• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermodynamic Analysis of Cosmological Black Hole

    2017-05-18 05:56:32AkbarTayebBrahimiandQaisar
    Communications in Theoretical Physics 2017年1期

    M.Akbar, Tayeb Brahimi, and S.M.Qaisar

    E ff at University,Electrical and Computer Engineering Department,P.O.Box 34689,Jeddah,Saudi Arabia

    1 Introduction

    Black holes and cosmological metrics are obtained by solving Einstein’s field equations under different domains.Generally,the black metric represents a point mass covered by the horizons without expanding behavior of the universe.The main issue with the black holes is that these metrics disregard the expanding behavior of the universe.On the other hand,the cosmological metrics persist expanding universe without holding a point mass describing a black hole.However,the McVittie metric persists an integrated treatment holding a strongly gravitating central object,embedded in spatially fl at Friendmann-Robertson-Walker(FRW)universe.[1]This is one of the primary motivations of this study in order to integrate the thermodynamic treatment of the Mcvittie universe.Generally,the thermodynamics of the spacetime metrics are two folds:(i)Thermodynamics of black hole metrics at black hole horizons and(ii)Thermodynamics of the cosmological metrics at their respective horizons.In the case of black hole metrics,Padmanabhan[2]was the first who initiated the key development to launch relationship between the Einstein field equations and the first law of thermodynamics near the black hole horizons.It has been shown that in Einstein’s gravity as well as in a wider class of gravitational theories,the Einstein field equations establish the first law of thermodynamic T dS=dE+PdV.[2?3]Recently,various laws of thermodynamics have been studied[4?8]to explore deep relationship between gravity theory and thermodynamics.In the case of cosmological metrics,Cai and Kim[7]initiated and derived the Friendmann equations of FRW universe by employing the equilibrium Clausius relation at the apparent horizon.Later on,Akbar and Cai[9]formulated and recast the differential form of the Einstein field equations as a uni fi ed first law T dS=dE+W dV near the apparent horizon of FRW universe.This connection has also been extended for other gravity theories.[10?12]Due to this deep connection between gravity theory and the laws of ordinary thermodynamics,it has been argued[13]that thermal behavior of the Einstein field equations would be a generic property of the spacetime metrics and can be extended to any spacetime metric with horizons.In the present work,we consider a more general spacetime metric,called McVittie metric,to integrate and explore its thermodynamics.This metric has been modeled to present a family of spherically symmetric non-vacuum spacetime universe in which a black hole is embedded in a fl at FRW universe.In this study,we analyze qualitatively the roots of a cubic equation arising from the apparent horizon of the McVittie universe.The surface gravity of McVittie universe is discussed near apparent horizon and various conditions in terms of McVittie parameters are explored.The field equations of McVittie metric are obtained by applying the Uni fi ed first law of thermodynamics.Furthermore,heat capacity at constant pressure and generalized second law(GSL)are discussed at apparent horizon.

    This paper is organized as follows.In Sec.2,we shall review brie fl y properties of McVittie metric.The horizons of McVittie universe shall be discussed in Sec.3.In Secs.4 and 5,we shall analyze conditions on surface gravity and heat capacity.The field equations will be derived via unifi ed first law in Sec.6.Furthermore we shall discuss GSL in Sec.7 while we shall conclude our results in Sec.8.

    2 McVittie Universe

    In his original work,McVitte was able to find[1]his well-known spacetime metric called McVittie universe and its line element is given in isotropic coordinates by

    where d?2,M and a(t)are the line element on the unit 2-sphere,a positive constant which represents the mass of the black hole and an arbitrary positive function called the cosmic scale factor respectively.Throughout this paper,we adopt the units G=c=κ=~=1.In particular,the above metric(1)reduces to a spatially fl at FRW metric when M→0 while it reduces to the Schwarzschild black hole in isotropic coordinate at a(t)=constant.Apparently,McVittie metric seems to stand for a Schwarzschild black hole embedded in a homogeneous,spatially fl at FRW metric[14]but its physical interpretation is still under debate.[14?15]On the other hand,it has been argued in Ref.[15]that the McVittie metric,in general,can not represent a black hole embedded in a homogeneous,spatially fl at FRW universe because it becomes singular on the 2-sphere at r=M/2a and this singularity is spacelike.[16]Furthermore,it was found that the pressure of the matter density is in fi nite at r=M/2a while its energy density is if nite.It is also argued that the McVittie universe may illustrate a point mass situated at r=0 and embedded in a spatially fl at FRW universe.Moreover,in general,this point mass is covered by a singularity at r=M/2a.[16]In Ref.[17],Nolan found that it is a weak singularity in the sense that the volume of an object does not shrink to zero at a surface where r=M/2a,and therefore the energy density of the cosmic fl uid remains fi nite.On the other hand,the pressure of the cosmic fl uid and Ricci scalar diverge at r=M/2a.Also,Nolan rewrote McVittie metric in terms of R=ar(1+M/2ar)2and argued that the resulting metric behaves like a point-mass at R=0,covered by a singularity at R=2M.He also argued that if the present universe is expanding the surface at R=2M is covered by an anti-trapped region which admits white hole rather than a black hole.Meanwhile,other authors[18]discarded Nolan interpretation and suggested black hole interpretation by de fi ning ingoing radial null geodesics at a particular choice of the scale factor a(t).So,the McVittie metric represents some kind of strongly gravitating central object,embedded in fl at FRW universe.However,its physical interpretation is not totally clear and remains the subject of debate.

    3 Apparent Horizon

    Let us rewrite the McVittie metric(1)in spherical symmetric form

    where R=a(t)r(1+M/2a(t)r)2is the time dependent areal radius of the universe,x0=t,x1=r and twodimensional metric

    The apparent horizon is de fi ned by a marginally trapped surface with vanishing expansion.Thus mathematically,hab?aR?bR=0 fi xes the location of the apparent horizons,which after evaluating through McVittie metric(2),gives a cubic equation in terms of apparent radius RAgiven below

    where H refers to the time dependent Hubble parameter and RAdenotes the apparent horizon radius.Particularly,at M=0,the apparent horizon reduces to the apparent horizon/cosmological horizon,RA=1/H,of fl at FRW universe,while at a(t)=constant i.e.H=0,it admits event horizon of Schwarzschild black hole located at RA=RE=2M.It has been argued in Ref.[19]that the apparent horizon described a causal horizon of dynamical spacetime holding gravitational entropy,surface gravity and other thermodynamical properties.It has been shown that these thermodynamic quantities associated with the apparent horizons obey the first law of thermodynamics in the Einstein gravity as well as a wider class of gravity theories.[20]In the present work,we study various thermodynamic characteristics associated with the apparent horizons of McVittie universe and analyze the process of energy fl ow through apparent horizon to provide the uni fi ed first law.Let us first proceed to find the apparent horizons,RA,of the McVittie universe by finding real positive roots of Eq.(3).It is convenient first to analyze Eq.(3)qualitatively and fi x conditions in terms of H and M for the existence of its horizons.In order to proceed this analysis,we de fi ne a real function f(RA)=H2?RA+2M of variable RA>0 via Eq.(3).Mathematically,its extreme points are obtained by putting df(RA)/dRA=0,which admits two real points,RA±= ±1/H.Neglecting RA?<0 negative root,the root RA=RA+=1/H is a unique root representing extreme point.The second deriv√ative d2f(RA)/d>0 at its extreme point RA=1/H,which implies that the extremal point corresponds to minimum and its minimumvalue is f(Rmin)= ?2/3H+2M at RA=Rmin=1/H.Also note that as RA→∞implies f(RA)→∞and f(RA=0)=2M.Since the function f(RA)is twice differentiable and positive at critical point,hence it is concave up.With reference to its minimum value,there are three cases;

    Case 1 In this case,f(R)cuts the R-axis at two points admitting two real distinct roots RA1and RA2.Hence,there are two horizons inner and outer de fi ned by Eqs.(4)and(5)respectively.These roots are shown graphically by Fig.1.When f(Rmin)<0,McVittie metric admits two horizon provided M<1/3H.

    Fig.1 Function f(R)for M=1 and H=1/6 is shown which admits two horizons when M<1/3H.

    Case 2This gives repeated roots and identi fi ed as an extremal case.In this case f(R)touches R-axis at RA=Rminas shown in Fig.2.Furthermore,f(Rmin)=0,admits the condition,M=1/3H.

    Fig.2 Repeated ho√rizons of McVittie Universe with M=1 and H=1/3 satisfying the condition M=1/3H.

    Case 3 This case involves naked singularity and hence there are no real roots when f(Rmin)>0.The graph of f(R)lies above the R-axis as shown in Fig.3.Beside the qualitative analysis of Eq.(3),one can obtain its exact roots.Since it is a cubic equation in RAand there are various methods available in literature to solve such an equation.However we follow the procedure given by Nickalls[21]to find its roots.These roots are given below,

    where sin3θ =3MH(t).Obviously,after neglecting negative root R3<0,we have two real positive roots admitting two apparent horizons,RA1and RA2of McVittie universe.These two horizons RA1and RA2exist provided 0

    Fig.3 No horizons of McVittie Universe with M=1 and H=1/2 satisfying M>1/3H.

    4 Horizon Thermodynamics

    This section deals with the various thermodynamic quantities associated with the apparent horizons of McVittie universe.It has been shown by Hawking that a black hole emits thermal radiation at its horizon with a temperature proportional to the surface gravity and with an entropy proportional to the horizon area.These notions of temperature and entropy are not limited with the black holes horizons but also extended with other horizons of various spacetime geometries.Among these horizons,apparent horizon has been argued to be a causal horizon associated with the notions of temperature and entropy.Thus for our purpose,it would be suitable to study thermodynamic properties of McVittie universe at its apparent horizons.Let us de fi ne entropy SHassociated with apparent horizon of McVittie universe which is proportional to surface area A of the horizon

    where RAis the horizon radius.The temperature THassociated with the apparent horizon is proportional to the surface gravity κ through relation TH= κ/2π,where κ is given by[8]

    where?h is the determinant of hab=diag(g00,g11)with g00and g11t-r components of McVittie metric(1).Using above Eq.(8),the surface gravity κ of the McVittie universe turns out

    where an over-dot denotes derivative with respect to the cosmic time t.Particularly,as M→0,the surface gravity of the McVittie universe reduces to the fl at FRW universe which admits

    where in this case R=a(t)r is the apparent radius of the fl at FRW universe.It is evident from the above Eq.(10)that the surface gravity of FRW universe is positive,zero and negative provided/H2

    wherePis the pressure of the perfect fl uid.The surface gravity of McVittie universe is positive,zero and negative provide the mass M>(/4)(H2? 8πP),M=(/4)(H2? 8πP),and M<(/4)(H2? 8πP)respectively.On the other hand,One can easily check when the scale factor a(t)=constant andP=0,the surface gravity of Schwarzschild black hole at the event horizon rE=2M takes the form,κ=1/2rE.In case of matter dominated universe where the matter is given by the dust particles with no pressure,P=0,the surface gravity of the McVittie universe takes the simple form;κ=M/R2?H2R/4.Let us consider a special case of Kottler Schwarzschild de-sitter metric for which a(t)=In this case surface gravity reduces to

    Furthermore when a(t)=a0t2/3,the surface gravity is positive and zero accordingly

    and negative when

    5 Heat Capacity

    Another important thermodynamic quantity is that of heat capacity of a thermal system.The heat capacity of a black hole has been determined to study its stability conditions.[22]The heat capacity of a cosmological metric is de fi ned via enthalpyN=E+PV of the thermal system enclosed by the apparent horizon,whereE,Pand V are the internal energy of the system,pressure and volume enclosed by the horizon respectively.We assume the Misner–Sharp Mms=E.Hence the enthalpy of the system is expressed as a function of horizon radius RAof McVittie universe asN=RA/2+(4/3)πP.Similarly the temperature in Eq.(18)is written as a function of RAby elimination M through Eq.(3).Hence the heat capacity CPof the thermal system at constant pressure is de fi ned via enthalpy as

    Using the above Definition of heat capacity along with the horizon temperature

    in terms of horizon radius,the heat capacity Cpof McVittie universe enclosed by apparent horizon reads

    Obviously whenP>0,the heat capacity of the universe is positive,negative and divergent accordingly RA>and RA=From these conditions,one can easily conclude 8πP? 3H2>0.The divergence of the heat capacity at RA=indicate the universe undergo second order phase transition.[22]It is clear from Eq.(15)that the heat capacity Cpof the universe is always negative for the matter dominated phase havingP=0 and is positive provided the pressureP>(2+3H2R2)/8πR2>0.Obviously whenP<0,Cp>0 providedP< ?1/8πR2.Furthermore,the horizon temperature(15)TH→∞as RA→0 and TH→0 as RA→The case whenP>0,the temperature THof the universe attains its minimum value Tmin=1/2πRminat Rmin=Interestingly,the heat capacity diverges at Rminwhere temperature is minimum.

    6 Uni fi ed First Law of Thermodynamics

    In this section,we shall apply uni fi ed first law of thermodynamics to derive Einstein’s field equation which demonstrates a deep connection between gravity theory and laws of ordinary thermodynamics.Uni fi ed first law was first proposed by Hayward to handle thermodynamics associated with the trapping horizon of a dynamical black hole.[23]Consequently he was able to derive Einstein’s field equations with the application of uni fi ed first law.In this paper,we shall apply a similar procedure to extract Einstein’s field equations of McVittie metric from uni fi ed first law.The Einstein field equations,Rμν?Rgμν/2=8πTμν,admit the following non-zero components arising from McVittie metric,

    where=pand= ?p are the energy density and pressure of the fl uid respectively and Tμν=(p+P)UμUν?Pgμνis the stress energy tensor of the perfect fl uid.Applying the stress-energy conservation=0,we get

    Note that other components of Einstein’s field equations satisfyThe temperature associated with the apparent horizon is determined via TH= κ/2π which admits,

    The horizon temperature THin terms of apparent horizon RAcan be written as

    The entropy SHassociated with horizon is given by

    where A is the horizon area.The Misner–Sharp energy[24]of a spherically symmetric spacetime geometry is de fi ned by 1? 2Mms/R=gab?aR?bR.This energy Mmsreveals total matter energy enclosed by the sphere of radius R and is constructed from spacetime metric gab.In addition to this,various Definitions of energy are given in general relativity,such as,ADM mass,Bondi–Sachs energy,Brown–York energy and others.[25]A detail comparison of various energy Definitions in general relativity has been given in references.[24]However,the Misner-Sharp energy is purely geometric quantity and is related with a spacetime structure.Therefore we consider Misner–Sharp energy as total matter energy in order to derive the Einstein field equations via uni fi ed first law.The Misner–Sharp energy for the McVittie metric is given by

    The unified first law is defined by[23]

    where dE=dMmsis the change of energy within the volume enclosed by the apparent horizon.This change occurs due to the crossing of energy through the apparent horizon.W is the work density and V=4π/3 is volume of the spherical system bounded by the apparent horizon.The first term on the right side of the above Eq.(23)could be presented by the energy supply term while the second term can be interpreted as work done by the energy content to support this state.Let us turn to de fi ne two invariant quantities,the work density W and energy supply vector Ψ through stress-energy tensorSo the work-density associated with the stress energy tensor is given by

    where haband Tabare the 2×2 components of the McVittie metric and stress-energy tensor respectively.Energy supply vector is de fi ned by

    which after simpli fication,admits

    whereandrepresent derivatives with respect to cosmic time t and radius r respectively.Thus the scalar Ψ is given by

    Substituting these quantities in Eq.(23)and evaluate AΨ+W dV which admits

    From Misner–Sharp energy(22),one reads

    Substituting Eqs.(28)and(29)in uni fi ed first law,dE=AΨ+W dV,and then first comparing the coefficients of dt on both side,we get

    Substituting the value of RA/˙RAto the above Eq.(30)and simplifying,we get

    which is exactlycomponent of the Einstein field equation.Similarly,comparing the coefficients of dr,we immediately getcomponent of the Einstein field equation.From the above analysis,we are able to extract the Einstein field equations from the Uni fi ed first law.

    7 Generalized Second Law of Thermodynamics

    Generalized Second Law(GSL)states that the sum of the entropy,SH,associated with geometrical horizon and the entropy,SRassociated with the matter and radiation fields within the horizon never decreases.Mathematically,GSL can be expressed as

    which obviously express dynamical nature of the apparent horizon RA.It is straightforward to know that→∞as RA→ 1/letus now turn to differentiate equation(7)to find out TH

    Since GSL veri fi es a special connection between thermodynamics,gravitation,and quantum theory,[26]therefore the validity of GSL has been investigated widely for black holes as well as cosmological spacetimes.[27]The purpose of this section is to find the conditions under which GSL will satisfy at the apparent horizon of McVittie universe.Let us first differentiate Eq.(3)with respect to cosmic time,we get

    To ensure that the thermal system bounded by apparent horizon is in thermal equilibrium near the apparent horizon,we assume that the horizon temperature THshould equal to the temperature Tmof the perfect fl uid so that TH=Tm=T.Using Eqs.(34)and(35)together with assumption of the thermal equilibrium near apparent horizon,one can get

    wherePis the pressure of the perfect fl uid.It is shown in the above section that the Einstein field equations satisfy uni fi ed first law dE=THdSH+PdW instead of usual first law dE=THdSH+PdV.However the matter energy densityEm=pV,the matter entropy Smand the temperature Tmof the matter field hold the Gibbs identity TmdSm=dEm+PdV on the apparent horizon.By solving Gibbs identity on the apparent horizon RAof McVittie universe,it turns out

    By introducing horizon temperature THfrom Eq.(20)in the above equation,one can get

    AssumingP>0,it is easy to show that GSL holds near the apparent horizon only if˙RA>0.

    8 Conclusion

    In this paper a cubic equation constructed from the apparent horizon of McVittie universe is analyzed qualitatively.We derived conditions in terms of McVittie parameters in order to obtain two,repeated,and complex roots and presented graphically.We derived surface gravity at apparent horizon of McVittie universe and particular cases are also presented.It is shown that for a particular case when M=0,earlier known surface gravity of fl at FRW universe is recovered.Furthermore,the heat capacity of the universe is obtained at the apparent horizon and discussed various cases.It is shown that the heat capacity diverges at the minimum value of apparent horizon Rminand the universe undergoes the second order phase transition.Also,in the case of matter dominated phase,the heat capacity is always negative.

    In addition,the Einstein field equations arising from the McVittie universe are derived by using uni fi ed first law,dE=AΨ+W dV,of thermodynamics,where dEis the amount of energy crossing the apparent horizon and the terms AΨ and W dV are interpreted as the energy supply term and work done by the energy content to change the volume dV of the universe bounded by the apparent horizon.In fact,these thermodynamic identities delegate intrinsic thermodynamic properties of spacetime metrics.Also,we discussed GSL at the apparent horizon of McVittie universe.It is shown that GSL is respected when>0 together withP>0.

    Acknowledgments

    The authors are grateful to the referee for his/her useful comments which have signi ficantly improve quality of the paper.

    References

    [1]G.C.McVittie,Mon.Not.R.Astron.Soc.93(1933)325.

    [2]T Padmanabhan,Class.Quantum Grav.19(2002)5387,[gr-qc/0204019].

    [3]A.Paranjape,etal.,Phys.Rev.D 74(2006)104015.

    [4]S.W.Hawking,Commun.Math.Phys.43(1975)199;S.W.Hawking,Phys.Rev.D 13(1976)191;J.M.Bardeen,etal.,Commun.Math.Phys.31(1973)161;J.D.Bekenstein,Phys.Rev.D 7(1973)2333;T.Jacobson,Phys.Rev.Lett.75(1995)1260;T.Jacobson,etal.,Int.J.Theor.Phys.44(2005)1807.

    [5]T.Padmanabhan,Relativ.Gravit.40(2008)2031;Phys.Reports.406(2005)49;AIP Conference Proceedings 989(2007)114.

    [6]D.Kothawala,etal.,Phys.Lett.B 652(2007)338[arXiv:gr-qc/0701002];T.Padmanabhan,Phys.Rev.D 79(2009)104020;R.G.Cai,etal.,Phys.Rev.D 78(2008)124012;M.Akbar and R.G.Cai,Phys.Lett.B 635(2006)7;M.Akbar and R.G.Cai,Phys.Lett.B 648(2007)243;Y.Gong and A.Wang,Phys.Rev.Lett.99(2007)211301;S.F.Wu,B.Wang,and G.H.Yang,Nucl.Phys.B 799(2008)330.

    [7]R.G.Cai and S.P.Kim,J.High Energy Phys.0502(2005)050;M.Akbar and R.G.Cai,Phys.Lett.B 635(2006)7;R.G.Cai,Prog.Theor.Phys.Suppl.172(2008)100;R.G.Cai,etal.,Nucl.Phys.B 785(2007)135.

    [8]R.G.Cai,Li-Ming Cao,and Nobuyoshi Ohta,Phys.Lett.B 679(2009)504,R.G.Cai,L.M.Cao,Y.P.Hu,and S.P.Kim,Phys.Rev.D 78(2008)124012;R.G.Cai,L.M.Cao,and Y.P.Hu,Class.Quantum Grav.26(2009)155018;R.G.Cai and L.M.Cao,Phys.Rev.D 75(2007)064008;M.Akbar,Chin.Phys.Lett.25(2008)4199;M.Akbar,Chin.Phys.Lett.24(2007)1158;A.Sheykhi,etal.,Nucl.Phys.B 779(2007)1;A.Sheykhi,etal.,Phys.Rev.D 76(2007)023515;R.G.Cai,Li-Ming Cao,Y.P Hu,J.High Energy Phys.0808(2008)090;M.Jamil and M.Akbar,Gen.Relativ.Gravit.43(2011)1061.

    [9]M.Akbar and R.G.Cai,Phys.Rev.D 75(2007)084003.

    [10]A.V.Frolov and L.Kofman,J.Cosmol.Astropart.Phys.0305(2003)009;Jia Zhou,Bin Wang,Yungui Gong,and Elcio Abdalla,Phys.Lett.B 652(2007)86;M.Akbar,Int.J.Theor.Phys.48(2009)2665;N.Mazumder and S.Chakraborty,Astrophys.Space Sci.332(2011)509;Y.Zhang,Y.G.Gong,and Z.H.Zhu,Phys.Lett.B 700(2011)254;K.Karami,M.S.Khaledian,and N.Abdollahi,Europhys.Lett.98(2012)30010;Y.Zhang,Y.G.Gong,and Z.H.Zhu,Int.J.Mod.Phys.D 20(2011)1505;Y.Zhang,Y.G.Gong,and Z.H.Zhu,Int.J.Mod.Phys.D 21(2012)1250034;K.Karami and A.Abdolmaleki,J.Cosmol.Astropart.Phys.04(2012)007;K.Bamba,M.Jamil,D.Momeni,and R.Myrzakulov,Astrophys.Space Sci.344(2013)259;M.Jamil,E.N.Saridakis,and M.R.Setare,J.Cosmol.Astropart.Phys.1011(2010)032;A.Sheykhi and B.Wang,Phys.Lett.B 678(2009)434;A.Sheykhi and B.Wang,Mod.Phys.Lett.A 25(2010)1199.

    [11]S.Carlip,Phys.Rev.Lett.82(1999)2828;E.Frodden,A.Ghosh,and A.Perez,Phys.Rev.D 87(2013)121503;A.Ashtekar,S.Fairhurst,and B.Krishnan,Phys.Rev.D 62(2000)104025;A.Ashtekar,C.Beetle,and J.Lewandowski,Phys.Rev.D 64(2001)044016;R.M.Wald,Phys.Rev D 48(1993)R3427;C.Eling,R.Guedens,and T.Jacobson,Phys.Rev.Lett.96(2006)121301;T.Jacobson and A.C.Wall,Found.Phys.40(2010)1076.

    [12]R.G.Cai,Phys.Lett.B 582(2004)237,[arXiv:hepth/0311240];T.Jacobson and R.C.Myers,Phys.Rev.Lett.70(1993)3684;G.W.Gibbons,M.J.Perry,and C.N.Pope,Class.Quantum Grav.22(2005)1503.

    [13]T.Padmanabhan,Gen.Relativ.Gravit.34(2002)2029.

    [14]C.Gao,X.Chen,V.Faraoni,and Y.G.Shen,Phys.Rev.D 78(2008)024008;P.D.Noerdlinger and V.Petrosian,Astrophys.J.168(1971)1;D.J.Shaw and J.D.Barrow,Phys.Rev.D 73(2006)123505;C.J.Gao and S.N.Zhang,Phys.Lett.B 595(2004)28;C.J.Gao,Class.Quantum Grav.21(2004)4805;B.Bolen,L.Bombelli,and R.Puzio,Class.Quantum Grav.18(2001)1173.

    [15]R.Sussman,Gen.Relavi.Gravit.17(1985)251;B.C.Nolan,Class.Quantum Grav.16(1999)1227;B.C.Nolan,Class.Quantum Grav.16(1999)3183.

    [16]M.Anderson,J.Phys.283(2011)012001;R.A.Sussmann,J.Math.Phys.29(1988)1177.

    [17]B.C.Nolan,Phys.Rev.D 58(1998)064006.

    [18]N.Kaloper,M.Kleban,and D.Martin,Phys.Rev.D 81(2010)104044.

    [19]S.A.Hayward,S.Mukohyama,and M.C.Ashworth,Phys.Lett.A 256(1999)347;S.A.Hayward,Class.Quantum Grav.15(1998)3147;D.Bak and S.J.Ray,Class.Quantum Grav.17(2000)L83.

    [20]Y.Gong and A.Wang,Phys.Rev.Lett.99(2007)211301;M.Akbar and R.G.Cai,Phys.Rev.D 75(2007)084003;R.G.Cai and L.M.Cao,Phys.Rev.D 75(2007)064008;R.G.Cai and L.M.Cao,Nucl.Phys.B 785(2007)135;A.Sheykhi,B.Wang,and R.G.Cai,Nucl.Phys.B 779(2007)1;R.Di Criscienzo,M.Nadalini,L.Vanzo,S.Zerbini,and G.Zoccatelli,Phys.Lett.B 657(2007)107.

    [21]R.W.D.Nickalls,The Mathematical Gazzette 77(1993)354.

    [22]Meng-Sen Ma and Ren Zhao,Phys.Lett.B 751(2015)278;J.D.Brown,J.Creighton,and R.B.Mann,Phys.Rev.D 50(1994)6394.

    [23]S.A.Hayward,Class.Quantum Grav.15(1998)3147.

    [24]C.W.Misner and D.H.Sharp Phys.Rev.136(1964)B571;S.A.Hayward,Phys.Rev.D 53(1996)1938,[arXiv:gr-qc/9408002];D.Bak and S.J.Rey,Class.Quantum Grav.17(2000)L83,[arXiv:hep-th/9902173].

    [25]H.Bondi,M.G.J.van der Burg,and A.W.K.Metzner,Proc.Roy.Soc.London A 269(1962)21;R.K.Sachs,Proc.Roy.Soc.London A 270(1962)103;J.D.Brown and J.W.York,Phys.Rev.D 47(1993)1407;C.C.M.Liu and S.T.Yau,Phys.Rev.Lett.90(2003)231102.

    [26]David W.Tian and Ivan Booth,Phys.Rev.D 92(2015)024001;U.Debnath,S.Chattopadhyay,I.Hussain,M.Jamil,and R.Myzakulov,Eur.Phys.J.C 72(2012)1875.

    [27]R.Herrera and N.Videla,Int.J.Mod.Phys.D 23(2014)1450071;M.Sharif and S.Rani,Astrophys.Space Sci.346(2013)573;R.Herrera,Astrophys.Space Sci.350(2014)393;S.Chattapadhyay and R.Ghosh,Astrophys.Space Sci.341(2012)669.

    亚洲欧美日韩另类电影网站| 亚洲全国av大片| 超碰97精品在线观看| 丝袜在线中文字幕| 无遮挡黄片免费观看| 80岁老熟妇乱子伦牲交| 日韩熟女老妇一区二区性免费视频| 免费观看人在逋| 亚洲精华国产精华精| 日韩一卡2卡3卡4卡2021年| 一级片'在线观看视频| 黄色怎么调成土黄色| netflix在线观看网站| 侵犯人妻中文字幕一二三四区| 每晚都被弄得嗷嗷叫到高潮| 啦啦啦啦在线视频资源| av线在线观看网站| 精品国产一区二区三区久久久樱花| 视频区图区小说| 久久99热这里只频精品6学生| 亚洲三区欧美一区| 亚洲精品一二三| 亚洲av欧美aⅴ国产| 777米奇影视久久| 国产在视频线精品| 精品亚洲乱码少妇综合久久| 免费女性裸体啪啪无遮挡网站| 日本wwww免费看| 窝窝影院91人妻| 蜜桃国产av成人99| 国产欧美日韩精品亚洲av| 久久性视频一级片| 精品国产乱子伦一区二区三区 | 国产免费现黄频在线看| 日本撒尿小便嘘嘘汇集6| 美女福利国产在线| 在线观看人妻少妇| 亚洲欧美一区二区三区黑人| 国产激情久久老熟女| 成年人午夜在线观看视频| 国产成人系列免费观看| 亚洲精华国产精华精| 日本猛色少妇xxxxx猛交久久| av不卡在线播放| 女人高潮潮喷娇喘18禁视频| 男女免费视频国产| 一级片'在线观看视频| 女性被躁到高潮视频| 免费少妇av软件| 性色av乱码一区二区三区2| 桃花免费在线播放| 亚洲国产精品成人久久小说| 在线永久观看黄色视频| 欧美日韩视频精品一区| 国产成人精品久久二区二区免费| 亚洲国产毛片av蜜桃av| 高清黄色对白视频在线免费看| 婷婷丁香在线五月| 又紧又爽又黄一区二区| 考比视频在线观看| 涩涩av久久男人的天堂| 精品国产乱码久久久久久男人| 欧美黄色淫秽网站| 狂野欧美激情性bbbbbb| 91精品三级在线观看| 麻豆国产av国片精品| 久久99热这里只频精品6学生| 精品国产超薄肉色丝袜足j| 午夜福利一区二区在线看| 久久天躁狠狠躁夜夜2o2o| www.熟女人妻精品国产| 麻豆乱淫一区二区| 欧美激情极品国产一区二区三区| 人人妻人人澡人人看| 在线观看免费高清a一片| 成人国产一区最新在线观看| 国产亚洲欧美在线一区二区| 免费在线观看黄色视频的| 黄色毛片三级朝国网站| 丝袜喷水一区| 亚洲欧美精品自产自拍| 国产成人啪精品午夜网站| 一二三四在线观看免费中文在| 另类亚洲欧美激情| 男人操女人黄网站| 亚洲精品国产av成人精品| 国产精品久久久av美女十八| 日韩大码丰满熟妇| 黄色怎么调成土黄色| 亚洲国产成人一精品久久久| 亚洲人成77777在线视频| 亚洲免费av在线视频| 王馨瑶露胸无遮挡在线观看| 国产免费一区二区三区四区乱码| 精品人妻1区二区| 悠悠久久av| 女人高潮潮喷娇喘18禁视频| 久久精品熟女亚洲av麻豆精品| 亚洲专区中文字幕在线| 久久久久国产一级毛片高清牌| 欧美黄色淫秽网站| 黄片播放在线免费| 下体分泌物呈黄色| 极品少妇高潮喷水抽搐| www.999成人在线观看| 满18在线观看网站| 亚洲国产av影院在线观看| 亚洲av电影在线观看一区二区三区| 无限看片的www在线观看| 久久久精品区二区三区| 日韩 欧美 亚洲 中文字幕| 人人妻人人澡人人爽人人夜夜| 成人手机av| 国产成人啪精品午夜网站| 91精品伊人久久大香线蕉| 男女午夜视频在线观看| 亚洲精品日韩在线中文字幕| 午夜日韩欧美国产| 午夜影院在线不卡| 欧美成狂野欧美在线观看| 在线观看免费高清a一片| 国产野战对白在线观看| 十八禁人妻一区二区| xxxhd国产人妻xxx| 国产一区有黄有色的免费视频| 99国产精品一区二区蜜桃av | 久久99一区二区三区| 欧美少妇被猛烈插入视频| 一区二区三区激情视频| 黄色视频不卡| 欧美另类亚洲清纯唯美| 国产成人欧美| 最近中文字幕2019免费版| 亚洲综合色网址| 亚洲五月色婷婷综合| 亚洲成av片中文字幕在线观看| 一进一出抽搐动态| 手机成人av网站| 亚洲国产精品999| 操出白浆在线播放| 手机成人av网站| 男女床上黄色一级片免费看| 各种免费的搞黄视频| 国产精品1区2区在线观看. | 狠狠精品人妻久久久久久综合| 叶爱在线成人免费视频播放| 欧美大码av| 在线亚洲精品国产二区图片欧美| 欧美在线一区亚洲| 看免费av毛片| 男女无遮挡免费网站观看| 国产色视频综合| 亚洲欧美一区二区三区久久| 青春草视频在线免费观看| 欧美亚洲 丝袜 人妻 在线| 黄色毛片三级朝国网站| 久久久精品免费免费高清| 99香蕉大伊视频| 我要看黄色一级片免费的| 少妇被粗大的猛进出69影院| 国产麻豆69| 老司机亚洲免费影院| 蜜桃在线观看..| 在线观看免费午夜福利视频| 老熟妇乱子伦视频在线观看 | 男女国产视频网站| 狠狠精品人妻久久久久久综合| 性色av乱码一区二区三区2| 青春草亚洲视频在线观看| 狠狠精品人妻久久久久久综合| 亚洲欧美精品自产自拍| 丁香六月欧美| 久久毛片免费看一区二区三区| 亚洲精品自拍成人| 黑人猛操日本美女一级片| 国产av国产精品国产| 操美女的视频在线观看| 精品高清国产在线一区| 99久久人妻综合| 精品国产乱码久久久久久男人| 亚洲avbb在线观看| 丰满少妇做爰视频| 男人舔女人的私密视频| 欧美日本中文国产一区发布| 久久精品久久久久久噜噜老黄| 国产亚洲精品一区二区www | 亚洲欧美日韩高清在线视频 | 少妇人妻久久综合中文| 丰满迷人的少妇在线观看| 水蜜桃什么品种好| 国产一卡二卡三卡精品| 一级片免费观看大全| 国产精品免费大片| 在线十欧美十亚洲十日本专区| 亚洲国产毛片av蜜桃av| 51午夜福利影视在线观看| 亚洲国产欧美在线一区| 777久久人妻少妇嫩草av网站| 日韩欧美一区二区三区在线观看 | 国产成+人综合+亚洲专区| 波多野结衣av一区二区av| 亚洲一码二码三码区别大吗| 伦理电影免费视频| 蜜桃国产av成人99| 欧美日韩中文字幕国产精品一区二区三区 | 国产男女内射视频| a级毛片黄视频| 韩国高清视频一区二区三区| 在线天堂中文资源库| 国产国语露脸激情在线看| 91九色精品人成在线观看| 女人高潮潮喷娇喘18禁视频| 久久中文字幕一级| 婷婷丁香在线五月| av免费在线观看网站| 男女床上黄色一级片免费看| 午夜老司机福利片| 99九九在线精品视频| 亚洲精品一区蜜桃| 久久中文字幕一级| 亚洲成国产人片在线观看| 丰满少妇做爰视频| 无遮挡黄片免费观看| 欧美精品一区二区大全| 日本猛色少妇xxxxx猛交久久| 下体分泌物呈黄色| 国产av一区二区精品久久| 老鸭窝网址在线观看| 制服人妻中文乱码| 久久久精品区二区三区| 99国产精品免费福利视频| 99久久国产精品久久久| 亚洲va日本ⅴa欧美va伊人久久 | 母亲3免费完整高清在线观看| 2018国产大陆天天弄谢| 下体分泌物呈黄色| 热99久久久久精品小说推荐| 嫁个100分男人电影在线观看| 国产片内射在线| 飞空精品影院首页| 亚洲av电影在线进入| 大码成人一级视频| 久久久久国产精品人妻一区二区| 欧美激情极品国产一区二区三区| 日韩大片免费观看网站| 9热在线视频观看99| 久久精品aⅴ一区二区三区四区| 国产一区二区三区av在线| 青青草视频在线视频观看| 婷婷成人精品国产| 亚洲av电影在线进入| 日韩大片免费观看网站| 下体分泌物呈黄色| 少妇被粗大的猛进出69影院| 日本av免费视频播放| 窝窝影院91人妻| 中文字幕制服av| 国产在线免费精品| 操美女的视频在线观看| 欧美精品啪啪一区二区三区 | 国产免费福利视频在线观看| 老司机福利观看| 亚洲欧美精品综合一区二区三区| 1024香蕉在线观看| tocl精华| 亚洲欧美一区二区三区久久| 搡老岳熟女国产| 亚洲精品自拍成人| 精品国产乱子伦一区二区三区 | av片东京热男人的天堂| 下体分泌物呈黄色| 中文字幕人妻丝袜一区二区| 爱豆传媒免费全集在线观看| 精品亚洲乱码少妇综合久久| 国产成人一区二区三区免费视频网站| 欧美 日韩 精品 国产| 免费看十八禁软件| 手机成人av网站| 叶爱在线成人免费视频播放| 99久久99久久久精品蜜桃| 亚洲av美国av| 制服人妻中文乱码| 欧美午夜高清在线| 一级毛片电影观看| 午夜影院在线不卡| 可以免费在线观看a视频的电影网站| 久久久久久久国产电影| 欧美日韩视频精品一区| 在线观看www视频免费| 纵有疾风起免费观看全集完整版| 欧美性长视频在线观看| 免费女性裸体啪啪无遮挡网站| 在线观看免费高清a一片| 高清视频免费观看一区二区| 欧美久久黑人一区二区| 欧美午夜高清在线| 亚洲欧洲精品一区二区精品久久久| 国产一区有黄有色的免费视频| 人人妻人人澡人人看| 精品国产超薄肉色丝袜足j| 伊人亚洲综合成人网| 一本大道久久a久久精品| 国产亚洲欧美在线一区二区| 一级毛片精品| 亚洲精品粉嫩美女一区| 窝窝影院91人妻| 欧美黄色片欧美黄色片| 青春草亚洲视频在线观看| 日韩欧美一区视频在线观看| 中文字幕色久视频| 波多野结衣av一区二区av| 国产精品秋霞免费鲁丝片| 亚洲三区欧美一区| 久久精品亚洲av国产电影网| 亚洲三区欧美一区| 国产精品偷伦视频观看了| 九色亚洲精品在线播放| 国产成人精品无人区| 女人爽到高潮嗷嗷叫在线视频| 女人久久www免费人成看片| 日本av手机在线免费观看| 蜜桃在线观看..| 国产亚洲午夜精品一区二区久久| 日韩电影二区| 午夜成年电影在线免费观看| 精品人妻在线不人妻| 国产亚洲欧美精品永久| 日韩 欧美 亚洲 中文字幕| 国产精品亚洲av一区麻豆| 丝瓜视频免费看黄片| 丝袜人妻中文字幕| 欧美日韩国产mv在线观看视频| 亚洲国产精品999| 欧美97在线视频| 久久女婷五月综合色啪小说| 成人国语在线视频| 老司机在亚洲福利影院| 亚洲精品美女久久久久99蜜臀| 操美女的视频在线观看| 亚洲精品第二区| 大陆偷拍与自拍| 国产精品欧美亚洲77777| 12—13女人毛片做爰片一| 欧美xxⅹ黑人| xxxhd国产人妻xxx| 啦啦啦免费观看视频1| 日本av免费视频播放| 老司机深夜福利视频在线观看 | 日韩制服骚丝袜av| 少妇 在线观看| 天天添夜夜摸| 中国国产av一级| 欧美精品高潮呻吟av久久| 制服诱惑二区| 不卡av一区二区三区| 99国产精品免费福利视频| 久久国产精品人妻蜜桃| 一本一本久久a久久精品综合妖精| 黑人猛操日本美女一级片| 国产主播在线观看一区二区| 久久久久精品国产欧美久久久 | 最新在线观看一区二区三区| 精品亚洲成a人片在线观看| 极品人妻少妇av视频| 国产在线一区二区三区精| 99久久国产精品久久久| 韩国精品一区二区三区| 日韩一卡2卡3卡4卡2021年| 精品人妻1区二区| 少妇人妻久久综合中文| 欧美精品高潮呻吟av久久| 可以免费在线观看a视频的电影网站| 在线观看人妻少妇| 麻豆国产av国片精品| 美女国产高潮福利片在线看| 黄色怎么调成土黄色| 国产精品久久久久久精品古装| 19禁男女啪啪无遮挡网站| 一区二区av电影网| 一边摸一边做爽爽视频免费| 最近中文字幕2019免费版| 欧美久久黑人一区二区| 午夜影院在线不卡| av福利片在线| 黄色视频在线播放观看不卡| 精品久久久久久久毛片微露脸 | 欧美国产精品va在线观看不卡| 精品人妻熟女毛片av久久网站| 日韩中文字幕视频在线看片| 中文字幕制服av| 1024视频免费在线观看| 9191精品国产免费久久| 亚洲国产精品999| 人妻久久中文字幕网| 美女中出高潮动态图| 亚洲欧洲日产国产| 国产伦理片在线播放av一区| av在线播放精品| 久久精品人人爽人人爽视色| 国产在视频线精品| 亚洲黑人精品在线| 一区二区三区激情视频| 精品国产乱码久久久久久小说| 自线自在国产av| 极品人妻少妇av视频| 波多野结衣av一区二区av| 色综合欧美亚洲国产小说| 国产主播在线观看一区二区| 黑人欧美特级aaaaaa片| 1024香蕉在线观看| 亚洲综合色网址| 涩涩av久久男人的天堂| 国产欧美日韩综合在线一区二区| 精品少妇一区二区三区视频日本电影| 男女之事视频高清在线观看| 国产1区2区3区精品| 国产一卡二卡三卡精品| 亚洲第一欧美日韩一区二区三区 | 欧美人与性动交α欧美软件| 岛国毛片在线播放| 精品一区二区三区av网在线观看 | 欧美+亚洲+日韩+国产| 欧美精品人与动牲交sv欧美| 亚洲欧美清纯卡通| 国产三级黄色录像| 久久人人爽av亚洲精品天堂| 成年动漫av网址| 一本—道久久a久久精品蜜桃钙片| 在线亚洲精品国产二区图片欧美| 亚洲人成电影观看| 亚洲午夜精品一区,二区,三区| 一个人免费在线观看的高清视频 | 老熟女久久久| 国产av又大| 国产视频一区二区在线看| 大型av网站在线播放| 午夜福利影视在线免费观看| 视频区欧美日本亚洲| 青青草视频在线视频观看| 国产不卡av网站在线观看| 人妻久久中文字幕网| 精品亚洲成国产av| 99精品久久久久人妻精品| 12—13女人毛片做爰片一| 亚洲伊人久久精品综合| 一区福利在线观看| 国产成人av激情在线播放| 国产在线免费精品| 99国产精品一区二区三区| 色精品久久人妻99蜜桃| 精品免费久久久久久久清纯 | 50天的宝宝边吃奶边哭怎么回事| videosex国产| 色老头精品视频在线观看| 亚洲av国产av综合av卡| 亚洲专区中文字幕在线| 777米奇影视久久| 亚洲视频免费观看视频| 中文字幕av电影在线播放| 国产av精品麻豆| 亚洲一区中文字幕在线| 国产一区二区三区av在线| 乱人伦中国视频| 久久久久国产一级毛片高清牌| 日韩欧美一区二区三区在线观看 | 99精品久久久久人妻精品| 国产亚洲精品第一综合不卡| 一级毛片电影观看| 大香蕉久久网| 99国产精品一区二区三区| 18在线观看网站| 亚洲精品第二区| 国产黄色免费在线视频| 久久久久国产精品人妻一区二区| 永久免费av网站大全| 女性被躁到高潮视频| 亚洲精品中文字幕一二三四区 | 亚洲国产精品999| 国产成人a∨麻豆精品| 满18在线观看网站| 蜜桃国产av成人99| 国产成人欧美在线观看 | 久久久国产欧美日韩av| 成人国语在线视频| av在线老鸭窝| 成人国语在线视频| 一个人免费看片子| 中文字幕色久视频| 搡老岳熟女国产| e午夜精品久久久久久久| 日韩欧美国产一区二区入口| 18禁黄网站禁片午夜丰满| 亚洲国产成人一精品久久久| 国产有黄有色有爽视频| 丰满少妇做爰视频| 99精国产麻豆久久婷婷| 午夜日韩欧美国产| 国产精品自产拍在线观看55亚洲 | 国产黄频视频在线观看| 亚洲三区欧美一区| 在线观看免费日韩欧美大片| 欧美成人午夜精品| 汤姆久久久久久久影院中文字幕| 国产视频一区二区在线看| 美女大奶头黄色视频| 亚洲色图综合在线观看| 在线永久观看黄色视频| 高潮久久久久久久久久久不卡| 另类亚洲欧美激情| 精品第一国产精品| videosex国产| 国产精品1区2区在线观看. | 国产av精品麻豆| 亚洲精品第二区| 精品国产一区二区久久| 国产精品久久久人人做人人爽| 黄色毛片三级朝国网站| 伊人亚洲综合成人网| 中文字幕制服av| 2018国产大陆天天弄谢| 国产在线免费精品| 国产精品久久久久久精品电影小说| 久久九九热精品免费| 精品人妻一区二区三区麻豆| 中国国产av一级| 国产av精品麻豆| 亚洲欧美激情在线| 精品久久久久久电影网| 亚洲精品一二三| 91九色精品人成在线观看| 汤姆久久久久久久影院中文字幕| av在线app专区| 国产精品一区二区在线不卡| 丝袜美腿诱惑在线| 亚洲精品在线美女| 久久久久国产一级毛片高清牌| 99国产精品免费福利视频| 国产精品久久久久成人av| 黄片大片在线免费观看| av在线老鸭窝| 亚洲精品久久午夜乱码| 亚洲一码二码三码区别大吗| 中文字幕制服av| 国产亚洲午夜精品一区二区久久| 午夜福利免费观看在线| 少妇 在线观看| 日本撒尿小便嘘嘘汇集6| 午夜福利乱码中文字幕| 久久午夜综合久久蜜桃| 亚洲成av片中文字幕在线观看| 精品少妇久久久久久888优播| 中文字幕人妻丝袜一区二区| 青青草视频在线视频观看| 欧美黑人欧美精品刺激| 又黄又粗又硬又大视频| 久9热在线精品视频| 青春草视频在线免费观看| 啦啦啦视频在线资源免费观看| 国产精品 国内视频| 自线自在国产av| 欧美精品av麻豆av| 91av网站免费观看| 婷婷成人精品国产| 日本猛色少妇xxxxx猛交久久| 视频区欧美日本亚洲| 亚洲欧美日韩另类电影网站| 欧美黄色淫秽网站| 国产欧美日韩精品亚洲av| 手机成人av网站| 日本wwww免费看| 欧美老熟妇乱子伦牲交| 亚洲va日本ⅴa欧美va伊人久久 | 又紧又爽又黄一区二区| 国产97色在线日韩免费| 91精品三级在线观看| 亚洲午夜精品一区,二区,三区| 三级毛片av免费| 18禁国产床啪视频网站| 久久精品亚洲熟妇少妇任你| 中文字幕人妻熟女乱码| 国产精品久久久人人做人人爽| 精品久久久精品久久久| 成人黄色视频免费在线看| 久久亚洲精品不卡| 99九九在线精品视频| 制服诱惑二区| 日韩欧美一区视频在线观看| 久久精品国产综合久久久| 嫁个100分男人电影在线观看| 搡老岳熟女国产| 真人做人爱边吃奶动态| 嫁个100分男人电影在线观看| 日本欧美视频一区| 真人做人爱边吃奶动态| 国产精品偷伦视频观看了| 精品国产一区二区三区四区第35| 少妇猛男粗大的猛烈进出视频| 国产成人影院久久av| 搡老岳熟女国产| 精品高清国产在线一区| 成人手机av| 午夜免费观看性视频| 午夜福利影视在线免费观看| 美女主播在线视频| 午夜福利一区二区在线看| 无限看片的www在线观看| 在线观看免费午夜福利视频| 国产不卡av网站在线观看| 热99国产精品久久久久久7| 99久久国产精品久久久| 欧美黄色片欧美黄色片| a 毛片基地| 亚洲成国产人片在线观看| 国产亚洲欧美在线一区二区| 韩国高清视频一区二区三区|