• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synchronization Transition of Time Delayed Complex Dynamical Networks with Discontinuous Coupling?

    2017-05-18 05:56:36YongZhengSun孫永征WangLi李望andDongHuaZhao趙東華2SchoolofMathematicsChinaUniversityofMiningandTechnologyXuzhou22008China
    Communications in Theoretical Physics 2017年1期
    關(guān)鍵詞:東華

    Yong-Zheng Sun(孫永征), Wang Li(李望),and Dong-Hua Zhao(趙東華)2School of Mathematics,China University of Mining and Technology,Xuzhou 22008,China

    2School of Mathematical Sciences,Fudan University,Shanghai 200433,China

    1 Introduction

    In the past few decades,synchronization of complex networks has been extensively investigated in many fields.[1]Understanding the mechanism behind the network synchronization is a central issue in nonlinear science.Many studies initially focused on the synchronization within a network.[2?5]This kind of synchronization is usually called as “inner synchronization”.It has been shown that the inner synchronization of complex dynamical networks depends both on the node dynamics and the topology of the interaction network.[6]However,in the real world,some networks often connect with other networks,synchronization may take place between two or more networks,which was termed “outer synchronization”[7?9]or “synchronization of duplex networks”.[10]Such as the balance between predator-prey networks in ecological communities.[7]The complete outer synchronization[11?12]and generalized outer synchronization[13?14]have been extensively studied.Many methods have been proposed to realize synchronization,e.g.,adaptive control,[15]pinning control,[16?18]impulsive control[19?21]and fi nite-time control.[22?24]

    The theoretical investigation of the outer synchronization has focused mainly on the in fl uence of network topologies and node dynamics.However,recent studies have shown that the interactions between networks also play important roles on synchronization.In real-word systems,it is often found that the interactions between two communities or networks may be switched o ffsometimes.In particular,the interactions may be switched on and o ffperi-odically.For example,due to seasonality,the interactions between predator-prey networks in an ecosystem may be activated and depressed periodically in a year.[25?26]It is thus important to study the synchronization of complex networks with on-o ffcoupling.It has been shown that complex networks can realize synchronization even if the network coupling is switched on and o ffperiodically.[25?27]And it has also been shown that the synchronized domain depends on the time scales of the on-o ffperiod and the node dynamics.[25]

    The e ff ect of time delays,which arise from a realistic consideration of fi nite communication times and processing speeds,is a key issue that has received considerable attention.[28?31]Time delay extensively exists in many biological and physical systems such as gene regulatory networks and neural networks.[32]It has been discovered that time delays have great in fl uence on the behavior of complex dynamical systems.In the past few years,the synchronization problem of complex dynamical networks with time delays has been an attractive subject of research.[33?34]Despite these investigations,a systematic study of the in fl uence of time delays and discontinuous coupling on the synchronization transition of complex networks has been lacking.

    Inspired by the above analysis,the question which we address in our present study is:Whether the synchronization can be achieved if the coupling between two time delayed complex networks is discontinuous,and if this is the case,under what conditions does it emerge?We propose two time-delayed complex dynamical networks with periodical on-o ffcoupling.First,we consider dynamical networks with constant delay which assume that all nodes in networks react to information received from its neighbours with the same time delay.Later,we investigate the networks with random distributed delays.We focus on the e ff ect of the coupling strength,the on-o ffrate,the network size and the time delay on the synchronization transition.Utilizing the stability theory of differential equations,we analytically show that two networks may realize synchronization if the time delay less than a positive threshold,and the coupling strength and the on-o ffrate are large enough.

    The rest of this paper is organized as follows.In Sec.2,networks formulation and some numerical results are given.The stability analysis and sufficient conditions for synchronization are provided in Sec.3.The e ff ect of time delays on the synchronization transmission is discussed in Sec.4.Finally,some conclusions are provided in Sec.5.

    2 Synchronization of Networks with Constant Delay

    We consider the following coupled drive-response complex dynamical networks:

    where i=1,2,...,N.Here xi(t)=(xi1,xi2,...,xin)T∈Rnand yi(t)=(yi1(t),yi2(t),...,yin(t))T∈Rnare state vectors of networks(1)and(2),respectively.f:Rn→Rnis the continuously differentiable nonlinear vector function governing the evolution of the i-th node of networks(1)and(2).The adjacency matrix G=(gij)N×Ndescribes the coupling con figurations of both networks:gij>0 if there is a link from node j to node i(i≠j)and zero otherwise,the diagonal elements of matrix G are de fi ned as gii=Γ ∈ Rn×nis the inner connection matrix between two connected nodes,and τijis the delay time in the interaction between the i-th and the j-th nodes.In order to describe the periodic on-o ffcoupling,the controllers ui(t)(i=1,2,...,N)are designed as follows:

    where ei(t)=yi(t)?xi(t)(i=1,2,...,N)are the synchronization errors between the drive network(1)and the response network(2);k(t)is the coupling strength which is taken as the periodic on-o ffcoupling.Speci fically speaking,the network is switched on with k(t)=k when mT≤t≤(m+θ)T,and the network is switched o ffwith k(t)=0 when(m+θ)T≤t≤(m+1)T(m=0,1,2,...),and the two processes are repeated again and again.Here,T>0 is called as the on-o ffperiod;0<θ≤1 is called as the on-o ffrate,while θ=1,corresponds to the continuous coupling case.

    In previous works in the field of synchronization of complex networks with on-o ffcoupling,[25?27]the interactions between nodes are assumed to occur instantaneously.However,the e ff ect of time-delayed interactions,which arise from a realistic consideration of fi nite reaction speed,should be considered.In our model,we suppose that nodes in both networks react to information received from its neighbours with some time delays.This is the main di ff erence between previous works and ours.We firstly assume the time delay τijto be the same for all nodes,i.e.,τij≡ τ,so that at time t nodes react to information perceived at time t? τ.Later,we also consider a generalized network model in which we assume that the time delay τijare randomly distributed.

    First,we performed a systematic numerical study of the delayed networks(1)and(2)to characterize their synchronization behavior in dependence on the values of parameters k and θ.The simulations were done by choosing the initial conditions xi(0)and yi(0)randomly in the interval[?1,1],for t ∈ (?τ,0].We consider two different topologies including the Erd¨os–R′enyi random(ER random)and the small-world networks with mean degree 〈d〉=6.The small-world network was generated by using the method in Ref.[35]with characteristic parameter p=0.3.We assume that the inner connection matrix Γ=Inand set gij=1 if there is a link between nodes i and j.We took the R¨ossler system as the node dynamics for both networks,which is described by:=[?y?z,x+ay,b+(x?c)z]with a=b=0.2 and c=5.7.We present results for τ=0.01 and T=0.1,but we have found similar results for other values of τ and T.We performed the simulations over the time interval[0,Ts]with Ts=10,and time step ?t=10?3.Note that we choose the values of τ to be integer multiples of ?t.Networks(1)and(2)are said to achieve complete outer synchronization if,for any initial states xi(0),yi(0),

    To characterize the transition to synchronization we use the indicator

    where

    anddenotes an average over the time interval[Ts?1,Ts].

    In Fig.1(a),we plot the indicator Isynas a function of the coupling strength k for fixed on-o ffrate θ=0.5.Figure 1(b)displays Isynvs.θ for fixed coupling strength k=5.As Figs.1(a)and 1(b)show for two canonical network models(ER random and small-world networks),the coupled networks(1)and(2)can transit to synchronization as the coupling strength k or the on-o ffrate θ increases.This is further supported by Figs.2(a)and 2(b),where we plotted simulation results for networks(1)and(2)with different values of(k,θ).We divided the domain[0.1,5]× [0.1,1]for(k,θ)into 50 × 50 equidistant(k,θ)-pairs.For each pair of the parameter values we performed simulations over the time interval[0,Ts],and calculated the indicator Isyn.It can be observed that two networks can transit to synchronization as the values of θ and k increase.Taking these results together,we find that two discontinuously coupled networks(1)and(2)can realize synchronization if the coupling strength and the on-o ff rate are large enough.

    Fig.1 Impact of the coupling strength k and the on-o ffrate θ on the synchronization transition.(a)The synchronization indicator Isynas a function of k for ER random and small-world networks with N=200 and=6;(b)Isynvs. θ.The characteristic parameter for the small-world network is p=0.3.The time delay τ=0.01,and the on-o ffperiod T=0.1.The node dynamics for networks(1)and(2)are the R¨ossler oscillators.

    Fig.2 (a)The synchronization indicator Isynfor ER random networks(1)and(2)with N=200 and mean degree =6.The parameters are τ=0.01,T=0.1,and(k,θ) ∈ [0.1,5]× [0.1,1].The dark blue regions indicate numerical synchronization.(b)Same as in(a)but for small-world networks with characteristic parameter p=0.3.

    3 Stability Analysis

    To understand the factors that determine the synchronization,we propose an analytical synchronization condition using the stability theory of the time-delayed differential equations.For later use,we need the following lemmas.

    Lemma 1[36]Let v(t)>0 for t∈R,τ≥ 0.If α> β>0 and

    then there exist two positive constants C and α such that

    Using Eqs.(1)and(2),we can get the following error systems:

    Now let us focus on the stability of the synchronized state.Linearizing the above error systems around xi,one has

    where J denotes the Jacobian operator.

    From the Definition of the on-o ffcoupling function k(t),systems(5)can be regarded as switched time delayed systems composed of the following two individual systems:

    In light of the result in Ref.[37],the error systems(5)are asymptotically stable if the convex combination of the time-delay systems(6)and(7)is asymptotically stable.Thus the stability of the error systems(5)is equivalent to the following time delayed systems:

    Letting e(t)=and F(t)=((Jf(x1(t))e1(t))T,...,(Jf(x2(t))e2(t))T)T,we can rewrite Eqs.(8)as the following vector form:

    where G=Using the fact that e(t)?e(t?τ)=we have

    Now,de fi ning the Lyapunov function V=eT(t)e(t),then the derivative of V along the trajectory of Eq.(10)is

    First of all,if the vector function f satis fi es the Lipschitz condition with a positive constant l,we get

    where Gs=(G+GT)/2,λmax(Gs)denotes the maximum eigenvalue of the matrix Gs,and ∥G∥ is the spectral norm of the matrix G.For the last term of right-hand side in Eq.(12),we get

    Substituting Eq.(13)into Eq.(12) finally leads to

    Furthermore,if

    we can obtain from the Lemma 1 that there are positive constants C and γ such that

    Consequently,

    which means that the linear error systems(5)are asymptotically stable about their zero solutions.Therefore,networks(1)and(2)can realize locally complete outer synchronization if the conditions(15)and(16)hold.Thus,if the time delay is less than a positive threshold τ?,the stability of the synchronous state is determined by the coupling strength k and the on-o ffrate θ.This is in accord with the numerical results in Figs.1 and 2.

    Furthermore,the allowable bound of the coupling delays is given in terms of explicit expressions,as shown in the inequality(16).In particular,if the adjacency matrix G is symmetric and irreducible,then the eigenvalues of the matrix G are 0= λ1> λ2≥ ···≥ λN.[38]Moreover,if we choose Γ =I,then λmax(Gs)=0 and ∥G∥ =|λN|.Consequently,the synchronization conditions(15)and(16)can be simpli fi ed as

    It is known that for inner synchronization of complex dynamical networks without coupling delays,the synchronization ability depends on the second largest eigenvalue λ2or the ratio λ2/λNof the corresponding coupling matrix.[39]However,we can observe from the condition(20)that,for outer synchronization of time-delayed networks with on-o ffcoupling,the synchronization ability depends on the minimum eigenvalue of the coupling matrix.The eigenvalue λNof some network topologies decreases dramatically asNincreases.Thus,the upper bound τ?decreases asNincreases.For example,for the global and star coupling con figurations λN= ?Nand τ?=(kθ?l)/[N2+(kθ+l)N].Therefore,for these kind of networks,the condition(20)implies that the larger of the network size is,the smaller τ?is,and the network is more difficult to be synchronized.

    4 E ff ect of Time Delays

    Let us now investigate the in fl uence of coupling delays on the synchronization transition.We illustrate our finding using the ER random and small-world networks.We performed simulations of networks(1)and(2)with k=10,θ=0.5,T=0.1,N∈ [10,500]and τ∈ [0,0.5].For the ER random network,we can observe from Fig.3(a)that the minimum eigenvalue of the adjacency matrix decreases as the network size increases.Figure 3(b)displays the value of τ?(N)calculated by the condition(20).It clearly shows that,for random topology,the theoretically upper bound of the time delay for synchronization is signi ficantly decreased as the network sizeNincreases,and τ?≈ 0 whenN&300.Thus high levels of time delay may suppress the synchronization.This observation is fully supported by Fig.4(a),where we divide the domain[10,500]×[0,0.5]for(N,τ)into 50×100 equidistant(N,τ)-pairs and encode the synchronization indicator Isyn.The dark blue regions indicate the numerical synchronization.This is further supported by Figs.5(a)and 5(b)where we plotted evolutions of synchronization error δ(t)between networks(1)and(2)forN=100,k=10,θ=0.5,T=0.1 and τ=0.03(Fig.5(a)),and τ=0.04(Fig.5(b)).We observe that two networks can achieve outer synchronization for τ=0.03,but they do not show tendency to synchronization for τ=0.04.different from the ER random network,Figs.3(a)and 3(b)show that,for the small-world network,λNis not a decreasing function of the network size.Thus,the upper bound of the time delay for synchronization for the small-world network is only weekly in fl uenced by the network size(Fig.4(b)).

    Fig.3 The e ff ect of network size N on the minimum eigenvalue λNand τ? calculated using Eq.(20)for ER random and small-world networks.(a)λNvs.N;(b)τ?vs.N.Both ER random and small-world network have mean degree〈d〉=6 and the characteristic parameter for the small-world network is p=0.3.The other parameter values are k=10,θ=0.5.

    In the above numerical and analytical studies,we assume that all the interactions occur with the same delay.However,actual delays in real systems are not necessarily the same for all the nodes in the networks.Delays might also be randomly distributed.Let us now consider the e ff ect of random delay times on the transition of synchronization.Speci fically,we consider random delays with the following normal distribution: τij= τ+ξ,where ξ is normally distributed with zero mean and standard deviation one.The delays are normally distributed around with mean τ and variance 1.Figures 6(a)and 6(b)display the synchronization indicator Isynas the function of the mean coupling delay τ and the network sizeN.Similar to the case of constant delays,it can be observed from Fig.6(a)that,for the ER random networks,the upper bound of the mean time delay for synchronization decreases with the network size increasing.Compared with the numerical results in Fig.4(a),the upper bound of the mean coupling delay for synchronization of the ER random network is smaller than that of networks with constant coupling de-_lay.It can be observed from Figs.4(b)and 6(b)that,for small-world networks with normally distributed coupling delays,the upper bound of the mean time delay for synchronization is larger than that of networks with constant delay.When the size of the network becomes larger,the above numerical results show that networks with smallworld topologies can tolerate larger delays than ER random networks.

    Fig.4 Effect of the time delay and network size on the synchronization transition for ER random(a)and small-world(b)networks with mean degree〈d〉=6.The parameters for networks(1)and(2)are k=10,θ =0.5,T=0.1 and(N,τ)∈ [10,500]×[0,0.5].The characteristic parameter for the small-world network is p=0.3.The dark blue regions indicate numerical synchronization.

    Fig.5 Synchronization error δ(t)between ER random networks(1)and(2)with N=100,k=10, θ =0.5,T=0.1,p=0.1.(a)The time delay τ=0.03;(b)The time delay τ=0.04.

    Fig.6 Synchronization indicator Isynfor(a)ER random and(b)small-world networks with normally distributed coupling delay.The parameter values used are k=10,θ=0.5,T=0.1,p=0.1.Both ER random and smallworld networks have mean degree 〈d〉=6.The characteristic parameter of small-world networks is p=0.3.The dark blue regions indicate numerical synchronization.

    5 Conclusions

    In this paper,we have investigated the synchronization transition between two time delayed complex dynamical networks with periodic on-o ffcoupling.First,we considered the networks with constant coupling delay.We found that for sufficient large coupling strength and the on-o ff rate two networks can realize synchronization if the coupling delay is small enough.Based on the stability theory of differential equations,sufficient conditions for the outer synchronization are established.The estimation for the upper bound of time delays for synchronization is obtained.Numerical results are fully supported by the theoretical analysis.In particular,we reported that,for the undirected and strongly connected networks,the upper bound of time delays for synchronization is a decreasing function of the absolute value of the minimum eigenvalue of the adjacency matrix.The e ff ect of random delays on the transition of synchronization is also investigated.We found that when the network size is large,small-world networks can tolerate larger time delay than ER random networks.

    Acknowledgments

    We thank the anonymous referees for their helpful comments and suggestions.

    References

    [1]A.Arenas,A.D?az-Guilera,J.Kurths,Y.Moreno,and C.Zhou,Phys.Rep.469(2008)93.

    [2]J.L¨u,X.Yu,and G.Chen,Physica A 334(2004)281.

    [3]Q.Zhang,J.Chen,and L.Wan,Phys.Lett.A 377(2013)2754.

    [4]T.Pyragien.e and K.Pyragas,Phys.Lett.A 379(2015)3084.

    [5]X.Liu and T.Chen,IEEE T.Automat.Contr.60(2015)3316.

    [6]T.Nishkawa,A.E.Motter,Y.C.Lai,and F.C.Hoppensteadt,Phys.Rev.Lett.91(2003)014010.

    [7]C.Li,C.Xu,W.Sun,and J.Kurths,Chaos 19(2009)013106.

    [8]X.Wu,W.Zheng,and J.Zhou,Chaos 19(2009)013109.

    [9]W.Sun,Y.Wu,J.Zhang,and S.Qin,J.Frank.Inst.352(2015)3166.

    [10]Y.Li,X.Wu,J.Lu,and J.L¨u,IEEE T.Circuist-II 63(2016)206.

    [11]G.Wang,J.Cao,and J.Lu,Phys.A 389(2010)1480.

    [12]Y.Sun,W.Li,and J.Ruan,Commun.Nonliear Sci.18(2013)989.

    [13]W.Sun and S.Li,Nonlinear Dyn.77(2014)481.

    [14]Y.Wu,C.Li,Y.Wu,and J.Kurths,Commun.Nonlinear Sci.17(2012)349.

    [15]H.G.Zhang,M.Zhao,Z.L.Wang,and Z.N.Wu,Nonlinear Dyn.77(2014)643.

    [16]X.Li,X.Wang,and G.Chen,IEEE T.Circuist-I 51(2004)2074.

    [17]W.Yu,G.Chen,J.L¨u,and J.Kurths,SIAM.J.Control Optim.51(2013)1395.

    [18]D.Ning,X.Wu,J.Lu,and J.L¨u,Chaos 25(2015)113104.

    [19]W.Sun,G.Chen,J.L¨u,and S.Chen,Nonlinear Dyn.69(2012)1751.

    [20]J.Lu,D.W.C.Ho,J.Cao,and J.Kurths,Nonlinear Anal.Real.RWA 14(2013)581.

    [21]Z.Wu,Commun.Theor.Phys.61(2014)590.

    [22]Y.Sun,W.Li,and D.Zhao,Chaos 22(2012)023152.

    [23]Y.Sun and W.Lin,Chaos 25(2015)083118.

    [24]Y.Sun,W.Li,and J.Ruan,Commun.Theor.Phys.58(2012)697.

    [25]L.Chen,C.Qiu,and H.Huang,Phys.Rev.E 79(2009)045101(R).

    [26]L.Chen,C.Qiu,H.Huang,G.Qi,and H.Wang,Eur.Phys.J.B 76(2010)625.

    [27]Y.Sun,W.Li,and D.Zhao,Chaos 22(2012)043125.

    [28]S.Xu and J.Lam,Int.J.Syst.Sci.39(2008)1095.

    [29]Q.Wang,G.Chen,and M.Perc,PloS One 6(2011)e15851.

    [30]J.Ma,H.Qin,X.Song,and R.Chu,Int.J.Modern Phys.B 29(2015)1450239.

    [31]W.Sun,S.Wang,G.Wang,and Y.Wu,Nonlinear Dyn.79(2015)2659.

    [32]J.Lu,J.Zhong,D.W.C.Ho,Y.Tang,and J.Cao,SIAM J.Control Optim.54(2016)475.

    [33]R.Rakkiyappana,N.Sakthivela,and S.Lakshmananb,Chin.Phys.B 23(2014)020205.

    [34]T.Hu,Y.Wu,and S.Li,Commun.Theor.Phys.65(2016)33.

    [35]D.J.Watts and S.H.Strogatz,Nature(London)393(1998)440.

    [36]A.Hmamed,Int.J.Syst.Sci.22(1991)1127.

    [37]J.Chiou,C.Wang,and C.Cheng,J.Frank.Inst.348(2011)261.

    [38]C.W.Wu and L.O.Chua,IEEE T.Circuist-I 42(1995)430.

    [39]X.F.Wang and G.Chen,IEEE T.Circuist-I 49(2002)54.

    猜你喜歡
    東華
    Optical image encryption algorithm based on a new four-dimensional memristive hyperchaotic system and compressed sensing
    掛燈籠
    “氵”與“冫”的區(qū)別
    認(rèn)識(shí)成語
    Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
    相同的“手” 不同的義
    東華理工大學(xué)藝術(shù)學(xué)院繪畫作品選登
    數(shù)控技術(shù)在自動(dòng)化機(jī)械制造中的運(yùn)用研究
    東莞東華中學(xué)開啟“成功”的教育模式
    大社會(huì)(2017年9期)2017-11-21 02:42:23
    立體幾何中這樣運(yùn)用設(shè)而不求
    成人av在线播放网站| 嫁个100分男人电影在线观看| 国产精品嫩草影院av在线观看 | 久久精品国产清高在天天线| 国产黄色小视频在线观看| 久久久久九九精品影院| 色av中文字幕| 好看av亚洲va欧美ⅴa在| 日韩中文字幕欧美一区二区| 一a级毛片在线观看| 亚洲av电影在线进入| a在线观看视频网站| 老司机福利观看| 一本精品99久久精品77| 久久久久国产精品人妻aⅴ院| 一进一出抽搐gif免费好疼| 久久久成人免费电影| 午夜福利免费观看在线| 欧美日韩一级在线毛片| 法律面前人人平等表现在哪些方面| 亚洲国产中文字幕在线视频| 欧美乱色亚洲激情| 亚洲欧美日韩无卡精品| 高清日韩中文字幕在线| 99热只有精品国产| 露出奶头的视频| 欧美zozozo另类| av片东京热男人的天堂| 精品一区二区三区av网在线观看| 波野结衣二区三区在线 | 国产亚洲精品久久久com| 色av中文字幕| 免费无遮挡裸体视频| 久久人人精品亚洲av| 美女黄网站色视频| 欧美性猛交╳xxx乱大交人| 九九热线精品视视频播放| 国产午夜精品论理片| 久久精品91无色码中文字幕| 成人特级av手机在线观看| 天天添夜夜摸| 嫁个100分男人电影在线观看| 女人十人毛片免费观看3o分钟| 麻豆成人午夜福利视频| 亚洲精品乱码久久久v下载方式 | 久久精品人妻少妇| 国产午夜精品久久久久久一区二区三区 | 亚洲美女视频黄频| 久久人人精品亚洲av| 少妇人妻一区二区三区视频| 国产真人三级小视频在线观看| 女人高潮潮喷娇喘18禁视频| av国产免费在线观看| 久久精品国产亚洲av香蕉五月| 免费电影在线观看免费观看| 美女黄网站色视频| 国产一区二区激情短视频| 国产91精品成人一区二区三区| 一二三四社区在线视频社区8| 淫秽高清视频在线观看| 啪啪无遮挡十八禁网站| 国产精品嫩草影院av在线观看 | 3wmmmm亚洲av在线观看| 波野结衣二区三区在线 | 91九色精品人成在线观看| 一个人看的www免费观看视频| xxxwww97欧美| 中文字幕精品亚洲无线码一区| 桃色一区二区三区在线观看| 欧美日韩亚洲国产一区二区在线观看| 内地一区二区视频在线| 亚洲第一电影网av| 精品人妻一区二区三区麻豆 | 精品欧美国产一区二区三| 久9热在线精品视频| 亚洲一区高清亚洲精品| 成人亚洲精品av一区二区| 成人永久免费在线观看视频| 3wmmmm亚洲av在线观看| 午夜老司机福利剧场| 国产成人啪精品午夜网站| 国产黄片美女视频| 精品乱码久久久久久99久播| 久久九九热精品免费| 精品久久久久久久久久久久久| 成年版毛片免费区| 国产精品香港三级国产av潘金莲| 97超视频在线观看视频| 国产精品精品国产色婷婷| 亚洲av第一区精品v没综合| 欧美成人性av电影在线观看| a在线观看视频网站| 亚洲人成电影免费在线| 美女高潮的动态| 一级作爱视频免费观看| 亚洲欧美激情综合另类| 亚洲一区高清亚洲精品| 成人欧美大片| 人妻丰满熟妇av一区二区三区| 免费一级毛片在线播放高清视频| 免费av不卡在线播放| 两性午夜刺激爽爽歪歪视频在线观看| 国产乱人视频| 99久久精品热视频| 免费大片18禁| 国产欧美日韩一区二区精品| 在线播放无遮挡| 亚洲精品在线美女| 中文字幕人妻丝袜一区二区| 51国产日韩欧美| 国产成人啪精品午夜网站| 九九在线视频观看精品| 高清日韩中文字幕在线| 国产真实乱freesex| 欧美高清成人免费视频www| 无遮挡黄片免费观看| 免费大片18禁| 国产综合懂色| 最好的美女福利视频网| 亚洲国产精品成人综合色| 级片在线观看| 我的老师免费观看完整版| 国产欧美日韩精品亚洲av| 一本久久中文字幕| 中文字幕av在线有码专区| 中文字幕av成人在线电影| 国产欧美日韩精品亚洲av| 美女 人体艺术 gogo| 亚洲国产欧美网| 琪琪午夜伦伦电影理论片6080| 亚洲欧美日韩卡通动漫| 啦啦啦观看免费观看视频高清| 色哟哟哟哟哟哟| 成年女人永久免费观看视频| 老司机午夜十八禁免费视频| 亚洲av五月六月丁香网| 亚洲精品粉嫩美女一区| 国产成人欧美在线观看| 欧美日韩瑟瑟在线播放| 久久久成人免费电影| 国产精品嫩草影院av在线观看 | 国产精品美女特级片免费视频播放器| 国产伦一二天堂av在线观看| 国产一区在线观看成人免费| 69av精品久久久久久| svipshipincom国产片| 国产精品亚洲一级av第二区| www.999成人在线观看| 熟女人妻精品中文字幕| 国产伦在线观看视频一区| 亚洲欧美日韩无卡精品| а√天堂www在线а√下载| 亚洲精品乱码久久久v下载方式 | 99久久综合精品五月天人人| av在线蜜桃| 国产一区二区在线av高清观看| 国产69精品久久久久777片| 久久久久国产精品人妻aⅴ院| 久久久久久久久大av| 午夜精品久久久久久毛片777| 免费一级毛片在线播放高清视频| 亚洲美女视频黄频| 国内精品久久久久久久电影| 久久精品亚洲精品国产色婷小说| 99热只有精品国产| 国产v大片淫在线免费观看| 波野结衣二区三区在线 | 久久伊人香网站| 日本黄色视频三级网站网址| 国内毛片毛片毛片毛片毛片| 亚洲五月婷婷丁香| 亚洲成a人片在线一区二区| 国产精品三级大全| 婷婷丁香在线五月| netflix在线观看网站| 在线观看日韩欧美| 可以在线观看的亚洲视频| 欧美极品一区二区三区四区| 国产亚洲精品综合一区在线观看| 人妻夜夜爽99麻豆av| 男女做爰动态图高潮gif福利片| 搡老妇女老女人老熟妇| 午夜激情福利司机影院| 日韩大尺度精品在线看网址| h日本视频在线播放| 日韩 欧美 亚洲 中文字幕| 国产精品精品国产色婷婷| 一级黄片播放器| 高潮久久久久久久久久久不卡| 波野结衣二区三区在线 | 亚洲av成人av| 老司机福利观看| 亚洲一区二区三区色噜噜| 香蕉丝袜av| 黄色丝袜av网址大全| 999久久久精品免费观看国产| 欧美性猛交黑人性爽| 婷婷丁香在线五月| 此物有八面人人有两片| 国产成人影院久久av| 午夜日韩欧美国产| 色吧在线观看| 亚洲精品456在线播放app | 久久精品亚洲精品国产色婷小说| 久久精品影院6| 老司机午夜十八禁免费视频| 亚洲精品在线美女| 性色av乱码一区二区三区2| 精品久久久久久久久久久久久| 97碰自拍视频| 亚洲五月婷婷丁香| 99久久九九国产精品国产免费| 九色成人免费人妻av| 狂野欧美激情性xxxx| 在线天堂最新版资源| 噜噜噜噜噜久久久久久91| 日韩欧美在线二视频| 91字幕亚洲| 狠狠狠狠99中文字幕| 免费观看精品视频网站| 国产主播在线观看一区二区| aaaaa片日本免费| 国产精品1区2区在线观看.| 十八禁网站免费在线| 欧美一级毛片孕妇| 亚洲 国产 在线| 91久久精品国产一区二区成人 | www.色视频.com| 18禁黄网站禁片午夜丰满| 国语自产精品视频在线第100页| 国产精品三级大全| 高清在线国产一区| av中文乱码字幕在线| 男人的好看免费观看在线视频| 亚洲av中文字字幕乱码综合| 亚洲片人在线观看| 女警被强在线播放| 中文亚洲av片在线观看爽| 久久久久久久午夜电影| 一本精品99久久精品77| 国内揄拍国产精品人妻在线| 国产单亲对白刺激| 亚洲av成人不卡在线观看播放网| 十八禁人妻一区二区| 色综合婷婷激情| www日本黄色视频网| 在线观看日韩欧美| 成年女人看的毛片在线观看| 日韩av在线大香蕉| 91九色精品人成在线观看| 88av欧美| 日韩欧美国产在线观看| 久久精品夜夜夜夜夜久久蜜豆| av女优亚洲男人天堂| 免费无遮挡裸体视频| or卡值多少钱| 免费一级毛片在线播放高清视频| 日本精品一区二区三区蜜桃| xxxwww97欧美| 黄色丝袜av网址大全| 国产午夜福利久久久久久| 日日干狠狠操夜夜爽| 真人做人爱边吃奶动态| 宅男免费午夜| 内地一区二区视频在线| www日本黄色视频网| 国产麻豆成人av免费视频| 国产视频一区二区在线看| 日本免费a在线| 国产综合懂色| 他把我摸到了高潮在线观看| 亚洲人成网站在线播| 国产亚洲精品久久久久久毛片| av在线天堂中文字幕| 中文在线观看免费www的网站| 亚洲乱码一区二区免费版| 性色av乱码一区二区三区2| 国产激情偷乱视频一区二区| 午夜精品久久久久久毛片777| 在线播放无遮挡| 日本精品一区二区三区蜜桃| 中文在线观看免费www的网站| 啦啦啦免费观看视频1| 美女 人体艺术 gogo| 一区二区三区激情视频| 成人午夜高清在线视频| 成人精品一区二区免费| 搡女人真爽免费视频火全软件 | 成人特级黄色片久久久久久久| 最近最新中文字幕大全免费视频| 淫妇啪啪啪对白视频| 热99在线观看视频| 欧美成人免费av一区二区三区| 欧美+亚洲+日韩+国产| 国产亚洲精品久久久com| 婷婷亚洲欧美| 亚洲av一区综合| 日日夜夜操网爽| 国产免费av片在线观看野外av| 欧美3d第一页| 精品人妻1区二区| 日本一二三区视频观看| 麻豆成人av在线观看| 国产精品女同一区二区软件 | 狂野欧美激情性xxxx| 好男人电影高清在线观看| 午夜精品在线福利| 国产亚洲精品久久久久久毛片| 丝袜美腿在线中文| 在线观看舔阴道视频| 色在线成人网| 天天添夜夜摸| 国语自产精品视频在线第100页| 精品国产亚洲在线| 成人永久免费在线观看视频| 国产精品久久久久久久久免 | 99riav亚洲国产免费| 成人18禁在线播放| 国产午夜福利久久久久久| 成年女人永久免费观看视频| 免费看日本二区| 老熟妇乱子伦视频在线观看| 岛国视频午夜一区免费看| 给我免费播放毛片高清在线观看| 青草久久国产| 免费看a级黄色片| 18禁国产床啪视频网站| 国产一区二区三区在线臀色熟女| 别揉我奶头~嗯~啊~动态视频| 国产精品野战在线观看| 日韩欧美 国产精品| 乱人视频在线观看| 真人一进一出gif抽搐免费| 性欧美人与动物交配| 日韩国内少妇激情av| av欧美777| 国产亚洲精品久久久com| 亚洲国产欧美网| 国产高清激情床上av| 最近在线观看免费完整版| 久久精品国产综合久久久| 亚洲精品成人久久久久久| 午夜福利在线观看吧| 免费在线观看日本一区| 亚洲精品一区av在线观看| 成人午夜高清在线视频| 午夜精品一区二区三区免费看| 日本五十路高清| 最近最新免费中文字幕在线| 中文字幕久久专区| 亚洲美女黄片视频| 午夜免费激情av| 成人欧美大片| 国产一区二区激情短视频| 免费在线观看日本一区| 成年女人永久免费观看视频| 久久久久久久久中文| 久久精品影院6| 亚洲在线自拍视频| 99在线人妻在线中文字幕| 男女那种视频在线观看| 99热只有精品国产| 高潮久久久久久久久久久不卡| 欧美黑人欧美精品刺激| 国产 一区 欧美 日韩| 久久99热这里只有精品18| 老司机午夜福利在线观看视频| 无遮挡黄片免费观看| 免费观看的影片在线观看| 国产亚洲精品综合一区在线观看| 亚洲性夜色夜夜综合| 看黄色毛片网站| 免费高清视频大片| 国产探花在线观看一区二区| 变态另类丝袜制服| 国产欧美日韩精品一区二区| 国产一区二区亚洲精品在线观看| a级一级毛片免费在线观看| 国产精品日韩av在线免费观看| 看片在线看免费视频| 国产成人福利小说| 精品久久久久久久人妻蜜臀av| 丰满乱子伦码专区| 麻豆一二三区av精品| 免费高清视频大片| 色综合婷婷激情| 听说在线观看完整版免费高清| 午夜免费男女啪啪视频观看 | 丰满人妻熟妇乱又伦精品不卡| 国产精品香港三级国产av潘金莲| 精品久久久久久久久久久久久| 午夜免费观看网址| 国产色婷婷99| 国产三级黄色录像| 色综合婷婷激情| av在线天堂中文字幕| 欧美+日韩+精品| 少妇裸体淫交视频免费看高清| 好看av亚洲va欧美ⅴa在| 在线观看美女被高潮喷水网站 | 日韩中文字幕欧美一区二区| 精品免费久久久久久久清纯| 精品久久久久久久久久久久久| 此物有八面人人有两片| 久久精品91无色码中文字幕| 亚洲国产中文字幕在线视频| 在线播放国产精品三级| 欧美日本视频| 性色av乱码一区二区三区2| 久久精品国产99精品国产亚洲性色| 国产免费男女视频| 18禁黄网站禁片免费观看直播| 嫩草影院入口| 91在线观看av| 五月玫瑰六月丁香| 日本三级黄在线观看| 日韩欧美 国产精品| 欧美在线一区亚洲| 欧美高清成人免费视频www| 欧美黑人欧美精品刺激| 精品午夜福利视频在线观看一区| 久久久久久九九精品二区国产| 成人无遮挡网站| 天天一区二区日本电影三级| 天天添夜夜摸| 免费观看精品视频网站| 国产精品久久久人人做人人爽| 成人鲁丝片一二三区免费| av在线蜜桃| 91九色精品人成在线观看| 亚洲精品粉嫩美女一区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 一级黄片播放器| 亚洲成人免费电影在线观看| 日本免费a在线| 波多野结衣巨乳人妻| 亚洲国产欧美人成| 亚洲av中文字字幕乱码综合| 国产精品日韩av在线免费观看| 免费一级毛片在线播放高清视频| 久久精品影院6| 亚洲在线观看片| 免费电影在线观看免费观看| 精品久久久久久成人av| 少妇人妻一区二区三区视频| 国产69精品久久久久777片| 中文字幕人成人乱码亚洲影| 亚洲久久久久久中文字幕| 国产精品一及| 一区二区三区国产精品乱码| 日本精品一区二区三区蜜桃| 国产精品香港三级国产av潘金莲| 午夜激情欧美在线| 三级国产精品欧美在线观看| 中亚洲国语对白在线视频| 成人一区二区视频在线观看| 久久亚洲精品不卡| 午夜福利成人在线免费观看| 欧美又色又爽又黄视频| 久9热在线精品视频| 日韩中文字幕欧美一区二区| av视频在线观看入口| 免费一级毛片在线播放高清视频| 美女高潮喷水抽搐中文字幕| 日韩欧美国产在线观看| 久久婷婷人人爽人人干人人爱| x7x7x7水蜜桃| 两个人的视频大全免费| 欧美xxxx黑人xx丫x性爽| 伊人久久精品亚洲午夜| 国产av不卡久久| 国产在视频线在精品| 国产真人三级小视频在线观看| 熟女少妇亚洲综合色aaa.| 香蕉av资源在线| 可以在线观看毛片的网站| 亚洲性夜色夜夜综合| 国产乱人伦免费视频| 黄片大片在线免费观看| 大型黄色视频在线免费观看| 欧美黄色淫秽网站| 国产91精品成人一区二区三区| 免费在线观看日本一区| 免费看美女性在线毛片视频| 99久久九九国产精品国产免费| 毛片女人毛片| 午夜福利在线在线| 成人亚洲精品av一区二区| 午夜福利欧美成人| 99热这里只有是精品50| 久久久久久大精品| 国语自产精品视频在线第100页| 亚洲欧美日韩高清专用| 久久人人精品亚洲av| 亚洲国产精品久久男人天堂| 国产一区二区激情短视频| 无限看片的www在线观看| 在线观看午夜福利视频| 日韩欧美国产一区二区入口| 欧美另类亚洲清纯唯美| 天堂动漫精品| 国产伦一二天堂av在线观看| 男插女下体视频免费在线播放| 亚洲专区中文字幕在线| 亚洲人成网站在线播| 深夜精品福利| 亚洲国产欧美网| 91久久精品国产一区二区成人 | 久久久久久国产a免费观看| 内射极品少妇av片p| 亚洲精品久久国产高清桃花| 麻豆久久精品国产亚洲av| av片东京热男人的天堂| 日韩欧美一区二区三区在线观看| 国产欧美日韩精品一区二区| 一夜夜www| 亚洲中文字幕一区二区三区有码在线看| 非洲黑人性xxxx精品又粗又长| 在线观看一区二区三区| 一级毛片女人18水好多| 欧美性猛交╳xxx乱大交人| 三级男女做爰猛烈吃奶摸视频| 麻豆国产av国片精品| 国产午夜精品久久久久久一区二区三区 | 国产激情偷乱视频一区二区| 狠狠狠狠99中文字幕| av在线蜜桃| 少妇的丰满在线观看| 国产精品,欧美在线| 午夜日韩欧美国产| 亚洲精品久久国产高清桃花| 此物有八面人人有两片| 欧美日韩亚洲国产一区二区在线观看| 欧美bdsm另类| 高清在线国产一区| 国产一区二区在线av高清观看| 两性午夜刺激爽爽歪歪视频在线观看| 18禁裸乳无遮挡免费网站照片| 97碰自拍视频| svipshipincom国产片| 高清日韩中文字幕在线| 夜夜躁狠狠躁天天躁| 国产国拍精品亚洲av在线观看 | 久久精品国产清高在天天线| 两个人看的免费小视频| 亚洲精品美女久久久久99蜜臀| 免费av观看视频| 午夜福利在线观看吧| 亚洲av成人不卡在线观看播放网| 日韩欧美在线二视频| 成人特级av手机在线观看| 手机成人av网站| 51国产日韩欧美| 亚洲片人在线观看| 午夜免费男女啪啪视频观看 | 日韩大尺度精品在线看网址| 男女之事视频高清在线观看| 亚洲成人久久性| 亚洲一区高清亚洲精品| 国产精品一区二区三区四区久久| 国产午夜精品论理片| 久久九九热精品免费| 村上凉子中文字幕在线| 天堂网av新在线| 天美传媒精品一区二区| 日本黄大片高清| 成熟少妇高潮喷水视频| 亚洲熟妇中文字幕五十中出| 中文字幕高清在线视频| 深爱激情五月婷婷| 手机成人av网站| 久久久色成人| 日韩成人在线观看一区二区三区| 日韩大尺度精品在线看网址| av视频在线观看入口| 中文字幕av成人在线电影| 日韩欧美在线二视频| 天天添夜夜摸| 999久久久精品免费观看国产| 成年女人毛片免费观看观看9| 亚洲熟妇熟女久久| 欧美乱码精品一区二区三区| 亚洲精华国产精华精| 亚洲精品一区av在线观看| 国产成人a区在线观看| 天美传媒精品一区二区| 国产爱豆传媒在线观看| 久久久精品大字幕| 欧美日韩精品网址| 欧美日韩福利视频一区二区| 久久精品国产自在天天线| 亚洲中文日韩欧美视频| www.www免费av| 国产亚洲精品久久久久久毛片| 国产97色在线日韩免费| 国产国拍精品亚洲av在线观看 | 久久久久久大精品| 在线观看免费视频日本深夜| 日本撒尿小便嘘嘘汇集6| 天堂动漫精品| 一个人看的www免费观看视频| 一级黄片播放器| 亚洲18禁久久av| 欧美精品啪啪一区二区三区| 三级毛片av免费| 他把我摸到了高潮在线观看| 内射极品少妇av片p| av女优亚洲男人天堂| 精品国产美女av久久久久小说| 18+在线观看网站| 一本一本综合久久| 在线观看一区二区三区| 中文资源天堂在线| 日本与韩国留学比较| 99精品在免费线老司机午夜|