume flowrate of feed,m3·h-1

    Xconvert ratio of aromatic,%

    yhydrogen mole purity,%

    zexistence of matches between hydrogen sources and hydrogen sinks,0 or 1

    3+R concentration of three-ring aromatics,μg·g-1

    α pressure dependence term

    Superscripts

    A aromatic

    CH cycle hydrogen

    D dissolution

    f forward reaction of HDA

    L lower bound

    N nitrogen

    O other

    r reverse reaction of HAD

    S Sulfur

    U upper bound

    Subscripts

    fuel fuel gas

    ieach HDT unit or hydrogen sink

    jeach hydrogen source

    [1]G.P.Towler,R.Mann,A.J.L.Serriere,C.M.D.Gabaude,Refinery hydrogen management:Cost analysis of chemically-integrated facilities,Ind.Eng.Chem.Res.35(7)(1996)2378–2388.

    [2]G.Liu,H.Li,X.Feng,C.Deng,Pinch location of the hydrogen network with purification reuse,Chin.J.Chem.Eng.21(12)(2013)1332–1340.

    [3]S.Wu,Y.Wang,X.Feng,Unified model of purification units in hydrogen networks,Chin.J.Chem.Eng.22(6)(2014)730–733.

    [4]X.Liang,L.Kang,Y.Liu,The flexible design for optimization and debottlenecking of multiperiod hydrogen networks,Ind.Eng.Chem.Res.55(9)(2016)2574–2583.

    [5]X.Wang,Z.Wang,H.Zhao,Z.Liu,A procedure for design ofhydrogen networks with multiple contaminants,Chin.J.Chem.Eng.23(9)(2015)1536–1541.

    [6]L.Zhou,Z.Liao,J.Wang,B.Jiang,Y.Yang,Hydrogen sul fide removal process embedded optimization of hydrogen network,Int.J.Hydrog.Energy37(23)(2012)18163–18174.

    [7]X.Jia,G.Liu,Optimization of hydrogen networks with multiple impurities and impurity removal,Chin.J.Chem.Eng.24(9)(2016)1236–1242.

    [8]J.Mao,G.Liu,Y.Wang,D.Zhang,Integration ofa hydrogen network with the vacuum gas oil hydrocracking reaction,Chem.Eng.Trans.45(2015)85–91.

    [9]B.Umana,A.Shoaib,N.Zhang,R.Smith,Integrating hydroprocessors in refinery hydrogen network optimisation,Appl.Energy133(0)(2014)169–182.

    [10]B.Umana,N.Zhang,R.Smith,Developmentofvacuumresidue hydrodesulphurization—hydrocracking models and their integration with refinery hydrogen networks,Ind.Eng.Chem.Res.55(8)(2016)2391–2406.

    [11]H.Korsten,U.Hoffmann,Three-phase reactor model for hydrotreating in pilot trickle-bed reactors,AIChE J.42(5)(1996)1350–1360.

    [12]M.A.Rodríguez,J.Ancheyta,Modeling of hydrodesulfurization (HDS),hydrodenitrogenation(HDN),and the hydrogenation of aromatics(HDA)in a vacuum gas oil Hydrotreater,Energy Fuel18(3)(2004)789–794.

    [13]S.K.Bej,A.K.Dalai,J.Adjaye,Comparison of hydrodenitrogenation of basic and nonbasic nitrogen compounds present in Oil Sands derived heavy gas oil,Energy Fuel15(2)(2001)377–383.

    [14]F.Jiménez,V.Kafarov,M.Nu?ez,Modeling of industrial reactor for hydrotreating of vacuum gas oils:simultaneous hydrodesulfurization,hydrodenitrogenation and hydrodearomatization reactions,Chem.Eng.J.134(3)(2007)200–208.

    [15]L.C.Casta?eda,J.A.D.Mu?oz,J.Ancheyta,Comparison of approaches to determine hydrogen consumption during catalytic hydrotreating of oil fractions,Fuel90(12)(2011)3593–3601.

    [16]D.Li,Hydrotreating Technology and Engineering,China Petrochemical Press,Beijing,2004(In Chinese).

    [17]X.Liang,Y.Liu,Simulation of a wax oil hydrotreating unit and calculations of hydrogen consumption at off-design conditions,J.ECUST.38(6)(2012)718–723(In Chinese).

    [18]L.Wu,Y.Liu,Environmental impacts of hydrotreating processes for the production of clean fuels based on life cycle assessment,Fuel164(2016)352–360.

    [19]T.V.Choudhary,S.Parrott,B.Johnson,Unraveling heavy oildesulfurization chemistry:Targeting clean fuels,Environ.Sci.Technol.42(6)(2008)1944–1947.

    [20]R.M.Cotta,M.R.Wolf-Maciel,R.M.Filho,A cape of HDT industrial reactor for middle distillates,Comput.Chem.Eng.24(2)(2000)1731–1735.

    [21]S.M.Yui,E.C.Sanford,Kinetics of aromatics hydrogenation of bitumen-derived gas oils,Can.J.Chem.Eng.69(5)(1991)1087–1095.

    国产精品永久免费网站| 亚洲人成网站高清观看| 啦啦啦韩国在线观看视频| 欧美日韩国产亚洲二区| 悠悠久久av| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产欧洲综合997久久,| 国产一区二区三区在线臀色熟女| 亚洲国产精品成人综合色| 在线观看免费午夜福利视频| 精品第一国产精品| 亚洲va日本ⅴa欧美va伊人久久| 此物有八面人人有两片| 18禁国产床啪视频网站| 欧美zozozo另类| 欧美3d第一页| 一级毛片女人18水好多| 亚洲人成网站在线播放欧美日韩| av欧美777| 中文字幕久久专区| 久久欧美精品欧美久久欧美| 中文字幕av在线有码专区| 免费一级毛片在线播放高清视频| 国产精品亚洲一级av第二区| 一a级毛片在线观看| 久久久久久大精品| 国产欧美日韩一区二区精品| 中文字幕最新亚洲高清| www日本在线高清视频| 神马国产精品三级电影在线观看 | x7x7x7水蜜桃| 国产激情欧美一区二区| 国产精品久久久久久久电影 | 人妻夜夜爽99麻豆av| 欧美精品啪啪一区二区三区| 日韩欧美国产一区二区入口| 精品高清国产在线一区| 国产在线精品亚洲第一网站| 亚洲欧美日韩高清在线视频| 免费在线观看日本一区| 久久热在线av| 中文字幕久久专区| 男男h啪啪无遮挡| 99国产精品99久久久久| 中文字幕av在线有码专区| 韩国av一区二区三区四区| 男男h啪啪无遮挡| 少妇熟女aⅴ在线视频| 午夜福利高清视频| 久久国产乱子伦精品免费另类| 国产一区二区在线av高清观看| 99riav亚洲国产免费| 色综合欧美亚洲国产小说| 韩国av一区二区三区四区| 欧美日本亚洲视频在线播放| 黄色视频,在线免费观看| 亚洲人成伊人成综合网2020| 亚洲av中文字字幕乱码综合| 日本免费一区二区三区高清不卡| 国产av不卡久久| 波多野结衣高清作品| 亚洲aⅴ乱码一区二区在线播放 | 国产男靠女视频免费网站| 亚洲无线在线观看| 精品熟女少妇八av免费久了| 国产av麻豆久久久久久久| 大型黄色视频在线免费观看| 亚洲中文av在线| 操出白浆在线播放| 久久久久久久久中文| av天堂在线播放| 最近视频中文字幕2019在线8| 非洲黑人性xxxx精品又粗又长| 精品久久久久久久人妻蜜臀av| 18禁观看日本| 久久久久久大精品| e午夜精品久久久久久久| netflix在线观看网站| 欧美又色又爽又黄视频| 巨乳人妻的诱惑在线观看| 男人舔女人下体高潮全视频| 黄色视频不卡| 禁无遮挡网站| 国内精品久久久久精免费| 人妻夜夜爽99麻豆av| 国产亚洲欧美在线一区二区| 午夜老司机福利片| 9191精品国产免费久久| 波多野结衣高清无吗| or卡值多少钱| 很黄的视频免费| 国产熟女xx| 久久国产乱子伦精品免费另类| 欧美成人性av电影在线观看| 特大巨黑吊av在线直播| 欧美不卡视频在线免费观看 | 日日摸夜夜添夜夜添小说| 日韩免费av在线播放| 黄色视频,在线免费观看| 成年女人毛片免费观看观看9| 不卡av一区二区三区| 日韩 欧美 亚洲 中文字幕| 国产精品久久视频播放| 制服人妻中文乱码| 在线观看www视频免费| 男女床上黄色一级片免费看| 麻豆国产av国片精品| 日日夜夜操网爽| 男人舔奶头视频| 俄罗斯特黄特色一大片| 成熟少妇高潮喷水视频| av免费在线观看网站| 国产91精品成人一区二区三区| 毛片女人毛片| 欧美最黄视频在线播放免费| 免费在线观看影片大全网站| 亚洲国产欧美人成| 国产视频内射| 老司机深夜福利视频在线观看| 一区福利在线观看| 中国美女看黄片| 亚洲人成网站高清观看| 午夜福利高清视频| 久久人妻福利社区极品人妻图片| 91麻豆av在线| 国产精品亚洲一级av第二区| 麻豆国产97在线/欧美 | 午夜福利高清视频| 久久人妻福利社区极品人妻图片| 99热这里只有精品一区 | 97碰自拍视频| 制服丝袜大香蕉在线| 成人三级做爰电影| 亚洲专区国产一区二区| 久久精品影院6| 两人在一起打扑克的视频| 少妇熟女aⅴ在线视频| 香蕉av资源在线| 好男人在线观看高清免费视频| 波多野结衣巨乳人妻| 国产野战对白在线观看| 国产成人精品久久二区二区91| 欧美中文综合在线视频| 日本黄色视频三级网站网址| 久久香蕉国产精品| 夜夜夜夜夜久久久久| 日韩国内少妇激情av| 草草在线视频免费看| 久久九九热精品免费| 国产激情偷乱视频一区二区| 久久久国产欧美日韩av| 久久天躁狠狠躁夜夜2o2o| 淫妇啪啪啪对白视频| 亚洲全国av大片| 午夜亚洲福利在线播放| 国产人伦9x9x在线观看| 少妇粗大呻吟视频| 国内毛片毛片毛片毛片毛片| 国产片内射在线| 两个人的视频大全免费| 极品教师在线免费播放| 国产激情久久老熟女| 变态另类成人亚洲欧美熟女| 天天躁狠狠躁夜夜躁狠狠躁| 男人舔奶头视频| 女人高潮潮喷娇喘18禁视频| 精品乱码久久久久久99久播| 日本一区二区免费在线视频| 亚洲成av人片在线播放无| 国内揄拍国产精品人妻在线| 国产亚洲av嫩草精品影院| 中文字幕av在线有码专区| 欧美在线黄色| 久久午夜亚洲精品久久| 久久精品国产综合久久久| 男人舔女人下体高潮全视频| 亚洲一卡2卡3卡4卡5卡精品中文| 女人爽到高潮嗷嗷叫在线视频| 一区福利在线观看| 国产真实乱freesex| 亚洲专区字幕在线| 色综合亚洲欧美另类图片| 国产成人aa在线观看| 超碰成人久久| 免费在线观看完整版高清| 久久久精品国产亚洲av高清涩受| 国产精品一区二区三区四区免费观看 | 国产午夜精品论理片| 午夜福利欧美成人| 一本一本综合久久| 亚洲一区二区三区不卡视频| 免费av毛片视频| 日本一区二区免费在线视频| 亚洲av五月六月丁香网| 国产欧美日韩精品亚洲av| 男女做爰动态图高潮gif福利片| 又大又爽又粗| 怎么达到女性高潮| 欧美av亚洲av综合av国产av| 两性夫妻黄色片| 又黄又粗又硬又大视频| 免费电影在线观看免费观看| 精品一区二区三区四区五区乱码| 老熟妇乱子伦视频在线观看| 88av欧美| 欧美丝袜亚洲另类 | 国产免费av片在线观看野外av| 国产av又大| 在线十欧美十亚洲十日本专区| 日韩欧美三级三区| 桃色一区二区三区在线观看| 午夜两性在线视频| 免费观看人在逋| 夜夜躁狠狠躁天天躁| 亚洲国产精品sss在线观看| 男插女下体视频免费在线播放| 黑人操中国人逼视频| 18禁国产床啪视频网站| 国产精品亚洲av一区麻豆| 中文亚洲av片在线观看爽| 欧美一区二区国产精品久久精品 | 此物有八面人人有两片| 中国美女看黄片| 亚洲国产日韩欧美精品在线观看 | 美女午夜性视频免费| 欧美成狂野欧美在线观看| 亚洲最大成人中文| 99在线人妻在线中文字幕| 美女扒开内裤让男人捅视频| 日本免费一区二区三区高清不卡| 中亚洲国语对白在线视频| 一区二区三区国产精品乱码| 国产av一区二区精品久久| 免费在线观看成人毛片| 一边摸一边做爽爽视频免费| 在线观看美女被高潮喷水网站 | 99久久精品热视频| 99久久精品国产亚洲精品| 黑人巨大精品欧美一区二区mp4| 听说在线观看完整版免费高清| 亚洲天堂国产精品一区在线| 国产亚洲精品第一综合不卡| 午夜福利视频1000在线观看| 欧美绝顶高潮抽搐喷水| 天堂√8在线中文| 日韩欧美在线二视频| 午夜免费成人在线视频| 久久午夜亚洲精品久久| 成年版毛片免费区| 视频区欧美日本亚洲| 国产av一区在线观看免费| 日本五十路高清| 日本一二三区视频观看| 日本熟妇午夜| 91成年电影在线观看| 国产av一区在线观看免费| 亚洲欧美日韩无卡精品| 久99久视频精品免费| 亚洲色图av天堂| 亚洲av日韩精品久久久久久密| 久久午夜综合久久蜜桃| 精品久久久久久,| 操出白浆在线播放| 中文亚洲av片在线观看爽| 亚洲七黄色美女视频| 一级毛片高清免费大全| 久久精品国产清高在天天线| 色av中文字幕| 神马国产精品三级电影在线观看 | 国产亚洲精品第一综合不卡| 麻豆成人午夜福利视频| 一边摸一边做爽爽视频免费| 大型av网站在线播放| 黑人操中国人逼视频| 天堂√8在线中文| 国产人伦9x9x在线观看| 午夜福利欧美成人| 国产亚洲欧美98| 麻豆久久精品国产亚洲av| 啪啪无遮挡十八禁网站| 国产亚洲精品av在线| 天堂√8在线中文| 伦理电影免费视频| 国产一区在线观看成人免费| 久久这里只有精品19| 亚洲精品在线美女| 男女视频在线观看网站免费 | 嫁个100分男人电影在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人啪精品午夜网站| 久久久国产欧美日韩av| 无人区码免费观看不卡| 亚洲电影在线观看av| 亚洲国产欧美一区二区综合| 国产精品亚洲美女久久久| 九色成人免费人妻av| 一卡2卡三卡四卡精品乱码亚洲| 97碰自拍视频| 禁无遮挡网站| 免费无遮挡裸体视频| 亚洲av电影在线进入| 最近最新中文字幕大全电影3| av在线播放免费不卡| 人成视频在线观看免费观看| 很黄的视频免费| 女人爽到高潮嗷嗷叫在线视频| 亚洲av成人av| 亚洲第一电影网av| 99re在线观看精品视频| 国产成人一区二区三区免费视频网站| 婷婷亚洲欧美| 国产精品av视频在线免费观看| 99国产综合亚洲精品| 欧美色视频一区免费| 国内久久婷婷六月综合欲色啪| 三级男女做爰猛烈吃奶摸视频| 一进一出好大好爽视频| 俺也久久电影网| 一级毛片精品| 村上凉子中文字幕在线| 叶爱在线成人免费视频播放| 国产激情久久老熟女| 久久久久久免费高清国产稀缺| 女生性感内裤真人,穿戴方法视频| 非洲黑人性xxxx精品又粗又长| 欧美精品啪啪一区二区三区| 免费av毛片视频| 可以在线观看的亚洲视频| 国产伦在线观看视频一区| 男女做爰动态图高潮gif福利片| 精品欧美国产一区二区三| 中文资源天堂在线| 日韩欧美一区二区三区在线观看| 老司机午夜十八禁免费视频| 曰老女人黄片| av在线天堂中文字幕| 国内精品久久久久精免费| 免费在线观看完整版高清| 久久久久精品国产欧美久久久| 国产一区在线观看成人免费| 久久草成人影院| 亚洲成人精品中文字幕电影| 操出白浆在线播放| 老熟妇仑乱视频hdxx| 麻豆成人午夜福利视频| 两个人的视频大全免费| 国产熟女午夜一区二区三区| 国产午夜福利久久久久久| 欧美成人一区二区免费高清观看 | 免费在线观看日本一区| 免费高清视频大片| 免费观看精品视频网站| 亚洲av美国av| 国产又黄又爽又无遮挡在线| 国产精品免费一区二区三区在线| 国产av一区在线观看免费| 99久久精品热视频| 久久久久精品国产欧美久久久| 久久精品国产亚洲av香蕉五月| 成人亚洲精品av一区二区| 中文字幕人成人乱码亚洲影| 色综合欧美亚洲国产小说| 精华霜和精华液先用哪个| 欧美黄色淫秽网站| 亚洲国产精品999在线| 可以免费在线观看a视频的电影网站| 午夜免费成人在线视频| 国产97色在线日韩免费| 亚洲真实伦在线观看| 亚洲人成伊人成综合网2020| 女人高潮潮喷娇喘18禁视频| 欧美黄色淫秽网站| 97人妻精品一区二区三区麻豆| 国产97色在线日韩免费| 在线视频色国产色| 首页视频小说图片口味搜索| 丁香欧美五月| 精品欧美一区二区三区在线| 美女免费视频网站| 久久久久国产一级毛片高清牌| 巨乳人妻的诱惑在线观看| 成熟少妇高潮喷水视频| 国产高清激情床上av| 亚洲国产中文字幕在线视频| 日本 av在线| 成人18禁在线播放| 亚洲成人国产一区在线观看| 国产在线精品亚洲第一网站| 免费高清视频大片| 看片在线看免费视频| 淫秽高清视频在线观看| 欧美高清成人免费视频www| a级毛片a级免费在线| 国产熟女xx| 男女之事视频高清在线观看| 婷婷亚洲欧美| 在线观看午夜福利视频| 精品国产超薄肉色丝袜足j| 毛片女人毛片| 午夜视频精品福利| 亚洲成人久久爱视频| 18禁观看日本| 国产视频内射| 五月伊人婷婷丁香| 精品久久久久久成人av| 99久久精品热视频| 亚洲av成人精品一区久久| 国产成年人精品一区二区| 精品国内亚洲2022精品成人| 亚洲av日韩精品久久久久久密| 黑人操中国人逼视频| 午夜亚洲福利在线播放| 老司机在亚洲福利影院| 18禁裸乳无遮挡免费网站照片| 全区人妻精品视频| 一级作爱视频免费观看| 午夜福利在线在线| 国产精品亚洲av一区麻豆| 午夜福利欧美成人| 亚洲天堂国产精品一区在线| 长腿黑丝高跟| 亚洲成av人片在线播放无| 一个人免费在线观看电影 | 黄色女人牲交| 黄色a级毛片大全视频| 麻豆国产97在线/欧美 | 国产亚洲欧美在线一区二区| 女人爽到高潮嗷嗷叫在线视频| 亚洲欧美一区二区三区黑人| 久热爱精品视频在线9| 欧美成狂野欧美在线观看| 亚洲全国av大片| 欧美3d第一页| 草草在线视频免费看| 国产精品一区二区免费欧美| 哪里可以看免费的av片| 韩国av一区二区三区四区| а√天堂www在线а√下载| 手机成人av网站| 一本久久中文字幕| 12—13女人毛片做爰片一| 老司机午夜十八禁免费视频| 国产又色又爽无遮挡免费看| 最近最新中文字幕大全电影3| 亚洲熟妇熟女久久| 国产午夜精品论理片| 日韩av在线大香蕉| 久久久久久免费高清国产稀缺| 一进一出抽搐动态| 无遮挡黄片免费观看| 亚洲av电影不卡..在线观看| 丰满的人妻完整版| 99国产综合亚洲精品| 亚洲av中文字字幕乱码综合| 狠狠狠狠99中文字幕| 国产亚洲av高清不卡| 欧美日韩一级在线毛片| 亚洲自拍偷在线| 亚洲avbb在线观看| 亚洲精品美女久久久久99蜜臀| 9191精品国产免费久久| 人成视频在线观看免费观看| 老汉色∧v一级毛片| 99热6这里只有精品| 亚洲国产精品999在线| 国产高清videossex| 19禁男女啪啪无遮挡网站| 亚洲专区字幕在线| a在线观看视频网站| 亚洲全国av大片| 成年女人毛片免费观看观看9| 国产精品久久久久久精品电影| 99精品在免费线老司机午夜| 极品教师在线免费播放| 一二三四在线观看免费中文在| 久久性视频一级片| av中文乱码字幕在线| 成人亚洲精品av一区二区| 男女床上黄色一级片免费看| 亚洲一区二区三区不卡视频| a在线观看视频网站| 国产三级中文精品| 亚洲国产精品久久男人天堂| 免费高清视频大片| 欧美绝顶高潮抽搐喷水| 国产精华一区二区三区| 久久久久亚洲av毛片大全| 色综合欧美亚洲国产小说| 亚洲,欧美精品.| 亚洲午夜理论影院| 夜夜爽天天搞| 精品电影一区二区在线| 美女扒开内裤让男人捅视频| 19禁男女啪啪无遮挡网站| 亚洲欧美日韩东京热| 91国产中文字幕| 亚洲av成人不卡在线观看播放网| 美女 人体艺术 gogo| 精品电影一区二区在线| 在线观看免费午夜福利视频| 日韩中文字幕欧美一区二区| 在线观看午夜福利视频| 成人国产综合亚洲| 国产成人精品久久二区二区91| 超碰成人久久| 欧美日韩乱码在线| 老司机深夜福利视频在线观看| 欧美日韩乱码在线| 不卡av一区二区三区| 欧美成人性av电影在线观看| 国内精品一区二区在线观看| 一个人免费在线观看电影 | 国产精品免费视频内射| 中国美女看黄片| 久久香蕉精品热| 久久九九热精品免费| 老司机靠b影院| 好男人在线观看高清免费视频| 亚洲成人久久性| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品综合久久久久久久免费| 午夜精品久久久久久毛片777| 老司机靠b影院| 可以在线观看的亚洲视频| 嫩草影视91久久| 人妻久久中文字幕网| 长腿黑丝高跟| 激情在线观看视频在线高清| 亚洲成人久久爱视频| 少妇人妻一区二区三区视频| 欧美色欧美亚洲另类二区| 免费在线观看日本一区| 三级国产精品欧美在线观看 | 叶爱在线成人免费视频播放| 老司机深夜福利视频在线观看| 成人午夜高清在线视频| 午夜激情av网站| 久久久久国内视频| 777久久人妻少妇嫩草av网站| 老鸭窝网址在线观看| 在线观看www视频免费| 精品熟女少妇八av免费久了| 动漫黄色视频在线观看| 一本久久中文字幕| 人人妻,人人澡人人爽秒播| 别揉我奶头~嗯~啊~动态视频| 久久精品人妻少妇| 好男人在线观看高清免费视频| 久久精品91蜜桃| 18禁裸乳无遮挡免费网站照片| 国产视频一区二区在线看| 麻豆av在线久日| 色哟哟哟哟哟哟| 日韩有码中文字幕| 婷婷精品国产亚洲av在线| 日本撒尿小便嘘嘘汇集6| 美女午夜性视频免费| 伦理电影免费视频| 亚洲熟妇熟女久久| 欧美日韩国产亚洲二区| 一级片免费观看大全| 国产一区二区三区视频了| 久久久久性生活片| 日韩欧美精品v在线| 亚洲欧美激情综合另类| 男人舔奶头视频| 欧美3d第一页| 男人舔女人下体高潮全视频| 一本精品99久久精品77| 亚洲中文av在线| 国产成人aa在线观看| 精品少妇一区二区三区视频日本电影| 亚洲五月天丁香| 国产精品99久久99久久久不卡| 日本免费a在线| www日本在线高清视频| 1024视频免费在线观看| 久久久久久免费高清国产稀缺| 成人av在线播放网站| 精品久久久久久,| 国产激情久久老熟女| 一级a爱片免费观看的视频| 狂野欧美激情性xxxx| 日本五十路高清| 国产视频内射| 国产真人三级小视频在线观看| 校园春色视频在线观看| 男女下面进入的视频免费午夜| 亚洲avbb在线观看| 在线观看一区二区三区| 精品久久久久久成人av| 草草在线视频免费看| 99热这里只有精品一区 | 成年版毛片免费区| 桃红色精品国产亚洲av| 天天躁夜夜躁狠狠躁躁| 女人被狂操c到高潮| 99久久精品热视频| 亚洲在线自拍视频| 听说在线观看完整版免费高清| 欧美激情久久久久久爽电影| 一本久久中文字幕| 成人国产一区最新在线观看| 亚洲第一欧美日韩一区二区三区| 久久精品国产亚洲av香蕉五月| 久久人妻av系列| 一个人免费在线观看的高清视频| 亚洲自偷自拍图片 自拍| a级毛片在线看网站| 成人av一区二区三区在线看| 99久久精品国产亚洲精品| 亚洲美女视频黄频| 日韩大尺度精品在线看网址| 丝袜美腿诱惑在线| 黑人巨大精品欧美一区二区mp4|