• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Construction of Quantum Error-Locating Codes?

    2017-05-18 05:56:26JiHaoFan樊繼豪andHanWuChen陳漢武SchoolofComputerScienceandEngineeringSoutheastUniversityNanjing289China
    Communications in Theoretical Physics 2017年1期

    Ji-Hao Fan(樊繼豪)and Han-Wu Chen(陳漢武),2,?School of Computer Science and Engineering,Southeast University,Nanjing 289,China

    2Key Laboratory of Computer Network and Information Integration(Southeast University),Ministry of Education,Nanjing 211189,China

    1 Introduction

    Quantum information is sensitive and vulnerable to quantum nosie caused by decoherence.Quantum errordetecting and quantum error-correcting techniques are needed to enable reliable quantum computation and quantum communication.Utilizing redundancy,quantum error-correcting codes(QECC)are used to detect and correct quantum errors that may have occurred during the quantum information processing.It is possible to construct QECCs from classical error-correcting codes that satisfy certain conditions.[1?2]Quantum stabilizer codes[3?5]provide a general framework to construct QECCs analogous to classical additive codes.Many works have been done in the construction of QECCs,e.g.,quantum Hamming codes,[6]quantum cyclic codes,[7?8]quantum MDS codes,[9?10]quantum concatenated codes[11]and other types of quantum codes.[12]

    In Ref.[13],Wolf and Elspas introduced a special class of error control codes called error-locating(EL)codes,which lies midway between error-correcting codes and error-detecting codes.The whole codeword of EL codes can be regarded as being divided into several sub-blocks that are mutually exclusive from each other.EL codes can indicate which one sub-block is in error,but do not need to permit the exact location of the erroneous symbol positions within each sub-block.EL codes were originally proposed to be used in a decision feedback communication system,and can also be used in computer memory systems.[14]Then in Ref.[15],a more comprehensive class of codes called generalized error-locating(GEL)codes were proposed.Furthermore,it was shown that GEL codes are equivalent to generalized concatenated codes.[16]

    In this study,we propose a quantum analog of classical error-locating codes.The original error-locating codes were constructed based on cyclic codes with generator polynomials g(x)over F2in Ref.[13].We show that,for an e-EL code derived from an arbitrary binary cyclic code,the resultant e-EL code is a dual-containing code only if g(x)does not contain the(1+x)-factor.Therefore,we can construct the corresponding quantum error-locating codes based on dual-containing EL codes,and thus quantum error-locating codes have similar quantum error-locating properties as their classical counterparts.

    The rest of the paper is organized as follows.In Sec.2,we give a brief introduction of classical EL codes and quantum error-correcting codes.In Sec.3,we present the construction of quantum error-locating codes from classical EL codes.The conclusion and discussion are given in Sec.4.

    2 Preliminaries

    In this section,we review the concept of classical EL codes and some basic facts about QECCs,for the details on EL codes and QECCs,please refer to Refs.[13]and[3,17],respectively.

    2.1 Classical Error-Locating Code

    In the design of classical EL codes,the over-all code-word block of length n is divided into s sub-blocks that are mutually exclusive from each other.Then each subblock has a length of t=n/s.If an EL code can detect and locate a single sub-block that contains as many as e errors,then it is called an e-EL code.An e-EL code must satisfy the following conditions(see Ref.[13]):

    (i)The syndrome resulting from the occurrence of e or fewer errors within any one sub-block must be distinct from the all-zeros syndrome.

    (ii)The syndrome resulting from the occurrence of e or fewer errors within a single sub-block must be distinct from the syndrome resulting from any combination of e or fewer errors within any other sub-block.

    Based on cyclic codes with generator polynomials g(x)over F2,a special class of binary EL codes can be derived as follows.

    Theorem 1[13]If g(x)=g1(x)g2(x)···gv(x)is the product of distinct polynomials that are all irreducible over F2,and these polynomials all have the same period h.Let C=[h,h?p]be the cyclic code generated by g(x)whose minimum distance is d,and the check symbols arep=deg(g).Then there is an e-EL code with errorlocating abilities e=d?1 and length n=(h+1)m?1,the checking symbols are r=mp,m≥2 is an integer.

    2.2 Quantum Error-Correcting Codes

    Let C be the complex number field.For a positive integer n,let Vn=(C2)?n=C2nbe the n-th tensor product of C2.Let|αbe the vectors of the orthonormal basis of C2.For u,v∈F2,the unitary operator X(u)is de fi ned by X(u)|α=|α +u,and the unitary operator Z(v)is defi ned by Z(v)|α=(?1)v·α|α.Let a={a1,...,an}and b={b1,...,bn}be two vectors over GF(2).Denote byand Z(b)=Z(b1)the tensor products of n error operators.Then the setEn={X(a)Z(b)|a,b∈GF(2)n}is an error basis on Vn.The fi nite group Gn={±X(a)Z(b)|a,b∈GF(2)n}is the error group associated with the error basisEn.Then the Definition of QECCs can be given as follows.For simplicity,we only consider binary QECCs,i.e.,qubit systems.For the Definition of nonbinary QECCs,see Refs.[5,12].

    Definition 1A binary quantum code of length n,denoted by[[n,k,d]],is a subspace Q of Vnover fi nite field F2with dimension 2kthat satis fi es

    for some commutative subgroup S of Gn,which can detect at most d?1 qubits errors for d≥1,and can correct at mostqubits errors.

    For a binary linear code C over F2,the dual of codes C is given by=0 for all x∈C}.If there exist two binary linear code C1and C2satisfyingthen there exists a QECC according to the following construction.

    Theorem 2[Refs.[18–19],CSS Construction]Let C1and C2denote two binary linear codes with parameters[n,k1,d1]and[n,k2,d2],respectively,such thatThen there exists an[[n,k1+k2?n,d]]QECC with minimum distance d=min{wt(c)|c∈(C1)∪(C2)}.

    Let C1be an e1-EL code and let C2be an e2-EL code C2,and the syndromes of C1and C2satisfy the conditions for error-locating codes,respectively.Ifthen there exists a quantum analog of error-locating codes which can locate up to e1numbers of bit errors and e2numbers of phase errors in a single sub-block by using the CSS construction.Therefore,we have the following result for the construction of QEL codes.

    Corollary 1Let L1and L2be two e1-EL and e2-EL error-locating codes,respectively.Ifthen there is a quantum eq-EL code with eq=min{e1,e2},which can detect and locate a single sub-block containing up to eqquantum errors.

    3 Quantum Error-Locating Codes

    According to Corollary 1,QEL codes are constructed from classical EL codes that satisfy certain dual containing restriction.We show that,for an e-EL code derived from a binary cyclic code with generator polynomial g(x),the resultant e-EL code is dual contained if g(x)does not contain the(1+x)-factor.In order to get the dual-containing EL codes,we need a property of cyclic codes firstly.

    Lemma 1 Let C be a binary cyclic code of length n such that gcd(2,n)=1,whose generator polynomial is g(x).Then C contains the all one codeword e=(1,1,...,1)if and only if the decomposition of g(x)does not contain the(1+x)-factor.

    ProofWe represent the codeword e=(1,1,...,1)by a polynomial over the polynomial ring F2[x]/(xn?1)as follows:e(x)=1+x+ ···+xn?1=(xn? 1)/(1+x).The check polynomial of C is given by h(x)=(xn?1)/g(x).Then e(x)∈C?e(x)h(x)=(xn?1)·(xn?1)/(1+x)g(x)=0(mod xn?1).

    Theorem 3 Let gcd(2,t)=1 and C be a binary cyclic code of length t whose generator polynomial is g(x)of degreep.Let g(x)=g1(x)g2(x)···gv(x)be a factorization of g(x)into distinct irreducible polynomials over F2.The minimum distance of C is d.If the decomposition of g(x)does not contain the(1+x)-factor,then there exists an e-QEL code Q=[[n,n?R]],where e=d?1,n=(t+1)m?1 and R=2mp,for any integer m ≥2,and Q has e quantum error-locating abilities.

    Proof We denote the parity check matrix of C over F2by H.LetPjbe the j-th cyclic permutation matrix of order t,from right to left,for j=0,...,t?1.ThenPjsatis fi es=I for j=0,1,...,t?1,whereis a transpose and I is the identity matrix,and also satis fi es

    There exists an e-EL code L=[n,n?r]by Theorem 1,where e=d?1,n=(t+1)m?1,using r=mpcheck symbols,for any integer m≥2.Denote the parity check matrix of L by Hm.We illustrate the construction for the case m=2.Let

    with

    A1=(HOHHH··· H),

    A2=(OHHHP1HP2··· HPt?1),where O is a zero matrix.

    Firstly it is easy to verify that A1=O.Next,there is

    From Lemma 1,it is easy to see that HET=O,thus we have A1=O.Then we show that

    Therefore,we have H2=O.For the case of m>2,the structure of the corresponding parity check matrix Hmis analogous to that of H2,but it allows all combinations of i submatrices to be zero(out of m),for i=0,1,...,m?1.Through analyzing the sub-block structure of Hm,it is not difficult to find that Hmis also equal to zero.Therefore we get L⊥?L for any integer m≥2.Then we can obtain an e-QEL code Q with parameters[[n,n?R]]by Corollary 1,where e=d?1,n=(t+1)m?1 and R=2mp,for any integer m ≥ 2,and Q has a quantum analog of e error-locating abilities.

    We give two examples to illustrate the construction of QEL codes in Theorem 3,which can be seen as quantum analogs of the two families of classical EL codes in Ref.[13].

    Example 1 We take the cyclic C=[s,1]code of minimum distance s such that s≥3 is a prime number,whose generator polynomial is g(x)=1+x+ ···+xs?1.The parity check matrix of C is given by

    It is known that g(x)does not contain the(1+x)-factor.Hence we can obtain a quantum e-EL code with parameters

    where

    Let s=7,m=2,we can obtain a[[63,39]]code that can determine the location of any sub-block of width s=7 that has up to 6 quantum errors.In contrast,the quantum BCH[[63,39]]code can detect any 4 erroneous symbols in the whole block of 63.Now we can detect as many as 6 quantum errors in one sub-block,and we can also locate the erroneous sub-block at the same time.

    Example 2Let g(x)be a single primitive irreducible polynomial over F2of degreep≥ 2.Let s=2p? 1,and de fi ne the class of classical EL codes with parameters as follows

    Since g(x)is a primitive irreducible polynomial andp≥ 2,we can obtain a quantum e-EL code with parameters

    where

    If let m=2 andp=3,then we can obtain a[[63,51]]QEL code.This code can locate any sub-block of length s=7 which has up to two errors.While letting m=3 andp=2,we can obtain another QEL code with the same parameters[[63,51]],which is able to locate any sub-block of length t=3 containing up to two errors.

    4 Conclusion and Discussion

    In this study,we have proposed the construction of QEL codes based on classical EL codes.The main technical contribution is that only if the generator polynomial g(x)of any classical EL codes does not contain the(1+x)-factor,then a QEL code with e error-locating abilities can be derived from the corresponding EL codes.This type of quantum codes can indicate the location of quantum errors in a single sub-block but without determining the precise erroneous symbol positions,and is useful to fault detecting in future quantum computers and quantum communications.

    References

    [1]A.M.Steane,Phys.Rev.Lett.77(1996)793.

    [2]P.W.Shor,Phys.Rev.A 52(1995)R2493.

    [3]D.Gottesman,Ph.D.Dissertation,California Institute of Technology,Pasadena(1997).

    [4]A.R.Calderbank,E.M.Rains,P.W.Shor,etal.,IEEE Trans.Inf.Theory 44(1998)1369.

    [5]A.Ketkar,A.Klappenecker,S.Kumar,etal.,IEEE Trans.Inf.Theory 52(2006)4892.

    [6]D.Gottesman,Phys.Rev.A 54(1996)1862.

    [7]M.Grassl and T.Beth,R.Soc.Lond.A 456(2000)2689.

    [8]A.Thangaraj and S.W.McLaughlin,IEEE Trans.Inf.Theory 47(2001)1176.

    [9]M.Grassl,T.Beth,and M.R¨oetteler,Int.J.Quantum Inf.2(2004)55.

    [10]Z.Li and L.Xing,Acta Phys.Sin.57(2008)28.

    [11]Z.Li and L.Xing,Acta Phys.Sin.56(2007)5602.

    [12]J.Fan,H.Chen,and J.Xu,Quantum Inf.Comput.16(2016)423.

    [13]J.K.Wolf and B.Elspas,IEEE Trans.Inf.Theory 9(1963)113.

    [14]E.Fujiwara and M.Kitakami,IEEE Trans.Inf.Theory 40(1994)1857.

    [15]V.V.Zyablov,Moscow,Ussr(1972).

    [16]J.Maucher,V.V.Zyablov,and M.Bossert,IEEE Trans.Inf.Theory 46(2000)642.

    [17]K.Feng and H.Chen,Quantum Error-Correcting Codes,Science Press,Beijing(2010)p.39.

    [18]A.R.Calderbank and P.W.Shor,Phys.Rev.A 54(1996)1098.

    [19]M.A.Nielsen and I.L.Chuang,Quantum Computation and Quantum Information,Cambridge University Press,Cambridge(2000)p.425.

    国产精品久久电影中文字幕| 可以在线观看的亚洲视频| 最新在线观看一区二区三区| 久久久久久久久中文| 国产亚洲精品久久久久久毛片| 国产成人系列免费观看| а√天堂www在线а√下载| 99久久国产精品久久久| 天堂影院成人在线观看| 熟女电影av网| 在线永久观看黄色视频| 在线观看午夜福利视频| 精品久久久久久成人av| 精品福利观看| 他把我摸到了高潮在线观看| 99riav亚洲国产免费| 国产成人啪精品午夜网站| 在线观看舔阴道视频| 亚洲全国av大片| 老汉色av国产亚洲站长工具| 午夜精品在线福利| 99精品在免费线老司机午夜| 久久精品人妻少妇| 国产一区二区三区在线臀色熟女| 可以在线观看的亚洲视频| 免费在线观看日本一区| 天天躁夜夜躁狠狠躁躁| 免费高清在线观看日韩| 亚洲成国产人片在线观看| 黑人操中国人逼视频| 日韩免费av在线播放| 十八禁网站免费在线| 一级片免费观看大全| 老司机福利观看| 中文字幕精品免费在线观看视频| 99re在线观看精品视频| 日本 欧美在线| 国产久久久一区二区三区| 亚洲最大成人中文| av欧美777| 欧美成人性av电影在线观看| 久久伊人香网站| 亚洲午夜精品一区,二区,三区| 国产成人系列免费观看| 狠狠狠狠99中文字幕| 免费看日本二区| 国产亚洲精品一区二区www| 精品人妻1区二区| 国产精品爽爽va在线观看网站 | 女人爽到高潮嗷嗷叫在线视频| 成人国产一区最新在线观看| 色综合站精品国产| 国产97色在线日韩免费| 日本熟妇午夜| 黄色女人牲交| 桃红色精品国产亚洲av| 黄色a级毛片大全视频| 婷婷亚洲欧美| 日本成人三级电影网站| 久久人妻福利社区极品人妻图片| 精品国产一区二区三区四区第35| 国产私拍福利视频在线观看| 99热只有精品国产| 久久久久久久午夜电影| 黄频高清免费视频| 一区二区三区精品91| av福利片在线| 久久草成人影院| 一本精品99久久精品77| 久久国产亚洲av麻豆专区| 国产伦在线观看视频一区| 曰老女人黄片| 老司机靠b影院| 国产精品影院久久| 久久精品夜夜夜夜夜久久蜜豆 | 精品国产超薄肉色丝袜足j| 免费看a级黄色片| 黄色女人牲交| 国产精品,欧美在线| 91大片在线观看| 久久青草综合色| 又黄又粗又硬又大视频| 手机成人av网站| 免费在线观看影片大全网站| 亚洲国产毛片av蜜桃av| 亚洲,欧美精品.| 国产精品自产拍在线观看55亚洲| 亚洲欧美一区二区三区黑人| 91国产中文字幕| 久久精品国产99精品国产亚洲性色| 国产av一区在线观看免费| netflix在线观看网站| 国产精品一区二区精品视频观看| 欧美又色又爽又黄视频| 免费av毛片视频| 两个人视频免费观看高清| 99精品久久久久人妻精品| 黄色毛片三级朝国网站| 丁香欧美五月| 一区二区三区精品91| 一级毛片女人18水好多| 亚洲美女黄片视频| 色精品久久人妻99蜜桃| 精品国内亚洲2022精品成人| 久久国产乱子伦精品免费另类| 成在线人永久免费视频| 法律面前人人平等表现在哪些方面| 少妇 在线观看| 久久久久久久久久黄片| 免费在线观看亚洲国产| 亚洲av五月六月丁香网| 亚洲熟妇中文字幕五十中出| 日韩一卡2卡3卡4卡2021年| 一本综合久久免费| 久久中文看片网| 精品欧美国产一区二区三| 欧美最黄视频在线播放免费| 丁香欧美五月| 制服诱惑二区| 国产熟女xx| 午夜免费成人在线视频| 精品免费久久久久久久清纯| 两个人看的免费小视频| 亚洲成人久久性| 久久久国产精品麻豆| 欧美黄色淫秽网站| 国产精品亚洲一级av第二区| 19禁男女啪啪无遮挡网站| 一级作爱视频免费观看| 色老头精品视频在线观看| 精品国产美女av久久久久小说| 香蕉国产在线看| 一级毛片高清免费大全| 国产主播在线观看一区二区| 国产极品粉嫩免费观看在线| 欧美日韩精品网址| www.999成人在线观看| 日本一区二区免费在线视频| www日本在线高清视频| 亚洲片人在线观看| 中文字幕人妻熟女乱码| 国产精品国产高清国产av| 免费av毛片视频| 欧美人与性动交α欧美精品济南到| 看黄色毛片网站| 亚洲国产精品sss在线观看| 夜夜爽天天搞| 免费一级毛片在线播放高清视频| 男女下面进入的视频免费午夜 | 搞女人的毛片| 1024香蕉在线观看| 国产亚洲欧美98| 亚洲av五月六月丁香网| 亚洲av日韩精品久久久久久密| 狂野欧美激情性xxxx| 少妇 在线观看| 19禁男女啪啪无遮挡网站| 国产精品亚洲av一区麻豆| 国产精品98久久久久久宅男小说| 欧美激情极品国产一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 熟女电影av网| 亚洲无线在线观看| 亚洲第一电影网av| av中文乱码字幕在线| 亚洲国产精品成人综合色| 精品久久久久久久久久免费视频| 国产精品久久久av美女十八| 国产欧美日韩一区二区精品| 精品福利观看| 日韩视频一区二区在线观看| 法律面前人人平等表现在哪些方面| 欧美亚洲日本最大视频资源| 人成视频在线观看免费观看| 午夜免费鲁丝| 亚洲国产看品久久| 亚洲成人久久爱视频| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品电影一区二区三区| 村上凉子中文字幕在线| 最近最新中文字幕大全免费视频| 国产精品野战在线观看| 国产精品久久久av美女十八| 国产精品美女特级片免费视频播放器 | e午夜精品久久久久久久| 777久久人妻少妇嫩草av网站| 变态另类丝袜制服| 欧美中文综合在线视频| 日本五十路高清| 国产精品久久视频播放| av电影中文网址| 久久精品国产清高在天天线| 久久久久国产一级毛片高清牌| 午夜两性在线视频| 欧美日韩亚洲综合一区二区三区_| 精品久久久久久久久久久久久 | 给我免费播放毛片高清在线观看| 欧美性长视频在线观看| www.999成人在线观看| 久久精品国产99精品国产亚洲性色| 亚洲熟女毛片儿| 亚洲性夜色夜夜综合| 日本在线视频免费播放| 在线视频色国产色| 中文字幕人妻熟女乱码| 精品少妇一区二区三区视频日本电影| 成人免费观看视频高清| 国产激情久久老熟女| 老熟妇仑乱视频hdxx| 成人午夜高清在线视频 | 久久人妻福利社区极品人妻图片| 成人18禁高潮啪啪吃奶动态图| 人人妻,人人澡人人爽秒播| 麻豆av在线久日| 亚洲中文日韩欧美视频| 日本精品一区二区三区蜜桃| 欧美色欧美亚洲另类二区| 一边摸一边做爽爽视频免费| 精品免费久久久久久久清纯| 成人免费观看视频高清| 久久久久精品国产欧美久久久| av天堂在线播放| www.www免费av| 亚洲国产日韩欧美精品在线观看 | 国产精品电影一区二区三区| 国产蜜桃级精品一区二区三区| 午夜老司机福利片| 欧美亚洲日本最大视频资源| 99国产精品一区二区蜜桃av| av电影中文网址| 男女床上黄色一级片免费看| 国产激情久久老熟女| 久久久久久人人人人人| 久久精品成人免费网站| 精品高清国产在线一区| 亚洲av美国av| 国内久久婷婷六月综合欲色啪| 国产精品影院久久| 国产真实乱freesex| 久久人妻福利社区极品人妻图片| 午夜久久久久精精品| 国产野战对白在线观看| 99在线视频只有这里精品首页| 岛国在线观看网站| 久久中文字幕一级| 看免费av毛片| 18禁黄网站禁片免费观看直播| 欧美日韩亚洲综合一区二区三区_| 亚洲免费av在线视频| 亚洲一区高清亚洲精品| 久久久久九九精品影院| 天堂影院成人在线观看| 日韩中文字幕欧美一区二区| 国产亚洲av高清不卡| 国产免费av片在线观看野外av| 夜夜爽天天搞| 最新美女视频免费是黄的| 妹子高潮喷水视频| 国产欧美日韩精品亚洲av| 日韩有码中文字幕| 99久久99久久久精品蜜桃| 亚洲国产毛片av蜜桃av| 啪啪无遮挡十八禁网站| 亚洲天堂国产精品一区在线| 亚洲精品中文字幕在线视频| 成人免费观看视频高清| 狂野欧美激情性xxxx| 国产精品一区二区精品视频观看| 天天添夜夜摸| 怎么达到女性高潮| 国产蜜桃级精品一区二区三区| 在线av久久热| 男女午夜视频在线观看| 操出白浆在线播放| 精品一区二区三区视频在线观看免费| 欧美在线一区亚洲| 好看av亚洲va欧美ⅴa在| 一二三四社区在线视频社区8| 熟女少妇亚洲综合色aaa.| 日韩欧美国产一区二区入口| 亚洲成av人片免费观看| 久久香蕉精品热| av视频在线观看入口| 国产成人精品久久二区二区免费| 深夜精品福利| 国产又黄又爽又无遮挡在线| 1024香蕉在线观看| 精品久久久久久久久久久久久 | 男女视频在线观看网站免费 | 好男人电影高清在线观看| 午夜免费激情av| 手机成人av网站| 国内毛片毛片毛片毛片毛片| 91九色精品人成在线观看| 99在线人妻在线中文字幕| 午夜久久久久精精品| 国产真人三级小视频在线观看| 在线看三级毛片| 国产高清视频在线播放一区| 亚洲一卡2卡3卡4卡5卡精品中文| 999久久久精品免费观看国产| 亚洲国产欧美一区二区综合| 国语自产精品视频在线第100页| 淫秽高清视频在线观看| 午夜成年电影在线免费观看| 国产在线精品亚洲第一网站| 午夜福利成人在线免费观看| 中文资源天堂在线| 婷婷精品国产亚洲av在线| 狠狠狠狠99中文字幕| 日韩欧美在线二视频| 亚洲国产高清在线一区二区三 | 在线观看午夜福利视频| 亚洲精品av麻豆狂野| 美女大奶头视频| 日韩高清综合在线| 成人精品一区二区免费| 在线观看一区二区三区| 午夜精品在线福利| 香蕉久久夜色| 国产欧美日韩一区二区三| 在线观看日韩欧美| 又黄又粗又硬又大视频| 免费av毛片视频| 别揉我奶头~嗯~啊~动态视频| 免费无遮挡裸体视频| 51午夜福利影视在线观看| 91在线观看av| 嫩草影院精品99| 波多野结衣巨乳人妻| 亚洲精品美女久久久久99蜜臀| 最近最新中文字幕大全电影3 | 非洲黑人性xxxx精品又粗又长| 国产成人欧美| 又大又爽又粗| 精品少妇一区二区三区视频日本电影| 国产成人影院久久av| 一二三四在线观看免费中文在| 听说在线观看完整版免费高清| 午夜免费鲁丝| 欧美激情极品国产一区二区三区| 我的亚洲天堂| 久久久水蜜桃国产精品网| 夜夜躁狠狠躁天天躁| 午夜福利一区二区在线看| 亚洲av电影不卡..在线观看| 日本 av在线| 精品久久蜜臀av无| 国产精品香港三级国产av潘金莲| 法律面前人人平等表现在哪些方面| 国产一区在线观看成人免费| 熟女少妇亚洲综合色aaa.| 美女午夜性视频免费| 91麻豆av在线| 国内揄拍国产精品人妻在线 | 此物有八面人人有两片| 非洲黑人性xxxx精品又粗又长| 亚洲全国av大片| 操出白浆在线播放| 亚洲精品在线观看二区| 在线av久久热| 日韩 欧美 亚洲 中文字幕| 欧美成人免费av一区二区三区| 亚洲第一av免费看| 国产精品久久电影中文字幕| 精品国产美女av久久久久小说| 在线播放国产精品三级| 亚洲av美国av| 窝窝影院91人妻| 国产午夜精品久久久久久| 欧美最黄视频在线播放免费| 午夜福利免费观看在线| 女人爽到高潮嗷嗷叫在线视频| 俄罗斯特黄特色一大片| 不卡av一区二区三区| 一二三四社区在线视频社区8| 最新美女视频免费是黄的| 亚洲成人国产一区在线观看| 国产在线精品亚洲第一网站| 啦啦啦 在线观看视频| 国产精品电影一区二区三区| 亚洲av电影在线进入| 亚洲午夜理论影院| 一夜夜www| 757午夜福利合集在线观看| 欧美zozozo另类| 成年版毛片免费区| 午夜免费激情av| 国产午夜福利久久久久久| 真人一进一出gif抽搐免费| 亚洲国产欧美日韩在线播放| 久久这里只有精品19| 日韩欧美国产一区二区入口| 国产精品亚洲av一区麻豆| 一级a爱片免费观看的视频| 成人三级做爰电影| 1024香蕉在线观看| 亚洲 欧美一区二区三区| 女生性感内裤真人,穿戴方法视频| 欧美一级a爱片免费观看看 | 老司机午夜十八禁免费视频| 久久人人精品亚洲av| 亚洲一区高清亚洲精品| av欧美777| 丰满人妻熟妇乱又伦精品不卡| 国产91精品成人一区二区三区| 国产精品一区二区免费欧美| 亚洲精品粉嫩美女一区| 搡老熟女国产l中国老女人| 国产黄色小视频在线观看| 日本熟妇午夜| 亚洲精品久久国产高清桃花| 亚洲精品中文字幕在线视频| x7x7x7水蜜桃| 精华霜和精华液先用哪个| 亚洲精品国产一区二区精华液| 男女做爰动态图高潮gif福利片| 精品久久久久久久久久久久久 | 欧美国产日韩亚洲一区| 国产精品二区激情视频| 精品久久久久久久人妻蜜臀av| 亚洲人成77777在线视频| 国产成+人综合+亚洲专区| 男女之事视频高清在线观看| 久热爱精品视频在线9| 一区二区三区精品91| 少妇粗大呻吟视频| 日本撒尿小便嘘嘘汇集6| 亚洲欧美日韩无卡精品| 国产精品久久电影中文字幕| 深夜精品福利| 精品卡一卡二卡四卡免费| 免费看美女性在线毛片视频| 白带黄色成豆腐渣| 香蕉国产在线看| 伊人久久大香线蕉亚洲五| 国产亚洲欧美98| 国产不卡一卡二| 黄色丝袜av网址大全| 十八禁网站免费在线| 欧美一级毛片孕妇| 国产不卡一卡二| 中文字幕最新亚洲高清| 美女高潮到喷水免费观看| 好看av亚洲va欧美ⅴa在| 大型av网站在线播放| 国产视频一区二区在线看| 制服诱惑二区| 国产三级在线视频| 日本三级黄在线观看| 黄片小视频在线播放| 亚洲 欧美一区二区三区| 国产精品自产拍在线观看55亚洲| 成人国产综合亚洲| 成年人黄色毛片网站| 97碰自拍视频| 亚洲精品国产一区二区精华液| 亚洲成人国产一区在线观看| 热re99久久国产66热| 免费女性裸体啪啪无遮挡网站| 亚洲欧美精品综合一区二区三区| 欧美成狂野欧美在线观看| 好男人电影高清在线观看| www国产在线视频色| 国产av一区二区精品久久| 黄色a级毛片大全视频| or卡值多少钱| 午夜激情av网站| 制服诱惑二区| 久久久国产欧美日韩av| 丰满人妻熟妇乱又伦精品不卡| 长腿黑丝高跟| 老司机深夜福利视频在线观看| 18美女黄网站色大片免费观看| 12—13女人毛片做爰片一| 国产亚洲欧美98| 婷婷六月久久综合丁香| 啦啦啦观看免费观看视频高清| 黄色视频,在线免费观看| 亚洲色图av天堂| 久久午夜亚洲精品久久| 国产野战对白在线观看| www.熟女人妻精品国产| 女性生殖器流出的白浆| 欧美不卡视频在线免费观看 | 亚洲精品av麻豆狂野| 午夜亚洲福利在线播放| 成人特级黄色片久久久久久久| 国产极品粉嫩免费观看在线| 午夜福利欧美成人| 淫妇啪啪啪对白视频| 国产精品精品国产色婷婷| 成年版毛片免费区| 精品熟女少妇八av免费久了| 99re在线观看精品视频| 看免费av毛片| 日日干狠狠操夜夜爽| 夜夜看夜夜爽夜夜摸| 美女 人体艺术 gogo| 美女午夜性视频免费| 国产成人av激情在线播放| 国产精品精品国产色婷婷| 变态另类成人亚洲欧美熟女| 99久久国产精品久久久| avwww免费| 淫妇啪啪啪对白视频| 久久中文字幕一级| 日韩中文字幕欧美一区二区| 欧美色欧美亚洲另类二区| 少妇被粗大的猛进出69影院| 免费一级毛片在线播放高清视频| 欧美zozozo另类| 每晚都被弄得嗷嗷叫到高潮| 91麻豆av在线| 亚洲精品美女久久av网站| 一本大道久久a久久精品| 99riav亚洲国产免费| 99国产极品粉嫩在线观看| 亚洲国产精品久久男人天堂| 欧美激情极品国产一区二区三区| 国产精品国产高清国产av| 久9热在线精品视频| 国产野战对白在线观看| 两个人看的免费小视频| 国产伦人伦偷精品视频| 黄网站色视频无遮挡免费观看| 日韩一卡2卡3卡4卡2021年| 免费av毛片视频| 亚洲av成人一区二区三| 免费看十八禁软件| 国产av在哪里看| 亚洲第一电影网av| 一个人免费在线观看的高清视频| 麻豆成人av在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 91字幕亚洲| 精品一区二区三区四区五区乱码| 在线观看一区二区三区| 真人做人爱边吃奶动态| 俄罗斯特黄特色一大片| 日韩精品中文字幕看吧| 久久精品成人免费网站| 男女午夜视频在线观看| 久久久久久久久免费视频了| 亚洲欧美一区二区三区黑人| 午夜视频精品福利| 熟女少妇亚洲综合色aaa.| 国产精品九九99| 婷婷精品国产亚洲av| 美女 人体艺术 gogo| 免费av毛片视频| 搡老熟女国产l中国老女人| 亚洲五月婷婷丁香| 午夜福利18| 黄色a级毛片大全视频| 日日干狠狠操夜夜爽| 国产精品综合久久久久久久免费| √禁漫天堂资源中文www| 女性生殖器流出的白浆| 精品不卡国产一区二区三区| av片东京热男人的天堂| 亚洲成av片中文字幕在线观看| 757午夜福利合集在线观看| 日韩有码中文字幕| 色综合亚洲欧美另类图片| 91九色精品人成在线观看| 成人手机av| 97人妻精品一区二区三区麻豆 | 国产精品,欧美在线| 国产成+人综合+亚洲专区| 男人操女人黄网站| avwww免费| 亚洲午夜理论影院| 给我免费播放毛片高清在线观看| 国产又爽黄色视频| 99国产精品99久久久久| 久久久久九九精品影院| 一级a爱片免费观看的视频| 可以在线观看毛片的网站| 中亚洲国语对白在线视频| 2021天堂中文幕一二区在线观 | 免费观看人在逋| 99久久久亚洲精品蜜臀av| 国产成人啪精品午夜网站| 亚洲性夜色夜夜综合| 不卡一级毛片| 法律面前人人平等表现在哪些方面| 后天国语完整版免费观看| 在线观看一区二区三区| 亚洲国产欧美网| 久久九九热精品免费| 男女下面进入的视频免费午夜 | 久久久水蜜桃国产精品网| 亚洲欧美精品综合一区二区三区| 亚洲免费av在线视频| 99在线人妻在线中文字幕| 国产精品免费视频内射| 成人国语在线视频| 久久香蕉国产精品| 中文亚洲av片在线观看爽| 精品日产1卡2卡| or卡值多少钱| 色哟哟哟哟哟哟| 成人18禁在线播放| 欧美激情高清一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 亚洲第一电影网av| 搡老妇女老女人老熟妇| www.自偷自拍.com| 精品久久久久久久久久免费视频| 亚洲黑人精品在线| av天堂在线播放| 国产99久久九九免费精品| 久久天躁狠狠躁夜夜2o2o| 97人妻精品一区二区三区麻豆 |