• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Modi fi ed Thermodynamics Method to Generate Exact Solutions of Einstein Equations?

    2017-05-18 05:56:28HongWeiTan譚鴻威JinBoYang楊錦波TangMeiHe何唐梅andJingYiZhang張靖儀
    Communications in Theoretical Physics 2017年1期

    Hong-Wei Tan(譚鴻威),Jin-Bo Yang(楊錦波),Tang-Mei He(何唐梅),and Jing-Yi Zhang(張靖儀)

    Center for Astrophysics,Guangzhou University,Guangzhou 510006,China

    1 Introduction

    Since Bekenstein found the relationship between black hole dynamics and thermodynamics,[1]and Hawking presented Hawking radiation according to the quantum field theory in curved spacetime,[2]which is a pure thermodynamical radiation,the researchers have focused on the deep relationship between the theory of the gravitation and thermodynamics for a long time.

    In fact,black hole thermodynamics can be viewed as spacetime thermodynamics,which means that the properties of the physical objects in black hole thermodynamics is global on a manifold which is equipped with a Lorentz metric,known as a spacetime.However,it is very difficult to construct thermodynamics in general situations for some common physical quantities such as mass,entropy and angular momentum which can not be well de fi ned.Moveover,in general spacetime,the thermodynamics is usually need to be considered as nonequilibrium state,which is very difficult to be dealt with even for ordinary matter.Though there are such difficulties to overcome,it does not stop the researchers from deriving the Einstein equations from thermodynamic laws.[3]

    In 1995,Jacobson derived the Einstein equations from the basic equations of thermodynamics and the Raychaudhuri equations on the null hypersurface,[4]by using the local first law of equilibrium thermodynamics.In such work,the researchers used the assumption that the entropy is proportional to the area of the local Rindler horizon of an in fi nitely accelerated observer,and the Hawking-Unruh temperature,which had been exploited in Ref.[5],was treated as the temperature observed by such observer.Basing on such assumptions,the Einstein equations were derived.However,in that work,the researchers assumed that the spacetime is in a locally thermal equilibrium system,but as the equations that describe the evolution of all kinds of spacetime,Einstein equations are expected to be able to describe all kinds of spacetime’s evolution in principle naturally,including the spacetime that does not satisfy the locally thermal equilibrium assumption.In other words,the researchers obtained the equations that can describe general situations only based on a special assumption,which is unnatural in logic.[3]

    For this reason,Ref.[3]put forward a new method to deal with this problem.In their paper,the researchers considered the spacetime equipped with spherically symmetry,whose metric ansatz is ds2=?f(r)dt2+h(r)dr2+r2d?2.In such spacetime,the energy of the gravitational field was de fi ned as the Misner–Sharp energy.[6]Firstly,the researchers applied the first law of equilibrium thermodynamics in an adiabatic system,dM=dW,to derive h(r).Deriving f(r)is a difficult task,to solve such problem,the researchers assumed that the surface gravity de fi ned in the traditional way is equal to the geometry surface de fi ned by the uni fi ed first law,[7]and then they generated several exact solutions of the Einstein equations.Furthermore,the authors also improved their work to high derivative gravity,and there is a mini review in Ref.[8].There is no doubt that the amazing results obtained in Ref.[3]provide a new way to study the gravitational thermodynamics.However,there is a limitation in this method,since such method requires the symmetry of the spacetime strictly because the Misner–Sharp energy can only be de fi ned in the spacetime with a spherically symmetry,a plane symmetry as well as a Pseudo spherically symmetry.[9?11]This difficulty motivates us to modify this method.

    There are two steps of such modi fication introduced in our paper.Firstly,we replace the Misner–Sharp mass with only the Komar mass,[12]by using the first law of equilibrium thermodynamics in an adiabatic system just like the original method did,and then the results obtained here are similar with that obtained in the original method.Note that the Definition of the Komar mass only requires that the spacetime is stationary,it means that once there is a time-like Killing vector in the spacetime,then our method can be used in principle.In addition,the black hole solution surrounded by quintessence is also generated in this paper.Our another achievement is that we construct another Definition of the geometry surface gravity,which is de fi ned by the Komar mass.In the second step of our work,we use the ADM mass,[13]together with the Komar mass to complete such modi fication.If we do so,then we can also regenerate these exact solutions of Einstein equations.Furthermore,we modify the Definition of the ADM mass,and then the global monopole spacetime can be generated.

    This paper is organized as follows:in Sec.2 we modify this method with only the Komar mass,and generate several exact solutions of Einstein equations.The geometry surface gravity de fi ned by Komar mass is also construct in this section.In Sec.3,we introduce the method modi fi ed by both the Komar mass and the ADM mass,and some comments on the situation that the spacetime with global monopole charge is arisen.In Secs.4 and 5,some discussion and conclusion are given.

    2 Modi fi ed with Only Komar Mass

    In this section,the method modi fi ed with only the Komar mass will be introduced.Here,the metric ansatz of a spherically symmetric spacetime is

    In a stationary spacetime,the Komar mass can be de fi ned as

    where ?abcdis the volume element of the four-dimensional spacetime and ξdis a time-like Killing vector field.According to the two formulas above,one can get the Komar mass in this metric ansatz as

    In the spherically symmetric spacetime,according to the uni fi ed first law,the geometry surface gravity can be de fi ned as[7]

    in which Mmsis the Misner–Sharp energy de fi ned as[6]

    and ω is the work term de fi ned as[7]

    where Iabis the inverse of the induced metric of the spacetime in the leading two dimensions whose line element reads

    On the other hand,in Eq.(1),the surface gravity is

    In Ref.[3],the researchers assumed that the surface gravity is equal to the geometry surface gravity

    In this paper we will follow this assumption.According to Eqs.(3),(4),(8),and(9),we can obtain the relationship between the Komar mass and the Misner–Sharp energy as

    2.1 The Schwarzschild Solution

    Considering a vacuum spacetime and the first law of equilibrium thermodynamics in an adiabatic system,one can get

    The energy-stress tensor is zero in the vacuum space,so the work term ω must be zero.Combining Eqs.(5),(10),and(11)together,we have

    Solving this equation,the result reads

    Substituting it into Eqs.(3)and(5),and combing with Eq.(10),f(r)is obtained as

    If we choose the asymptotically fl at spacetime as the boundary condition,then

    And the Komar mass reads

    Finally the result can be written as

    It is exactly the line element of the Schwarzschild spacetime.Now we can draw a conclusion that the Kormar mass describes an adiabatic process.Furthermore,combining Eqs.(3),(8),(9)together,one can obtain the geometry surface gravity de fi ned by the Komar mass as

    2.2 The Schwarzschild-de Sitter Solution

    Now let us deal with the situation that there is force works.Considering the first law of thermodynamics again

    wherePdonates the pressure and V is the volume

    the work term is[3]

    where Λ can be viewed as the cosmological constant.Substituting it into Eq.(10),then the Komar mass reads

    Based on Eqs.(19),(21),(22),we get

    Letting the Λ =4πP,the results are read as

    It is just the line element of the Schwarzschild de Sitter spacetime

    2.3 The RN-de Sitter Solution

    Furthermore,in the situation that there is an electric charge is considered,then

    Reference[3]assumed that the work of the electric field can be written as(q/r)dq,however,we find that using this assumption can not derive the RN solution.Indeed,in Ref.[7]the work of the electric force is considered as(q2/r2)dr.Moreover,if we use this as the assumption and then the RN solution can be obtained,which will be expressed as follows.

    To be more general,we should consider that there are both force and electric field doing work,so the work term is written as[3]

    One can obtain the Komar mass in this situation as

    So,we can get the equation as

    Considering Λ =4πPand solving the equation above,the solution is obtained as

    Substituting this into Eq.(3),we get

    And therefore,the line element of RN-de Sitter spacetime is obtained,that is,

    2.4 More General Situations

    In more general situations,if it is assumed that the work term ω and the pressurePare both power functions of r,applying the first law of thermodynamics,for convenient,the equation should be expressed as

    where a,b,c and d are all constants.The solution of this equation is

    If it is assumed that a,b,c and d are not independent with each other but constrained by following conditions

    then h can be rewritten as

    Above formula can be inserted into Eq.(10),then one can get

    and the solution is

    Setting C2=0,one can

    Rede fi ning a new parameter α as

    then the line element of the spacetime is

    where α can be viewed as the charge of the spacetime.For some speci fic examples,if α=0,then a=c=0,the Schwarzschild solution can be obtained,and if d=?1,then one arrives at the RN spacetime and α=q2,where q is the electric charge.

    Noted that if the range of d is set as

    then we arrive at the black hole solution surrounded by quintessence,which has been obtained by Kiselev in 2003.[14]

    It should be careful that when d=1.In such situation the solution is

    it seems that the global monopole spacetime is generated.However,if above is submitted into Eq.(3),then the Kormas can be obtained as

    and then the thermodynamical relationship reads

    which means that there is not any work in this situation.It requires that

    in Eq.(36),then we just arrive at the Schwarzschild situation again.

    3 Modi fi ed with both Komar Mass and ADM Mass

    In an asymptotically fl at sapcetime,the ADM mass can be de fi ned as[13]

    where the hijis the spatial component of the induced metric in the asymptotically Descartes coordinates.In our spacetime metric ansatz,the line element of the induced metric can be written as

    Since what we consider now is an asymptotically fl at sapcetime,so it can be believed that

    So the spatial line element can be written approximately as

    After some calculations,the ADM mass can be written as

    After the limitation has been taken,then

    3.1 The Schwarzschild Solution

    Applying again the first law of thermodynamics in a vacuum spacetime which is in an adiabatic system

    then the following differential equation can be obtained

    Solving this equation,the result reads

    The condition of asymptotic fl at spacetime requires that C1=1.Submitting Eq.(56)into Eq.(53),then the result can be obtained as

    Inserting above result into the Komar mass(3)and using the first law of thermodynamic

    then the following equation can be obtained

    Solving the above equation,the result is

    If the integral constants are chosen as

    then the solution can be written as follows

    Combining Eqs.(3),(57),and(62)together,then the following result is obtained

    This result suggests that our method is reasonable.Applying this result into Eq.(1),then the Schwarzschild solution can be obtained

    3.2 A Comment on the Spacetime with a Global Monopole Charge

    Let us consider Eq.(53)again,which is under the condition that Now,let us assume that Eq.(53)still works in the spacetime with a global monopole charge.However,such spacetime is not a spherically symmetry spacetime anymore.Speci fically,let us consider a global monopole spacetime,whose line element is

    where η is a constant.This line element can be rescaled as

    In this spacetime,the integral∫dS is not 4π but 4π(1?8πη2),see Ref.[15].So,in order to carry the information of the global charge,we de fi ne the ADM mass in such spacetime as

    It should be noted that when η=0,the Definition above reduces to Eq.(53).Now we have generalized the definition of ADM mass in the spacetime with a global monopole charge,and let us call this mass as quasi ADM mass.

    Now we are ready to explore what such generalization will give us.Firstly,we consider a global monopole spacetime.By using the Definition of the quasi ADM mass,then

    Next,let us consider the global monopole spacetime with an electric charge,whose line element is

    With calculation,the thermodynamical relationship can be obtained as

    This result means that the global monopole charge results in a correction factor in the thermodynamical relationship.

    Whatever,it is obvious that the first law of thermodynamics can be obtained in our Definition of quasi ADM mass,which suggests that such generalization is reasonable.

    4 Discussion

    There are several comments on our work introduced as follows:

    (i)In Sec.3,we introduce the method that modi fi ed by both the Komar mass and the ADM mass.However,to be honest,only the Schwarzschild solution has been generated completely in our work.However,with some trick,some other exact solutions can also be regenerated.Let us take the RN solution as an example.Firstly,let us consider the thermodynamical relationship for ADM mass in this situation

    and the solution reads

    Submitting above into Eq.(3),and using the same thermodynamical relationship,then we have

    the above equation is too difficult to be solved,but we can check that the following is one particular solution of this equation:

    Here,the RN spacetime is generated though this trick is not strict enough.

    (ii)Some analyses about the situation that the spacetime with global monopole charge are also given in Sec.3.However,we can consider the inverse logic.We assume that the thermodynamical relationship still works in this situation.In the vacuum,the thermodynamical relationship reads

    and the solution reads

    In this situation,the requirement of the asymptotically fl at sapcetime is loosen,so the integral constant can be chosen as C1=1?η,and the result reads

    The f(r)can also be solved as

    Then the global monopole spacetime has been generated.

    5 Conclusion

    In this paper,we modify the method to generate the exact solution of the Einstein equations with the laws of thermodynamics which was arisen in Ref.[3].In Ref.[3],the researchers used the Misner–Sharp energy and uni fi ed first law to derive several exact solutions of Einstein equations without involving it.However,the Misner–Sharp energy can only be de fi ned in the spacetime with a spherically symmetry,a plane symmetry as well as a Pseudo spherically symmetry,which limits this method to be generalized to more general situation.

    This method is modi fi ed in two steps in this paper.Firstly,we use only the Komar mass to take the place of the Misner–Sharp energy to modify such method,and then several exact solutions of the Einstein equations are regenerated.Moreover,we obtain the geometry surface gravity de fi ned by the Komar mass in the specially symmetry spacetime.Since the Komar mass requires the symmetry less than the Misner–Sharp energy,means that method could be used in more situations general in principle.

    Secondly,we modify this method with both the Komar mass and the ADM mass,some exact solutions of Einstein can also be regenerated.Moreover,the quasi ADM mass de fi ned in the spacetime with a global monopole charge and some thermodynamical properties of such mass are analyzed.We find that the first law of thermodynamics still works in such mass,and the global charge plays an important role in the relationship between the extra field and the work done by such extra field.

    References

    [1]J.D.Beckenstein,Phys.Rev.D 7(1973)2333.

    [2]S.W.Hawking,Commun.Math.Phys.43(1975)199.

    [3]H.Zhang,S.A.Hayward,X.H.Zhai,and X.Z.Li,Phys.Rev.D 89(2014)064052.

    [4]T.Jacobson,Phys.Rev.Lett.75(1995)1260.

    [5]W.G.Unruh,Phys.Rev.D 14(1976)870.

    [6]C.w.Misner and D.H.Sharp,Phys.Rev.136(1964)B571.

    [7]Hayward,Classical Quant.Grav.15(1998)3147.

    [8]Hong-Sheng Zhang,The Universe 3(2015)30.

    [9]H.Maeda and Nozawa,Phys.Rev.D 77(2008)064031.

    [10]R.G.Cai,L.M.Cao,Y.P.Hu,and N.Ohta,Phys.Rev.D 80(2009)104019.

    [11]H.Zhang,Y.Hu,and X.Z.Li,Phys.Rev.D 90(2014)024062.

    [12]A.Komar,Phys.Rev.113(1959)934.

    [13]R.Arnowitt,S.Deser,and C.Misner,Gen.Relativ.Grav.40(2008)1987.

    [14]V.V.Kiselev,Classical Quant.Grav.20(2003)1187.

    [15]Manuel Barriola and Alexander Vilenkin,Phys.Rev.Lett.63(1989)341.

    久久国产精品影院| 成人国产综合亚洲| 欧美性长视频在线观看| 成人精品一区二区免费| 女人爽到高潮嗷嗷叫在线视频| 亚洲中文日韩欧美视频| 男男h啪啪无遮挡| 一本综合久久免费| 成人永久免费在线观看视频| 99国产精品一区二区三区| 女性被躁到高潮视频| 激情在线观看视频在线高清| 亚洲 欧美 日韩 在线 免费| 久久欧美精品欧美久久欧美| 亚洲国产精品999在线| 少妇 在线观看| 欧美在线一区亚洲| 亚洲精华国产精华精| 欧美色视频一区免费| 69精品国产乱码久久久| 欧美一级毛片孕妇| 成人18禁高潮啪啪吃奶动态图| 欧美最黄视频在线播放免费| 成人精品一区二区免费| 国产xxxxx性猛交| 色综合站精品国产| 日韩三级视频一区二区三区| 亚洲久久久国产精品| 亚洲,欧美精品.| 亚洲精品美女久久av网站| 免费观看人在逋| 老鸭窝网址在线观看| 在线观看免费日韩欧美大片| 嫁个100分男人电影在线观看| 成年人黄色毛片网站| 又紧又爽又黄一区二区| 亚洲人成网站在线播放欧美日韩| 久久人人97超碰香蕉20202| 精品人妻在线不人妻| 久久久久久国产a免费观看| 精品免费久久久久久久清纯| 午夜精品久久久久久毛片777| 丰满人妻熟妇乱又伦精品不卡| 真人做人爱边吃奶动态| 中文字幕精品免费在线观看视频| 麻豆成人av在线观看| 免费在线观看视频国产中文字幕亚洲| 黄网站色视频无遮挡免费观看| 亚洲自拍偷在线| 欧美黄色片欧美黄色片| avwww免费| 国产精品九九99| 中文字幕另类日韩欧美亚洲嫩草| 在线观看免费日韩欧美大片| √禁漫天堂资源中文www| 日日摸夜夜添夜夜添小说| 国产精品乱码一区二三区的特点 | 成人永久免费在线观看视频| 成人av一区二区三区在线看| 亚洲精品一区av在线观看| 午夜免费观看网址| 久久人妻熟女aⅴ| 久9热在线精品视频| 精品日产1卡2卡| 精品一区二区三区av网在线观看| 国语自产精品视频在线第100页| ponron亚洲| 日韩精品免费视频一区二区三区| 亚洲男人天堂网一区| 制服丝袜大香蕉在线| 日韩有码中文字幕| 久久午夜综合久久蜜桃| 窝窝影院91人妻| www日本在线高清视频| 人人妻,人人澡人人爽秒播| 国产免费av片在线观看野外av| 久久久精品欧美日韩精品| 禁无遮挡网站| 精品日产1卡2卡| 怎么达到女性高潮| 老司机深夜福利视频在线观看| 亚洲精品av麻豆狂野| 国产亚洲欧美在线一区二区| 亚洲人成77777在线视频| 国产精品免费一区二区三区在线| 大陆偷拍与自拍| 国产色视频综合| 久久久久精品国产欧美久久久| netflix在线观看网站| 香蕉久久夜色| 国产精品一区二区精品视频观看| 午夜免费鲁丝| 午夜亚洲福利在线播放| 一个人免费在线观看的高清视频| 午夜福利免费观看在线| 国产av精品麻豆| 久久香蕉国产精品| 日日干狠狠操夜夜爽| 一级作爱视频免费观看| 日本在线视频免费播放| 亚洲最大成人中文| 亚洲国产毛片av蜜桃av| 91av网站免费观看| 在线观看日韩欧美| 欧美另类亚洲清纯唯美| 亚洲国产欧美网| 久久人人97超碰香蕉20202| 国产蜜桃级精品一区二区三区| 一进一出好大好爽视频| 在线天堂中文资源库| 香蕉丝袜av| 亚洲av电影在线进入| 午夜亚洲福利在线播放| 日韩高清综合在线| 日韩一卡2卡3卡4卡2021年| 色尼玛亚洲综合影院| 国产成人免费无遮挡视频| 夜夜看夜夜爽夜夜摸| 日韩 欧美 亚洲 中文字幕| 久久久精品欧美日韩精品| 亚洲人成伊人成综合网2020| 高清在线国产一区| 欧美日本视频| 身体一侧抽搐| 免费av毛片视频| 成人免费观看视频高清| 一边摸一边抽搐一进一出视频| www.熟女人妻精品国产| 色播在线永久视频| 黑人巨大精品欧美一区二区蜜桃| 国产精品九九99| 欧美日韩中文字幕国产精品一区二区三区 | 成人三级做爰电影| 午夜久久久在线观看| 国产免费男女视频| 啪啪无遮挡十八禁网站| 夜夜看夜夜爽夜夜摸| av在线播放免费不卡| av在线天堂中文字幕| 三级毛片av免费| 成人欧美大片| 国产一级毛片七仙女欲春2 | 丝袜美腿诱惑在线| 精品国产美女av久久久久小说| 色综合亚洲欧美另类图片| 日韩欧美三级三区| 亚洲久久久国产精品| 涩涩av久久男人的天堂| av网站免费在线观看视频| 99在线视频只有这里精品首页| 日韩欧美国产在线观看| 久久国产精品人妻蜜桃| 欧美激情久久久久久爽电影 | 叶爱在线成人免费视频播放| 成人手机av| 国产单亲对白刺激| 波多野结衣巨乳人妻| 亚洲中文字幕一区二区三区有码在线看 | 久久婷婷成人综合色麻豆| 国产精品一区二区三区四区久久 | 亚洲精品美女久久av网站| 又大又爽又粗| 午夜久久久在线观看| 亚洲一区中文字幕在线| 日韩 欧美 亚洲 中文字幕| 极品教师在线免费播放| 精品熟女少妇八av免费久了| 国产精品一区二区在线不卡| 九色亚洲精品在线播放| 午夜a级毛片| 日本a在线网址| 亚洲第一欧美日韩一区二区三区| 麻豆一二三区av精品| 午夜精品国产一区二区电影| 十八禁网站免费在线| 午夜福利视频1000在线观看 | 美女午夜性视频免费| 中文字幕另类日韩欧美亚洲嫩草| 国产精品 国内视频| 久久久久九九精品影院| 久久伊人香网站| 在线国产一区二区在线| 国产精品久久久av美女十八| 欧美日韩乱码在线| 一区在线观看完整版| 国产精品 欧美亚洲| 欧美不卡视频在线免费观看 | 非洲黑人性xxxx精品又粗又长| 九色国产91popny在线| 色老头精品视频在线观看| 国产成人系列免费观看| 欧美激情高清一区二区三区| 后天国语完整版免费观看| 狂野欧美激情性xxxx| 精品国内亚洲2022精品成人| 黄色成人免费大全| 色在线成人网| 亚洲人成77777在线视频| 亚洲人成电影观看| 大码成人一级视频| 免费在线观看视频国产中文字幕亚洲| 亚洲少妇的诱惑av| 天堂√8在线中文| 18美女黄网站色大片免费观看| 亚洲第一电影网av| 国产精品亚洲美女久久久| 日本免费一区二区三区高清不卡 | 国产精品自产拍在线观看55亚洲| 一进一出抽搐动态| 亚洲在线自拍视频| 亚洲熟女毛片儿| 久久欧美精品欧美久久欧美| 99国产精品免费福利视频| 免费看十八禁软件| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品av麻豆狂野| 精品一区二区三区视频在线观看免费| 在线永久观看黄色视频| 久久九九热精品免费| 国产激情久久老熟女| 天堂影院成人在线观看| 亚洲五月色婷婷综合| 日本 av在线| 18美女黄网站色大片免费观看| 美女 人体艺术 gogo| 天堂影院成人在线观看| 在线观看免费视频日本深夜| 国产私拍福利视频在线观看| 满18在线观看网站| 最新美女视频免费是黄的| 黄网站色视频无遮挡免费观看| 日本精品一区二区三区蜜桃| 亚洲五月天丁香| 久久热在线av| 搞女人的毛片| 男女午夜视频在线观看| 丰满的人妻完整版| 亚洲av日韩精品久久久久久密| 男人操女人黄网站| √禁漫天堂资源中文www| 欧美精品亚洲一区二区| 男女下面进入的视频免费午夜 | 欧美在线黄色| 国产一区二区三区在线臀色熟女| 国产熟女午夜一区二区三区| 精品国产乱子伦一区二区三区| 久久欧美精品欧美久久欧美| 久久中文字幕人妻熟女| 精品久久蜜臀av无| 亚洲欧美激情在线| 国产精品一区二区三区四区久久 | 亚洲黑人精品在线| 亚洲欧美精品综合久久99| 级片在线观看| 国产视频一区二区在线看| 日韩三级视频一区二区三区| 国产精品美女特级片免费视频播放器 | 日日干狠狠操夜夜爽| 一区二区三区精品91| 国产精品久久久人人做人人爽| 在线观看午夜福利视频| 日日夜夜操网爽| 国产一级毛片七仙女欲春2 | 亚洲成人久久性| 日本精品一区二区三区蜜桃| 母亲3免费完整高清在线观看| 久久热在线av| 久久久久久人人人人人| 久久久久久久午夜电影| 日本vs欧美在线观看视频| 97人妻天天添夜夜摸| 欧美老熟妇乱子伦牲交| 18禁美女被吸乳视频| 老司机午夜福利在线观看视频| 欧美激情久久久久久爽电影 | 熟女少妇亚洲综合色aaa.| 国产精品1区2区在线观看.| 亚洲久久久国产精品| 极品人妻少妇av视频| 日韩精品中文字幕看吧| 黄片小视频在线播放| 国产极品粉嫩免费观看在线| 欧美精品啪啪一区二区三区| 久久精品国产清高在天天线| 黄色片一级片一级黄色片| www日本在线高清视频| 亚洲av美国av| 美女 人体艺术 gogo| 在线观看舔阴道视频| 黄色女人牲交| 日韩有码中文字幕| 岛国在线观看网站| 男女床上黄色一级片免费看| 欧美丝袜亚洲另类 | 亚洲国产欧美网| 欧美黑人精品巨大| 日韩大码丰满熟妇| svipshipincom国产片| 亚洲电影在线观看av| 天堂√8在线中文| 桃色一区二区三区在线观看| www日本在线高清视频| 美女午夜性视频免费| 久久精品成人免费网站| 国产成人av激情在线播放| 91字幕亚洲| 叶爱在线成人免费视频播放| 女人精品久久久久毛片| 亚洲国产日韩欧美精品在线观看 | 9色porny在线观看| 麻豆成人av在线观看| 亚洲av美国av| 国产成人av教育| 精品国产乱子伦一区二区三区| 午夜视频精品福利| 日日干狠狠操夜夜爽| 亚洲 欧美一区二区三区| 国产精品影院久久| av在线天堂中文字幕| 成人三级做爰电影| 黑人巨大精品欧美一区二区mp4| 91精品三级在线观看| 久久这里只有精品19| 亚洲自偷自拍图片 自拍| 久久精品国产亚洲av香蕉五月| 给我免费播放毛片高清在线观看| 50天的宝宝边吃奶边哭怎么回事| 久久欧美精品欧美久久欧美| 日本a在线网址| 黄色a级毛片大全视频| 午夜影院日韩av| 搡老妇女老女人老熟妇| 在线播放国产精品三级| 亚洲三区欧美一区| 国产精品av久久久久免费| 午夜久久久在线观看| 91字幕亚洲| 亚洲五月天丁香| 亚洲国产欧美网| 久久天堂一区二区三区四区| 视频在线观看一区二区三区| 一级毛片高清免费大全| 免费av毛片视频| e午夜精品久久久久久久| 少妇 在线观看| 国产一区二区三区在线臀色熟女| 国产高清videossex| 女人高潮潮喷娇喘18禁视频| 十八禁人妻一区二区| 黑人操中国人逼视频| 最好的美女福利视频网| 美女高潮喷水抽搐中文字幕| 真人一进一出gif抽搐免费| 在线播放国产精品三级| 丝袜在线中文字幕| 免费av毛片视频| 在线观看午夜福利视频| 亚洲欧洲精品一区二区精品久久久| 国产亚洲精品av在线| 欧美av亚洲av综合av国产av| 久久久久久久久久久久大奶| 免费在线观看日本一区| 亚洲国产精品sss在线观看| 国产伦人伦偷精品视频| 午夜久久久久精精品| 一边摸一边做爽爽视频免费| 1024香蕉在线观看| 欧美色视频一区免费| 精品国产国语对白av| 女人高潮潮喷娇喘18禁视频| 久久久国产精品麻豆| 亚洲av电影不卡..在线观看| 欧美精品啪啪一区二区三区| 一区二区日韩欧美中文字幕| 日韩高清综合在线| 国产99久久九九免费精品| 午夜视频精品福利| 美女高潮到喷水免费观看| www国产在线视频色| 亚洲欧美日韩另类电影网站| 成人三级黄色视频| 狠狠狠狠99中文字幕| 丰满人妻熟妇乱又伦精品不卡| 欧美精品亚洲一区二区| 国产主播在线观看一区二区| 中国美女看黄片| 国产1区2区3区精品| 男女做爰动态图高潮gif福利片 | 久9热在线精品视频| 色老头精品视频在线观看| 久久香蕉国产精品| av免费在线观看网站| 亚洲av日韩精品久久久久久密| 在线播放国产精品三级| 亚洲少妇的诱惑av| tocl精华| 免费无遮挡裸体视频| 欧美日韩中文字幕国产精品一区二区三区 | 日本三级黄在线观看| 女人高潮潮喷娇喘18禁视频| 亚洲成av人片免费观看| 亚洲av片天天在线观看| 免费av毛片视频| 老司机午夜福利在线观看视频| 美女免费视频网站| 在线播放国产精品三级| www.999成人在线观看| 亚洲 欧美一区二区三区| 亚洲中文av在线| 9191精品国产免费久久| 亚洲欧美一区二区三区黑人| 一级a爱视频在线免费观看| 18禁裸乳无遮挡免费网站照片 | 精品人妻1区二区| 两人在一起打扑克的视频| 波多野结衣av一区二区av| 日韩一卡2卡3卡4卡2021年| 亚洲自拍偷在线| 精品日产1卡2卡| 男女做爰动态图高潮gif福利片 | 午夜a级毛片| 国产片内射在线| 国产成年人精品一区二区| 日日夜夜操网爽| 亚洲av电影在线进入| 无限看片的www在线观看| 男女之事视频高清在线观看| 国产乱人伦免费视频| 嫁个100分男人电影在线观看| 国产成人欧美| 日本一区二区免费在线视频| 国产三级在线视频| 法律面前人人平等表现在哪些方面| 一进一出好大好爽视频| 窝窝影院91人妻| 国产精品爽爽va在线观看网站 | 亚洲欧美日韩另类电影网站| 欧美人与性动交α欧美精品济南到| 精品电影一区二区在线| 国产单亲对白刺激| 欧美午夜高清在线| 国产成人免费无遮挡视频| 久久久久久久午夜电影| 免费看美女性在线毛片视频| 国产熟女xx| 国产成人精品久久二区二区91| 一级黄色大片毛片| 操出白浆在线播放| 97人妻精品一区二区三区麻豆 | 久久 成人 亚洲| 国产一区二区三区在线臀色熟女| 日韩精品中文字幕看吧| 一区二区三区精品91| 纯流量卡能插随身wifi吗| 午夜精品久久久久久毛片777| 亚洲伊人色综图| 老司机福利观看| 国产欧美日韩一区二区三| 看免费av毛片| 欧美日韩乱码在线| 国产精品亚洲一级av第二区| 99精品久久久久人妻精品| 神马国产精品三级电影在线观看 | 美女 人体艺术 gogo| 亚洲国产精品999在线| 高清在线国产一区| 欧美激情极品国产一区二区三区| 欧美绝顶高潮抽搐喷水| 丝袜人妻中文字幕| 日韩精品青青久久久久久| 国产单亲对白刺激| 欧美老熟妇乱子伦牲交| 在线国产一区二区在线| 一个人观看的视频www高清免费观看 | 在线永久观看黄色视频| 亚洲精品av麻豆狂野| 欧美日韩乱码在线| 一边摸一边做爽爽视频免费| 热99re8久久精品国产| 欧美在线黄色| 黄色a级毛片大全视频| 日韩视频一区二区在线观看| av免费在线观看网站| 国产熟女午夜一区二区三区| 美女大奶头视频| 久久久久精品国产欧美久久久| 19禁男女啪啪无遮挡网站| 亚洲自偷自拍图片 自拍| 这个男人来自地球电影免费观看| 嫩草影视91久久| 成熟少妇高潮喷水视频| 美女高潮喷水抽搐中文字幕| 国产熟女xx| 一级,二级,三级黄色视频| 国产高清视频在线播放一区| 老司机午夜福利在线观看视频| 亚洲成人国产一区在线观看| 亚洲av成人一区二区三| 麻豆av在线久日| 91字幕亚洲| 欧美另类亚洲清纯唯美| 久久久水蜜桃国产精品网| 欧美 亚洲 国产 日韩一| a在线观看视频网站| 97碰自拍视频| 国内久久婷婷六月综合欲色啪| 亚洲av成人av| 欧美性长视频在线观看| 给我免费播放毛片高清在线观看| 亚洲美女黄片视频| xxx96com| 日韩欧美免费精品| 女同久久另类99精品国产91| 极品人妻少妇av视频| 午夜福利一区二区在线看| 夜夜躁狠狠躁天天躁| 国产欧美日韩精品亚洲av| 高潮久久久久久久久久久不卡| 精品国产乱码久久久久久男人| 久久香蕉精品热| 日本vs欧美在线观看视频| 免费av毛片视频| 午夜日韩欧美国产| 欧美成人一区二区免费高清观看 | 午夜成年电影在线免费观看| 久久久久久久午夜电影| 九色亚洲精品在线播放| 国产欧美日韩综合在线一区二区| 国产主播在线观看一区二区| 一区二区三区国产精品乱码| av网站免费在线观看视频| 悠悠久久av| 亚洲av电影不卡..在线观看| 国产精品九九99| 午夜激情av网站| 人人妻人人澡人人看| 久久精品国产亚洲av香蕉五月| 久久 成人 亚洲| 一级片免费观看大全| 黑人巨大精品欧美一区二区蜜桃| 国产av一区在线观看免费| 精品久久久久久久毛片微露脸| 侵犯人妻中文字幕一二三四区| 精品无人区乱码1区二区| 国产高清激情床上av| 成人精品一区二区免费| 久久精品成人免费网站| 亚洲精品一区av在线观看| 久久人妻av系列| 丝袜美腿诱惑在线| 激情视频va一区二区三区| www国产在线视频色| 十八禁网站免费在线| 久久久久国产精品人妻aⅴ院| 后天国语完整版免费观看| 中文字幕人成人乱码亚洲影| 免费观看精品视频网站| 一个人观看的视频www高清免费观看 | 欧美激情极品国产一区二区三区| 97人妻天天添夜夜摸| 国内精品久久久久久久电影| 国产精品免费一区二区三区在线| 欧美绝顶高潮抽搐喷水| 别揉我奶头~嗯~啊~动态视频| 精品一品国产午夜福利视频| 91精品国产国语对白视频| 中国美女看黄片| 国产亚洲精品第一综合不卡| 我的亚洲天堂| 人成视频在线观看免费观看| 日韩欧美国产一区二区入口| 九色国产91popny在线| 51午夜福利影视在线观看| 老汉色∧v一级毛片| 国产激情久久老熟女| 久久久精品欧美日韩精品| 亚洲 欧美 日韩 在线 免费| 大码成人一级视频| 国产精品日韩av在线免费观看 | 久久人妻熟女aⅴ| 麻豆久久精品国产亚洲av| 成熟少妇高潮喷水视频| 午夜福利免费观看在线| 日本黄色视频三级网站网址| 91麻豆av在线| 久久久国产精品麻豆| 一区二区三区激情视频| 成熟少妇高潮喷水视频| 淫秽高清视频在线观看| 在线观看www视频免费| 欧美另类亚洲清纯唯美| 嫩草影院精品99| 激情视频va一区二区三区| 人妻久久中文字幕网| 久久久久久久午夜电影| 夜夜看夜夜爽夜夜摸| 成熟少妇高潮喷水视频| or卡值多少钱| 色哟哟哟哟哟哟| 久久伊人香网站| 少妇裸体淫交视频免费看高清 | 国产成人精品久久二区二区免费| 男人的好看免费观看在线视频 | 亚洲国产高清在线一区二区三 | 欧美丝袜亚洲另类 | 中文字幕最新亚洲高清| 久久香蕉国产精品| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美日本视频| 亚洲七黄色美女视频| 动漫黄色视频在线观看| 99久久精品国产亚洲精品| 在线观看免费视频网站a站| 九色国产91popny在线| 视频区欧美日本亚洲|