• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimization of a crude distillation unit using a combination of wavelet neural network and line-up competition algorithm☆

    2017-05-29 10:47:59BinShiXuYangLiexiangYan

    Bin Shi,Xu Yang,Liexiang Yan*

    Department of Chemical Engineering,Wuhan University of Technology,Wuhan 430070,China

    1.Introduction

    Distillation of crude oil is regarded to be one of the most fundamentalprocesses in petroleum refining and petrochemicalindustries,where the crude oil is separated into different products each with specific boiling range.In response to the highly competitive market and stringent environmental laws,improving the operation level of crude oil distillation unit(CDU)is essential.In fact,the optimization of CDU system is beneficial to simultaneously achieve a well-controlled and stable system,high production rate and product quality as well as low operation cost for the economic consideration.Therefore,the engineering design,control strategy and process optimization of a CDU have been paid attention to improve product efficiency and quality assurance in petroleum industry in recent years[1].

    As one of the most complicated operations in the field of chemical separation processes,the operation input and output variables among the CDU are highly interacted,which undoubtedly increase the difficulty in obtaining and maintaining the optimal operation condition for CDU.Moreover,the optimal manipulated parameters of CDU have to be frequently adjusted due to the variation of properties of crude oil supplied,and the production mode may be also changed over strategically from season to season.Besides,the oil supply can give rise to some severe problems in plant management or even lead to the shutdown of the CDU on the condition that the specifications of oil products cannot be reached or the CDU operation is not stabilized.In brief,it is quite necessary to improve operation level of a complex CDU system.

    In recent years,the research of CDU operation has been focused on the subject of process control and optimization.Inamdaret al.[2]proposed a steady state model based on(C+3)iteration variables to simulate an industrialCDU.The modelwas first tuned using industrialdata.Then the elitistnon-dominated sorting genetic algorithm(NSGA-II)was employed to solve a few meaningfulmulti-objective optimization problems.Case study has shown that the optimal operating conditions,where the pro fit could be increased keeping the product properties within acceptable limits were found by the proposed approach.Moreet al.[3]presented the optimization of a crude distillation unit using commercial Aspen Plus software.Optimization model constituted a rigorous simulation modelsupplemented with suitable objective functions with and without product flow rate constraints.Simulation study inferred that the product flow rate constraints sensitively affect atmospheric distillation column diameter and crude feed flow rate calculations.Based on all simulation studies,a generalized inference con firmed that it was difficult to judge upon the quality of the solutions obtained as far as their global optimality was concerned.Seoet al.[4]proposed the design optimization of CDU using a mixed integer nonlinear programming(MINLP)method and realized the reduction in energy costs for an existing CDUsystem.As a meta-model,artificialneural networks(ANN)trained by historical data were also applied to the optimization aspect.With a method of design of experiment(DOE),Chenetal.[5]proposed a method using ANNmodels and information analysis fordesign ofexperiment(AIDOE)which carried outthe experimentalor optimization process batch by batch.To maximize a CDU's valuable product yield under required product qualities,Liauet al.[6]developed an expertsystemwhere ANNtrained with production data were used as the knowledge and the optimal conditions were solved with an optimization procedure.Motlaghiet al.[7]also designed an expert system for optimizing a crude oil distillation column where neural networks and genetic algorithm(GA)were used.Now,the method combining the data generated by a rigorous model with a meta-model has become a popular method to carry out the optimization of CDU.Yao and Chu[8]employed support vector regression(SVR)to optimize the CDU models constructed by Aspen Plus and revised DOE optimization procedure.Ochoa-Estopieret al.[9]simulated the distillation column using an ANN model and then the formulated optimization problem was solved using a simulated annealing(SA)algorithm.

    In the terms of theoretical basis,rigorous models are more accurate than simplified and statistical models.Nevertheless,it is difficult to combine an optimization algorithm with rigorous models,because a large number of variables and non-linear equations need to be solved simultaneously[10,11]which will give rise to great computing burdens.In considering the industrial application of petrochemical process optimization,a meta-model with desirable fitting accuracy and generalization is more suitable for optimization calculation.As an emerging tool combining the strengths of discrete wavelet transform with neural network processing,wavelet neural network(WNN)models achieve strong nonlinear approximation ability,and thus have been successfully applied to forecasting[12],modeling and function approximations[13].Therefore,WNN is proposed to model the CDU unit in this study,which is expected to simulate it accurately and efficiently.When the modeling of CDU is finished,operation optimization of CDU becomes the core problem.In general,for the complex non-linear optimization problem,evolutionary algorithms outperform DOE and SQP in finding global optimal solution.Among various evolutionary algorithms,the line-up competition algorithm(LCA)is a simple and effective stochastic global optimization technique primarily due to its attractive properties,such as parallel evolutionary strategy and asexual reproduction of individuals[14].Based on these advantages,LCA is employed to find the best operation conditions of CDU in this work.

    The aim of this study is to investigate the feasibility of combining WNN methodology with LCA in the area of optimizing operations in CDU.

    2.WNN Model

    The procedure for constructing the data-driven WNN model,as presented below,consists of three main steps.The first step is the construction of samples used as the knowledge database for the WNN model.The second step is the selection of the WNN structure and parameters;the third step is performing the training of the WNN model.

    2.1.Basic WNN

    Wavelet neural network,inspired by both the feed-forward neural networks and wavelet decompositions has received considerable attention and become a powerful tool for function approximation[15].The main characteristic of WNN is that some kinds of wavelet functions are used as the nonlinear activation function in the hidden layer in place of the usual sigmoid function.Incorporating the time–frequency localization properties of wavelets and the learning abilities of general neural network,WNN has shown its advantages over other methods such as BPNN for complex nonlinear system modeling[16].

    The basic wavelet theory is as follows.

    For any functionΨ(t)∈L2(R)if it satis fies the admissibility condition[17]:

    where Ψ(t)is the mother wavelet,a double parameter family of wavelets created by translating and dilating this mother wavelet:

    whereais the dilation parameter andbis the translation parameter.They can be used to control the magnitude and position of Ψ(t).

    In this work,a three-layer feed-forward wavelet neural network is designed,it has one input layer,one hidden layer and a linear output layer as shown in Fig.1.

    Fig.1.WNN structure.

    The hidden layer output is given by

    where Xq=[x1q,x2q,…,xmq]Tis theqth vector of input samples,andq=1,2,…,Q.The nodesofinputand outputlayerare setin accordance with the training data.Hidden layer hashneurons.The connection weights from the input layer to the hidden layer areh×mmatrix W1,and the threshold of hidden layer is ah×1 arrayt1.The WNN output is given by

    where yq=[y1q,y2q,…,ymq]Tis theqth corresponding vector of expected output,andq=1,2,…,Q.The connection weights from the hidden layer to the output layer aren×hmatrix W2,whilen×1 arrayt2is the threshold of output layer.It should be noticed that the superscript in W1,W2,t1andt2note the layers of WNN.Note that the above WNN is a kind of basic neural network in the sense that the wavelets consist of the basis function,therefore,the scalar parameter and the translation parameter would be determined by a training algorithm.

    In order to take full advantage of the local capacity of the wavelet basic functions,the performance of WNN which has one hidden layer of neurons is measured by total error function,which is described as follows:

    whereekq=Ykq-Dkq,Ykqis thekth component in theqth network output andDkqis thekth component in theqth network expected output.

    The training process aims to find a set of optimal network parameters.In the previous work,the training of WNN is achieved by the ordinary back propagation technique.According to the gradient method,the parameters are tuned by

    where η is the learning rate andlis the current iteration numbers.

    Remark 1.The Morlet wavelet function ΨM(x)is often considered as a“mother wavelet”in the hidden nodes of the WNN,

    We considerdifferentactivation functions,e.g.the Sigmoid shown as follows:

    that are often selected in the hidden nodes of some neural network(NN)frameworks.Moreover,the pro files of activation functions by using Morlet,Sigmoid and Gauss are depicted in Fig.2(a),(b)and(c),respectively.

    2.2.Modifi ed WNN

    The WNNis trained comparatively slowly while calculating the samples one by one without any numerical optimization method.Recently,some work was devoted by introducing evolutionary algorithm,such as particle swarm optimization(PSO)[18,19],to initialize the parameters of WNN for accelerating the training process of WNN.However,the number of parameters in a practical WNN is up to dozens or even hundreds,which is difficult for evolutionary algorithmto carry out the optimization.In our approach,the numerical optimization algorithm,namely Levenberg–Marquardt(LM)algorithm,is introduced into the training process to accelerate convergence of WNN parameters.At the same time the training mode is changed into batch mode,which adjusts the parameters of WNN by calculating all the samples.Referring to theLevenberg–Marquardtalgorithm,the updating law for the matrix W1and W2,the arrayst1,t2,a,andbare shown as follows:

    Fig.2.Pro files of(a)Morlet,(b)Sigmoid,and(c)Gauss function.

    It is noted that s is solved by Eq.(15),elements of s are allocated to the W1,W2,t1,t2,aandbwhich are used to recalculate the total errorE.The parameter μ is updated by Eqs.(16)and(17).

    Remark 2.Comparing with the back propagation technique for training the network,the parametric updating law by Eqs.(15)–(17)is used to enhance the convergence rate of the iteration while the parameter μ is updated by adjusting θ.Regarding the BPNN model using Sigmoid function and the Gauss function in RBFNN,they usually use the gradient method to update the weights.

    3.Process Optimization

    If the proposed WNN model can precisely predict the operational modelof realCDU,then it can assistto simplify the complicated process model and improve the solvability of the constrained optimization problem.

    3.1.Optimization model

    Referring the optimization issue for the CDU,the constrained optimization model for the CDU process is formulated as

    where the objective functionJrepresents the net revenue.Cprod,jandFprod,jare the price and flow rate of productjrespectively.The amount of the steam,FSused in the process operation multiple its price,CS,represents the energy cost.Φ is the WNN model of CDU modeled by our approach,and this model is a combination of nonlinear algebraic equations where the vector parameter s is estimated by the updating law by Eqs.(15)–(20).mvlbandmvubare the lower and upper bounds of process inputsx.ps1bandpsubare the lower and upper bounds of process outputsy.Constraints by Eq.(23)are specified according to the real process operating conditions.

    3.2.Line-up competition algorithm

    Regarding the above WNN-based optimization model,the LCA algorithm[20,21]is adopted to solve thisconstrained optimization problem.In the LCA,independent and parallel evolutionary families are always kept during evolution,each family producing offspring only by asexual reproduction.There are the two levels of competition in the algorithm.One is the survival competition inside a family.The best one of each family survives in each generation.The other level is the competition between families.According to their values of objective function,families are ranked to form a line-up.The best family is located in the first position in the line-up,while the worstfamily is putin thefinalposition.The families of different positions have different driving forces of competition.The driving force of competition may be understood as the powerofimpelling family mutation.By the above two levels ofthe competitions,the first family in the line-up is replaced continually by other families,accordingly the value ofits objective function is continually updated.As a result,the optimal solution can be approached rapidly.

    The above two levels of competition in the algorithm can be illustrated in Fig.3.It is seen that a two-dimensional search space is occupied by four families,each consisting of five members.Afterwards,all the members in each family compete with each other.The member having the best objective value is chosen as the candidate of this family to strive for a better position in the next line-up.

    Fig.3.Mapping diagram of LCA.

    The LCA includes mainly the four operating processes:reproduction,ordering,allocation of the search space and contraction of the search space.The calculation steps are detailed as follows:

    Step 1.Assign the numbers of evolutionary generation,individual and family,Ng,NiandNf,respectively.Initialize the starting evolutionary generation countergas 1.

    Step 2.Uniformly and dispersedly generateNfindividuals,so-called families,to form the initial population.

    Thefth individual in thegth generation consists ofNcdecision variables as follows:

    Step 4.According to the fitness values,the individuals are ranked to form a line-up.For the problems of global minimum,the lineup is an ascending sequence.Otherwise,for the problems of global maximum,the line-up is a descending sequence.Sort the individuals.For the minimization problem,the individuals will be sorted in ascending order.Conversely,the individuals will be sorted in descending order for the maximization problem.The sorted individuals are expressed below:

    Step 5.Allocate the associated search space proportionally for each individual according their position in the line-up.The first one in the line-up will be allocated the smallest sub-space,while the last one will be allocated the largest sub-space.The lower boundLcg,fand upper boundUcg,fof thecth decision variable in the sub-space is calculated by

    Step 6.Through asexualreproduction based on the mostdiversity,each individual,so-called father,reproducesNioffspring within its search space.The manner that the offspring are produced is same with the way in Step 3.

    Step 7.For thefth individual,theNioffspring together with their father compete with each other,and the best one survives as father in the next generation.

    where β is the contraction factor which can be set between 0 and 1.Ifg<Ng,then go back to Step 6,or else stop the iteration.

    Table 1Input specifications of the CDU process

    Itis very importantto choose a setofappropriate controlparameters for decreasing computing time and increasing quality of solution.The LCA includes three parameters in all:population size(Nf),number of reproduction(Ni)for each family in each generation and contraction factor(β).

    LargerNfandNiprovide generally high quality solution,but may result in a longer computing time.Small ones can speed up the convergence rate,but may result in trapping in a local minimum.We have to trade between the computing time and solution quality.

    Contraction factor influences strongly on solution quality and computation time.Based on our computing experiences,for a difficult problem,the global optimal solution can be obtained only when 0.9<β<0.99.

    4.Case Study

    4.1.Process description

    Fig.5.Identification of CDU using BPNN,modified WNN and RBFNN:(a)training errors,(b)validation errors.

    Referring to the specifications of a CDU system in a real refinery in Wuhan,China,the crude oil at 40°C and 300 kPa with flow rate of 569.6 t·h-1(702.2 m3·h-1)is fed into the CDU,which consists of the preheat train,the main tower,one condenser,three pumparounds(PA1,PA2,PA3)and three side strippers.Steam at 300 kPa and 400°C is used as a stripping agent in the main column and strippers.Five products including naphtha(NAP),diesel(DIE),kerosene(KER),atmospheric gas oil(AGO),and residue(RES)are exhausted at different stages.Fig.4 shows the CDU system,which can be simulated in Aspen Plus environment.The process inputs(x)include the steam flow rate and temperature of steam at the bottom of the column, flow rates of DIE,KER,AGO,PA1( first pump-around),PA2(second pump-around),and PA3(third pump-around).The process outputs(y)are ASTM D86 100%point of DIE,ASTM D86 95%point of AGO,RES of CDU,furnace duty,and duties of PA1,PA2 and PA3.

    4.2.Identifi cation

    The independentvariables are randomly varied between their upper and lower bounds to ensure the full exploration of the search space.Table 1 shows the upper and lower bounds of the independent variables.The bounds of each variable is specified according to the real process operating conditions ofthe CDU.500 feasible scenarios,in the sense of leading converged simulation,were generated to build WNN distillation column model.The purpose of this case study is mainly to enhance the pro fitability of the CDU process via optimizing its operation.WNN structure is created to finish the modeling and identification of the CDU.To validate the approximation ability of WNN,BPNN and RBFNN are also constructed to model the same CDU system for comparison.The structure of NN comprises 30 neurons in the hidden layer.350 scenarios of 500 converged simulation scenarios are used to train the three networks,and the rest 150 scenarios are used to validate the trained networks.A comparison of the identification performance(training and validation)of the modified WNN using Morlet function(our work),the BPNN using Sigmoid function and the RBFNN using Gauss function is depicted in Fig.5(a)and(b),respectively.Apparently,the training and validation errors of the modified WNN are smaller than otherapproaches.The modified WNN,BPNN,and RBFNNuse the similar network structure,which containsone inputlayer,one hidden layerand one output layer.It is verified that the activation function embedded in the hidden layer,which extraordinarily affects the ability of approximating the complex nonlinear system and extracting the nonlinear characteristics of it.In this case,the sigmoid function used in BPNN is not orthogonal which may lead the slow convergence rate.However,the Morletfunction in WNN is orthogonal which reduces the redundant part.Moreover,Fig.6 shows that the identified WNN model provides the high accuracy to predictthe outputs ofthe CDUprocess as compared with the rigorous model in Aspen Plus.

    Table 2Output specifications of the CDU process

    Table 3Feed,product and utility prices

    4.3.Optimization

    Fig.6.Validation of CDU using the modified WNN.

    Based on the identified WNN model,the input/output specifications of the CDU process in Tables 1 and 2 and the prices of the products and the operating cost list in Table 3 are taken into account for the constrained optimization problem.A comparison of the LCA,GA and PSO for solving the same problem has been done here.For fair comparison,function evaluations in each iteration of the three algorithms are set to 150,the corresponding other detailed parameter settings for the algorithms are given in Table 4.Fig.7 shows the results of the three algorithms.It is clear that the values of the objective(J)by using LCA,GA and PSO increase very fast in beginning few generations.At the same generations,the pro fit predictions reveal that the value of LCA is higher than those by GA and PSO.Moreover,Table 5 indicates that all input/output differences between the WNN model and the model in Aspen Plus are less than 0.54%.It is verified that the optimal operating conditions obtained by the WNN-based optimization approach are reliable.The input and output patterns of the CDU with regard to base and optimalconditions are shown in Fig.8(a)and(b),respectively.As compared with the base conditions,the optimal operation increases the production ofdiesel,kerosene,and atmospheric gas oilby 22%,25%and 10%,respectively.The corresponding duties of furnace,PA1,PA2 and PA3 increase 10%,17%,8%,and 3%,respectively.Apparently,the performance of the CUD is improved by increasing a few duties of coolers.Consequently,the proposed approach based on WNN and LCA can reduce energy consumption in regard to the increments of oil products.In addition,by introducing different operation and property constraints into the optimization model,the new operationalscheme with different product distributions can be obtained easily.

    Table 4Detailed parameter settings for LCA,GA and PSO

    Fig.7.Pro fit predictions of CDU using LCA,GA and PSO.

    Fig.8.Radar plots for comparisons of base and optimal conditions of CDU:(a)output flow rates of coolers and products,(b)duties of coolers and furnace.

    Table 5Comparisons of the WNN model and process model at optimal operating condition

    5.Conclusions

    This study proposed a methodology using the combination of WNN-based optimization modeland LCA to modeland optimize the operation ofcrude distillation unit.The main results ofthis article are summarized as follows:

    (1)A WNN model of CDU is constructed,where theLevenberg–Marquardtalgorithm is introduced into the WNN to speed up the training procedure.

    (2)Based on the WNN model of CDU,an economic optimization model for crude oil distillation process is built under prescribed constraints.

    (3)A practical framework combined with WNN-based optimization model and LCA is presented for optimizing the complex operation of non-linear CDU.

    Case study result has shown that the optimal operating condition obtained by the proposed approach can increase the yield of high valuable products and reduce the energy consumption as compared with those in base operating conditions,therefore,increasing the total pro fits of the CDU.

    Nomenclature

    adilation parameter

    btranslation parameter

    Cprod,jprices of products,CNY·t-1

    Csprices of stripping steam,CNY·t-1

    Dkqkth component in theqth network expected output

    Dqvector ofqth corresponding vector of expected output

    Eerror function

    eqvector ofqth sample error

    Fprod,jflow rates of products,t·h-1

    Fsflow rates of stripping steam,t·h-1

    Hqhidden layer output

    hnumber of neurons in the hidden layer

    I unit matrix

    J(s) Jacobian matrix of the network

    L0lower bounds of variables in LCA

    L2(R) Lebesgue square integrable function

    minput number of neural network

    mvlblower bounds of manipulated parameters

    mvubupper bounds of manipulated parameters

    Ngnumbers of evolutionary generation

    Ninumbers of individual in each family

    Nfnumbers of family in each evolutionary generation

    noutput number of neural network

    objconstrained objective function,1×104CNY

    Ppopulation in LCA

    Pnewly generated population

    pslblower bounds of product specifications,°C

    psubupper bounds of product specifications,°C

    Qnumber of input samples

    RBFNN radial basis function neural network

    S reshaped vector of network parameters

    tthreshold of neurons

    U0upper bounds of variables in WNN

    Wweight of connected neurons

    Xqqth vector of input samples

    xmanipulated parameters

    Y fitness value of individual

    Yqvector ofqth network output

    Ykqkth component in theqth network output

    Ynewly calculated individual fitness

    yASTM D86 point of specified products,°C

    β contraction factor in LCA

    Δ scale of the search interval

    η learning rate

    θ factor in Levenberg–Marquardt algorithm

    λ random number that ranges from 0 to 1

    μ parameter in Levenberg–Marquardt algorithm

    Φ formulation of WNN model

    Ψ(t) wavelet base function

    Subscripts

    gevolutionary generation counter

    lcurrent iteration number

    lb lower bound

    prod product

    Ssteam

    ub upper bound

    [1]A.Mizoguchi,T.E.Marlin,A.N.Hrymak,Operations optimization and control design for a petroleum distillation process,Can.J.Chem.Eng.73(1995)896–907.

    [2]S.V.Inamdar,S.K.Gupta,D.N.Saraf,Multi-objective optimization of an industrial crude distillation unit using the elitist non-dominated sorting genetic algorithm,Chem.Eng.Res.Des.82(2004)611–623.

    [3]R.K.More,V.K.Bulasara,R.Uppaluri,V.R.Banjara,Optimization of crude distillation system using aspen plus:effect of binary feed selection on grass-root design,Chem.Eng.Res.Des.88(2010)121–134.

    [4]J.W.Seo,M.Oh,T.H.Lee,Design optimization of a crude oil distillation process,Chem.Eng.Technol.23(2000)157–164.

    [5]J.Chen,D.S.H.Wong,S.S.Jang,S.L.Yang,Product and process development using artificial neural-network model and information analysis,AIChE J.44(1998)876–887.

    [6]L.C.K.Liau,T.C.K.Yang,M.T.Tsai,Expert system of a crude oil distillation unit for process optimization using neural networks,Expert Syst.Appl.26(2004)247–255.

    [7]S.Motlaghi,F.Jalali,M.N.Ahmadabadi,An expert system design for a crude oil distillation column with the neural networks model and the process optimization using genetic algorithm framework,Expert Syst.Appl.35(2008)1540–1545.

    [8]H.Yao,J.Chu,Operational optimization of a simulated atmospheric distillation column using support vector regression models and information analysis,Chem.Eng.Res.Des.90(2012)2247–2261.

    [9]L.M.Ochoa-Estopier,M.Jobson,R.Smith,Operational optimization of crude oil distillation systems using artificial neural networks,Comput.Chem.Eng.59(2013)178–185.

    [10]K.Basak,K.S.Abhilash,S.Ganguly,D.N.Saraf,On-line optimization of a crude distillation unit with constraints on product properties,Ind.Eng.Chem.Res.41(2002)1557–1568.

    [11]J.C.M.Hartmann,Determine the optimum crude intake level:A case history,Hydrocarb.Process.80(2001)77–84.

    [12]H.Chitsaz,N.Amjady,H.Zareipour,Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm,Energy Convers.Manag.89(2015)588–598.

    [13]Q.Zhang,A.Benveniste,Wavelet networks,IEEE Trans.Neural Netw.3(1992)889–898.

    [14]L.X.Yan,D.X.Ma,Global optimization of non-convex nonlinear programs using lineup competition algorithm,Comput.Chem.Eng.25(2001)1601–1610.

    [15]J.Zhang,G.G.Walter,Y.Miao,W.N.W.Lee,Wavelet neural networks for function learning,IEEE Trans.Signal Process.43(1995)1485–1497.

    [16]S.Billings,H.L.Wei,A new class of wavelet networks for nonlinear system identification,IEEE Trans.Neural Netw.16(2005)862–874.

    [17]I.Daubechies,Ten Lectures on Wavelets,Society for Industrial and Applied Mathematics,Philadelphia,1992.

    [18]S.Chi,Character recognition based on wavelet neural network optimized with PSO algorithm,Appl.Mech.Mater.602(2014)1834–1837.

    [19]Y.Lu,N.Zeng,Y.Liu,N.Zhang,A hybrid Wavelet Neural Network and Switching Particle Swarm Optimization algorithm for face direction recognition,Neurocomputing155(2015)219–224.

    [20]L.X.Yan,Solving combinatorial optimization problems with line-up competition algorithm,Comput.Chem.Eng.27(2003)251–258.

    [21]L.X.Yan,K.Shen,S.Hu,Solving mixed integer nonlinear programming problems with line-up competition algorithm,Comput.Chem.Eng.28(2004)2647–2657.

    国产精品成人在线| 亚洲少妇的诱惑av| www.999成人在线观看| a级毛片在线看网站| 日韩大片免费观看网站| 丝袜美足系列| videos熟女内射| 19禁男女啪啪无遮挡网站| 大香蕉久久成人网| 黄色怎么调成土黄色| 女人爽到高潮嗷嗷叫在线视频| 欧美日韩黄片免| 91麻豆精品激情在线观看国产 | 亚洲国产欧美一区二区综合| 午夜激情久久久久久久| 午夜福利影视在线免费观看| 午夜免费成人在线视频| 国产成人精品在线电影| 精品一区二区三区四区五区乱码 | av视频免费观看在线观看| 国产福利在线免费观看视频| 国产精品 欧美亚洲| www日本在线高清视频| 日本五十路高清| 日韩熟女老妇一区二区性免费视频| 欧美成狂野欧美在线观看| 欧美精品av麻豆av| 久热爱精品视频在线9| 国产淫语在线视频| 日韩av在线免费看完整版不卡| 中文精品一卡2卡3卡4更新| 女人爽到高潮嗷嗷叫在线视频| 国产深夜福利视频在线观看| 国产有黄有色有爽视频| 精品久久蜜臀av无| 精品福利观看| 久久精品aⅴ一区二区三区四区| 亚洲av日韩在线播放| 18禁裸乳无遮挡动漫免费视频| 女人爽到高潮嗷嗷叫在线视频| av天堂在线播放| 国产免费现黄频在线看| 成年人黄色毛片网站| 国产日韩一区二区三区精品不卡| 久久久久久免费高清国产稀缺| kizo精华| 欧美日韩成人在线一区二区| av国产精品久久久久影院| 欧美日韩黄片免| 99re6热这里在线精品视频| 久久精品亚洲av国产电影网| 丁香六月欧美| 嫩草影视91久久| 国产一区二区激情短视频 | 啦啦啦在线免费观看视频4| 精品国产超薄肉色丝袜足j| 人妻一区二区av| 91国产中文字幕| 9色porny在线观看| 在线亚洲精品国产二区图片欧美| 成人亚洲欧美一区二区av| 国产麻豆69| 精品高清国产在线一区| 91成人精品电影| 精品卡一卡二卡四卡免费| 国产精品久久久久久精品电影小说| 欧美在线黄色| 久久99精品国语久久久| 91精品国产国语对白视频| 在线亚洲精品国产二区图片欧美| 日韩,欧美,国产一区二区三区| 两性夫妻黄色片| 我的亚洲天堂| 欧美日韩黄片免| 国产一区二区三区综合在线观看| 免费不卡黄色视频| 下体分泌物呈黄色| avwww免费| 久久久久久久久久久久大奶| 久久热在线av| 少妇粗大呻吟视频| 精品久久久久久久毛片微露脸 | 母亲3免费完整高清在线观看| 免费人妻精品一区二区三区视频| 激情五月婷婷亚洲| 亚洲熟女毛片儿| 亚洲av美国av| 精品一区二区三区四区五区乱码 | 国产亚洲欧美在线一区二区| 精品欧美一区二区三区在线| 日韩一区二区三区影片| av有码第一页| 国产男人的电影天堂91| 亚洲精品在线美女| 午夜福利在线免费观看网站| 欧美日韩亚洲国产一区二区在线观看 | 久久精品成人免费网站| 日本av手机在线免费观看| 欧美精品亚洲一区二区| 亚洲成av片中文字幕在线观看| 国产色视频综合| 精品少妇久久久久久888优播| 国产亚洲一区二区精品| videosex国产| 欧美日韩亚洲国产一区二区在线观看 | 又紧又爽又黄一区二区| 十八禁网站网址无遮挡| 女人精品久久久久毛片| 欧美精品亚洲一区二区| 国产一区二区激情短视频 | 亚洲色图综合在线观看| 亚洲国产毛片av蜜桃av| cao死你这个sao货| 久久影院123| 亚洲精品中文字幕在线视频| 中文字幕人妻丝袜制服| 国产精品一二三区在线看| 国产成人一区二区在线| 桃花免费在线播放| 亚洲熟女毛片儿| 19禁男女啪啪无遮挡网站| 操美女的视频在线观看| 亚洲精品一卡2卡三卡4卡5卡 | 美女脱内裤让男人舔精品视频| 爱豆传媒免费全集在线观看| 热re99久久精品国产66热6| 国产一区二区三区综合在线观看| 99热网站在线观看| 侵犯人妻中文字幕一二三四区| 欧美激情 高清一区二区三区| 制服诱惑二区| 丰满少妇做爰视频| 国产精品国产av在线观看| 欧美日韩视频精品一区| 夜夜骑夜夜射夜夜干| 波多野结衣av一区二区av| 天天操日日干夜夜撸| 国产高清videossex| 亚洲av综合色区一区| 国产精品.久久久| 一级毛片 在线播放| 美女国产高潮福利片在线看| 大香蕉久久网| 亚洲精品国产一区二区精华液| 国产精品一二三区在线看| 岛国毛片在线播放| 成人国产av品久久久| 搡老乐熟女国产| 纯流量卡能插随身wifi吗| 精品国产一区二区三区久久久樱花| 亚洲综合色网址| 亚洲欧美日韩另类电影网站| 老汉色av国产亚洲站长工具| 中文精品一卡2卡3卡4更新| 麻豆乱淫一区二区| 99国产综合亚洲精品| 国产男女内射视频| 亚洲 国产 在线| 精品免费久久久久久久清纯 | 亚洲人成77777在线视频| 亚洲国产欧美在线一区| 啦啦啦啦在线视频资源| 免费女性裸体啪啪无遮挡网站| 久久久精品94久久精品| 精品人妻一区二区三区麻豆| 欧美精品一区二区免费开放| 热99国产精品久久久久久7| 蜜桃在线观看..| av福利片在线| 国产精品99久久99久久久不卡| 欧美黑人欧美精品刺激| 大片电影免费在线观看免费| 亚洲专区中文字幕在线| 视频在线观看一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 久热这里只有精品99| 亚洲美女黄色视频免费看| 亚洲欧美一区二区三区久久| 在线精品无人区一区二区三| 爱豆传媒免费全集在线观看| 中文字幕亚洲精品专区| 纵有疾风起免费观看全集完整版| 黄片播放在线免费| 美女中出高潮动态图| 国产精品成人在线| 亚洲国产精品成人久久小说| 国产高清不卡午夜福利| 久久久精品94久久精品| 精品亚洲乱码少妇综合久久| 如日韩欧美国产精品一区二区三区| 好男人视频免费观看在线| av视频免费观看在线观看| 久久精品久久久久久噜噜老黄| 男人爽女人下面视频在线观看| 午夜福利,免费看| 国产成人免费观看mmmm| 欧美日韩亚洲高清精品| 又大又爽又粗| 欧美人与性动交α欧美软件| 日韩熟女老妇一区二区性免费视频| 欧美日韩亚洲国产一区二区在线观看 | 国产免费又黄又爽又色| av福利片在线| 亚洲成人免费电影在线观看 | 亚洲专区国产一区二区| 国产一区二区激情短视频 | 久热爱精品视频在线9| 国产精品.久久久| 国产精品欧美亚洲77777| 成年av动漫网址| 一级,二级,三级黄色视频| 丝袜美足系列| 热99久久久久精品小说推荐| 精品欧美一区二区三区在线| 老熟女久久久| 成年人黄色毛片网站| 不卡av一区二区三区| 十八禁网站网址无遮挡| 熟女少妇亚洲综合色aaa.| 飞空精品影院首页| 国产成人精品无人区| av在线播放精品| av欧美777| 操出白浆在线播放| 激情视频va一区二区三区| 性色av乱码一区二区三区2| 校园人妻丝袜中文字幕| 久久狼人影院| 视频区图区小说| 秋霞在线观看毛片| 大型av网站在线播放| 亚洲,一卡二卡三卡| avwww免费| 亚洲欧洲国产日韩| 国产亚洲av高清不卡| 丝袜美腿诱惑在线| xxxhd国产人妻xxx| 成人午夜精彩视频在线观看| 亚洲国产av新网站| 亚洲精品在线美女| 纵有疾风起免费观看全集完整版| 在线观看免费高清a一片| 80岁老熟妇乱子伦牲交| 777米奇影视久久| 男人舔女人的私密视频| 亚洲美女黄色视频免费看| 久久久久网色| 美女高潮到喷水免费观看| 国产精品欧美亚洲77777| 极品少妇高潮喷水抽搐| 日韩伦理黄色片| 亚洲欧美精品综合一区二区三区| 国产福利在线免费观看视频| 一本久久精品| 成人亚洲精品一区在线观看| 久久99热这里只频精品6学生| 国产精品香港三级国产av潘金莲 | avwww免费| 少妇人妻久久综合中文| 国产高清视频在线播放一区 | 国产高清videossex| 在线观看人妻少妇| 菩萨蛮人人尽说江南好唐韦庄| 国产日韩欧美视频二区| 欧美精品人与动牲交sv欧美| 老司机影院成人| 久久精品熟女亚洲av麻豆精品| 国产成人一区二区三区免费视频网站 | 国产精品麻豆人妻色哟哟久久| 日本色播在线视频| 日韩一区二区三区影片| 国产av精品麻豆| 亚洲欧美日韩高清在线视频 | 久久国产精品男人的天堂亚洲| 日韩伦理黄色片| 国产精品国产三级国产专区5o| 满18在线观看网站| 无限看片的www在线观看| 看免费成人av毛片| 91老司机精品| 1024香蕉在线观看| 伦理电影免费视频| 久久久精品免费免费高清| av片东京热男人的天堂| 天天躁夜夜躁狠狠躁躁| 69精品国产乱码久久久| 国产亚洲av高清不卡| 国产福利在线免费观看视频| 欧美国产精品va在线观看不卡| 国产免费现黄频在线看| 国产免费视频播放在线视频| 久久久久精品人妻al黑| 校园人妻丝袜中文字幕| kizo精华| 久久午夜综合久久蜜桃| kizo精华| 成人18禁高潮啪啪吃奶动态图| 日本欧美视频一区| 一本—道久久a久久精品蜜桃钙片| 中文字幕制服av| 免费人妻精品一区二区三区视频| 99热全是精品| 久久精品成人免费网站| 久久国产精品影院| 免费看十八禁软件| 一级黄片播放器| 欧美精品人与动牲交sv欧美| 手机成人av网站| 男女之事视频高清在线观看 | 一二三四社区在线视频社区8| 国产精品 欧美亚洲| 国产精品麻豆人妻色哟哟久久| 久久这里只有精品19| 欧美成人精品欧美一级黄| 在线观看免费日韩欧美大片| 亚洲成人免费电影在线观看 | 天天躁夜夜躁狠狠躁躁| 18禁黄网站禁片午夜丰满| 超碰97精品在线观看| 婷婷色麻豆天堂久久| 亚洲精品日本国产第一区| 欧美日韩亚洲综合一区二区三区_| 日日夜夜操网爽| 在线精品无人区一区二区三| 搡老乐熟女国产| 成人午夜精彩视频在线观看| www.熟女人妻精品国产| 国产午夜精品一二区理论片| svipshipincom国产片| 男人添女人高潮全过程视频| av网站在线播放免费| 亚洲国产毛片av蜜桃av| 91麻豆av在线| 精品视频人人做人人爽| 多毛熟女@视频| 欧美97在线视频| 日韩中文字幕视频在线看片| 国产精品久久久av美女十八| av又黄又爽大尺度在线免费看| 亚洲少妇的诱惑av| 一本—道久久a久久精品蜜桃钙片| 精品人妻1区二区| 国产国语露脸激情在线看| 久久久久久久大尺度免费视频| 亚洲五月婷婷丁香| 欧美亚洲日本最大视频资源| 麻豆国产av国片精品| 亚洲熟女毛片儿| 日韩大码丰满熟妇| 韩国高清视频一区二区三区| 欧美日韩视频精品一区| 久久久久久人人人人人| 欧美日韩福利视频一区二区| 国产爽快片一区二区三区| 免费在线观看黄色视频的| 欧美亚洲日本最大视频资源| 中文字幕人妻熟女乱码| 韩国精品一区二区三区| 少妇人妻久久综合中文| 欧美av亚洲av综合av国产av| 大码成人一级视频| 精品视频人人做人人爽| 国产片内射在线| 成人午夜精彩视频在线观看| 制服人妻中文乱码| 久久av网站| 亚洲av电影在线观看一区二区三区| kizo精华| 色视频在线一区二区三区| 人妻一区二区av| 91老司机精品| 国产精品九九99| av在线播放精品| 大香蕉久久网| 99久久99久久久精品蜜桃| 亚洲av日韩精品久久久久久密 | 99国产精品免费福利视频| 我的亚洲天堂| 女性生殖器流出的白浆| 亚洲av片天天在线观看| 欧美日韩亚洲综合一区二区三区_| 人妻人人澡人人爽人人| 亚洲欧美一区二区三区黑人| 国产老妇伦熟女老妇高清| 男女下面插进去视频免费观看| 久久久久网色| 国产黄色免费在线视频| 蜜桃国产av成人99| 18禁黄网站禁片午夜丰满| 国产深夜福利视频在线观看| 亚洲成国产人片在线观看| 国产日韩欧美在线精品| 2018国产大陆天天弄谢| 午夜福利一区二区在线看| 丰满人妻熟妇乱又伦精品不卡| 久久天堂一区二区三区四区| 精品少妇久久久久久888优播| 日韩,欧美,国产一区二区三区| 啦啦啦在线免费观看视频4| 女性生殖器流出的白浆| 最近手机中文字幕大全| 欧美精品人与动牲交sv欧美| 亚洲三区欧美一区| 久9热在线精品视频| 免费在线观看影片大全网站 | 在线观看www视频免费| 在线看a的网站| 91精品国产国语对白视频| 成人亚洲精品一区在线观看| 精品国产国语对白av| 国产成人一区二区在线| 国产精品一区二区在线不卡| 黄色视频不卡| 欧美乱码精品一区二区三区| 精品福利永久在线观看| 韩国高清视频一区二区三区| 女警被强在线播放| av在线老鸭窝| av一本久久久久| 深夜精品福利| 美女福利国产在线| 国产免费福利视频在线观看| 亚洲精品第二区| 国产一区二区三区av在线| 三上悠亚av全集在线观看| 亚洲欧美成人综合另类久久久| 涩涩av久久男人的天堂| 国产亚洲午夜精品一区二区久久| 欧美人与善性xxx| 91精品国产国语对白视频| 99精国产麻豆久久婷婷| 精品福利观看| 午夜av观看不卡| 久久久久久久国产电影| 十分钟在线观看高清视频www| 亚洲国产看品久久| 亚洲国产精品一区三区| 午夜福利免费观看在线| 久久久久网色| 成人手机av| 91字幕亚洲| 最新在线观看一区二区三区 | av片东京热男人的天堂| 日韩精品免费视频一区二区三区| 人人澡人人妻人| videosex国产| 成年人午夜在线观看视频| 一级,二级,三级黄色视频| 超碰97精品在线观看| 一区二区av电影网| 天天影视国产精品| 亚洲精品国产色婷婷电影| 一级毛片我不卡| 狠狠婷婷综合久久久久久88av| 欧美精品啪啪一区二区三区 | 一区二区三区精品91| 免费在线观看影片大全网站 | 晚上一个人看的免费电影| 久久久精品国产亚洲av高清涩受| 日韩 欧美 亚洲 中文字幕| 丰满人妻熟妇乱又伦精品不卡| 欧美黄色片欧美黄色片| 丝袜美足系列| av网站免费在线观看视频| 亚洲成人免费电影在线观看 | 久久狼人影院| 50天的宝宝边吃奶边哭怎么回事| 国产精品一区二区在线观看99| 色婷婷久久久亚洲欧美| 日韩av不卡免费在线播放| 黄色 视频免费看| 菩萨蛮人人尽说江南好唐韦庄| 欧美97在线视频| 久久国产精品人妻蜜桃| 午夜福利免费观看在线| 丝袜脚勾引网站| 一区二区三区精品91| www.自偷自拍.com| 日本猛色少妇xxxxx猛交久久| 亚洲,欧美,日韩| 99久久综合免费| 人成视频在线观看免费观看| 热re99久久精品国产66热6| 国产一区二区在线观看av| 精品视频人人做人人爽| 久久午夜综合久久蜜桃| 90打野战视频偷拍视频| 欧美日韩精品网址| 亚洲熟女精品中文字幕| 欧美精品高潮呻吟av久久| 中文字幕最新亚洲高清| 午夜福利在线免费观看网站| 亚洲欧美精品综合一区二区三区| 亚洲人成电影免费在线| 日韩 欧美 亚洲 中文字幕| 黄片播放在线免费| 你懂的网址亚洲精品在线观看| 97人妻天天添夜夜摸| 69精品国产乱码久久久| 少妇精品久久久久久久| 国产人伦9x9x在线观看| 视频区欧美日本亚洲| 曰老女人黄片| 欧美人与性动交α欧美精品济南到| 精品亚洲成a人片在线观看| 国产精品 欧美亚洲| 欧美激情极品国产一区二区三区| 免费在线观看视频国产中文字幕亚洲 | 中国美女看黄片| 999精品在线视频| 国产成人欧美在线观看 | 免费一级毛片在线播放高清视频 | 国产一区二区三区综合在线观看| 99国产精品一区二区三区| 成人手机av| 午夜福利视频在线观看免费| 久久热在线av| 你懂的网址亚洲精品在线观看| 午夜两性在线视频| 亚洲免费av在线视频| 久久天堂一区二区三区四区| 亚洲欧美一区二区三区久久| 亚洲人成电影观看| 精品亚洲成a人片在线观看| 成人影院久久| 成在线人永久免费视频| 午夜两性在线视频| 在线av久久热| 亚洲成av片中文字幕在线观看| 中文字幕精品免费在线观看视频| 国产黄频视频在线观看| tube8黄色片| 欧美日韩视频高清一区二区三区二| 黑丝袜美女国产一区| 99热全是精品| 成人国产av品久久久| 人人妻,人人澡人人爽秒播 | 国产真人三级小视频在线观看| 日本av手机在线免费观看| 国产免费福利视频在线观看| 欧美成人精品欧美一级黄| 一级片'在线观看视频| 九草在线视频观看| 97人妻天天添夜夜摸| 亚洲av成人精品一二三区| 考比视频在线观看| 精品卡一卡二卡四卡免费| 久久精品成人免费网站| av在线app专区| 久久热在线av| 日本a在线网址| 丝袜在线中文字幕| 高清av免费在线| 在线天堂中文资源库| 丝袜脚勾引网站| 久久精品久久久久久噜噜老黄| 精品人妻在线不人妻| 亚洲av片天天在线观看| 嫁个100分男人电影在线观看 | 久久影院123| 肉色欧美久久久久久久蜜桃| 国产一级毛片在线| 婷婷丁香在线五月| 亚洲精品美女久久久久99蜜臀 | 两性夫妻黄色片| 久久国产精品男人的天堂亚洲| 国产av国产精品国产| av网站免费在线观看视频| 午夜精品国产一区二区电影| 黑人猛操日本美女一级片| 90打野战视频偷拍视频| 欧美精品亚洲一区二区| 99久久精品国产亚洲精品| 人妻一区二区av| 女性被躁到高潮视频| 精品国产乱码久久久久久小说| 80岁老熟妇乱子伦牲交| 女人爽到高潮嗷嗷叫在线视频| 成年人黄色毛片网站| 久久狼人影院| 精品卡一卡二卡四卡免费| 大香蕉久久成人网| 精品国产一区二区三区四区第35| 高清不卡的av网站| 国产黄色免费在线视频| 欧美av亚洲av综合av国产av| 亚洲精品av麻豆狂野| 国产精品 国内视频| 国产亚洲精品第一综合不卡| 一级毛片女人18水好多 | 国产爽快片一区二区三区| 国产视频首页在线观看| 少妇裸体淫交视频免费看高清 | 免费少妇av软件| 99国产精品99久久久久| 嫁个100分男人电影在线观看 | 天堂8中文在线网| 亚洲一码二码三码区别大吗| 亚洲av成人不卡在线观看播放网 | 免费在线观看影片大全网站 | 国产真人三级小视频在线观看| 国产成人a∨麻豆精品| 国产精品国产三级专区第一集| 免费少妇av软件| 99久久综合免费| 亚洲色图 男人天堂 中文字幕| 日韩欧美一区视频在线观看| 一区二区三区乱码不卡18| 婷婷色综合大香蕉| 成年动漫av网址| 午夜免费鲁丝| 中文字幕人妻丝袜制服| 亚洲精品在线美女| √禁漫天堂资源中文www| 最近中文字幕2019免费版|