• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermodynamic Analysis of Cosmological Black Hole

    2017-05-18 05:56:32AkbarTayebBrahimiandQaisar
    Communications in Theoretical Physics 2017年1期

    M.Akbar, Tayeb Brahimi, and S.M.Qaisar

    E ff at University,Electrical and Computer Engineering Department,P.O.Box 34689,Jeddah,Saudi Arabia

    1 Introduction

    Black holes and cosmological metrics are obtained by solving Einstein’s field equations under different domains.Generally,the black metric represents a point mass covered by the horizons without expanding behavior of the universe.The main issue with the black holes is that these metrics disregard the expanding behavior of the universe.On the other hand,the cosmological metrics persist expanding universe without holding a point mass describing a black hole.However,the McVittie metric persists an integrated treatment holding a strongly gravitating central object,embedded in spatially fl at Friendmann-Robertson-Walker(FRW)universe.[1]This is one of the primary motivations of this study in order to integrate the thermodynamic treatment of the Mcvittie universe.Generally,the thermodynamics of the spacetime metrics are two folds:(i)Thermodynamics of black hole metrics at black hole horizons and(ii)Thermodynamics of the cosmological metrics at their respective horizons.In the case of black hole metrics,Padmanabhan[2]was the first who initiated the key development to launch relationship between the Einstein field equations and the first law of thermodynamics near the black hole horizons.It has been shown that in Einstein’s gravity as well as in a wider class of gravitational theories,the Einstein field equations establish the first law of thermodynamic T dS=dE+PdV.[2?3]Recently,various laws of thermodynamics have been studied[4?8]to explore deep relationship between gravity theory and thermodynamics.In the case of cosmological metrics,Cai and Kim[7]initiated and derived the Friendmann equations of FRW universe by employing the equilibrium Clausius relation at the apparent horizon.Later on,Akbar and Cai[9]formulated and recast the differential form of the Einstein field equations as a uni fi ed first law T dS=dE+W dV near the apparent horizon of FRW universe.This connection has also been extended for other gravity theories.[10?12]Due to this deep connection between gravity theory and the laws of ordinary thermodynamics,it has been argued[13]that thermal behavior of the Einstein field equations would be a generic property of the spacetime metrics and can be extended to any spacetime metric with horizons.In the present work,we consider a more general spacetime metric,called McVittie metric,to integrate and explore its thermodynamics.This metric has been modeled to present a family of spherically symmetric non-vacuum spacetime universe in which a black hole is embedded in a fl at FRW universe.In this study,we analyze qualitatively the roots of a cubic equation arising from the apparent horizon of the McVittie universe.The surface gravity of McVittie universe is discussed near apparent horizon and various conditions in terms of McVittie parameters are explored.The field equations of McVittie metric are obtained by applying the Uni fi ed first law of thermodynamics.Furthermore,heat capacity at constant pressure and generalized second law(GSL)are discussed at apparent horizon.

    This paper is organized as follows.In Sec.2,we shall review brie fl y properties of McVittie metric.The horizons of McVittie universe shall be discussed in Sec.3.In Secs.4 and 5,we shall analyze conditions on surface gravity and heat capacity.The field equations will be derived via unifi ed first law in Sec.6.Furthermore we shall discuss GSL in Sec.7 while we shall conclude our results in Sec.8.

    2 McVittie Universe

    In his original work,McVitte was able to find[1]his well-known spacetime metric called McVittie universe and its line element is given in isotropic coordinates by

    where d?2,M and a(t)are the line element on the unit 2-sphere,a positive constant which represents the mass of the black hole and an arbitrary positive function called the cosmic scale factor respectively.Throughout this paper,we adopt the units G=c=κ=~=1.In particular,the above metric(1)reduces to a spatially fl at FRW metric when M→0 while it reduces to the Schwarzschild black hole in isotropic coordinate at a(t)=constant.Apparently,McVittie metric seems to stand for a Schwarzschild black hole embedded in a homogeneous,spatially fl at FRW metric[14]but its physical interpretation is still under debate.[14?15]On the other hand,it has been argued in Ref.[15]that the McVittie metric,in general,can not represent a black hole embedded in a homogeneous,spatially fl at FRW universe because it becomes singular on the 2-sphere at r=M/2a and this singularity is spacelike.[16]Furthermore,it was found that the pressure of the matter density is in fi nite at r=M/2a while its energy density is if nite.It is also argued that the McVittie universe may illustrate a point mass situated at r=0 and embedded in a spatially fl at FRW universe.Moreover,in general,this point mass is covered by a singularity at r=M/2a.[16]In Ref.[17],Nolan found that it is a weak singularity in the sense that the volume of an object does not shrink to zero at a surface where r=M/2a,and therefore the energy density of the cosmic fl uid remains fi nite.On the other hand,the pressure of the cosmic fl uid and Ricci scalar diverge at r=M/2a.Also,Nolan rewrote McVittie metric in terms of R=ar(1+M/2ar)2and argued that the resulting metric behaves like a point-mass at R=0,covered by a singularity at R=2M.He also argued that if the present universe is expanding the surface at R=2M is covered by an anti-trapped region which admits white hole rather than a black hole.Meanwhile,other authors[18]discarded Nolan interpretation and suggested black hole interpretation by de fi ning ingoing radial null geodesics at a particular choice of the scale factor a(t).So,the McVittie metric represents some kind of strongly gravitating central object,embedded in fl at FRW universe.However,its physical interpretation is not totally clear and remains the subject of debate.

    3 Apparent Horizon

    Let us rewrite the McVittie metric(1)in spherical symmetric form

    where R=a(t)r(1+M/2a(t)r)2is the time dependent areal radius of the universe,x0=t,x1=r and twodimensional metric

    The apparent horizon is de fi ned by a marginally trapped surface with vanishing expansion.Thus mathematically,hab?aR?bR=0 fi xes the location of the apparent horizons,which after evaluating through McVittie metric(2),gives a cubic equation in terms of apparent radius RAgiven below

    where H refers to the time dependent Hubble parameter and RAdenotes the apparent horizon radius.Particularly,at M=0,the apparent horizon reduces to the apparent horizon/cosmological horizon,RA=1/H,of fl at FRW universe,while at a(t)=constant i.e.H=0,it admits event horizon of Schwarzschild black hole located at RA=RE=2M.It has been argued in Ref.[19]that the apparent horizon described a causal horizon of dynamical spacetime holding gravitational entropy,surface gravity and other thermodynamical properties.It has been shown that these thermodynamic quantities associated with the apparent horizons obey the first law of thermodynamics in the Einstein gravity as well as a wider class of gravity theories.[20]In the present work,we study various thermodynamic characteristics associated with the apparent horizons of McVittie universe and analyze the process of energy fl ow through apparent horizon to provide the uni fi ed first law.Let us first proceed to find the apparent horizons,RA,of the McVittie universe by finding real positive roots of Eq.(3).It is convenient first to analyze Eq.(3)qualitatively and fi x conditions in terms of H and M for the existence of its horizons.In order to proceed this analysis,we de fi ne a real function f(RA)=H2?RA+2M of variable RA>0 via Eq.(3).Mathematically,its extreme points are obtained by putting df(RA)/dRA=0,which admits two real points,RA±= ±1/H.Neglecting RA?<0 negative root,the root RA=RA+=1/H is a unique root representing extreme point.The second deriv√ative d2f(RA)/d>0 at its extreme point RA=1/H,which implies that the extremal point corresponds to minimum and its minimumvalue is f(Rmin)= ?2/3H+2M at RA=Rmin=1/H.Also note that as RA→∞implies f(RA)→∞and f(RA=0)=2M.Since the function f(RA)is twice differentiable and positive at critical point,hence it is concave up.With reference to its minimum value,there are three cases;

    Case 1 In this case,f(R)cuts the R-axis at two points admitting two real distinct roots RA1and RA2.Hence,there are two horizons inner and outer de fi ned by Eqs.(4)and(5)respectively.These roots are shown graphically by Fig.1.When f(Rmin)<0,McVittie metric admits two horizon provided M<1/3H.

    Fig.1 Function f(R)for M=1 and H=1/6 is shown which admits two horizons when M<1/3H.

    Case 2This gives repeated roots and identi fi ed as an extremal case.In this case f(R)touches R-axis at RA=Rminas shown in Fig.2.Furthermore,f(Rmin)=0,admits the condition,M=1/3H.

    Fig.2 Repeated ho√rizons of McVittie Universe with M=1 and H=1/3 satisfying the condition M=1/3H.

    Case 3 This case involves naked singularity and hence there are no real roots when f(Rmin)>0.The graph of f(R)lies above the R-axis as shown in Fig.3.Beside the qualitative analysis of Eq.(3),one can obtain its exact roots.Since it is a cubic equation in RAand there are various methods available in literature to solve such an equation.However we follow the procedure given by Nickalls[21]to find its roots.These roots are given below,

    where sin3θ =3MH(t).Obviously,after neglecting negative root R3<0,we have two real positive roots admitting two apparent horizons,RA1and RA2of McVittie universe.These two horizons RA1and RA2exist provided 0

    Fig.3 No horizons of McVittie Universe with M=1 and H=1/2 satisfying M>1/3H.

    4 Horizon Thermodynamics

    This section deals with the various thermodynamic quantities associated with the apparent horizons of McVittie universe.It has been shown by Hawking that a black hole emits thermal radiation at its horizon with a temperature proportional to the surface gravity and with an entropy proportional to the horizon area.These notions of temperature and entropy are not limited with the black holes horizons but also extended with other horizons of various spacetime geometries.Among these horizons,apparent horizon has been argued to be a causal horizon associated with the notions of temperature and entropy.Thus for our purpose,it would be suitable to study thermodynamic properties of McVittie universe at its apparent horizons.Let us de fi ne entropy SHassociated with apparent horizon of McVittie universe which is proportional to surface area A of the horizon

    where RAis the horizon radius.The temperature THassociated with the apparent horizon is proportional to the surface gravity κ through relation TH= κ/2π,where κ is given by[8]

    where?h is the determinant of hab=diag(g00,g11)with g00and g11t-r components of McVittie metric(1).Using above Eq.(8),the surface gravity κ of the McVittie universe turns out

    where an over-dot denotes derivative with respect to the cosmic time t.Particularly,as M→0,the surface gravity of the McVittie universe reduces to the fl at FRW universe which admits

    where in this case R=a(t)r is the apparent radius of the fl at FRW universe.It is evident from the above Eq.(10)that the surface gravity of FRW universe is positive,zero and negative provided/H2

    wherePis the pressure of the perfect fl uid.The surface gravity of McVittie universe is positive,zero and negative provide the mass M>(/4)(H2? 8πP),M=(/4)(H2? 8πP),and M<(/4)(H2? 8πP)respectively.On the other hand,One can easily check when the scale factor a(t)=constant andP=0,the surface gravity of Schwarzschild black hole at the event horizon rE=2M takes the form,κ=1/2rE.In case of matter dominated universe where the matter is given by the dust particles with no pressure,P=0,the surface gravity of the McVittie universe takes the simple form;κ=M/R2?H2R/4.Let us consider a special case of Kottler Schwarzschild de-sitter metric for which a(t)=In this case surface gravity reduces to

    Furthermore when a(t)=a0t2/3,the surface gravity is positive and zero accordingly

    and negative when

    5 Heat Capacity

    Another important thermodynamic quantity is that of heat capacity of a thermal system.The heat capacity of a black hole has been determined to study its stability conditions.[22]The heat capacity of a cosmological metric is de fi ned via enthalpyN=E+PV of the thermal system enclosed by the apparent horizon,whereE,Pand V are the internal energy of the system,pressure and volume enclosed by the horizon respectively.We assume the Misner–Sharp Mms=E.Hence the enthalpy of the system is expressed as a function of horizon radius RAof McVittie universe asN=RA/2+(4/3)πP.Similarly the temperature in Eq.(18)is written as a function of RAby elimination M through Eq.(3).Hence the heat capacity CPof the thermal system at constant pressure is de fi ned via enthalpy as

    Using the above Definition of heat capacity along with the horizon temperature

    in terms of horizon radius,the heat capacity Cpof McVittie universe enclosed by apparent horizon reads

    Obviously whenP>0,the heat capacity of the universe is positive,negative and divergent accordingly RA>and RA=From these conditions,one can easily conclude 8πP? 3H2>0.The divergence of the heat capacity at RA=indicate the universe undergo second order phase transition.[22]It is clear from Eq.(15)that the heat capacity Cpof the universe is always negative for the matter dominated phase havingP=0 and is positive provided the pressureP>(2+3H2R2)/8πR2>0.Obviously whenP<0,Cp>0 providedP< ?1/8πR2.Furthermore,the horizon temperature(15)TH→∞as RA→0 and TH→0 as RA→The case whenP>0,the temperature THof the universe attains its minimum value Tmin=1/2πRminat Rmin=Interestingly,the heat capacity diverges at Rminwhere temperature is minimum.

    6 Uni fi ed First Law of Thermodynamics

    In this section,we shall apply uni fi ed first law of thermodynamics to derive Einstein’s field equation which demonstrates a deep connection between gravity theory and laws of ordinary thermodynamics.Uni fi ed first law was first proposed by Hayward to handle thermodynamics associated with the trapping horizon of a dynamical black hole.[23]Consequently he was able to derive Einstein’s field equations with the application of uni fi ed first law.In this paper,we shall apply a similar procedure to extract Einstein’s field equations of McVittie metric from uni fi ed first law.The Einstein field equations,Rμν?Rgμν/2=8πTμν,admit the following non-zero components arising from McVittie metric,

    where=pand= ?p are the energy density and pressure of the fl uid respectively and Tμν=(p+P)UμUν?Pgμνis the stress energy tensor of the perfect fl uid.Applying the stress-energy conservation=0,we get

    Note that other components of Einstein’s field equations satisfyThe temperature associated with the apparent horizon is determined via TH= κ/2π which admits,

    The horizon temperature THin terms of apparent horizon RAcan be written as

    The entropy SHassociated with horizon is given by

    where A is the horizon area.The Misner–Sharp energy[24]of a spherically symmetric spacetime geometry is de fi ned by 1? 2Mms/R=gab?aR?bR.This energy Mmsreveals total matter energy enclosed by the sphere of radius R and is constructed from spacetime metric gab.In addition to this,various Definitions of energy are given in general relativity,such as,ADM mass,Bondi–Sachs energy,Brown–York energy and others.[25]A detail comparison of various energy Definitions in general relativity has been given in references.[24]However,the Misner-Sharp energy is purely geometric quantity and is related with a spacetime structure.Therefore we consider Misner–Sharp energy as total matter energy in order to derive the Einstein field equations via uni fi ed first law.The Misner–Sharp energy for the McVittie metric is given by

    The unified first law is defined by[23]

    where dE=dMmsis the change of energy within the volume enclosed by the apparent horizon.This change occurs due to the crossing of energy through the apparent horizon.W is the work density and V=4π/3 is volume of the spherical system bounded by the apparent horizon.The first term on the right side of the above Eq.(23)could be presented by the energy supply term while the second term can be interpreted as work done by the energy content to support this state.Let us turn to de fi ne two invariant quantities,the work density W and energy supply vector Ψ through stress-energy tensorSo the work-density associated with the stress energy tensor is given by

    where haband Tabare the 2×2 components of the McVittie metric and stress-energy tensor respectively.Energy supply vector is de fi ned by

    which after simpli fication,admits

    whereandrepresent derivatives with respect to cosmic time t and radius r respectively.Thus the scalar Ψ is given by

    Substituting these quantities in Eq.(23)and evaluate AΨ+W dV which admits

    From Misner–Sharp energy(22),one reads

    Substituting Eqs.(28)and(29)in uni fi ed first law,dE=AΨ+W dV,and then first comparing the coefficients of dt on both side,we get

    Substituting the value of RA/˙RAto the above Eq.(30)and simplifying,we get

    which is exactlycomponent of the Einstein field equation.Similarly,comparing the coefficients of dr,we immediately getcomponent of the Einstein field equation.From the above analysis,we are able to extract the Einstein field equations from the Uni fi ed first law.

    7 Generalized Second Law of Thermodynamics

    Generalized Second Law(GSL)states that the sum of the entropy,SH,associated with geometrical horizon and the entropy,SRassociated with the matter and radiation fields within the horizon never decreases.Mathematically,GSL can be expressed as

    which obviously express dynamical nature of the apparent horizon RA.It is straightforward to know that→∞as RA→ 1/letus now turn to differentiate equation(7)to find out TH

    Since GSL veri fi es a special connection between thermodynamics,gravitation,and quantum theory,[26]therefore the validity of GSL has been investigated widely for black holes as well as cosmological spacetimes.[27]The purpose of this section is to find the conditions under which GSL will satisfy at the apparent horizon of McVittie universe.Let us first differentiate Eq.(3)with respect to cosmic time,we get

    To ensure that the thermal system bounded by apparent horizon is in thermal equilibrium near the apparent horizon,we assume that the horizon temperature THshould equal to the temperature Tmof the perfect fl uid so that TH=Tm=T.Using Eqs.(34)and(35)together with assumption of the thermal equilibrium near apparent horizon,one can get

    wherePis the pressure of the perfect fl uid.It is shown in the above section that the Einstein field equations satisfy uni fi ed first law dE=THdSH+PdW instead of usual first law dE=THdSH+PdV.However the matter energy densityEm=pV,the matter entropy Smand the temperature Tmof the matter field hold the Gibbs identity TmdSm=dEm+PdV on the apparent horizon.By solving Gibbs identity on the apparent horizon RAof McVittie universe,it turns out

    By introducing horizon temperature THfrom Eq.(20)in the above equation,one can get

    AssumingP>0,it is easy to show that GSL holds near the apparent horizon only if˙RA>0.

    8 Conclusion

    In this paper a cubic equation constructed from the apparent horizon of McVittie universe is analyzed qualitatively.We derived conditions in terms of McVittie parameters in order to obtain two,repeated,and complex roots and presented graphically.We derived surface gravity at apparent horizon of McVittie universe and particular cases are also presented.It is shown that for a particular case when M=0,earlier known surface gravity of fl at FRW universe is recovered.Furthermore,the heat capacity of the universe is obtained at the apparent horizon and discussed various cases.It is shown that the heat capacity diverges at the minimum value of apparent horizon Rminand the universe undergoes the second order phase transition.Also,in the case of matter dominated phase,the heat capacity is always negative.

    In addition,the Einstein field equations arising from the McVittie universe are derived by using uni fi ed first law,dE=AΨ+W dV,of thermodynamics,where dEis the amount of energy crossing the apparent horizon and the terms AΨ and W dV are interpreted as the energy supply term and work done by the energy content to change the volume dV of the universe bounded by the apparent horizon.In fact,these thermodynamic identities delegate intrinsic thermodynamic properties of spacetime metrics.Also,we discussed GSL at the apparent horizon of McVittie universe.It is shown that GSL is respected when>0 together withP>0.

    Acknowledgments

    The authors are grateful to the referee for his/her useful comments which have signi ficantly improve quality of the paper.

    References

    [1]G.C.McVittie,Mon.Not.R.Astron.Soc.93(1933)325.

    [2]T Padmanabhan,Class.Quantum Grav.19(2002)5387,[gr-qc/0204019].

    [3]A.Paranjape,etal.,Phys.Rev.D 74(2006)104015.

    [4]S.W.Hawking,Commun.Math.Phys.43(1975)199;S.W.Hawking,Phys.Rev.D 13(1976)191;J.M.Bardeen,etal.,Commun.Math.Phys.31(1973)161;J.D.Bekenstein,Phys.Rev.D 7(1973)2333;T.Jacobson,Phys.Rev.Lett.75(1995)1260;T.Jacobson,etal.,Int.J.Theor.Phys.44(2005)1807.

    [5]T.Padmanabhan,Relativ.Gravit.40(2008)2031;Phys.Reports.406(2005)49;AIP Conference Proceedings 989(2007)114.

    [6]D.Kothawala,etal.,Phys.Lett.B 652(2007)338[arXiv:gr-qc/0701002];T.Padmanabhan,Phys.Rev.D 79(2009)104020;R.G.Cai,etal.,Phys.Rev.D 78(2008)124012;M.Akbar and R.G.Cai,Phys.Lett.B 635(2006)7;M.Akbar and R.G.Cai,Phys.Lett.B 648(2007)243;Y.Gong and A.Wang,Phys.Rev.Lett.99(2007)211301;S.F.Wu,B.Wang,and G.H.Yang,Nucl.Phys.B 799(2008)330.

    [7]R.G.Cai and S.P.Kim,J.High Energy Phys.0502(2005)050;M.Akbar and R.G.Cai,Phys.Lett.B 635(2006)7;R.G.Cai,Prog.Theor.Phys.Suppl.172(2008)100;R.G.Cai,etal.,Nucl.Phys.B 785(2007)135.

    [8]R.G.Cai,Li-Ming Cao,and Nobuyoshi Ohta,Phys.Lett.B 679(2009)504,R.G.Cai,L.M.Cao,Y.P.Hu,and S.P.Kim,Phys.Rev.D 78(2008)124012;R.G.Cai,L.M.Cao,and Y.P.Hu,Class.Quantum Grav.26(2009)155018;R.G.Cai and L.M.Cao,Phys.Rev.D 75(2007)064008;M.Akbar,Chin.Phys.Lett.25(2008)4199;M.Akbar,Chin.Phys.Lett.24(2007)1158;A.Sheykhi,etal.,Nucl.Phys.B 779(2007)1;A.Sheykhi,etal.,Phys.Rev.D 76(2007)023515;R.G.Cai,Li-Ming Cao,Y.P Hu,J.High Energy Phys.0808(2008)090;M.Jamil and M.Akbar,Gen.Relativ.Gravit.43(2011)1061.

    [9]M.Akbar and R.G.Cai,Phys.Rev.D 75(2007)084003.

    [10]A.V.Frolov and L.Kofman,J.Cosmol.Astropart.Phys.0305(2003)009;Jia Zhou,Bin Wang,Yungui Gong,and Elcio Abdalla,Phys.Lett.B 652(2007)86;M.Akbar,Int.J.Theor.Phys.48(2009)2665;N.Mazumder and S.Chakraborty,Astrophys.Space Sci.332(2011)509;Y.Zhang,Y.G.Gong,and Z.H.Zhu,Phys.Lett.B 700(2011)254;K.Karami,M.S.Khaledian,and N.Abdollahi,Europhys.Lett.98(2012)30010;Y.Zhang,Y.G.Gong,and Z.H.Zhu,Int.J.Mod.Phys.D 20(2011)1505;Y.Zhang,Y.G.Gong,and Z.H.Zhu,Int.J.Mod.Phys.D 21(2012)1250034;K.Karami and A.Abdolmaleki,J.Cosmol.Astropart.Phys.04(2012)007;K.Bamba,M.Jamil,D.Momeni,and R.Myrzakulov,Astrophys.Space Sci.344(2013)259;M.Jamil,E.N.Saridakis,and M.R.Setare,J.Cosmol.Astropart.Phys.1011(2010)032;A.Sheykhi and B.Wang,Phys.Lett.B 678(2009)434;A.Sheykhi and B.Wang,Mod.Phys.Lett.A 25(2010)1199.

    [11]S.Carlip,Phys.Rev.Lett.82(1999)2828;E.Frodden,A.Ghosh,and A.Perez,Phys.Rev.D 87(2013)121503;A.Ashtekar,S.Fairhurst,and B.Krishnan,Phys.Rev.D 62(2000)104025;A.Ashtekar,C.Beetle,and J.Lewandowski,Phys.Rev.D 64(2001)044016;R.M.Wald,Phys.Rev D 48(1993)R3427;C.Eling,R.Guedens,and T.Jacobson,Phys.Rev.Lett.96(2006)121301;T.Jacobson and A.C.Wall,Found.Phys.40(2010)1076.

    [12]R.G.Cai,Phys.Lett.B 582(2004)237,[arXiv:hepth/0311240];T.Jacobson and R.C.Myers,Phys.Rev.Lett.70(1993)3684;G.W.Gibbons,M.J.Perry,and C.N.Pope,Class.Quantum Grav.22(2005)1503.

    [13]T.Padmanabhan,Gen.Relativ.Gravit.34(2002)2029.

    [14]C.Gao,X.Chen,V.Faraoni,and Y.G.Shen,Phys.Rev.D 78(2008)024008;P.D.Noerdlinger and V.Petrosian,Astrophys.J.168(1971)1;D.J.Shaw and J.D.Barrow,Phys.Rev.D 73(2006)123505;C.J.Gao and S.N.Zhang,Phys.Lett.B 595(2004)28;C.J.Gao,Class.Quantum Grav.21(2004)4805;B.Bolen,L.Bombelli,and R.Puzio,Class.Quantum Grav.18(2001)1173.

    [15]R.Sussman,Gen.Relavi.Gravit.17(1985)251;B.C.Nolan,Class.Quantum Grav.16(1999)1227;B.C.Nolan,Class.Quantum Grav.16(1999)3183.

    [16]M.Anderson,J.Phys.283(2011)012001;R.A.Sussmann,J.Math.Phys.29(1988)1177.

    [17]B.C.Nolan,Phys.Rev.D 58(1998)064006.

    [18]N.Kaloper,M.Kleban,and D.Martin,Phys.Rev.D 81(2010)104044.

    [19]S.A.Hayward,S.Mukohyama,and M.C.Ashworth,Phys.Lett.A 256(1999)347;S.A.Hayward,Class.Quantum Grav.15(1998)3147;D.Bak and S.J.Ray,Class.Quantum Grav.17(2000)L83.

    [20]Y.Gong and A.Wang,Phys.Rev.Lett.99(2007)211301;M.Akbar and R.G.Cai,Phys.Rev.D 75(2007)084003;R.G.Cai and L.M.Cao,Phys.Rev.D 75(2007)064008;R.G.Cai and L.M.Cao,Nucl.Phys.B 785(2007)135;A.Sheykhi,B.Wang,and R.G.Cai,Nucl.Phys.B 779(2007)1;R.Di Criscienzo,M.Nadalini,L.Vanzo,S.Zerbini,and G.Zoccatelli,Phys.Lett.B 657(2007)107.

    [21]R.W.D.Nickalls,The Mathematical Gazzette 77(1993)354.

    [22]Meng-Sen Ma and Ren Zhao,Phys.Lett.B 751(2015)278;J.D.Brown,J.Creighton,and R.B.Mann,Phys.Rev.D 50(1994)6394.

    [23]S.A.Hayward,Class.Quantum Grav.15(1998)3147.

    [24]C.W.Misner and D.H.Sharp Phys.Rev.136(1964)B571;S.A.Hayward,Phys.Rev.D 53(1996)1938,[arXiv:gr-qc/9408002];D.Bak and S.J.Rey,Class.Quantum Grav.17(2000)L83,[arXiv:hep-th/9902173].

    [25]H.Bondi,M.G.J.van der Burg,and A.W.K.Metzner,Proc.Roy.Soc.London A 269(1962)21;R.K.Sachs,Proc.Roy.Soc.London A 270(1962)103;J.D.Brown and J.W.York,Phys.Rev.D 47(1993)1407;C.C.M.Liu and S.T.Yau,Phys.Rev.Lett.90(2003)231102.

    [26]David W.Tian and Ivan Booth,Phys.Rev.D 92(2015)024001;U.Debnath,S.Chattopadhyay,I.Hussain,M.Jamil,and R.Myzakulov,Eur.Phys.J.C 72(2012)1875.

    [27]R.Herrera and N.Videla,Int.J.Mod.Phys.D 23(2014)1450071;M.Sharif and S.Rani,Astrophys.Space Sci.346(2013)573;R.Herrera,Astrophys.Space Sci.350(2014)393;S.Chattapadhyay and R.Ghosh,Astrophys.Space Sci.341(2012)669.

    欧美日韩黄片免| 中文字幕人妻丝袜一区二区| 这个男人来自地球电影免费观看| 男女高潮啪啪啪动态图| 亚洲五月色婷婷综合| 免费少妇av软件| 国产精品日韩av在线免费观看 | 日本三级黄在线观看| 亚洲欧美一区二区三区久久| 国产亚洲精品第一综合不卡| 日本免费a在线| 免费在线观看黄色视频的| 9色porny在线观看| 亚洲人成网站在线播放欧美日韩| 欧美老熟妇乱子伦牲交| 午夜精品在线福利| 91大片在线观看| 国产精品1区2区在线观看.| 无遮挡黄片免费观看| 久久精品人人爽人人爽视色| 人人妻人人澡人人看| 一级毛片女人18水好多| ponron亚洲| 国产精品免费一区二区三区在线| 久久九九热精品免费| 久久影院123| 亚洲欧美日韩另类电影网站| 亚洲成人国产一区在线观看| 丝袜人妻中文字幕| 精品久久久久久电影网| 久久国产精品人妻蜜桃| 亚洲色图av天堂| 男女午夜视频在线观看| 欧美av亚洲av综合av国产av| 午夜福利一区二区在线看| 久久精品aⅴ一区二区三区四区| 久久精品影院6| 国产精品九九99| 99精国产麻豆久久婷婷| av网站免费在线观看视频| 十八禁人妻一区二区| 久久久国产成人免费| 最新在线观看一区二区三区| 老司机福利观看| 久久影院123| 亚洲va日本ⅴa欧美va伊人久久| 国产亚洲av高清不卡| 久久亚洲精品不卡| 在线观看午夜福利视频| xxxhd国产人妻xxx| 韩国精品一区二区三区| 久久人妻福利社区极品人妻图片| 桃色一区二区三区在线观看| 欧美日韩瑟瑟在线播放| 久热这里只有精品99| 久久亚洲真实| 最近最新中文字幕大全电影3 | 久久国产精品人妻蜜桃| 国产99白浆流出| 亚洲第一青青草原| 免费在线观看黄色视频的| 真人做人爱边吃奶动态| 亚洲欧美日韩无卡精品| 母亲3免费完整高清在线观看| 国产激情久久老熟女| 亚洲av五月六月丁香网| 精品国产美女av久久久久小说| 亚洲精华国产精华精| 日本三级黄在线观看| 侵犯人妻中文字幕一二三四区| 国产主播在线观看一区二区| 亚洲五月婷婷丁香| 免费观看精品视频网站| 国产男靠女视频免费网站| 黄色视频,在线免费观看| 亚洲一区高清亚洲精品| 亚洲精品一卡2卡三卡4卡5卡| 男女做爰动态图高潮gif福利片 | 十分钟在线观看高清视频www| 成人永久免费在线观看视频| 国产高清激情床上av| 中亚洲国语对白在线视频| 男女高潮啪啪啪动态图| 日韩免费av在线播放| 淫秽高清视频在线观看| 精品日产1卡2卡| 9热在线视频观看99| 婷婷六月久久综合丁香| 欧美日韩一级在线毛片| 老司机深夜福利视频在线观看| 巨乳人妻的诱惑在线观看| 69av精品久久久久久| 国产成人啪精品午夜网站| 欧美精品亚洲一区二区| 19禁男女啪啪无遮挡网站| 国产麻豆69| 国产亚洲精品一区二区www| 波多野结衣av一区二区av| 在线看a的网站| 国产激情久久老熟女| 亚洲精品成人av观看孕妇| 男女床上黄色一级片免费看| aaaaa片日本免费| 久久精品亚洲精品国产色婷小说| 男女下面进入的视频免费午夜 | 国产91精品成人一区二区三区| 久久性视频一级片| 精品国产国语对白av| 亚洲自拍偷在线| 中文字幕人妻丝袜制服| 天堂影院成人在线观看| 亚洲全国av大片| 国内毛片毛片毛片毛片毛片| av网站在线播放免费| 777久久人妻少妇嫩草av网站| 一进一出好大好爽视频| 视频区图区小说| 韩国av一区二区三区四区| 丁香欧美五月| 青草久久国产| 一本大道久久a久久精品| 欧美在线黄色| 欧美色视频一区免费| 麻豆一二三区av精品| 涩涩av久久男人的天堂| 亚洲五月婷婷丁香| 亚洲专区字幕在线| 国产精品免费一区二区三区在线| 99热国产这里只有精品6| netflix在线观看网站| 亚洲第一av免费看| 制服诱惑二区| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利一区二区在线看| 午夜精品在线福利| 中文字幕精品免费在线观看视频| av视频免费观看在线观看| 国产色视频综合| 在线观看免费高清a一片| 国产亚洲精品第一综合不卡| 青草久久国产| 精品高清国产在线一区| 一区二区日韩欧美中文字幕| 人人妻人人澡人人看| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲av日韩精品久久久久久密| 97超级碰碰碰精品色视频在线观看| 亚洲国产精品合色在线| 在线天堂中文资源库| 两人在一起打扑克的视频| 久久久久国产精品人妻aⅴ院| 国产免费av片在线观看野外av| 成人手机av| 精品卡一卡二卡四卡免费| 搡老岳熟女国产| 1024视频免费在线观看| 99久久99久久久精品蜜桃| 搡老岳熟女国产| 久久久久九九精品影院| 日韩免费高清中文字幕av| 一区二区日韩欧美中文字幕| 日韩一卡2卡3卡4卡2021年| 亚洲专区字幕在线| 久久久水蜜桃国产精品网| 国产97色在线日韩免费| 亚洲精品国产区一区二| 欧美成人性av电影在线观看| 亚洲色图综合在线观看| 一区福利在线观看| 美女 人体艺术 gogo| 色老头精品视频在线观看| 免费在线观看完整版高清| 三级毛片av免费| 色婷婷久久久亚洲欧美| 女性生殖器流出的白浆| 国产av一区在线观看免费| 国产高清视频在线播放一区| 精品福利永久在线观看| 国产成人精品久久二区二区免费| 久久精品国产亚洲av香蕉五月| 久99久视频精品免费| 又黄又粗又硬又大视频| 88av欧美| 成人三级做爰电影| 午夜精品国产一区二区电影| 国产精品 国内视频| 啦啦啦在线免费观看视频4| 精品久久久久久,| 在线观看午夜福利视频| 热99国产精品久久久久久7| 18禁国产床啪视频网站| 免费在线观看亚洲国产| 不卡一级毛片| 夜夜爽天天搞| 91在线观看av| 国产欧美日韩精品亚洲av| 女人精品久久久久毛片| 少妇粗大呻吟视频| 一边摸一边抽搐一进一小说| 免费在线观看视频国产中文字幕亚洲| av有码第一页| 久久影院123| 最好的美女福利视频网| 精品熟女少妇八av免费久了| 国产乱人伦免费视频| av有码第一页| 国产在线精品亚洲第一网站| 国产高清激情床上av| 国产极品粉嫩免费观看在线| 欧美精品亚洲一区二区| 性色av乱码一区二区三区2| 9色porny在线观看| 日韩欧美一区视频在线观看| 桃色一区二区三区在线观看| 国产无遮挡羞羞视频在线观看| 丝袜美腿诱惑在线| 久久 成人 亚洲| 在线观看一区二区三区| x7x7x7水蜜桃| 成人av一区二区三区在线看| 黄片大片在线免费观看| 一本大道久久a久久精品| 亚洲成av片中文字幕在线观看| 狂野欧美激情性xxxx| 热re99久久精品国产66热6| 男女之事视频高清在线观看| 看黄色毛片网站| 在线永久观看黄色视频| 成年女人毛片免费观看观看9| 动漫黄色视频在线观看| 久久久久久久久久久久大奶| 高清欧美精品videossex| 日本精品一区二区三区蜜桃| 夫妻午夜视频| 精品国产一区二区三区四区第35| e午夜精品久久久久久久| 一边摸一边做爽爽视频免费| 欧美在线一区亚洲| 国产精品久久久久成人av| 十八禁网站免费在线| 美女扒开内裤让男人捅视频| 午夜影院日韩av| 欧美日韩视频精品一区| 亚洲熟女毛片儿| 国产av精品麻豆| 夜夜躁狠狠躁天天躁| 国产又色又爽无遮挡免费看| 国产国语露脸激情在线看| 黄色成人免费大全| 久久人妻福利社区极品人妻图片| 看黄色毛片网站| 免费在线观看完整版高清| 亚洲欧美精品综合久久99| 亚洲全国av大片| 18禁裸乳无遮挡免费网站照片 | 成年女人毛片免费观看观看9| 99久久久亚洲精品蜜臀av| 久久天躁狠狠躁夜夜2o2o| netflix在线观看网站| 日本精品一区二区三区蜜桃| 久久午夜综合久久蜜桃| 美女午夜性视频免费| 一进一出抽搐动态| 身体一侧抽搐| 又大又爽又粗| 亚洲激情在线av| 可以免费在线观看a视频的电影网站| 999精品在线视频| av超薄肉色丝袜交足视频| 午夜福利影视在线免费观看| 嫩草影院精品99| 怎么达到女性高潮| 99精品欧美一区二区三区四区| 欧美中文日本在线观看视频| 伊人久久大香线蕉亚洲五| 日韩高清综合在线| 侵犯人妻中文字幕一二三四区| 天堂中文最新版在线下载| 真人做人爱边吃奶动态| 国产精品九九99| 两个人看的免费小视频| 男女做爰动态图高潮gif福利片 | av国产精品久久久久影院| 一进一出好大好爽视频| 国产av一区在线观看免费| 天天影视国产精品| 精品久久久久久电影网| 神马国产精品三级电影在线观看 | 一级a爱片免费观看的视频| 99热国产这里只有精品6| 亚洲三区欧美一区| 18美女黄网站色大片免费观看| 国产免费男女视频| 叶爱在线成人免费视频播放| 久久 成人 亚洲| 美女高潮喷水抽搐中文字幕| 最近最新中文字幕大全电影3 | 欧美精品亚洲一区二区| 国产一区二区在线av高清观看| 欧美成人免费av一区二区三区| 国产aⅴ精品一区二区三区波| 精品日产1卡2卡| 日本黄色视频三级网站网址| 国产精品爽爽va在线观看网站 | 国产xxxxx性猛交| 中文欧美无线码| 亚洲va日本ⅴa欧美va伊人久久| 亚洲成av片中文字幕在线观看| 国产区一区二久久| 亚洲色图av天堂| 成人免费观看视频高清| 大码成人一级视频| 亚洲专区中文字幕在线| 国产精品久久视频播放| 色综合婷婷激情| 深夜精品福利| 午夜成年电影在线免费观看| 久久精品91蜜桃| 亚洲av熟女| 久久国产精品人妻蜜桃| 国产又爽黄色视频| 午夜免费激情av| 亚洲专区字幕在线| 不卡一级毛片| 国产黄a三级三级三级人| 操美女的视频在线观看| 在线十欧美十亚洲十日本专区| 国产精品免费视频内射| 午夜影院日韩av| 国产精品日韩av在线免费观看 | 一进一出抽搐动态| 美女福利国产在线| 在线视频色国产色| 亚洲精品中文字幕一二三四区| 欧美成人免费av一区二区三区| 变态另类成人亚洲欧美熟女 | 十八禁网站免费在线| 精品久久久久久电影网| 9191精品国产免费久久| 亚洲片人在线观看| 美女 人体艺术 gogo| 国产精品综合久久久久久久免费 | 桃色一区二区三区在线观看| 久久久国产欧美日韩av| 亚洲第一欧美日韩一区二区三区| 日本五十路高清| 久久这里只有精品19| 好男人电影高清在线观看| 亚洲色图 男人天堂 中文字幕| 久久精品91蜜桃| 嫁个100分男人电影在线观看| 少妇 在线观看| 一级,二级,三级黄色视频| 午夜激情av网站| 黄频高清免费视频| 一边摸一边抽搐一进一出视频| 狠狠狠狠99中文字幕| 国产精品久久久久成人av| 91av网站免费观看| 欧美性长视频在线观看| 免费搜索国产男女视频| 欧美日韩av久久| av网站免费在线观看视频| 老熟妇乱子伦视频在线观看| 亚洲一区二区三区欧美精品| 一区二区三区激情视频| 国产熟女午夜一区二区三区| 国产欧美日韩一区二区三区在线| 精品一区二区三区四区五区乱码| 91成人精品电影| 欧美丝袜亚洲另类 | 久久久精品欧美日韩精品| 在线国产一区二区在线| 国产成人精品在线电影| 一本综合久久免费| 亚洲一码二码三码区别大吗| 亚洲欧美精品综合一区二区三区| 一级,二级,三级黄色视频| 久热爱精品视频在线9| 免费看十八禁软件| 超碰97精品在线观看| 91国产中文字幕| 超碰97精品在线观看| 麻豆国产av国片精品| 色哟哟哟哟哟哟| 如日韩欧美国产精品一区二区三区| 欧美日韩黄片免| 欧美色视频一区免费| 久久久久久人人人人人| 老司机午夜十八禁免费视频| 日韩成人在线观看一区二区三区| 91麻豆av在线| 在线观看免费视频网站a站| 久久伊人香网站| 91麻豆精品激情在线观看国产 | 99国产综合亚洲精品| 久久精品亚洲精品国产色婷小说| 大型av网站在线播放| 国产精品国产高清国产av| 母亲3免费完整高清在线观看| 亚洲欧美精品综合一区二区三区| 国产精品偷伦视频观看了| 亚洲精品国产区一区二| 人人妻人人澡人人看| 日本五十路高清| 国产单亲对白刺激| 国产主播在线观看一区二区| xxx96com| 欧美日韩中文字幕国产精品一区二区三区 | 久久精品国产99精品国产亚洲性色 | 欧美日韩亚洲高清精品| 日本撒尿小便嘘嘘汇集6| 免费看a级黄色片| 中出人妻视频一区二区| 国产精品国产av在线观看| 国产日韩一区二区三区精品不卡| 91精品三级在线观看| 国产精品野战在线观看 | av免费在线观看网站| 99riav亚洲国产免费| 亚洲 欧美 日韩 在线 免费| 老汉色av国产亚洲站长工具| 热re99久久国产66热| 国产av精品麻豆| 热99国产精品久久久久久7| 一个人观看的视频www高清免费观看 | 91在线观看av| 大型av网站在线播放| 一级a爱视频在线免费观看| 免费看十八禁软件| 老司机靠b影院| 午夜老司机福利片| 日本欧美视频一区| 久久午夜综合久久蜜桃| 亚洲中文av在线| av电影中文网址| 亚洲国产精品一区二区三区在线| 国产视频一区二区在线看| 波多野结衣一区麻豆| 日本免费a在线| 91大片在线观看| 十八禁网站免费在线| 精品高清国产在线一区| 99国产综合亚洲精品| 女性被躁到高潮视频| 久久精品成人免费网站| 99久久久亚洲精品蜜臀av| 免费在线观看亚洲国产| 日韩精品免费视频一区二区三区| 天堂影院成人在线观看| av有码第一页| 老司机亚洲免费影院| 一级,二级,三级黄色视频| 亚洲精品国产区一区二| e午夜精品久久久久久久| 久久狼人影院| 久久热在线av| 免费高清在线观看日韩| 97人妻天天添夜夜摸| 欧美乱妇无乱码| 男人舔女人的私密视频| 性欧美人与动物交配| 日本 av在线| 久久影院123| 国产精品久久久人人做人人爽| 欧美另类亚洲清纯唯美| 日韩欧美三级三区| 精品国产国语对白av| 人成视频在线观看免费观看| 欧美日韩黄片免| 99久久精品国产亚洲精品| avwww免费| 丰满迷人的少妇在线观看| 国产午夜精品久久久久久| 亚洲欧美一区二区三区久久| 色精品久久人妻99蜜桃| 男人舔女人的私密视频| 精品欧美一区二区三区在线| 久久精品国产清高在天天线| 日日摸夜夜添夜夜添小说| 精品免费久久久久久久清纯| 亚洲中文字幕日韩| 色婷婷av一区二区三区视频| 日韩欧美一区二区三区在线观看| 免费一级毛片在线播放高清视频 | 亚洲欧美精品综合久久99| 18禁国产床啪视频网站| netflix在线观看网站| 啪啪无遮挡十八禁网站| 老熟妇仑乱视频hdxx| 中出人妻视频一区二区| 人人妻人人爽人人添夜夜欢视频| 国产亚洲精品综合一区在线观看 | 亚洲熟女毛片儿| 美女 人体艺术 gogo| 男女下面进入的视频免费午夜 | 亚洲五月天丁香| 丝袜在线中文字幕| 精品欧美一区二区三区在线| 亚洲第一青青草原| 精品卡一卡二卡四卡免费| av网站免费在线观看视频| 免费在线观看影片大全网站| 精品欧美一区二区三区在线| 日韩欧美三级三区| 国产伦一二天堂av在线观看| 久久久久国内视频| 久久久久亚洲av毛片大全| 自拍欧美九色日韩亚洲蝌蚪91| 在线免费观看的www视频| 久久 成人 亚洲| 99国产精品一区二区蜜桃av| 激情视频va一区二区三区| 在线观看免费午夜福利视频| 亚洲国产毛片av蜜桃av| 夜夜躁狠狠躁天天躁| 国产伦人伦偷精品视频| 国产亚洲av高清不卡| 免费在线观看亚洲国产| 91麻豆精品激情在线观看国产 | 亚洲一码二码三码区别大吗| 欧美日韩黄片免| 可以免费在线观看a视频的电影网站| 两个人免费观看高清视频| 脱女人内裤的视频| 日本a在线网址| 999精品在线视频| 久久久久国产一级毛片高清牌| 亚洲成av片中文字幕在线观看| 欧美人与性动交α欧美软件| 在线观看免费日韩欧美大片| 午夜精品国产一区二区电影| 一级片'在线观看视频| 黄片小视频在线播放| 午夜福利影视在线免费观看| 久久久久九九精品影院| 亚洲精品一区av在线观看| 成人18禁高潮啪啪吃奶动态图| 嫩草影院精品99| 国产亚洲精品久久久久久毛片| 日本wwww免费看| 亚洲视频免费观看视频| 91在线观看av| www.www免费av| 国产三级在线视频| 亚洲精品国产色婷婷电影| 亚洲av日韩精品久久久久久密| 国产精品98久久久久久宅男小说| 精品无人区乱码1区二区| 另类亚洲欧美激情| netflix在线观看网站| 久久精品91无色码中文字幕| 国产男靠女视频免费网站| 成人影院久久| 国产精品av久久久久免费| 在线观看www视频免费| 少妇的丰满在线观看| 国产欧美日韩一区二区三| 黑人操中国人逼视频| 在线观看免费日韩欧美大片| 波多野结衣av一区二区av| 日韩大尺度精品在线看网址 | 高清av免费在线| 国产一区二区在线av高清观看| 日日摸夜夜添夜夜添小说| 久久精品国产亚洲av高清一级| 一进一出抽搐gif免费好疼 | 色综合站精品国产| 黑人巨大精品欧美一区二区mp4| 最新在线观看一区二区三区| 天堂动漫精品| 亚洲色图av天堂| 精品久久久久久电影网| 国产一卡二卡三卡精品| 老司机深夜福利视频在线观看| 午夜精品久久久久久毛片777| av欧美777| 丁香六月欧美| 日韩大码丰满熟妇| 一级a爱片免费观看的视频| 国产99久久九九免费精品| 欧美在线一区亚洲| 伊人久久大香线蕉亚洲五| 欧美大码av| 狠狠狠狠99中文字幕| 伊人久久大香线蕉亚洲五| 91大片在线观看| 日日干狠狠操夜夜爽| 97碰自拍视频| 久久人人爽av亚洲精品天堂| 久久精品国产亚洲av高清一级| 男人舔女人的私密视频| 久久人妻av系列| 少妇裸体淫交视频免费看高清 | 免费看十八禁软件| 亚洲国产精品sss在线观看 | 日韩 欧美 亚洲 中文字幕| 怎么达到女性高潮| 国产精品久久视频播放| 在线视频色国产色| 真人做人爱边吃奶动态| 男人的好看免费观看在线视频 | 久久 成人 亚洲| 十八禁人妻一区二区| 国产在线观看jvid| 中文字幕高清在线视频| 两性夫妻黄色片| 久热这里只有精品99| 亚洲专区字幕在线| 日本一区二区免费在线视频| 亚洲第一青青草原| 亚洲一区中文字幕在线| 亚洲成a人片在线一区二区| 亚洲熟妇熟女久久| 亚洲人成网站在线播放欧美日韩|