• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synchronization Transition of Time Delayed Complex Dynamical Networks with Discontinuous Coupling?

    2017-05-18 05:56:36YongZhengSun孫永征WangLi李望andDongHuaZhao趙東華2SchoolofMathematicsChinaUniversityofMiningandTechnologyXuzhou22008China
    Communications in Theoretical Physics 2017年1期
    關(guān)鍵詞:東華

    Yong-Zheng Sun(孫永征), Wang Li(李望),and Dong-Hua Zhao(趙東華)2School of Mathematics,China University of Mining and Technology,Xuzhou 22008,China

    2School of Mathematical Sciences,Fudan University,Shanghai 200433,China

    1 Introduction

    In the past few decades,synchronization of complex networks has been extensively investigated in many fields.[1]Understanding the mechanism behind the network synchronization is a central issue in nonlinear science.Many studies initially focused on the synchronization within a network.[2?5]This kind of synchronization is usually called as “inner synchronization”.It has been shown that the inner synchronization of complex dynamical networks depends both on the node dynamics and the topology of the interaction network.[6]However,in the real world,some networks often connect with other networks,synchronization may take place between two or more networks,which was termed “outer synchronization”[7?9]or “synchronization of duplex networks”.[10]Such as the balance between predator-prey networks in ecological communities.[7]The complete outer synchronization[11?12]and generalized outer synchronization[13?14]have been extensively studied.Many methods have been proposed to realize synchronization,e.g.,adaptive control,[15]pinning control,[16?18]impulsive control[19?21]and fi nite-time control.[22?24]

    The theoretical investigation of the outer synchronization has focused mainly on the in fl uence of network topologies and node dynamics.However,recent studies have shown that the interactions between networks also play important roles on synchronization.In real-word systems,it is often found that the interactions between two communities or networks may be switched o ffsometimes.In particular,the interactions may be switched on and o ffperi-odically.For example,due to seasonality,the interactions between predator-prey networks in an ecosystem may be activated and depressed periodically in a year.[25?26]It is thus important to study the synchronization of complex networks with on-o ffcoupling.It has been shown that complex networks can realize synchronization even if the network coupling is switched on and o ffperiodically.[25?27]And it has also been shown that the synchronized domain depends on the time scales of the on-o ffperiod and the node dynamics.[25]

    The e ff ect of time delays,which arise from a realistic consideration of fi nite communication times and processing speeds,is a key issue that has received considerable attention.[28?31]Time delay extensively exists in many biological and physical systems such as gene regulatory networks and neural networks.[32]It has been discovered that time delays have great in fl uence on the behavior of complex dynamical systems.In the past few years,the synchronization problem of complex dynamical networks with time delays has been an attractive subject of research.[33?34]Despite these investigations,a systematic study of the in fl uence of time delays and discontinuous coupling on the synchronization transition of complex networks has been lacking.

    Inspired by the above analysis,the question which we address in our present study is:Whether the synchronization can be achieved if the coupling between two time delayed complex networks is discontinuous,and if this is the case,under what conditions does it emerge?We propose two time-delayed complex dynamical networks with periodical on-o ffcoupling.First,we consider dynamical networks with constant delay which assume that all nodes in networks react to information received from its neighbours with the same time delay.Later,we investigate the networks with random distributed delays.We focus on the e ff ect of the coupling strength,the on-o ffrate,the network size and the time delay on the synchronization transition.Utilizing the stability theory of differential equations,we analytically show that two networks may realize synchronization if the time delay less than a positive threshold,and the coupling strength and the on-o ffrate are large enough.

    The rest of this paper is organized as follows.In Sec.2,networks formulation and some numerical results are given.The stability analysis and sufficient conditions for synchronization are provided in Sec.3.The e ff ect of time delays on the synchronization transmission is discussed in Sec.4.Finally,some conclusions are provided in Sec.5.

    2 Synchronization of Networks with Constant Delay

    We consider the following coupled drive-response complex dynamical networks:

    where i=1,2,...,N.Here xi(t)=(xi1,xi2,...,xin)T∈Rnand yi(t)=(yi1(t),yi2(t),...,yin(t))T∈Rnare state vectors of networks(1)and(2),respectively.f:Rn→Rnis the continuously differentiable nonlinear vector function governing the evolution of the i-th node of networks(1)and(2).The adjacency matrix G=(gij)N×Ndescribes the coupling con figurations of both networks:gij>0 if there is a link from node j to node i(i≠j)and zero otherwise,the diagonal elements of matrix G are de fi ned as gii=Γ ∈ Rn×nis the inner connection matrix between two connected nodes,and τijis the delay time in the interaction between the i-th and the j-th nodes.In order to describe the periodic on-o ffcoupling,the controllers ui(t)(i=1,2,...,N)are designed as follows:

    where ei(t)=yi(t)?xi(t)(i=1,2,...,N)are the synchronization errors between the drive network(1)and the response network(2);k(t)is the coupling strength which is taken as the periodic on-o ffcoupling.Speci fically speaking,the network is switched on with k(t)=k when mT≤t≤(m+θ)T,and the network is switched o ffwith k(t)=0 when(m+θ)T≤t≤(m+1)T(m=0,1,2,...),and the two processes are repeated again and again.Here,T>0 is called as the on-o ffperiod;0<θ≤1 is called as the on-o ffrate,while θ=1,corresponds to the continuous coupling case.

    In previous works in the field of synchronization of complex networks with on-o ffcoupling,[25?27]the interactions between nodes are assumed to occur instantaneously.However,the e ff ect of time-delayed interactions,which arise from a realistic consideration of fi nite reaction speed,should be considered.In our model,we suppose that nodes in both networks react to information received from its neighbours with some time delays.This is the main di ff erence between previous works and ours.We firstly assume the time delay τijto be the same for all nodes,i.e.,τij≡ τ,so that at time t nodes react to information perceived at time t? τ.Later,we also consider a generalized network model in which we assume that the time delay τijare randomly distributed.

    First,we performed a systematic numerical study of the delayed networks(1)and(2)to characterize their synchronization behavior in dependence on the values of parameters k and θ.The simulations were done by choosing the initial conditions xi(0)and yi(0)randomly in the interval[?1,1],for t ∈ (?τ,0].We consider two different topologies including the Erd¨os–R′enyi random(ER random)and the small-world networks with mean degree 〈d〉=6.The small-world network was generated by using the method in Ref.[35]with characteristic parameter p=0.3.We assume that the inner connection matrix Γ=Inand set gij=1 if there is a link between nodes i and j.We took the R¨ossler system as the node dynamics for both networks,which is described by:=[?y?z,x+ay,b+(x?c)z]with a=b=0.2 and c=5.7.We present results for τ=0.01 and T=0.1,but we have found similar results for other values of τ and T.We performed the simulations over the time interval[0,Ts]with Ts=10,and time step ?t=10?3.Note that we choose the values of τ to be integer multiples of ?t.Networks(1)and(2)are said to achieve complete outer synchronization if,for any initial states xi(0),yi(0),

    To characterize the transition to synchronization we use the indicator

    where

    anddenotes an average over the time interval[Ts?1,Ts].

    In Fig.1(a),we plot the indicator Isynas a function of the coupling strength k for fixed on-o ffrate θ=0.5.Figure 1(b)displays Isynvs.θ for fixed coupling strength k=5.As Figs.1(a)and 1(b)show for two canonical network models(ER random and small-world networks),the coupled networks(1)and(2)can transit to synchronization as the coupling strength k or the on-o ffrate θ increases.This is further supported by Figs.2(a)and 2(b),where we plotted simulation results for networks(1)and(2)with different values of(k,θ).We divided the domain[0.1,5]× [0.1,1]for(k,θ)into 50 × 50 equidistant(k,θ)-pairs.For each pair of the parameter values we performed simulations over the time interval[0,Ts],and calculated the indicator Isyn.It can be observed that two networks can transit to synchronization as the values of θ and k increase.Taking these results together,we find that two discontinuously coupled networks(1)and(2)can realize synchronization if the coupling strength and the on-o ff rate are large enough.

    Fig.1 Impact of the coupling strength k and the on-o ffrate θ on the synchronization transition.(a)The synchronization indicator Isynas a function of k for ER random and small-world networks with N=200 and=6;(b)Isynvs. θ.The characteristic parameter for the small-world network is p=0.3.The time delay τ=0.01,and the on-o ffperiod T=0.1.The node dynamics for networks(1)and(2)are the R¨ossler oscillators.

    Fig.2 (a)The synchronization indicator Isynfor ER random networks(1)and(2)with N=200 and mean degree =6.The parameters are τ=0.01,T=0.1,and(k,θ) ∈ [0.1,5]× [0.1,1].The dark blue regions indicate numerical synchronization.(b)Same as in(a)but for small-world networks with characteristic parameter p=0.3.

    3 Stability Analysis

    To understand the factors that determine the synchronization,we propose an analytical synchronization condition using the stability theory of the time-delayed differential equations.For later use,we need the following lemmas.

    Lemma 1[36]Let v(t)>0 for t∈R,τ≥ 0.If α> β>0 and

    then there exist two positive constants C and α such that

    Using Eqs.(1)and(2),we can get the following error systems:

    Now let us focus on the stability of the synchronized state.Linearizing the above error systems around xi,one has

    where J denotes the Jacobian operator.

    From the Definition of the on-o ffcoupling function k(t),systems(5)can be regarded as switched time delayed systems composed of the following two individual systems:

    In light of the result in Ref.[37],the error systems(5)are asymptotically stable if the convex combination of the time-delay systems(6)and(7)is asymptotically stable.Thus the stability of the error systems(5)is equivalent to the following time delayed systems:

    Letting e(t)=and F(t)=((Jf(x1(t))e1(t))T,...,(Jf(x2(t))e2(t))T)T,we can rewrite Eqs.(8)as the following vector form:

    where G=Using the fact that e(t)?e(t?τ)=we have

    Now,de fi ning the Lyapunov function V=eT(t)e(t),then the derivative of V along the trajectory of Eq.(10)is

    First of all,if the vector function f satis fi es the Lipschitz condition with a positive constant l,we get

    where Gs=(G+GT)/2,λmax(Gs)denotes the maximum eigenvalue of the matrix Gs,and ∥G∥ is the spectral norm of the matrix G.For the last term of right-hand side in Eq.(12),we get

    Substituting Eq.(13)into Eq.(12) finally leads to

    Furthermore,if

    we can obtain from the Lemma 1 that there are positive constants C and γ such that

    Consequently,

    which means that the linear error systems(5)are asymptotically stable about their zero solutions.Therefore,networks(1)and(2)can realize locally complete outer synchronization if the conditions(15)and(16)hold.Thus,if the time delay is less than a positive threshold τ?,the stability of the synchronous state is determined by the coupling strength k and the on-o ffrate θ.This is in accord with the numerical results in Figs.1 and 2.

    Furthermore,the allowable bound of the coupling delays is given in terms of explicit expressions,as shown in the inequality(16).In particular,if the adjacency matrix G is symmetric and irreducible,then the eigenvalues of the matrix G are 0= λ1> λ2≥ ···≥ λN.[38]Moreover,if we choose Γ =I,then λmax(Gs)=0 and ∥G∥ =|λN|.Consequently,the synchronization conditions(15)and(16)can be simpli fi ed as

    It is known that for inner synchronization of complex dynamical networks without coupling delays,the synchronization ability depends on the second largest eigenvalue λ2or the ratio λ2/λNof the corresponding coupling matrix.[39]However,we can observe from the condition(20)that,for outer synchronization of time-delayed networks with on-o ffcoupling,the synchronization ability depends on the minimum eigenvalue of the coupling matrix.The eigenvalue λNof some network topologies decreases dramatically asNincreases.Thus,the upper bound τ?decreases asNincreases.For example,for the global and star coupling con figurations λN= ?Nand τ?=(kθ?l)/[N2+(kθ+l)N].Therefore,for these kind of networks,the condition(20)implies that the larger of the network size is,the smaller τ?is,and the network is more difficult to be synchronized.

    4 E ff ect of Time Delays

    Let us now investigate the in fl uence of coupling delays on the synchronization transition.We illustrate our finding using the ER random and small-world networks.We performed simulations of networks(1)and(2)with k=10,θ=0.5,T=0.1,N∈ [10,500]and τ∈ [0,0.5].For the ER random network,we can observe from Fig.3(a)that the minimum eigenvalue of the adjacency matrix decreases as the network size increases.Figure 3(b)displays the value of τ?(N)calculated by the condition(20).It clearly shows that,for random topology,the theoretically upper bound of the time delay for synchronization is signi ficantly decreased as the network sizeNincreases,and τ?≈ 0 whenN&300.Thus high levels of time delay may suppress the synchronization.This observation is fully supported by Fig.4(a),where we divide the domain[10,500]×[0,0.5]for(N,τ)into 50×100 equidistant(N,τ)-pairs and encode the synchronization indicator Isyn.The dark blue regions indicate the numerical synchronization.This is further supported by Figs.5(a)and 5(b)where we plotted evolutions of synchronization error δ(t)between networks(1)and(2)forN=100,k=10,θ=0.5,T=0.1 and τ=0.03(Fig.5(a)),and τ=0.04(Fig.5(b)).We observe that two networks can achieve outer synchronization for τ=0.03,but they do not show tendency to synchronization for τ=0.04.different from the ER random network,Figs.3(a)and 3(b)show that,for the small-world network,λNis not a decreasing function of the network size.Thus,the upper bound of the time delay for synchronization for the small-world network is only weekly in fl uenced by the network size(Fig.4(b)).

    Fig.3 The e ff ect of network size N on the minimum eigenvalue λNand τ? calculated using Eq.(20)for ER random and small-world networks.(a)λNvs.N;(b)τ?vs.N.Both ER random and small-world network have mean degree〈d〉=6 and the characteristic parameter for the small-world network is p=0.3.The other parameter values are k=10,θ=0.5.

    In the above numerical and analytical studies,we assume that all the interactions occur with the same delay.However,actual delays in real systems are not necessarily the same for all the nodes in the networks.Delays might also be randomly distributed.Let us now consider the e ff ect of random delay times on the transition of synchronization.Speci fically,we consider random delays with the following normal distribution: τij= τ+ξ,where ξ is normally distributed with zero mean and standard deviation one.The delays are normally distributed around with mean τ and variance 1.Figures 6(a)and 6(b)display the synchronization indicator Isynas the function of the mean coupling delay τ and the network sizeN.Similar to the case of constant delays,it can be observed from Fig.6(a)that,for the ER random networks,the upper bound of the mean time delay for synchronization decreases with the network size increasing.Compared with the numerical results in Fig.4(a),the upper bound of the mean coupling delay for synchronization of the ER random network is smaller than that of networks with constant coupling de-_lay.It can be observed from Figs.4(b)and 6(b)that,for small-world networks with normally distributed coupling delays,the upper bound of the mean time delay for synchronization is larger than that of networks with constant delay.When the size of the network becomes larger,the above numerical results show that networks with smallworld topologies can tolerate larger delays than ER random networks.

    Fig.4 Effect of the time delay and network size on the synchronization transition for ER random(a)and small-world(b)networks with mean degree〈d〉=6.The parameters for networks(1)and(2)are k=10,θ =0.5,T=0.1 and(N,τ)∈ [10,500]×[0,0.5].The characteristic parameter for the small-world network is p=0.3.The dark blue regions indicate numerical synchronization.

    Fig.5 Synchronization error δ(t)between ER random networks(1)and(2)with N=100,k=10, θ =0.5,T=0.1,p=0.1.(a)The time delay τ=0.03;(b)The time delay τ=0.04.

    Fig.6 Synchronization indicator Isynfor(a)ER random and(b)small-world networks with normally distributed coupling delay.The parameter values used are k=10,θ=0.5,T=0.1,p=0.1.Both ER random and smallworld networks have mean degree 〈d〉=6.The characteristic parameter of small-world networks is p=0.3.The dark blue regions indicate numerical synchronization.

    5 Conclusions

    In this paper,we have investigated the synchronization transition between two time delayed complex dynamical networks with periodic on-o ffcoupling.First,we considered the networks with constant coupling delay.We found that for sufficient large coupling strength and the on-o ff rate two networks can realize synchronization if the coupling delay is small enough.Based on the stability theory of differential equations,sufficient conditions for the outer synchronization are established.The estimation for the upper bound of time delays for synchronization is obtained.Numerical results are fully supported by the theoretical analysis.In particular,we reported that,for the undirected and strongly connected networks,the upper bound of time delays for synchronization is a decreasing function of the absolute value of the minimum eigenvalue of the adjacency matrix.The e ff ect of random delays on the transition of synchronization is also investigated.We found that when the network size is large,small-world networks can tolerate larger time delay than ER random networks.

    Acknowledgments

    We thank the anonymous referees for their helpful comments and suggestions.

    References

    [1]A.Arenas,A.D?az-Guilera,J.Kurths,Y.Moreno,and C.Zhou,Phys.Rep.469(2008)93.

    [2]J.L¨u,X.Yu,and G.Chen,Physica A 334(2004)281.

    [3]Q.Zhang,J.Chen,and L.Wan,Phys.Lett.A 377(2013)2754.

    [4]T.Pyragien.e and K.Pyragas,Phys.Lett.A 379(2015)3084.

    [5]X.Liu and T.Chen,IEEE T.Automat.Contr.60(2015)3316.

    [6]T.Nishkawa,A.E.Motter,Y.C.Lai,and F.C.Hoppensteadt,Phys.Rev.Lett.91(2003)014010.

    [7]C.Li,C.Xu,W.Sun,and J.Kurths,Chaos 19(2009)013106.

    [8]X.Wu,W.Zheng,and J.Zhou,Chaos 19(2009)013109.

    [9]W.Sun,Y.Wu,J.Zhang,and S.Qin,J.Frank.Inst.352(2015)3166.

    [10]Y.Li,X.Wu,J.Lu,and J.L¨u,IEEE T.Circuist-II 63(2016)206.

    [11]G.Wang,J.Cao,and J.Lu,Phys.A 389(2010)1480.

    [12]Y.Sun,W.Li,and J.Ruan,Commun.Nonliear Sci.18(2013)989.

    [13]W.Sun and S.Li,Nonlinear Dyn.77(2014)481.

    [14]Y.Wu,C.Li,Y.Wu,and J.Kurths,Commun.Nonlinear Sci.17(2012)349.

    [15]H.G.Zhang,M.Zhao,Z.L.Wang,and Z.N.Wu,Nonlinear Dyn.77(2014)643.

    [16]X.Li,X.Wang,and G.Chen,IEEE T.Circuist-I 51(2004)2074.

    [17]W.Yu,G.Chen,J.L¨u,and J.Kurths,SIAM.J.Control Optim.51(2013)1395.

    [18]D.Ning,X.Wu,J.Lu,and J.L¨u,Chaos 25(2015)113104.

    [19]W.Sun,G.Chen,J.L¨u,and S.Chen,Nonlinear Dyn.69(2012)1751.

    [20]J.Lu,D.W.C.Ho,J.Cao,and J.Kurths,Nonlinear Anal.Real.RWA 14(2013)581.

    [21]Z.Wu,Commun.Theor.Phys.61(2014)590.

    [22]Y.Sun,W.Li,and D.Zhao,Chaos 22(2012)023152.

    [23]Y.Sun and W.Lin,Chaos 25(2015)083118.

    [24]Y.Sun,W.Li,and J.Ruan,Commun.Theor.Phys.58(2012)697.

    [25]L.Chen,C.Qiu,and H.Huang,Phys.Rev.E 79(2009)045101(R).

    [26]L.Chen,C.Qiu,H.Huang,G.Qi,and H.Wang,Eur.Phys.J.B 76(2010)625.

    [27]Y.Sun,W.Li,and D.Zhao,Chaos 22(2012)043125.

    [28]S.Xu and J.Lam,Int.J.Syst.Sci.39(2008)1095.

    [29]Q.Wang,G.Chen,and M.Perc,PloS One 6(2011)e15851.

    [30]J.Ma,H.Qin,X.Song,and R.Chu,Int.J.Modern Phys.B 29(2015)1450239.

    [31]W.Sun,S.Wang,G.Wang,and Y.Wu,Nonlinear Dyn.79(2015)2659.

    [32]J.Lu,J.Zhong,D.W.C.Ho,Y.Tang,and J.Cao,SIAM J.Control Optim.54(2016)475.

    [33]R.Rakkiyappana,N.Sakthivela,and S.Lakshmananb,Chin.Phys.B 23(2014)020205.

    [34]T.Hu,Y.Wu,and S.Li,Commun.Theor.Phys.65(2016)33.

    [35]D.J.Watts and S.H.Strogatz,Nature(London)393(1998)440.

    [36]A.Hmamed,Int.J.Syst.Sci.22(1991)1127.

    [37]J.Chiou,C.Wang,and C.Cheng,J.Frank.Inst.348(2011)261.

    [38]C.W.Wu and L.O.Chua,IEEE T.Circuist-I 42(1995)430.

    [39]X.F.Wang and G.Chen,IEEE T.Circuist-I 49(2002)54.

    猜你喜歡
    東華
    Optical image encryption algorithm based on a new four-dimensional memristive hyperchaotic system and compressed sensing
    掛燈籠
    “氵”與“冫”的區(qū)別
    認(rèn)識(shí)成語
    Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
    相同的“手” 不同的義
    東華理工大學(xué)藝術(shù)學(xué)院繪畫作品選登
    數(shù)控技術(shù)在自動(dòng)化機(jī)械制造中的運(yùn)用研究
    東莞東華中學(xué)開啟“成功”的教育模式
    大社會(huì)(2017年9期)2017-11-21 02:42:23
    立體幾何中這樣運(yùn)用設(shè)而不求
    久久久欧美国产精品| 亚洲国产成人一精品久久久| 晚上一个人看的免费电影| 精品99又大又爽又粗少妇毛片| 新久久久久国产一级毛片| 精品亚洲成a人片在线观看| 国产亚洲av片在线观看秒播厂| 最近中文字幕高清免费大全6| 七月丁香在线播放| 一级,二级,三级黄色视频| 久久久欧美国产精品| 蜜桃国产av成人99| 亚洲色图综合在线观看| 搡女人真爽免费视频火全软件| 狠狠婷婷综合久久久久久88av| 欧美精品高潮呻吟av久久| 亚洲欧美中文字幕日韩二区| 亚洲欧洲日产国产| 中国三级夫妇交换| 黄色怎么调成土黄色| 久久精品国产综合久久久| 国产片特级美女逼逼视频| 精品少妇一区二区三区视频日本电影 | 街头女战士在线观看网站| 中文字幕人妻熟女乱码| 一级毛片电影观看| av电影中文网址| 国产乱来视频区| 亚洲国产成人一精品久久久| 免费看不卡的av| 久久国产精品大桥未久av| 一级,二级,三级黄色视频| 精品国产一区二区久久| 国产高清国产精品国产三级| 精品久久久精品久久久| 老汉色∧v一级毛片| 国产亚洲av片在线观看秒播厂| 在线精品无人区一区二区三| 男女啪啪激烈高潮av片| 菩萨蛮人人尽说江南好唐韦庄| 天堂中文最新版在线下载| 一级片免费观看大全| 最近最新中文字幕大全免费视频 | 久久97久久精品| 2021少妇久久久久久久久久久| 精品国产超薄肉色丝袜足j| 多毛熟女@视频| 日本猛色少妇xxxxx猛交久久| 国产视频首页在线观看| 日韩制服骚丝袜av| 久久精品国产亚洲av天美| 曰老女人黄片| 日日撸夜夜添| 性少妇av在线| 日韩不卡一区二区三区视频在线| 亚洲精品自拍成人| 久久人妻熟女aⅴ| 在线看a的网站| 一个人免费看片子| 日韩欧美一区视频在线观看| 国产成人午夜福利电影在线观看| 欧美激情 高清一区二区三区| 国产探花极品一区二区| 久久久国产精品麻豆| 大话2 男鬼变身卡| 视频在线观看一区二区三区| 国产极品粉嫩免费观看在线| 色婷婷av一区二区三区视频| 精品午夜福利在线看| 久久久久人妻精品一区果冻| 国产亚洲欧美精品永久| 亚洲综合色惰| 亚洲激情五月婷婷啪啪| 久久精品人人爽人人爽视色| 日韩成人av中文字幕在线观看| 永久免费av网站大全| 欧美激情 高清一区二区三区| 午夜福利一区二区在线看| 欧美成人午夜免费资源| 老司机亚洲免费影院| 亚洲欧美清纯卡通| 天堂8中文在线网| 欧美国产精品一级二级三级| 91aial.com中文字幕在线观看| 美女高潮到喷水免费观看| 久久狼人影院| 波多野结衣av一区二区av| 亚洲欧美一区二区三区国产| 天天躁日日躁夜夜躁夜夜| 成人国产麻豆网| 国产黄频视频在线观看| 男女边摸边吃奶| 不卡视频在线观看欧美| 狂野欧美激情性bbbbbb| 美女国产高潮福利片在线看| 国产精品麻豆人妻色哟哟久久| 捣出白浆h1v1| 波多野结衣一区麻豆| 两性夫妻黄色片| 成人手机av| 久久精品国产亚洲av高清一级| 精品第一国产精品| 国产亚洲午夜精品一区二区久久| 中文字幕色久视频| 永久网站在线| 久久久国产精品麻豆| 久久久久久久久久人人人人人人| 在线天堂中文资源库| 久久久精品94久久精品| 男的添女的下面高潮视频| 男人操女人黄网站| 中国三级夫妇交换| 国产精品一区二区在线不卡| 精品少妇内射三级| 丝袜美足系列| 大片电影免费在线观看免费| 日韩精品有码人妻一区| 亚洲精品aⅴ在线观看| 国产成人精品福利久久| 青春草视频在线免费观看| 亚洲国产毛片av蜜桃av| 天天躁夜夜躁狠狠躁躁| 亚洲色图综合在线观看| 欧美少妇被猛烈插入视频| 国产一区亚洲一区在线观看| 亚洲av男天堂| 日本av免费视频播放| 国产精品三级大全| 婷婷色综合www| 啦啦啦啦在线视频资源| 日韩在线高清观看一区二区三区| 亚洲一区二区三区欧美精品| av网站在线播放免费| 好男人视频免费观看在线| 亚洲成人一二三区av| 人妻 亚洲 视频| av有码第一页| 26uuu在线亚洲综合色| 国产片内射在线| 免费日韩欧美在线观看| 欧美av亚洲av综合av国产av | 色婷婷久久久亚洲欧美| av在线老鸭窝| 国产福利在线免费观看视频| 极品人妻少妇av视频| 亚洲 欧美一区二区三区| 黄色毛片三级朝国网站| 国产乱来视频区| 少妇的逼水好多| 香蕉丝袜av| 免费播放大片免费观看视频在线观看| 亚洲情色 制服丝袜| 亚洲欧美一区二区三区国产| 午夜福利乱码中文字幕| 亚洲成色77777| 亚洲熟女精品中文字幕| 少妇的丰满在线观看| 国产在视频线精品| av线在线观看网站| 久久精品人人爽人人爽视色| 久久精品久久久久久噜噜老黄| 亚洲人成77777在线视频| 看非洲黑人一级黄片| 亚洲,一卡二卡三卡| 麻豆乱淫一区二区| 久久亚洲国产成人精品v| 久久久亚洲精品成人影院| 一边亲一边摸免费视频| 三级国产精品片| 免费看不卡的av| 精品人妻偷拍中文字幕| 2018国产大陆天天弄谢| 春色校园在线视频观看| 男人添女人高潮全过程视频| 欧美精品一区二区大全| 中文字幕最新亚洲高清| 中文字幕亚洲精品专区| videosex国产| 久久久久精品久久久久真实原创| 精品少妇内射三级| 精品亚洲成国产av| 高清黄色对白视频在线免费看| 亚洲综合色网址| 日本欧美国产在线视频| 久久久久久人人人人人| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 捣出白浆h1v1| 亚洲伊人久久精品综合| 国产精品久久久久成人av| av在线老鸭窝| 成人毛片a级毛片在线播放| 99热网站在线观看| 超碰成人久久| 精品人妻一区二区三区麻豆| 99国产综合亚洲精品| 精品国产乱码久久久久久小说| 欧美精品av麻豆av| 最近2019中文字幕mv第一页| 成年动漫av网址| 欧美精品人与动牲交sv欧美| 午夜福利在线免费观看网站| 新久久久久国产一级毛片| 亚洲国产av新网站| 亚洲国产精品999| 成人午夜精彩视频在线观看| 99re6热这里在线精品视频| 亚洲三级黄色毛片| 国产av一区二区精品久久| 久热这里只有精品99| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品熟女久久久久浪| 色播在线永久视频| 亚洲欧美清纯卡通| a 毛片基地| 亚洲国产看品久久| 久久人妻熟女aⅴ| 一本色道久久久久久精品综合| 一本久久精品| 精品视频人人做人人爽| 日韩人妻精品一区2区三区| 欧美中文综合在线视频| 少妇 在线观看| 久久毛片免费看一区二区三区| 日韩av不卡免费在线播放| 日韩制服骚丝袜av| 丝袜美足系列| 久久久久久免费高清国产稀缺| 欧美+日韩+精品| 日本av免费视频播放| 日韩一卡2卡3卡4卡2021年| 制服人妻中文乱码| 九色亚洲精品在线播放| 精品亚洲成国产av| 国产av码专区亚洲av| 国产精品亚洲av一区麻豆 | 美女主播在线视频| 一级毛片我不卡| 精品一区二区三卡| 亚洲美女黄色视频免费看| 亚洲成国产人片在线观看| 午夜福利影视在线免费观看| 成年动漫av网址| 亚洲精品aⅴ在线观看| 熟女少妇亚洲综合色aaa.| a 毛片基地| 宅男免费午夜| 观看av在线不卡| 高清不卡的av网站| 老女人水多毛片| 黄频高清免费视频| 欧美精品国产亚洲| 秋霞在线观看毛片| videosex国产| 亚洲国产av新网站| 99久久精品国产国产毛片| 免费黄网站久久成人精品| 叶爱在线成人免费视频播放| 免费不卡的大黄色大毛片视频在线观看| 国产片特级美女逼逼视频| 精品人妻在线不人妻| 亚洲精品日韩在线中文字幕| 午夜福利视频精品| 国产深夜福利视频在线观看| 日本免费在线观看一区| 亚洲欧洲日产国产| 日韩中文字幕欧美一区二区 | 国产一区二区在线观看av| 久久国内精品自在自线图片| 久久久欧美国产精品| av免费观看日本| videossex国产| 国产亚洲精品第一综合不卡| 丝袜人妻中文字幕| 9191精品国产免费久久| 老女人水多毛片| 狠狠婷婷综合久久久久久88av| 欧美另类一区| 十八禁高潮呻吟视频| 午夜福利网站1000一区二区三区| 国产片内射在线| 精品国产超薄肉色丝袜足j| 岛国毛片在线播放| 久久这里只有精品19| 在线观看免费高清a一片| 纯流量卡能插随身wifi吗| 国产成人精品在线电影| 色哟哟·www| 精品少妇一区二区三区视频日本电影 | 国产成人91sexporn| 在线 av 中文字幕| 尾随美女入室| 日韩不卡一区二区三区视频在线| 9热在线视频观看99| 不卡视频在线观看欧美| 久久久久视频综合| 亚洲av综合色区一区| 看十八女毛片水多多多| av又黄又爽大尺度在线免费看| 热99国产精品久久久久久7| 一区二区日韩欧美中文字幕| 国产黄频视频在线观看| 性色avwww在线观看| 少妇 在线观看| 亚洲美女搞黄在线观看| 亚洲国产精品999| 高清视频免费观看一区二区| 日本av免费视频播放| 国产亚洲最大av| 久久精品久久久久久久性| 亚洲av电影在线进入| 十分钟在线观看高清视频www| 亚洲色图综合在线观看| 赤兔流量卡办理| 少妇被粗大猛烈的视频| 国产精品99久久99久久久不卡 | 日本免费在线观看一区| 一本久久精品| av.在线天堂| 国产成人免费无遮挡视频| 99国产精品免费福利视频| 91久久精品国产一区二区三区| 免费少妇av软件| 大香蕉久久成人网| 最近手机中文字幕大全| 午夜免费男女啪啪视频观看| 国产极品天堂在线| 在线观看免费高清a一片| 日韩欧美一区视频在线观看| 色婷婷av一区二区三区视频| 激情视频va一区二区三区| 亚洲精品久久成人aⅴ小说| 日本wwww免费看| 在线免费观看不下载黄p国产| av有码第一页| 日本猛色少妇xxxxx猛交久久| 狠狠精品人妻久久久久久综合| 男的添女的下面高潮视频| 日本av手机在线免费观看| 亚洲国产毛片av蜜桃av| 成人黄色视频免费在线看| 国语对白做爰xxxⅹ性视频网站| 国产av一区二区精品久久| 人人妻人人澡人人看| 国产片特级美女逼逼视频| 看免费成人av毛片| 国产精品无大码| 欧美 亚洲 国产 日韩一| 高清视频免费观看一区二区| 亚洲美女视频黄频| 亚洲精品第二区| 亚洲精品美女久久久久99蜜臀 | 亚洲av男天堂| 免费黄色在线免费观看| 欧美最新免费一区二区三区| www.熟女人妻精品国产| 香蕉精品网在线| 国产免费福利视频在线观看| 亚洲 欧美一区二区三区| 亚洲国产看品久久| 又大又黄又爽视频免费| 免费黄色在线免费观看| 男人添女人高潮全过程视频| 一区在线观看完整版| 亚洲一区中文字幕在线| 女性生殖器流出的白浆| 男女高潮啪啪啪动态图| 国产乱人偷精品视频| 欧美激情 高清一区二区三区| 各种免费的搞黄视频| 超碰97精品在线观看| 国产有黄有色有爽视频| 人人澡人人妻人| 午夜福利视频在线观看免费| 午夜福利网站1000一区二区三区| 熟女少妇亚洲综合色aaa.| 不卡av一区二区三区| 宅男免费午夜| 一级毛片 在线播放| 男男h啪啪无遮挡| 丁香六月天网| 波多野结衣一区麻豆| 亚洲欧美一区二区三区国产| 美女脱内裤让男人舔精品视频| 久久人人爽av亚洲精品天堂| 精品国产一区二区三区四区第35| 久久久久久久久久人人人人人人| 亚洲av电影在线观看一区二区三区| 老熟女久久久| 丝袜人妻中文字幕| 国产 精品1| 老司机影院毛片| 黑人猛操日本美女一级片| 国产 精品1| 色94色欧美一区二区| 国产亚洲欧美精品永久| 久久人人97超碰香蕉20202| 一级,二级,三级黄色视频| 久久午夜福利片| 久久精品aⅴ一区二区三区四区 | 日日撸夜夜添| 中文字幕亚洲精品专区| 亚洲精品日韩在线中文字幕| 夜夜骑夜夜射夜夜干| 国产精品国产av在线观看| 18禁裸乳无遮挡动漫免费视频| 天天躁夜夜躁狠狠躁躁| 久久99精品国语久久久| 国产精品99久久99久久久不卡 | 午夜免费男女啪啪视频观看| 大香蕉久久成人网| 欧美日韩精品网址| 亚洲人成77777在线视频| 欧美另类一区| 精品一区二区三卡| 精品国产乱码久久久久久小说| 少妇人妻精品综合一区二区| 美女脱内裤让男人舔精品视频| 国产亚洲最大av| 免费黄频网站在线观看国产| av福利片在线| 麻豆乱淫一区二区| 电影成人av| 美女福利国产在线| 国产不卡av网站在线观看| 国产精品亚洲av一区麻豆 | 中文字幕精品免费在线观看视频| 捣出白浆h1v1| 精品第一国产精品| 一区福利在线观看| 中文精品一卡2卡3卡4更新| 国产亚洲一区二区精品| 久久免费观看电影| 一区二区三区乱码不卡18| 99re6热这里在线精品视频| 大片电影免费在线观看免费| 国产日韩欧美在线精品| 又大又黄又爽视频免费| 亚洲成人一二三区av| 26uuu在线亚洲综合色| 蜜桃国产av成人99| 91aial.com中文字幕在线观看| 九色亚洲精品在线播放| 寂寞人妻少妇视频99o| 国产精品人妻久久久影院| 日韩欧美精品免费久久| www.av在线官网国产| 久久热在线av| 男女无遮挡免费网站观看| 极品人妻少妇av视频| 国产亚洲一区二区精品| 亚洲精品日韩在线中文字幕| 在现免费观看毛片| www.av在线官网国产| 综合色丁香网| 久久久欧美国产精品| 国产精品人妻久久久影院| 18禁动态无遮挡网站| 国产精品偷伦视频观看了| 国产精品久久久久久精品电影小说| 亚洲欧美一区二区三区黑人 | 乱人伦中国视频| 久久99蜜桃精品久久| 777久久人妻少妇嫩草av网站| 丝袜美腿诱惑在线| 亚洲国产最新在线播放| 又粗又硬又长又爽又黄的视频| 2021少妇久久久久久久久久久| 男女免费视频国产| 国产精品免费视频内射| 免费观看a级毛片全部| 乱人伦中国视频| av网站在线播放免费| 久热这里只有精品99| 黑人欧美特级aaaaaa片| 国产成人精品在线电影| 欧美日韩精品网址| 日韩中字成人| 天天影视国产精品| 久久午夜综合久久蜜桃| 夫妻性生交免费视频一级片| 国产成人aa在线观看| 欧美人与性动交α欧美精品济南到 | 蜜桃在线观看..| 最近中文字幕高清免费大全6| 美女脱内裤让男人舔精品视频| 日韩 亚洲 欧美在线| 制服诱惑二区| 国产精品麻豆人妻色哟哟久久| 国产精品一区二区在线不卡| 免费高清在线观看日韩| 人妻少妇偷人精品九色| 看非洲黑人一级黄片| 天天影视国产精品| 午夜免费鲁丝| 国产有黄有色有爽视频| 黄网站色视频无遮挡免费观看| 久久精品久久久久久噜噜老黄| 国产免费又黄又爽又色| 久久久久久久久免费视频了| 亚洲成人av在线免费| 狂野欧美激情性bbbbbb| 搡女人真爽免费视频火全软件| 欧美在线黄色| 久久精品久久精品一区二区三区| 国产成人精品久久久久久| 亚洲精品第二区| 搡女人真爽免费视频火全软件| 男人添女人高潮全过程视频| 国产综合精华液| 色94色欧美一区二区| 免费在线观看视频国产中文字幕亚洲 | 亚洲国产欧美网| 一级片免费观看大全| 精品99又大又爽又粗少妇毛片| xxx大片免费视频| 国产伦理片在线播放av一区| 婷婷色综合www| 国产精品偷伦视频观看了| 国产日韩欧美亚洲二区| 精品一区在线观看国产| 成人亚洲欧美一区二区av| 亚洲欧美一区二区三区国产| 一区二区av电影网| 18+在线观看网站| 美女福利国产在线| 男的添女的下面高潮视频| 午夜精品国产一区二区电影| 18禁裸乳无遮挡动漫免费视频| 18+在线观看网站| 亚洲成人手机| 天天操日日干夜夜撸| 国产欧美日韩一区二区三区在线| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品一二三| 丝袜美足系列| 丝袜人妻中文字幕| 高清在线视频一区二区三区| 亚洲精品国产色婷婷电影| 看十八女毛片水多多多| 少妇人妻精品综合一区二区| 日本vs欧美在线观看视频| 日韩在线高清观看一区二区三区| av电影中文网址| 汤姆久久久久久久影院中文字幕| 91成人精品电影| 久久综合国产亚洲精品| 香蕉丝袜av| 天堂俺去俺来也www色官网| 美女国产视频在线观看| 亚洲欧美成人精品一区二区| 婷婷色综合www| 亚洲熟女精品中文字幕| 美女中出高潮动态图| 91精品国产国语对白视频| 亚洲av欧美aⅴ国产| 日韩制服丝袜自拍偷拍| 黑人猛操日本美女一级片| 国产高清不卡午夜福利| 久久精品久久久久久久性| 国产精品人妻久久久影院| 久久久久国产网址| 下体分泌物呈黄色| 国产精品秋霞免费鲁丝片| 1024香蕉在线观看| 我要看黄色一级片免费的| 欧美精品一区二区免费开放| 午夜影院在线不卡| 高清不卡的av网站| 男女免费视频国产| 亚洲国产欧美日韩在线播放| 国产精品人妻久久久影院| 黄色一级大片看看| 亚洲精品第二区| 亚洲精品乱久久久久久| 人妻 亚洲 视频| 亚洲国产欧美网| 亚洲精品久久久久久婷婷小说| 天天躁狠狠躁夜夜躁狠狠躁| av在线播放精品| a级毛片在线看网站| 久久精品国产亚洲av天美| 亚洲精品国产色婷婷电影| 中文字幕人妻丝袜制服| 在线亚洲精品国产二区图片欧美| 激情五月婷婷亚洲| av.在线天堂| 中文字幕制服av| 国产视频首页在线观看| 久久人妻熟女aⅴ| 久热久热在线精品观看| 亚洲精品国产一区二区精华液| 午夜福利在线免费观看网站| 麻豆精品久久久久久蜜桃| 最新中文字幕久久久久| av在线老鸭窝| 亚洲一级一片aⅴ在线观看| 人人澡人人妻人| 精品酒店卫生间| 黄色毛片三级朝国网站| 午夜福利在线观看免费完整高清在| 免费日韩欧美在线观看| 男的添女的下面高潮视频| 国产一级毛片在线| 亚洲欧洲国产日韩| 99久久人妻综合| 亚洲国产欧美在线一区| 日韩在线高清观看一区二区三区| 黄色毛片三级朝国网站| 午夜福利在线免费观看网站| 国产片特级美女逼逼视频| 这个男人来自地球电影免费观看 | 亚洲av免费高清在线观看| 免费观看在线日韩| 秋霞在线观看毛片| 哪个播放器可以免费观看大片|