辛旺,宋永會*,張亞迪,段麗杰,彭劍峰,劉瑞霞
1.環(huán)境基準與風險評估國家重點實驗室,中國環(huán)境科學研究院,北京 100012 2.北京師范大學水科學研究院,北京 100875 3.中國環(huán)境科學研究院城市水環(huán)境研究科技創(chuàng)新基地,北京 100012 4.湖南大學環(huán)境科學與工程學院,湖南 長沙 410082 5.清華大學環(huán)境學院,北京 100084
?
污泥基碳吸附材料的制備及其吸附性能研究進展
辛旺1,2,3,宋永會1,2,3*,張亞迪3,4,段麗杰1,3,5,彭劍峰1,3,劉瑞霞1,2,3
1.環(huán)境基準與風險評估國家重點實驗室,中國環(huán)境科學研究院,北京 100012 2.北京師范大學水科學研究院,北京 100875 3.中國環(huán)境科學研究院城市水環(huán)境研究科技創(chuàng)新基地,北京 100012 4.湖南大學環(huán)境科學與工程學院,湖南 長沙 410082 5.清華大學環(huán)境學院,北京 100084
隨著城市污水處理廠的大規(guī)模興建和運營,大量剩余污泥的產(chǎn)生給水處理行業(yè)和環(huán)境保護帶來巨大壓力,污泥安全處置與資源化利用成為環(huán)保領(lǐng)域的熱點問題。高溫熱解碳化剩余污泥制備污泥基活性炭材料是污泥資源化研究的重要方向之一,可實現(xiàn)污泥安全處置及環(huán)境修復的雙重目的。目前主要的制備方法包括直接碳化法、化學活化法、催化活化法、添加碳源法等。通過概述各種制備方法的特點及產(chǎn)品性質(zhì),針對污泥基活性炭材料在水相中對有機污染物及重金屬的吸附性能及其機理進行了分析,提出了污泥熱解制備活性炭材料未來研究的主要方向,并從能源回收,特種行業(yè)污泥、廢物資源化利用角度,對城市污水處理廠剩余污泥熱解處置進行了展望。
污泥;資源化;材料;制備;吸附
城市污水處理廠剩余污泥是生化處理運行過程中產(chǎn)生的主要固體廢物,通常是由真菌類、細菌類、原生動物等不同微生物群體所組成的液固膠體絮狀物。經(jīng)過脫水處理后得到的剩余污泥中含有大量有機物,其中60%~70%是粗蛋白質(zhì),25%左右是碳水化合物,5%左右是無機灰分;剩余污泥含碳量較高,其組成可用分子式C5H7NO2表示,理論含碳量約為53%。污泥中的有機相從組成上看,主要有碳、氫、氧、氮、硫、氯6種元素。從組分上看,有機物主要包含蛋白質(zhì)、多糖類、纖維素、木質(zhì)素、脂肪等大分子化合物[1],多氯聯(lián)苯(PCBs)和多環(huán)芳烴化合物(PAHs)等毒性有機物[2],以及有機官能團化合物(如醇、酸、酯、醚、芳香化合物、各種烴類等);無機物主要包括毒性無機物、植物養(yǎng)分和無機礦物等。從微生物種類看,包含各種致病菌、病毒、寄生蟲卵和有害昆蟲卵等[3]。污泥中的水分以自由水、間隙水、表面水和結(jié)合水4種方式存在于有機相和無機相中[4]。
注:數(shù)據(jù)來源于web of science。圖1 國內(nèi)外污泥資源化研究分布Fig.1 The global distribution of research on resource utilization technologies of sewage sludge
從污泥資源化的角度看,高溫碳化剩余污泥制備多孔碳吸附材料,應(yīng)用于水處理,不僅可提供固體廢物解決方案,而且可達到“以廢治廢”的目的。另外,由于商品活性炭的成本較高,也促使研究者們開發(fā)更為廉價的水處理吸附材料。筆者系統(tǒng)地研究了現(xiàn)有污泥基碳吸附材料的制備方法及特性規(guī)律,以及在環(huán)境修復領(lǐng)域的應(yīng)用,以期為剩余污泥資源化利用提供理論依據(jù)。
傳統(tǒng)活性炭的制備通常是以含碳物質(zhì)(常用的有鋸末、木材、果殼、焦炭、天然煤、泥炭、果核、骨、蔗渣、石油腳料等)為基質(zhì)材料,在隔絕空氣條件下經(jīng)高溫碳化、活化而成。熱解過程中,一方面原材料經(jīng)高溫碳化作用轉(zhuǎn)化為碳多孔材料而固定下來,另一方面分解釋放出一氧化碳、二氧化碳、水汽和氫氣等,以及低分子量的煤焦油。由于剩余污泥中含有大量有機質(zhì)成分,為污泥碳化熱解制備碳吸附材料提供了基質(zhì)條件,早在19世紀70年代,Razouk等[9-11]便報道了利用污泥制備碳吸附材料的相關(guān)研究。隨著研究的不斷深入,很多學者開展了探索性試驗。
1.1 直接碳化法
直接碳化法制備污泥基活性炭是指在惰性氣氛保護下,將脫水干燥的污泥置于高溫爐中,在一定升溫速率下升至指定溫度,恒溫一定時間,然后經(jīng)過酸洗、烘干、磨碎得到粉末炭產(chǎn)物的過程。一般商品活性炭的含碳量在90%以上,含氧量在5%以下,含氫量小于2%,還有一些無機礦物以灰分形式存在(常見的有鈣、鎂、硅、錳、鐵、鋁、鉀、鈉等金屬元素,磷、氮、硫、砷、硼等非金屬元素)?;钚蕴恐械难鹾蜌浯蟛糠忠曰瘜W鍵和碳原子相結(jié)合形成有機官能團,其中最常見的官能團有羧基、酚羥基、內(nèi)酯基、醌型羰基等,表面官能團的種類和含量主要取決于原料和活化方式[12]。相比傳統(tǒng)活性炭材料,由于污泥本身特殊的成分,制備出的污泥碳材料具有其獨特的性質(zhì):1)污泥含碳量較低,且無機組分含量高。一方面,高含量的無機組分不僅直接導致制成的活性炭灰分含量高,而且在制備過程中會降低微孔形成速度,使得微孔容積變小,比表面積降低[13];另一方面,有研究表明活性炭中一定量的無機成分,可成為一種潛在的吸附位點促進吸附作用,并且可作為催化位點在特殊領(lǐng)域的吸附中發(fā)揮積極作用[14-15]。2)所制備的碳吸附材料的性能與污泥本身所含的有機質(zhì)含量密切相關(guān),因此通常剩余污泥和未消化污泥優(yōu)于消化污泥[16]。由于污泥中常含有纖維素、蛋白質(zhì)、脂類、多糖、芳香烴類等物質(zhì),這些組分在熱解過程中常伴有分解和碳轉(zhuǎn)化,而發(fā)生化學鍵的斷裂,高溫熱解后大部分官能團消失,最終在材料表面引入少量的羧基、酚羥基、羰基、氰基、酯基、醚基、芳香環(huán)等基團[17],且其種類和數(shù)量與碳化溫度密切相關(guān)[2]。直接碳化過程中,污泥熱解主要過程:20~200 ℃,水分和少量易揮發(fā)有機物的散失;200~300 ℃,脂肪族化合物發(fā)生轉(zhuǎn)化;300~390 ℃,蛋白質(zhì)化合物轉(zhuǎn)化;390 ℃以上,糖類化合物轉(zhuǎn)化,肽鏈斷裂;450 ℃以上,碳化合物完成轉(zhuǎn)化;500 ℃以上,污泥進入深度裂解和碳化階段[18-20]。不同的制備條件(如熱解溫度、熱解時間、升溫速率等)得到的污泥基碳吸附材料的比表面積、孔徑分布和吸附性能也不同:在直接熱解過程中,熱解溫度是最關(guān)鍵的影響因素[21],一般隨著熱解溫度的升高,含碳相污泥基碳吸附材料比表面積有所增加[22-24];其次熱解時間、升溫速率和污泥顆粒尺寸都對最終污泥碳材料的產(chǎn)率和性能具有重要影響[25];另外,污泥中重金屬離子在熱解碳化過程中大部分轉(zhuǎn)化為難溶性金屬氧化物,活性炭產(chǎn)品中的重金屬浸出量較少,并且碳化溫度對污泥基活性炭中重金屬的固定具有重要影響,當碳化溫度足夠高時可提高富集金屬的穩(wěn)定性[26-28]。直接碳化熱解制備污泥基活性炭吸附材料的典型方法及材料特性如表1所示。
表1 直接碳化制備污泥基活性炭的典型方法及性能
1.2 活化法
活性炭材料常用的生產(chǎn)方法包括物理活化法和化學活化法[36-38]。活化反應(yīng)在炭材料造孔過程中有3個作用[39-40]:1)開孔作用,碳化時形成的孔隙由于被焦油或其他分解生成的無定型炭所堵塞,造成閉孔,活化時這些焦油或無定型炭與氣體活化劑反應(yīng)而被除去,打開閉合的孔道,同時促進化學鍵的斷裂,使比表面積增大;2)擴孔作用,孔隙內(nèi)的碳基質(zhì)與活化劑反應(yīng)以二氧化碳或一氧化碳氣體形式溢出,使原有的孔隙直徑增大,也可以防止在受熱過程中孔的倒塌;3)材料表面某些結(jié)構(gòu)經(jīng)選擇性活化而生成新孔,另一方面材料表面由于新的復合物及官能團的形成而得到改性修飾。
物理活化是指以空氣、水蒸汽、二氧化碳、煙道氣等氧化性氣體為活化劑制備活性炭。原材料與活化劑發(fā)生氧化反應(yīng),一般反應(yīng)溫度為800~1 000 ℃,氧化反應(yīng)產(chǎn)生的氣體從原材料內(nèi)部逸出,在材料表面出現(xiàn)了“空穴”,從而形成微孔。隨著大量碳原子參與反應(yīng),在碳原子內(nèi)部形成大量豐富的微孔結(jié)構(gòu)?;钚蕴课⒖捉Y(jié)構(gòu)的形成與原材料的性質(zhì)、活化劑的種類、活化溫度、活化時間、活化劑流量等因素有關(guān)。物理活化法生產(chǎn)活性炭的主要特點是產(chǎn)品形貌上較靈活,既可以是粉狀炭,也可以是顆粒炭或成型炭。化學活化法是利用化學活化劑和基質(zhì)材料進行浸漬混合,經(jīng)過后續(xù)高溫焙燒活化而成。與物理活化法相比,化學活化法可降低操作溫度,獲得較高的產(chǎn)率[41],及更高的比表面積和發(fā)達的孔道結(jié)構(gòu)[42-45],因此化學活化法更受關(guān)注,但其存在能耗大、設(shè)備腐蝕、后續(xù)處理工藝復雜,環(huán)境污染等問題[46-47]。一些研究者對物理活化和化學活化法的比較研究表明,相比單純的物理活化及物理活化、化學活化相結(jié)合的方法,化學活化法制備污泥基碳吸附材料更為高效,尤其用堿液活化后的吸附性能堪比商品活性炭[48-49]。對化學活化而言,活化溫度、活化時間、活化劑濃度及活化劑與污泥的比例是影響污泥基碳吸附材料性能的主要因素,然而往往在相同的活化條件下,得到的污泥基碳吸附材料在結(jié)構(gòu)特性上仍有很大不同[50-51],這主要是由于基質(zhì)條件和操作方法上的差異造成的[52-53]?;瘜W活化法采用的活化劑包括酸類、堿類和鹽類物質(zhì),通常為氫氧化鉀、氯化鋅、磷酸、硫酸,還包括氯化鋁、鐵鹽、硝酸、硫化鉀、氟化鉀等。采用磷酸活化時活化溫度較低,得到的活性炭具有豐富的介孔結(jié)構(gòu)[54];利用氫氧化鉀等堿性活化劑對碳的侵蝕作用,可創(chuàng)造微孔,提高活性炭比表面積[55];以氯化鋅為活化劑可得到較高微孔體積的活性炭,產(chǎn)率較高[56],目前最常用的化學活化劑是氯化鋅,因為其有較好的活化能力;氯化鋅是一種常見的脫水劑,它能夠與含氧官能團作用進行催化脫水縮合,使原料中H和O以水的形式分離出來,更多的碳骨架芳香化后保留在材料中,而且在熱解過程中它可以促使碳質(zhì)材料的分解和碳的生成,限制焦油的產(chǎn)生,使污泥形成優(yōu)良的碳骨架和多孔滲水的結(jié)構(gòu)。用氯化鋅作活化劑時,氯化鋅與干污泥顆粒的質(zhì)量比是影響吸附劑性能的一個重要指標,研究表明,在一定范圍內(nèi)增加該比值可提高吸附劑的性能,當比值小于1時,可制得微孔吸附劑;比值大于1.5時,可制得介孔吸附劑;比值由0.75增加到2.5時,吸附劑的介孔數(shù)量可提高600%;比值達到3.5時,可制得含有80%介孔分布的吸附劑[57]。目前國內(nèi)外研究者的研究重點集中在原材料選擇、碳化和活化最佳工藝參數(shù)的優(yōu)化、活化劑的篩選等方面[58-60],以解決能耗高、環(huán)境污染等問題,而關(guān)于污泥化學活化過程中活化溫度及活化時間的影響卻鮮有報道[52]。以上活化方法都需要將污泥熱解,目前常用的熱解設(shè)備主要是電阻爐和微波。在化學活化過程中,化學藥劑一方面可抑制原料熱解時焦油的生成,從而防止焦油堵塞熱解過程中產(chǎn)生的微孔;另一方面化學藥劑的存在抑制了含碳揮發(fā)物的形成,致使活性炭產(chǎn)率提高。典型的化學活化制備污泥基碳吸附材料的方法及材料特點如表2所示。
1.3 催化活化法
所謂催化活化就是在物理活化或化學活化時,在原料污泥配料中同時加入堿金屬和堿土金屬或其氧化物或其鹽、過渡金屬或其氧化物及稀土元素,使之在活化過程中起到催化作用,常用于制備多孔污泥基活性炭的催化劑有鐵、鈷、鎳、鋅、鈣、鎂及其氧化物[67,71-72]。過渡金屬在催化制備活性炭的過程中對介孔的形成起到重要作用[73-74],一些天然礦物由于富含過渡金屬,因此在活化碳化中常起到重要的催化作用,如軟錳礦作為一種常見的天然礦物,其主要成分為MnO2和Fe2O3,同時含有微量的Ti、Ni等元素,且價格低廉。在污泥基活性炭的制備過程中添加軟錳礦能夠改善污泥基活性炭的吸附性能[75-77]:污泥基活性炭的比表面積增加了75%,介孔含量增加了66%,大量介孔的產(chǎn)生促進了染料等大分子的傳質(zhì)速率[77];另外在制備過程中軟錳礦催化了污泥中有機質(zhì)的分解,芳香族化合物,醚、酯、醇類化合物等分解得更為徹底,同時為新生碳提供了更多的骨架,促進了積碳反應(yīng)的發(fā)生[78-79]。此外,研究者利用硫酸鐵催化剩余污泥制備污泥基碳吸附材料發(fā)現(xiàn),熱解溫度和硫酸鐵的投加量對材料的比表面積和孔結(jié)構(gòu)具有重要影響[80],硫酸鐵的催化作用促進了介孔的發(fā)育,其有利于吸附質(zhì)在孔道內(nèi)的擴散,進而提高了吸附能力,為污泥基活性炭的制備提供了新的思路。采用Fenton試劑(H2O2Fe2+)制備污泥基活性炭同樣取得了良好的催化活化效果,研究發(fā)現(xiàn)Fenton試劑的投加量對材料結(jié)構(gòu)及表面化學性質(zhì)均有重要影響[67]。另外,含鐵前驅(qū)體在高溫碳化的過程中轉(zhuǎn)化成富有磁性的Fe3O4殘留在碳結(jié)構(gòu)內(nèi)部,在外加磁場的作用下便于污泥基碳吸附材料的固液分離[81-82]。目前的研究主要集中在鐵基的催化活化方面,其他類型金屬鹽催化需要進一步研究探討[33]。
表2 化學活化制備污泥基活性炭材料的典型方法及材料特點
1.4 添加碳源法
通常經(jīng)過直接碳化后,污泥基活性炭材料比表面積較低,灰分含量高,一定程度上限制了其在工業(yè)方面的應(yīng)用,而一些富含碳的基質(zhì)材料,如秸稈類生物質(zhì)、生活廢物在碳化條件下也可制備出性能優(yōu)良的活性炭材料[83-85]。受此啟發(fā),為了提高污泥基活性炭材料的產(chǎn)品性能,一些研究者將這些含碳的生物質(zhì)材料添加到污泥中進行混合碳化:如Tay等[86]將椰子殼添加到污泥中,產(chǎn)品的比表面積達868 m2g;Zhang等[87]在650 ℃碳化條件下將鋸屑與污泥混合制得活性炭材料,其碘吸附值達555.3 mgg[87]。也有研究者將玉米秸稈和污泥進行混合,采用4 molL ZnCl2活化制備污泥基活性炭,當玉米秸稈投加量達25%時,在600 ℃活化1 h的情況下,制得的污泥基活性炭比表面積達769 m2g,亞甲基藍去除效果與商品活性炭相同,生產(chǎn)成本也更為低廉[88]。采用與玉米稈混合碳化的方法,不僅提升了產(chǎn)品的比表面積和微孔體積,而且在實際廢水處理中對COD、烷烴類和難降解有機物的去除取得了良好的效果[89]。有學者將污泥與廢輪胎混合,采用化學活化法制備污泥基活性炭,產(chǎn)品的亞甲基藍和碘吸附值分別達到139.4和1 358.5 mgg,但使用中發(fā)現(xiàn)了鋅的釋放,通過聚合物涂層和頻繁酸洗的方法可有效緩解金屬的釋放[90]。剩余污泥通過與不同生物質(zhì)材料的混配添加,經(jīng)過碳化后可有效提高產(chǎn)品的比表面積,不但增強了其吸附性能,同時實現(xiàn)了對天然廢物的資源化利用[91]。
1.5 其他方法
傳統(tǒng)熱解制備污泥基活性炭一般需要在密閉馬弗爐或者管式氣氛升溫爐中進行,加熱時間至少需要幾個小時才能達到預(yù)期的碳化效果,一定程度上增加了制備成本;另外傳統(tǒng)加熱方式通常會在材料表面和內(nèi)部產(chǎn)生溫度梯度,不利于氣態(tài)產(chǎn)物的擴散,影響活性炭多孔結(jié)構(gòu)的形成;此外不均勻受熱會影響制備出的活性炭品質(zhì)和性能。與傳統(tǒng)加熱方式相比,微波加熱采用內(nèi)部體積式加熱,可在樣品不同深度同時產(chǎn)熱,憑借其極快的加熱速率和受熱均勻的特點,大大縮短了制備時間,可節(jié)約50%左右的能耗。作為一門成熟的技術(shù),微波加熱已成功的應(yīng)用于材料科學、食品加工、信息技術(shù)、有機合成、重金屬回收、煤炭脫硫、分析化學等方面的研究。在污泥基活性炭制備方面,也有微波加熱碳化的相關(guān)報道,研究表明,微波加熱主要分為干燥、低溫熱解、高溫碳化3個階段[92]。藺麗麗等[93]采用微波加熱、磷酸為活化劑制備污泥基活性炭,在微波功率為480 W、輻照時間為315 s和磷酸濃度為40%的條件下,制備的污泥基活性炭材料的比表面積達168 m2g,且絕大部分重金屬被固化在污泥基活性炭內(nèi)部,所制得的污泥基活性炭處理污水處理廠出水,可實現(xiàn)87%以上的COD去除率;張襄楷等[94]采用微波法制備污泥基活性炭,在微波功率為500 W、輻照時間為2 min的最佳條件下,制得的污泥基活性炭以大孔和中孔為主,處理染料廢水脫色率可達99%,優(yōu)于商品活性炭(67.2%);吳文炳等[95]利用磷酸和氯化鋅為活化劑,微波加熱制備污泥基活性炭用于處理含鉻(Ⅴ)廢水并進行了再生試驗,發(fā)現(xiàn)再生前后均可達到92%的去除率。目前制備的污泥基活性炭往往是粉末狀,很難實現(xiàn)固液分離,限制了其實際應(yīng)用,而制備出具有中空結(jié)構(gòu)的多孔碳球一方面可以更好地實現(xiàn)固液分離,另一方面可提高其吸附性能。Wu等[96]利用聚苯乙烯泡沫為內(nèi)核基質(zhì),將污泥包裹在泡沫表面,在500 ℃的碳化條件下將泡沫熱裂解,成功制備出殼厚度達0.2~2.5 mm,包含微孔、介孔、大孔孔道結(jié)構(gòu)的中空球狀污泥基碳吸附材料,大大提升了原有污泥基活性炭的吸附能力,通過熱處理可有效實現(xiàn)材料的再生。
高溫熱解作為污泥資源化的重要手段之一,不僅可以提供性能優(yōu)良的污泥基活性炭吸附材料,還可以提供產(chǎn)能氣體和低分子煤焦油(圖2)。除了傳統(tǒng)的市政污水處理廠產(chǎn)生的剩余污泥外,還有特種行業(yè)污泥,如電鍍企業(yè)排放的含有過渡金屬污泥,光伏企業(yè)排放的富含氟化鈣、碳酸鈣污泥,煉油企業(yè)排放的含油污泥,另外城市固體廢物、城鄉(xiāng)生物秸稈、礦產(chǎn)企業(yè)尾礦渣等,將這些廢物與市政污水處理廠剩余污泥混合熱解,不僅解決了部分廢物的處置問題也有利于提升產(chǎn)品的性能,熱解氣化站及污水處理廠間的無縫銜接將為未來污泥熱解資源化提供技術(shù)服務(wù)和產(chǎn)品輸出。
圖2 城市污水處理廠剩余污泥熱解處置展望Fig.2 The outlook of pyrolytic treatment of sewage sludge from municipal sewage plant
吸附是一種簡單實用的去除污染物的技術(shù),制備出經(jīng)濟高效的吸附材料是吸附技術(shù)的核心。污泥基活性炭由于具備較大的比表面積和發(fā)達的孔道結(jié)構(gòu),近些年常被用于水體中有機及無機污染物的去除,加之剩余污泥來源廣泛、產(chǎn)量大,提供了廉價的基質(zhì)條件,因此污泥基活性炭具有良好的環(huán)境修復前景。
由于污泥基活性炭中灰分含量較高,阻塞了材料內(nèi)部的孔道結(jié)構(gòu),導致其比表面積及孔容較小,一定程度上限制了污泥基活性炭的應(yīng)用,通常需要酸洗去除無機組分[97],酸洗后材料的比表面積及孔容都有大幅提高,表面富含的含氧官能團和改善的孔道結(jié)構(gòu)進一步提升了材料的吸附性能[98]。盡管污泥基活性炭材料在比表面積上小于傳統(tǒng)的商品活性炭,但污泥基活性炭材料對亞甲基藍、羅丹明B、苯酚、抗生素等的吸附性能與商品活性炭材料相當[88,98-100],甚至對一些特征污染物的吸附性能優(yōu)于商品活性炭[62,101],這主要跟材料表面化學性質(zhì)相關(guān),污泥基活性炭表面含有豐富的羧基、內(nèi)酯基、酚羥基、羰基等含氧官能團,而商品活性炭則以羰基為主。一般采用化學活化法或催化活化法制備的污泥基活性炭吸附性能優(yōu)于直接碳化法,但一些黏結(jié)劑(腐殖酸、酚醛樹脂、黏土等)的添加往往會削弱吸附性能[51],前者可能跟更為發(fā)達的介孔、大孔結(jié)構(gòu)以及表面大量酸性基團相關(guān)[68,77],而后者往往喪失了表面的某些含氧官能團尤其是羰基。另外,污泥基活性炭表面堿性基團或堿金屬促進了與污染物酸性官能團的反應(yīng),從而形成絡(luò)合物或金屬鹽沉積在孔道內(nèi)[100]。除了表面化學性質(zhì),污泥基活性炭材料本身的孔道結(jié)構(gòu)、極性對污染物的吸附也有重要影響[96],如與吸附質(zhì)尺寸相似的孔徑結(jié)構(gòu)更利于吸附分離,疏水的孔道結(jié)構(gòu)增強了極性無機礦物相的分散,無機相的極性表面便于吸附極性目標分子的官能團[100,102]。較高的介孔含量增強了污泥基活性炭對陰陽離子染料的吸附效率[101],Kacan[59]采用KOH活化熱解紡織污泥制備污泥基活性炭材料,經(jīng)條件優(yōu)化篩選得到比表面積最大的樣品對染料RSB和P2RFL的吸附效果最好,吸附量分別達到8.5和5.4 mgg。污泥基活性炭對有機物的吸附機理(以苯衍生物為例)主要包括孔填充和疏水作用,通過量子理論計算進一步證明氫鍵及吸附質(zhì)本身所含有的羧基與污泥基活性炭內(nèi)的SiO2間所形成的新的Si—O鍵對吸附起到了關(guān)鍵作用[64]。Gupta等[103]采用ZnCl2活化法制備污泥基活性炭吸附木質(zhì)素和阿莫西林,研究發(fā)現(xiàn)吸附劑和吸附質(zhì)間的作用關(guān)系主要包括靜電作用、電子給體和電子受體間的絡(luò)合作用、氫鍵作用,而這些作用關(guān)系主要取決于制備的操作條件,靜電力、π—π鍵往往成為污泥活性炭與染料分子間的主要作用力。另外,在污泥活性炭內(nèi)部負載一些能夠提供電子轉(zhuǎn)移能力的作用位點,在吸附的同時還可以起到降解污染物的效果,Devi等[33]采用NaBH4還原FeSO4制備出負載納米零價鐵的磁性污泥活性炭材料,發(fā)現(xiàn)該材料對五氯酚具備同步吸附及脫氯的功效。利用鐵基催化制備污泥活性炭不僅可以得到發(fā)達的孔道結(jié)構(gòu),材料內(nèi)部富含的磁性Fe3O4在污染物去除方面也顯示出一定優(yōu)勢,在雙氧水的存在下發(fā)生類Fenton反應(yīng),對萘起到了同步吸附及降解的效果,遠優(yōu)于Fe3O4納米顆粒,污泥內(nèi)氧化鐵、鋁作為催化位點為Haber-Weiss反應(yīng)創(chuàng)造了條件[81]。污泥基活性炭去除不同有機污染物時典型的LangmuirFreundlich等溫模型如表3所示。
表3 典型的有機污染物吸附及其模型研究
注:qm為最大飽和吸附量,mg/g;KL為吸附質(zhì)與鍵合點位親密程度相關(guān)的常數(shù),L/mg;R為相關(guān)系數(shù);KF為吸附平衡時的吸附量,mg/g;n為目標污染物與吸附劑表面結(jié)合強度。
在多數(shù)吸附體系中,Langmuir等溫模型比Freundlich等溫模型具有更好的相關(guān)系數(shù),反映出在吸附過程中污泥基活性炭主要以單層吸附形式為主。在Freundlich等溫模型中,KF和n分別反映吸附能力和吸附強度,從表3可以看出,n取值為1~10有利于吸附,并且吸附劑的表面屬于多相吸附[104]。
相比于對有機物的吸附,污泥基活性炭對重金屬的吸附報道相對較少,Seredych等[29]制備污泥基活性炭吸附Cu2+,發(fā)現(xiàn)Cu2+的吸附性能與碳化溫度相關(guān),低溫(650 ℃)碳化吸附效果更好,主要源于Mg2+、Ca2+、Zn2+等離子交換作用,在材料表面發(fā)生絡(luò)合及沉淀作用,而高溫(950 ℃)下金屬離子發(fā)生了礦化作用,被封裝在活性炭內(nèi)部,影響了離子交換能力。同樣在含鐵量較高的污泥基活性炭吸附Cu2+的研究中發(fā)現(xiàn),Cu2+的吸附主要依靠污泥基活性炭表面H+、Ca2+、K+等離子的交換作用以及與氫氧化鐵間強烈的鍵合作用[30]。熱解過程中,升溫速度同樣對污泥基活性炭吸附重金屬有重要影響,快速熱解污泥基活性炭提高了離子交換能力,因此具有更好的金屬離子(Zn2+、Cu2+)吸附效果,經(jīng)HCl處理后,可進一步提升對Zn2+的吸附能力[53]。對Cr6+的吸附研究發(fā)現(xiàn),表面沉淀反應(yīng)及Mg2+、Ca2+的離子交換作用對污泥基活性炭吸附鉻起到重要作用[107]。由于污泥基活性炭表面及無機相中存在大量可置換態(tài)離子,因此污泥基活性炭在重金屬的吸附性能上往往優(yōu)于商品活性炭,達到吸附飽和后,一般采用酸或堿可實現(xiàn)污泥基活性炭的有效再生[53,108]。為取得更大的金屬吸附量,表面的化學吸附相比孔填充更重要,研究者通常關(guān)注于污泥基活性炭表面的酸性官能團,尤其是羧基上的氫離子,因此通過化學氧化或引入置換離子的方法可有效提升污泥基活性炭對重金屬的吸附能力。另外污泥基活性炭成分復雜,在實際水樣中往往會伴隨著多組分的吸附過程和化學作用,因此有必要結(jié)合更多的分析手段去揭示污泥基活性炭的吸附機理。
熱解城市污水處理廠剩余污泥制備活性炭材料是一種減少環(huán)境污染,實現(xiàn)污泥資源化利用的有效手段。直接碳化法、化學活化法為目前主要的制備方法,制備過程中的參數(shù),如熱解溫度、熱解時間、升溫速率、活化劑種類及投加比例、樣品顆粒尺寸都將對產(chǎn)品的性質(zhì)有重要影響,其中熱解溫度最為突出,它通過對最終產(chǎn)品中元素HC、OC和(N+O)C的比例、酸堿官能團、孔容、比表面積、灰分含量等影響帶來材料本身物理化學性質(zhì)上的變化。盡管污泥基活性炭的比表面積、孔容都比商品活性炭小,但由于污泥基活性炭內(nèi)豐富的礦物相的存在,其對有機污染物及重金屬的吸附性能和商品活性炭相當,甚至優(yōu)于商品活性炭,根本原因在于產(chǎn)品的吸附性能不僅受到比表面積的影響,還受到吸附質(zhì)的性質(zhì)、吸附劑結(jié)構(gòu)形貌、材料微孔、介孔的數(shù)量、表面官能團的種類和數(shù)量的影響。另外表面官能團在吸附過程中扮演著重要角色,決定了吸附劑和吸附質(zhì)間的作用力關(guān)系,這些作用關(guān)系主要包括氫鍵、酸堿反應(yīng)、絡(luò)合作用、離子交換及還原反應(yīng),而其中酸性含氧官能團以及堿金屬離子分別對有機污染物及重金屬的吸附起到了關(guān)鍵作用。污泥中的重金屬是污泥資源化的主要限制因素之一,此外污泥中重金屬生物有效性及潛在遷移性不僅與其總量有關(guān),更依賴于其在環(huán)境介質(zhì)中的存在形態(tài)。污泥中重金屬離子在高溫熱解碳化過程中大部分轉(zhuǎn)化為難溶性金屬氧化物,浸出量極少,污泥的熱解降低了重金屬的浸出性和生物有效性。如何高效利用污泥中的金屬元素,將其轉(zhuǎn)化為必要的金屬氧化物,其對制備及產(chǎn)品功能的影響需要進一步研究。與傳統(tǒng)活性炭制備相比,熱解雖然從原料上有一定經(jīng)濟優(yōu)勢,但為了得到結(jié)構(gòu)疏松、性能優(yōu)良的吸附劑,往往需要投加大量活化劑,其投加量與污泥呈倍數(shù)關(guān)系,另外污泥干化也需要大量熱源,加重了成本負擔;雖然后來發(fā)展起來的添加碳源法和催化活化法在提升產(chǎn)品性能的基礎(chǔ)上降低了制備成本,但這些方法在材料結(jié)構(gòu)及性能上的控制仍缺少有效手段,主要依賴碳化溫度、活化劑及后續(xù)處理。另外,無論是電熱爐熱解還是微波加熱,目前仍處于實驗室階段,因此開發(fā)穩(wěn)定高效的熱解設(shè)備、低能耗的干化技術(shù)、實現(xiàn)材料結(jié)構(gòu)與功能的控制將成為污泥熱解制備活性炭材料未來重要的研究方向。
[1] 尹軍.污水污泥處理處置與資源化利用[M].北京:化學工業(yè)出版社,2005.
[2] 邵敬愛.城市污水污泥熱解試驗與模型研究[D].武漢:華中科技大學,2008.
[3] 劉秀如.城市污水污泥熱解實驗研究[D].北京:中國科學院研究生院,2011.
[4] 唐小輝,趙力.污泥處置國內(nèi)外進展[J].環(huán)境科學與管理,2005,30(3):68-70. TANG X H,ZHAO L.The development of sludge disposal strategy[J].Environmental Science and Management,2005,30(3):68-70.
[5] E20研究院.中國污泥處理處置市場分析報告(2014版)[R/OL].[2016-07-11].北京:E20研究院.http://zt.h2o-china.com/report/2014/2014wnsc_report/.
[6] 姚金玲,王海燕,于云江,等.城市污水廠污泥處理處置技術(shù)評估及工藝選擇[J].環(huán)境工程,2010,28(1):81-84. YAO J L,WANG H Y,YU Y J,et al.The technology assessment and process selection of municipal sewage sludge treatment and disposal technologies[J].Environmental Engineering,2010,28(1):81-84.
[7] SINGH R P,AGRAWAL M.Potential benefits and risks of land application of sewage sludge[J].Waste Management,2008,28(2):347-358.
[8] CORTEZ S,TEIXEIRA P,OLIVEIRA R,et al.Evaluation of Fenton and ozone-based advanced oxidation processes as mature landfill leachate pre-treatments[J].Journal of Environmental Management,2011,92(3):749-755.
[9] RAZOUK R,EL-INANY G,FAHIM R,et al.The adsorptive properties of carbonised agricultural wastes[J].Journal of Chemical UAR, 1960,3(1):11-22.
[10] BEECKMANS J M,NG P C.Pyrolyzed sewage sludge:its production and possible utility[J].Environmental Science & Technology,1971,5(1):69-71.
[11] SUTHERLAND G,WILMINGTON D E.Preparation of activated carbonaceous material from sewage sludge and sulfuric acid:3998756[P].1976-12-21.
[12] 李道靜.污泥活性炭制備及其對苯酚和硝基苯吸附特性的研究[D].北京:北京林業(yè)大學,2011.
[13] KONG L,TIAN S H,LUO R,et al.Demineralization of sludge-based adsorbent by post-washing for development of porosity and removal of dyes[J].Journal of Chemical Technology & Biotechnology,2013,88(8):1473-1480.
[14] ANDREY B,SVETLANA B,LOCKE D C,et al.Sewage sludge-derived materials as efficient adsorbents for removal of hydrogen sulfide[J].Environmental Science & Technology,2001,35(7):1537-1543.
[15] BAGREEV A,BANDOSZ T J.Efficient hydrogen sulfide adsorbents obtained by pyrolysis of sewage sludge derived fertilizer modified with spent mineral oil[J].Environmental Science & Technology,2004,38(1):345-351.
[16] 金滿,賈瑞寶.城市污泥資源化利用研究進展[J].工業(yè)用水與廢水,2011,42(5):1-5. JIN M,JIA R B.Research progress of resource utilization of urban sewage sludg[J].Industrial Water and Wastewater,2011,42(5):1-5.
[17] GULNAZ O,KAYA A,DINCER S.The reuse of dried activated sludge for adsorption of reactive dye[J].Journal of Hazardous Materials,2006,134(1/2/3):190-196.
[18] 汪恂.污泥熱化學處理的試驗研究[J].武漢理工大學學報,2002,24(6):35-37. WANG X.Experiment on heat-chemical treat method of sludge[J].Journal of Wuhan University of Technology,2002,24(6):35-37.
[19] 陳曼.城市污水污泥熱解特性與轉(zhuǎn)化機理的研究[D].南京:東南大學,2006.
[20] CASAJUS C,ABREGO J,MARIAS F,et al.Product distribution and kinetic scheme for the fixed bed thermal decomposition of sewage sludge[J].Chemical Engineering Journal,2009,145(3):412-419.
[21] 任愛玲,王啟山,賀君.城市污水處理廠污泥制活性炭的研究[J].環(huán)境科學,2004,25(增刊1):48-51. REN A L,WANG Q S,HE J.Study on the activated carbon produced with sewage sludge[J].Environmental Science,2004,25(Suppl 1):48-51.
[22] AGRAFIOTI E,BOURAS G,KALDERIS D,et al.Biochar production by sewage sludge pyrolysis[J].Journal of Analytical & Applied Pyrolysis,2013,101(5):72-78.
[23] JINDAROM C,MEEYOO V,KITIYANAN B,et al.Surface characterization and dye adsorptive capacities of char obtained from pyrolysis/gasification of sewage sludge[J].Chemical Engineering Journal,2007,133(1/2/3):239-246.
[24] BAGREEV A,BANDOSZ T J,LOCKE D C.Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer[J].Carbon,2001,39(13):1971-1979.
[25] DEVI P,SAROHA A K.Effect of pyrolysis temperature on polycyclic aromatic hydrocarbons toxicity and sorption behaviour of biochars prepared by pyrolysis of paper mill effluent treatment plant sludge[J].Bioresource Technology,2015,192:312-320.
[26] DEVI P,SAROHA A K. Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals[J].Bioresource Technology,2014,162:308-315.
[27] 何益得.污水污泥中重金屬在熱解過程中行為研究[D].長沙:湖南大學,2010.
[28] HE Y D,ZHAI Y B,LI C T,et al.The fate of Cu,Zn,Pb and Cd during the pyrolysis of sewage sludge at different temperatures[J].Environmental Technology,2010,31(5):567-574.
[29] SEREDYCH M,BANDOSZ T J.Removal of copper on composite sewage sludge/industrial sludge-based adsorbents: the role of surface chemistry[J].Journal of Colloid & Interface Science,2006,302(2):379-388.
[30] QIAN Q,MOCHIDZUKI K,FUJII T,et al.Removal of copper from aqueous solution using iron-containing adsorbents derived from methane fermentation sludge[J].Journal of Hazardous Materials,2009,172(2/3):1137-1144.
[31] MONSALVO V M,MOHEDANO A F,RODRIGUEZ J J.Adsorption of 4-chlorophenol by inexpensive sewage sludge-based adsorbents[J].Chemical Engineering Research & Design,2012,90(11):1807-1814.
[32] LIU L,YAN L,LIU Y,et al.Removal of methylene blue from aqueous solutions by sewage sludge based granular activated carbon:adsorption equilibrium,kinetics,and thermodynamics[J].Journal of Chemical & Engineering Data,2013,58(58):2248-2253.
[33] 陳坦,韓融,王洪濤,等.污泥基生物炭對重金屬的吸附作用[J].清華大學學報(自然科學版),2014(8):1062-1067. CHEN T,HAN R,WANG H T,et al.Adsorption of heavy metals by biochar drived from municipal sewge sludge[J].Journal of Tsinghua University(Science and Technology),2014(8):1062-1067.
[34] CALISTO V,FERREIRA C I A,SANTOS S M,et al.Production of adsorbents by pyrolysis of paper mill sludge and application on the removal of citalopram from water[J].Bioresource Technology,2014,166:335-344.
[35] DEVI P,SAROHA A K.Synthesis of the magnetic biochar composites for use as an adsorbent for the removal of pentachlorophenol from the effluent[J].Bioresource Technology,2014,169(5):525-531.
[36] RIO S,COQ L L,FAUR C,et al.Preparation of adsorbents from sewage sludge by steam activation for industrial emission treatment[J].Process Safety & Environmental Protection,2006,84(4):258-264.
[37] HADI P,GAO P,BARFORD J P,et al.Novel application of the nonmetallic fraction of the recycled printed circuit boards as a toxic heavy metal adsorbent[J].Journal of Hazardous Materials,2013,252/253(4):166-170.
[38] XU M,HADI P,CHEN G,et al.Removal of cadmium ions from wastewater using innovative electronic waste-derived material[J].Journal of Hazardous Materials,2014,273(3):118-123.
[39] 王曾輝.碳素材料[M].上海:華東化工學院出版社,1991.
[40] GUO J,LUA A C.Surface functional groups on oil-palm-shell adsorbents prepared by H3PO4and KOH activation and their effects on adsorptive capacity[J].Chemical Engineering Research & Design,2003,81(5):585-590.
[41] TSAI W T,CHANG C Y,LEE S L.A low cost adsorbent from agricultural waste corn cob by pyrolysis with zinc chloride activation[J].Bioresource Technology,1998,64(3):211-217.
[42] ZHU Z,LI A,SHENG Z,et al.Preparation and characterization of polymer-based spherical activated carbons with tailored pore structure[J].Journal of Applied Polymer Science,2008,109(3):1692-1698.
[43] BUDINOVA T,EKINCI E,YARDIM F,et al.Characterization and application of activated carbon produced by H3PO4and water vapor activation[J].Fuel Processing Technology,2006,87(10):899-905.
[44] HIRUNPRADITKOON S,TUNTHONG N,RUANGCHAI A,et al. Adsorption capacities of activated carbons prepared from bamboo by KOH activation[J].Proceedings of World Academy of Science Engineering & Technology,2011,78:711.
[45] CRUZ G,PIRILM,HUUHTANEN M,et al.Production of activated carbon from cocoa(Theobromacacao)pod husk[J].Journal of Civil & Environmental Engineering,2012(2):109.
[47] MALDHURE A V,EKHE J D.Pyrolysis of purified kraft lignin in the presence of AlCl3and ZnCl2[J].Journal of Environmental Chemical Engineering,2013,1(4):844-849.
[49] YU L,ZHONG Q.Preparation of adsorbents made from sewage sludges for adsorption of organic materials from wastewater[J].Journal of Hazardous Materials,2006,137(1):359-366.
[50] ZOU J,YING D,XUE W,et al.Structure and adsorption properties of sewage sludge-derived carbon with removal of inorganic impurities and high porosity[J].Bioresource Technology,2013,142(8):209-217.
[52] HADI P,XU M,NING C,et al.A critical review on preparation,characterization and utilization of sludge-derived activated carbons for wastewater treatment[J].Chemical Engineering Journal,2015,260:895-906.
[53] VELGHE I,CARLEER R,YPERMAN J,et al.Characterisation of adsorbents prepared by pyrolysis of sludge and sludge/disposal filter cake mix[J].Water Research,2012,46(8):2783-2794.
[54] YANG H,LI S,CHEN J,et al.Adsorption of Pb(Ⅱ)on mesoporous activated carbons fabricated from water hyacinth using H3PO4activation:adsorption capacity,kinetic and isotherm studies[J].Applied Surface Science,2014,293:160-168.
[55] MOHAMMADI S,MIRGHAFFARI N.Optimization and comparison of Cd removal from aqueous solutions using activated and non-activated carbonaceous adsorbents prepared by pyrolysis of oily sludge[J].Water Air & Soil Pollution,2015,226(1):1-11.
[56] WEN Q,LI C,CAI Z,et al.Study on activated carbon derived from sewage sludge for adsorption of gaseous formaldehyde[J].Bioresource Technology,2011,102(2):942-947.
[57] 劉濤,魏先勛,翟云波,等.剩余污泥的資源化利用[J].資源節(jié)約與環(huán)保,2006,22(3):37-40. LIU T,WEI X X,ZHAI Y B,et al.Reclamation of excess sludge[J].Environmental Sanitation Engineering,2006,22(3):37-40.
[58] KANTE K,QIU J,ZHAO Z,et al.Development of surface porosity and catalytic activity in metal sludge/waste oil derived adsorbents:effect of heat treatment[J].Chemical Engineering Journal,2008,138(1/2/3):155-165.
[59] KACAN E.Optimum BET surface areas for activated carbon produced from textile sewage sludges and its application as dye removal[J].Journal of Environmental Management,2016,166:116-123.
[60] MAHAPATRA K,RAMTEKE D S,PALIWAL L J.Production of activated carbon from sludge of food processing industry under controlled pyrolysis and its application for methylene blue removal[J].Journal of Analytical & Applied Pyrolysis,2012,95(5):79-86.
[61] ALEX P,BRIDGET S G,MARK F,et al.A preliminary study of the preparation of porous carbon from oil sludge for water treatment by simple pyrolysis or KOH activation[J].New Carbon Materials,2015,30(3):310-318.
[62] NUNTHAPRECHACHAN T,PENGPANICH S,HUNSOM M.Adsorptive desulfurization of dibenzothiophene by sewage sludge-derived activated carbon[J].Chemical Engineering Journal,2013,228(28):263-271.
[63] LIU H,YUAN B,ZHANG B,et al.Removal of mercury from flue gas using sewage sludge-based adsorbents[J].Journal of Material Cycles & Waste Management,2014,16(1):101-107.
[64] KONG L,XIONG Y,SUN L,et al.Sorption performance and mechanism of a sludge-derived char as porous carbon-based hybrid adsorbent for benzene derivatives in aqueous solution[J].Journal of Hazardous Materials,2014,274(12):205-211.
[65] ZHANG G.Aerobic granular sludge-derived activated carbon:mineral acid modification and superior dye adsorption capacity[J].Rsc Advances,2015,32(5):25279-25286.
[66] KONG L,XIONG Y,TIAN S,et al.Preparation and characterization of a hierarchical porous char from sewage sludge with superior adsorption capacity for toluene by a new two-step pore-fabricating process[J].Bioresource Technology,2013,146:457-462.
[67] LIN G,WANG Y,ZHU N,et al.Preparation of sewage sludge based activated carbon by using Fenton’s reagent and their use in 2-Naphthol adsorption[J].Bioresource Technology,2013,146:779-784.
[68] PAN Z H,TIAN J Y,XU G R,et al.Characteristics of adsorbents made from biological,chemical and hybrid sludges and their effect on organics removal in wastewater treatment[J].Water Research,2011,45(2):819-827.
[69] RIO S,FAUR-BRASQUET C,LE C L,et al.Experimental design methodology for the preparation of carbonaceous sorbents from sewage sludge by chemical activation:application to air and water treatments[J].Chemosphere,2005,58(4):423-437.
[70] MARTIN M J,SERRA E,ROS A,et al.Carbonaceous adsorbents from sewage sludge and their application in a combined activated sludge-powdered activated carbon(AS-PAC)treatment[J].Archives Des Maladies Du Coeur Et Des Vaisseaux,1998,91(8):1043-1048.
[71] KANTE K,QIU J,ZHAO Z,et al.Development of surface porosity and catalytic activity in metal sludge/waste oil derived adsorbents:effect of heat treatment[J].Chemical Engineering Journal,2008,138(1/2/3):155-165.
[72] LIM H,LEE J,JIN S,et al.Highly active heterogeneous Fenton catalyst using iron oxide nanoparticles immobilized in alumina coated mesoporous silica[J].Chemical Communications,2006,4(4):463-465.
[73] MARSH H,RAND B.The process of activation of carbons by gasification with CO2:Ⅱ.The role of catalytic impurities[J].Carbon,1971,9(1):63-72.
[74] SHIMAZAKI K.Changes of pore and adsorption capacity of polyacrylonitrile-based activated carbon fiber(PAN-ACF)in activation[J].Journal of the Chemical Society of Japan Chemistry & Industrial Chemistry,1993(1):54-61.
[75] LIU C,JIANG W J,WANG J,et al.Study on Dye adsorptive characteristics of activated carbons from pyrolusite-added sewage sludge[J].Chemistry & Industry of Forest Products,2009,29(4):37-40.
[76] ZHANG W,JIANG W,LIU C,et al.Study on preparation of pyrolusite-sludge-based activated carbon by microwave radiation and its adsorption capability[J].Sichuan Chemical Industry,2009,12(1):41-45.
[77] CHEN L,TANG Z,YAO C,et al.Characterization of mesoporous activated carbons prepared by pyrolysis of sewage sludge with pyrolusite[J].Bioresource Technology,2009,101(3):1097-1101.
[78] 陳紅燕,羊依金,譚顯東,等.軟錳礦-污泥活性炭的制備及其對廢水中鉛離子的吸附[J].環(huán)境工程學報,2010,4(11):2473-2478. CHEN H Y,YANG Y J,TAN X D,et al.Preparation of activated charcoal from pyrolusite-added sewage sludge and adsorption of lead ion in wastewater[J].Chinese Journal of Envimental Engineering,2010,4(11):2473-2478.
[79] SEREDYCH M,STRYDOM C,BANDOSZ T J.Effect of fly ash addition on the removal of hydrogen sulfide from biogas and air on sewage sludge-based composite adsorbents[J].Waste Management,2008,28(10):1983-1992.
[80] YANG X,XU G R,YU H R,et al.Preparation of ferric-activated sludge-based adsorbent from biological sludge for tetracycline removal[J].Bioresource Technology,2016,211:566-573.
[81] LIN G,ZHU N,GUO H,et al. Adsorption and Fenton-like degradation of naphthalene dye intermediate on sewage sludge derived porous carbon[J].Journal of Hazardous Materials,2013,246/247:145-153.
[82] XU L,SHEN C,WEN H L,et al.Rapid removal of dyes by carbonized sludge:process,effects of environmental factors,and mechanism[J].Separation Science & Technology,2014,49(16):2574-2585.
[83] GUPTA V K,GUPTA B,RASTOGI A,et al.A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye-Acid Blue 113[J].Journal of Hazardous Materials,2011,186(1):891-901.
[84] TAN G,SUN W,XU Y,et al.Sorption of mercury(Ⅱ) and atrazine by biochar,modified biochars and biochar based activated carbon in aqueous solution[J].Bioresource Technology,2016,211:727-735.
[85] XU X,KAN Y,ZHAO L,et al.Chemical transformation of CO2during its capture by waste biomass derived biochars[J].Environmental Pollution,2016,213:533-540.
[86] TAY J H,CHEN X G,JEYASEELAN S,et al.Optimising the preparation of activated carbon from digested sewage sludge and coconut husk[J].Chemosphere,2001,44(1):45-51.
[87] ZHANG S Y,WU B X,YANG G,et al.Study on preparation of activated carbon with sewage sludge activated by zinc chloride[J].Environmental Protection and Technology,2009,15(4):39-43.
[88] LI Y,LI Y,LI L,et al.Preparation and analysis of activated carbon from sewage sludge and corn stalk[J].Advanced Powder Technology,2016,27(2):684-691.
[89] HE Y,LIAO X,LIAO L,et al.Low-cost adsorbent prepared from sewage sludge and corn stalk for the removal of COD in leachate[J].Environmental Science & Pollution Research,2014,21(13):8157-8166.
[90] ROZADA F,OTERO M,MORN A,et al.Activated carbons from sewage sludge and discarded tyres:production and optimization[J].Journal of Hazardous Materials,2005,124:181-191.
[91] REN X,LIANG B,MIN L,et al.Effects of pyrolysis temperature,time and leaf litter and powder coal ash addition on sludge-derived adsorbents for nitrogen oxide[J].Bioresource Technology,2012,125:300-304.
[92] LIN Q H,CHENG H,CHEN G Y.Preparation and characterization of carbonaceous adsorbents from sewage sludge using a pilot-scale microwave heating equipment[J].Journal of Analytical & Applied Pyrolysis,2011,93(1):113-119.
[93] 藺麗麗,蔣文舉,金燕,等.微波法制備污泥活性炭研究[J].環(huán)境工程學報,2007,1(4):119-122. LIN L L,JIANG W J,JIN Y,et al.Study on activated carbon made from sewage sludge by microwave[J].Chinese Journal of Envimental Engineering,2007,1(4):119-122.
[94] 張襄楷,季會明,范曉丹.微波法制備污泥活性炭及其脫色性能的研究[J].炭素,2008(2):40-43. ZHANG X K,JI H M,FAN X D.Study on preparation and becoloration properties of activated carbon from sewage sludge by microwave[J].Carbon,2008(2):40-43.
[95] 吳文炳,陳建發(fā),黃玲鳳.微波制備污泥質(zhì)活性炭吸附劑及其再生研究[J].應(yīng)用化工,2011,40(6):975-977. WU W B,CHEN J F,HUANG L F.Study on the preparation and regeneration of activated carbon with microwave radiation from sewage sludge[J].Applied Chemical Industry,2011,40(6):975-977.
[96] WU Z,KONG L,HU H,et al.Adsorption performance of hollow spherical sludge carbon prepared from sewage sludge and polystyrene foam wastes[J].Acs Sustainable Chemistry & Engineering,2015,3(3):552-558.
[97] KONG L,TIAN S,LUO R,et al.Demineralization of sludge-based adsorbent by post-washing for development of porosity and removal of dyes[J].Journal of Chemical Technology and Biotechnology,2013,88(8):1473-1480.
[98] ZOU J,DAI Y,WANG X,et al.Structure and adsorption properties of sewage sludge-derived carbon with removal of inorganic impurities and high porosity[J].Bioresource Technology,2013,142:209-217.
[99] ZAINI M A A,ZAKARIA M,SETAPAR S M,et al.Sludge-adsorbents from palm oil mill effluent for methylene blue removal[J].Journal of Environmental Chemical Engineering,2013,1(4):1091-1098.
[100] DING R,ZHANG P,SEREDYCH M,et al.Removal of antibiotics from water using sewage sludge-and waste oil sludge-derived adsorbents[J].Water Research,2012,46(13):4081-4090.
[101] SEREDYCH M,BANDOSZ T J.Removal of cationic and ionic dyes on industrial-municipal sludge based composite adsorbents[J].Industrial & Engineering Chemistry Research,2007,46(6):1786-1793.
[102] NIELSEN L,ZHANG P,BANDOSZ T J.Adsorption of carbamazepine on sludge/fish waste derived adsorbents:effect of surface chemistry and texture[J].Chemical Engineering Journal,2015,267:170-181.
[103] GUPTA A,GARG A.Utilisation of sewage sludge derived adsorbents for the removal of recalcitrant compounds from wastewater:mechanistic aspects,isotherms,kinetics and thermodynamics[J].Bioresource Technology,2015,194:214-224.
[104] HADI P,BARFORD J,MCKAY G.Selective toxic metal uptake using an e-waste-based novel sorbent:single,binary and ternary systems[J].Journal of Environmental Chemical Engineering,2014,2(1):332-339.
[105] AUTA M,HAMEED B H.Optimized and functionalized paper sludge activated with potassium fluoride for single and binary adsorption of reactive dyes[J].Journal of Industrial & Engineering Chemistry,2014,20:830-840.
[106] REN X L,YANG L,LIU M.Kinetic and thermodynamic studies of acid scarlet 3R adsorption onto low-cost adsorbent developed from sludge and straw[J].Chinese Journal of Chemical Engineering,2014,22(2):208-213.
[107] CHEN T,ZHOU Z,XU S,et al.Adsorption behavior comparison of trivalent and hexavalent chromium on biochar derived from municipal sludge[J].Bioresource Technology,2015,190:388-394.
[108] GORZIN F,GHOREYSHI A A.Synthesis of a new low-cost activated carbon from activated sludge for the removal of Cr(Ⅵ)from aqueous solution:equilibrium,kinetics,thermodynamics and desorption studies[J].Korean Journal of Chemical Engineering,2013,30(8):1594-1602. ○
Research progress of preparation of sewage sludge-based carbonaceous adsorbents and their adsorption characteristics
XIN Wang1,2,3, SONG Yonghui1,2,3, ZHANG Yadi3,4, DUAN Lijie1,3,5, PENG Jianfeng1,3, LIU Ruixia1,2,3
1.State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences,Beijing 100012, China 2.College of Water Science, Beijing Normal University, Beijing 100875, China 3.Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China 4.College of Environmental Science and Engineering, Hunan University, Changsha 410082, China 5.School of Environment, Tsinghua University, Beijing 100084, China
With the extensive construction and operation of urban sewage treatment plant, massive excess sludge has brought great pressure to the water industry and environmental protection. The safe disposal and resource utilization of sewage sludge have been the hot issues in the field of environmental protection. The preparation of sludge-based carbons from carbonizing excess sludge at high temperature is one of the important directions of sewage sludge recycling, safe disposal and environmental remediation. The main methods include direct carbonization, chemical activation, catalytic activation, and carbon source addition, etc. The characteristics of various preparation methods and the properties of the product were summarized firstly, and the adsorption performance of organic pollutants and heavy metals in aqueous phase and the adsorption mechanisms were analyzed. Then the main research directions of preparation of activated carbons from pyrolytic sludge were proposed. Finally the outlook of excess sewage pyrolysis disposal was given from the perspectives of energy recovery, special industrial sludge and waste resource utilization.
sewage sludge; resource utilization; material; preparation; adsorption
2016-07-15
國家水體污染控制與治理科技重大專項(2012ZX07202-005)
辛旺(1987—),男,研究生,主要從事剩余污泥資源化研究,xinwang-fly@163.com
*責任作者:宋永會(1967—),男,研究員,博士,主要從事水污染控制技術(shù)研究,songyh@craes.org.cn
X703
1674-991X(2017)03-0306-12
10.3969/j.issn.1674-991X.2017.03.044
辛旺,宋永會,張亞迪,等.污泥基碳吸附材料的制備及其吸附性能研究進展[J].環(huán)境工程技術(shù)學報,2017,7(3):306-317.
XIN W, SONG Y H, ZHANG Y D, et al.Research progress of preparation of sewage sludge-based carbonaceous adsorbents and their adsorption characteristics[J].Journal of Environmental Engineering Technology,2017,7(3):306-317.