• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Construction of Quantum Error-Locating Codes?

    2017-05-18 05:56:26JiHaoFan樊繼豪andHanWuChen陳漢武SchoolofComputerScienceandEngineeringSoutheastUniversityNanjing289China
    Communications in Theoretical Physics 2017年1期

    Ji-Hao Fan(樊繼豪)and Han-Wu Chen(陳漢武),2,?School of Computer Science and Engineering,Southeast University,Nanjing 289,China

    2Key Laboratory of Computer Network and Information Integration(Southeast University),Ministry of Education,Nanjing 211189,China

    1 Introduction

    Quantum information is sensitive and vulnerable to quantum nosie caused by decoherence.Quantum errordetecting and quantum error-correcting techniques are needed to enable reliable quantum computation and quantum communication.Utilizing redundancy,quantum error-correcting codes(QECC)are used to detect and correct quantum errors that may have occurred during the quantum information processing.It is possible to construct QECCs from classical error-correcting codes that satisfy certain conditions.[1?2]Quantum stabilizer codes[3?5]provide a general framework to construct QECCs analogous to classical additive codes.Many works have been done in the construction of QECCs,e.g.,quantum Hamming codes,[6]quantum cyclic codes,[7?8]quantum MDS codes,[9?10]quantum concatenated codes[11]and other types of quantum codes.[12]

    In Ref.[13],Wolf and Elspas introduced a special class of error control codes called error-locating(EL)codes,which lies midway between error-correcting codes and error-detecting codes.The whole codeword of EL codes can be regarded as being divided into several sub-blocks that are mutually exclusive from each other.EL codes can indicate which one sub-block is in error,but do not need to permit the exact location of the erroneous symbol positions within each sub-block.EL codes were originally proposed to be used in a decision feedback communication system,and can also be used in computer memory systems.[14]Then in Ref.[15],a more comprehensive class of codes called generalized error-locating(GEL)codes were proposed.Furthermore,it was shown that GEL codes are equivalent to generalized concatenated codes.[16]

    In this study,we propose a quantum analog of classical error-locating codes.The original error-locating codes were constructed based on cyclic codes with generator polynomials g(x)over F2in Ref.[13].We show that,for an e-EL code derived from an arbitrary binary cyclic code,the resultant e-EL code is a dual-containing code only if g(x)does not contain the(1+x)-factor.Therefore,we can construct the corresponding quantum error-locating codes based on dual-containing EL codes,and thus quantum error-locating codes have similar quantum error-locating properties as their classical counterparts.

    The rest of the paper is organized as follows.In Sec.2,we give a brief introduction of classical EL codes and quantum error-correcting codes.In Sec.3,we present the construction of quantum error-locating codes from classical EL codes.The conclusion and discussion are given in Sec.4.

    2 Preliminaries

    In this section,we review the concept of classical EL codes and some basic facts about QECCs,for the details on EL codes and QECCs,please refer to Refs.[13]and[3,17],respectively.

    2.1 Classical Error-Locating Code

    In the design of classical EL codes,the over-all code-word block of length n is divided into s sub-blocks that are mutually exclusive from each other.Then each subblock has a length of t=n/s.If an EL code can detect and locate a single sub-block that contains as many as e errors,then it is called an e-EL code.An e-EL code must satisfy the following conditions(see Ref.[13]):

    (i)The syndrome resulting from the occurrence of e or fewer errors within any one sub-block must be distinct from the all-zeros syndrome.

    (ii)The syndrome resulting from the occurrence of e or fewer errors within a single sub-block must be distinct from the syndrome resulting from any combination of e or fewer errors within any other sub-block.

    Based on cyclic codes with generator polynomials g(x)over F2,a special class of binary EL codes can be derived as follows.

    Theorem 1[13]If g(x)=g1(x)g2(x)···gv(x)is the product of distinct polynomials that are all irreducible over F2,and these polynomials all have the same period h.Let C=[h,h?p]be the cyclic code generated by g(x)whose minimum distance is d,and the check symbols arep=deg(g).Then there is an e-EL code with errorlocating abilities e=d?1 and length n=(h+1)m?1,the checking symbols are r=mp,m≥2 is an integer.

    2.2 Quantum Error-Correcting Codes

    Let C be the complex number field.For a positive integer n,let Vn=(C2)?n=C2nbe the n-th tensor product of C2.Let|αbe the vectors of the orthonormal basis of C2.For u,v∈F2,the unitary operator X(u)is de fi ned by X(u)|α=|α +u,and the unitary operator Z(v)is defi ned by Z(v)|α=(?1)v·α|α.Let a={a1,...,an}and b={b1,...,bn}be two vectors over GF(2).Denote byand Z(b)=Z(b1)the tensor products of n error operators.Then the setEn={X(a)Z(b)|a,b∈GF(2)n}is an error basis on Vn.The fi nite group Gn={±X(a)Z(b)|a,b∈GF(2)n}is the error group associated with the error basisEn.Then the Definition of QECCs can be given as follows.For simplicity,we only consider binary QECCs,i.e.,qubit systems.For the Definition of nonbinary QECCs,see Refs.[5,12].

    Definition 1A binary quantum code of length n,denoted by[[n,k,d]],is a subspace Q of Vnover fi nite field F2with dimension 2kthat satis fi es

    for some commutative subgroup S of Gn,which can detect at most d?1 qubits errors for d≥1,and can correct at mostqubits errors.

    For a binary linear code C over F2,the dual of codes C is given by=0 for all x∈C}.If there exist two binary linear code C1and C2satisfyingthen there exists a QECC according to the following construction.

    Theorem 2[Refs.[18–19],CSS Construction]Let C1and C2denote two binary linear codes with parameters[n,k1,d1]and[n,k2,d2],respectively,such thatThen there exists an[[n,k1+k2?n,d]]QECC with minimum distance d=min{wt(c)|c∈(C1)∪(C2)}.

    Let C1be an e1-EL code and let C2be an e2-EL code C2,and the syndromes of C1and C2satisfy the conditions for error-locating codes,respectively.Ifthen there exists a quantum analog of error-locating codes which can locate up to e1numbers of bit errors and e2numbers of phase errors in a single sub-block by using the CSS construction.Therefore,we have the following result for the construction of QEL codes.

    Corollary 1Let L1and L2be two e1-EL and e2-EL error-locating codes,respectively.Ifthen there is a quantum eq-EL code with eq=min{e1,e2},which can detect and locate a single sub-block containing up to eqquantum errors.

    3 Quantum Error-Locating Codes

    According to Corollary 1,QEL codes are constructed from classical EL codes that satisfy certain dual containing restriction.We show that,for an e-EL code derived from a binary cyclic code with generator polynomial g(x),the resultant e-EL code is dual contained if g(x)does not contain the(1+x)-factor.In order to get the dual-containing EL codes,we need a property of cyclic codes firstly.

    Lemma 1 Let C be a binary cyclic code of length n such that gcd(2,n)=1,whose generator polynomial is g(x).Then C contains the all one codeword e=(1,1,...,1)if and only if the decomposition of g(x)does not contain the(1+x)-factor.

    ProofWe represent the codeword e=(1,1,...,1)by a polynomial over the polynomial ring F2[x]/(xn?1)as follows:e(x)=1+x+ ···+xn?1=(xn? 1)/(1+x).The check polynomial of C is given by h(x)=(xn?1)/g(x).Then e(x)∈C?e(x)h(x)=(xn?1)·(xn?1)/(1+x)g(x)=0(mod xn?1).

    Theorem 3 Let gcd(2,t)=1 and C be a binary cyclic code of length t whose generator polynomial is g(x)of degreep.Let g(x)=g1(x)g2(x)···gv(x)be a factorization of g(x)into distinct irreducible polynomials over F2.The minimum distance of C is d.If the decomposition of g(x)does not contain the(1+x)-factor,then there exists an e-QEL code Q=[[n,n?R]],where e=d?1,n=(t+1)m?1 and R=2mp,for any integer m ≥2,and Q has e quantum error-locating abilities.

    Proof We denote the parity check matrix of C over F2by H.LetPjbe the j-th cyclic permutation matrix of order t,from right to left,for j=0,...,t?1.ThenPjsatis fi es=I for j=0,1,...,t?1,whereis a transpose and I is the identity matrix,and also satis fi es

    There exists an e-EL code L=[n,n?r]by Theorem 1,where e=d?1,n=(t+1)m?1,using r=mpcheck symbols,for any integer m≥2.Denote the parity check matrix of L by Hm.We illustrate the construction for the case m=2.Let

    with

    A1=(HOHHH··· H),

    A2=(OHHHP1HP2··· HPt?1),where O is a zero matrix.

    Firstly it is easy to verify that A1=O.Next,there is

    From Lemma 1,it is easy to see that HET=O,thus we have A1=O.Then we show that

    Therefore,we have H2=O.For the case of m>2,the structure of the corresponding parity check matrix Hmis analogous to that of H2,but it allows all combinations of i submatrices to be zero(out of m),for i=0,1,...,m?1.Through analyzing the sub-block structure of Hm,it is not difficult to find that Hmis also equal to zero.Therefore we get L⊥?L for any integer m≥2.Then we can obtain an e-QEL code Q with parameters[[n,n?R]]by Corollary 1,where e=d?1,n=(t+1)m?1 and R=2mp,for any integer m ≥ 2,and Q has a quantum analog of e error-locating abilities.

    We give two examples to illustrate the construction of QEL codes in Theorem 3,which can be seen as quantum analogs of the two families of classical EL codes in Ref.[13].

    Example 1 We take the cyclic C=[s,1]code of minimum distance s such that s≥3 is a prime number,whose generator polynomial is g(x)=1+x+ ···+xs?1.The parity check matrix of C is given by

    It is known that g(x)does not contain the(1+x)-factor.Hence we can obtain a quantum e-EL code with parameters

    where

    Let s=7,m=2,we can obtain a[[63,39]]code that can determine the location of any sub-block of width s=7 that has up to 6 quantum errors.In contrast,the quantum BCH[[63,39]]code can detect any 4 erroneous symbols in the whole block of 63.Now we can detect as many as 6 quantum errors in one sub-block,and we can also locate the erroneous sub-block at the same time.

    Example 2Let g(x)be a single primitive irreducible polynomial over F2of degreep≥ 2.Let s=2p? 1,and de fi ne the class of classical EL codes with parameters as follows

    Since g(x)is a primitive irreducible polynomial andp≥ 2,we can obtain a quantum e-EL code with parameters

    where

    If let m=2 andp=3,then we can obtain a[[63,51]]QEL code.This code can locate any sub-block of length s=7 which has up to two errors.While letting m=3 andp=2,we can obtain another QEL code with the same parameters[[63,51]],which is able to locate any sub-block of length t=3 containing up to two errors.

    4 Conclusion and Discussion

    In this study,we have proposed the construction of QEL codes based on classical EL codes.The main technical contribution is that only if the generator polynomial g(x)of any classical EL codes does not contain the(1+x)-factor,then a QEL code with e error-locating abilities can be derived from the corresponding EL codes.This type of quantum codes can indicate the location of quantum errors in a single sub-block but without determining the precise erroneous symbol positions,and is useful to fault detecting in future quantum computers and quantum communications.

    References

    [1]A.M.Steane,Phys.Rev.Lett.77(1996)793.

    [2]P.W.Shor,Phys.Rev.A 52(1995)R2493.

    [3]D.Gottesman,Ph.D.Dissertation,California Institute of Technology,Pasadena(1997).

    [4]A.R.Calderbank,E.M.Rains,P.W.Shor,etal.,IEEE Trans.Inf.Theory 44(1998)1369.

    [5]A.Ketkar,A.Klappenecker,S.Kumar,etal.,IEEE Trans.Inf.Theory 52(2006)4892.

    [6]D.Gottesman,Phys.Rev.A 54(1996)1862.

    [7]M.Grassl and T.Beth,R.Soc.Lond.A 456(2000)2689.

    [8]A.Thangaraj and S.W.McLaughlin,IEEE Trans.Inf.Theory 47(2001)1176.

    [9]M.Grassl,T.Beth,and M.R¨oetteler,Int.J.Quantum Inf.2(2004)55.

    [10]Z.Li and L.Xing,Acta Phys.Sin.57(2008)28.

    [11]Z.Li and L.Xing,Acta Phys.Sin.56(2007)5602.

    [12]J.Fan,H.Chen,and J.Xu,Quantum Inf.Comput.16(2016)423.

    [13]J.K.Wolf and B.Elspas,IEEE Trans.Inf.Theory 9(1963)113.

    [14]E.Fujiwara and M.Kitakami,IEEE Trans.Inf.Theory 40(1994)1857.

    [15]V.V.Zyablov,Moscow,Ussr(1972).

    [16]J.Maucher,V.V.Zyablov,and M.Bossert,IEEE Trans.Inf.Theory 46(2000)642.

    [17]K.Feng and H.Chen,Quantum Error-Correcting Codes,Science Press,Beijing(2010)p.39.

    [18]A.R.Calderbank and P.W.Shor,Phys.Rev.A 54(1996)1098.

    [19]M.A.Nielsen and I.L.Chuang,Quantum Computation and Quantum Information,Cambridge University Press,Cambridge(2000)p.425.

    欧美zozozo另类| 大码成人一级视频| 亚洲国产精品一区三区| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品国产三级国产专区5o| 男女国产视频网站| 深夜a级毛片| 边亲边吃奶的免费视频| 五月开心婷婷网| 蜜桃在线观看..| 尤物成人国产欧美一区二区三区| 一本一本综合久久| 国产成人精品婷婷| 免费观看无遮挡的男女| 国产男女超爽视频在线观看| 久热久热在线精品观看| 亚洲国产高清在线一区二区三| 亚洲国产欧美在线一区| 一区二区三区乱码不卡18| 日本vs欧美在线观看视频 | 欧美成人一区二区免费高清观看| 菩萨蛮人人尽说江南好唐韦庄| av国产久精品久网站免费入址| 亚洲中文av在线| 久久av网站| av视频免费观看在线观看| 久久久a久久爽久久v久久| 亚洲精品成人av观看孕妇| 18禁裸乳无遮挡免费网站照片| 久久韩国三级中文字幕| 久久韩国三级中文字幕| 日韩欧美精品免费久久| 久久精品久久精品一区二区三区| 日本爱情动作片www.在线观看| 舔av片在线| 国产精品三级大全| 日韩三级伦理在线观看| 亚洲av国产av综合av卡| 日本-黄色视频高清免费观看| 秋霞伦理黄片| 黄色欧美视频在线观看| 亚洲不卡免费看| 99热全是精品| 插阴视频在线观看视频| 国产高清国产精品国产三级 | 黄色日韩在线| 亚洲av成人精品一区久久| 少妇猛男粗大的猛烈进出视频| 欧美精品国产亚洲| 九九久久精品国产亚洲av麻豆| 纵有疾风起免费观看全集完整版| 少妇高潮的动态图| 日韩成人伦理影院| 在线观看人妻少妇| 国产精品伦人一区二区| 简卡轻食公司| 欧美zozozo另类| 国产精品一及| 在线观看免费日韩欧美大片 | 亚洲人成网站高清观看| 亚洲成人一二三区av| 毛片一级片免费看久久久久| 日韩三级伦理在线观看| 五月伊人婷婷丁香| 欧美xxⅹ黑人| 伦理电影大哥的女人| 热re99久久精品国产66热6| 国产免费视频播放在线视频| 精品国产乱码久久久久久小说| av网站免费在线观看视频| 色综合色国产| 涩涩av久久男人的天堂| 香蕉精品网在线| 天堂8中文在线网| 国产精品一及| 精品一区二区免费观看| 免费人妻精品一区二区三区视频| 国产精品国产av在线观看| 日日啪夜夜爽| 国产一级毛片在线| 亚洲精品成人av观看孕妇| 中国国产av一级| 激情 狠狠 欧美| 五月伊人婷婷丁香| 亚洲精品日韩在线中文字幕| 久久女婷五月综合色啪小说| 少妇的逼水好多| 观看免费一级毛片| 国产亚洲一区二区精品| 五月天丁香电影| 久久国产亚洲av麻豆专区| 日本猛色少妇xxxxx猛交久久| 久久久久视频综合| 亚洲精品第二区| 多毛熟女@视频| 美女国产视频在线观看| 日本与韩国留学比较| 天堂中文最新版在线下载| 在线观看人妻少妇| 狠狠精品人妻久久久久久综合| 国产乱人偷精品视频| 亚洲精品乱码久久久v下载方式| 国产精品一二三区在线看| 一区二区三区乱码不卡18| 亚洲精品日韩av片在线观看| 日本免费在线观看一区| 精品国产一区二区三区久久久樱花 | 午夜精品国产一区二区电影| 国产精品秋霞免费鲁丝片| 你懂的网址亚洲精品在线观看| 秋霞在线观看毛片| 日韩免费高清中文字幕av| 日日摸夜夜添夜夜爱| 国精品久久久久久国模美| 久久综合国产亚洲精品| 十分钟在线观看高清视频www | 欧美精品一区二区大全| 亚洲无线观看免费| 国产精品99久久久久久久久| 亚洲美女搞黄在线观看| 亚洲美女搞黄在线观看| 赤兔流量卡办理| 国产精品国产av在线观看| 国产在线免费精品| 少妇高潮的动态图| 亚洲精品日韩在线中文字幕| 亚洲国产精品专区欧美| 国产精品爽爽va在线观看网站| 狂野欧美白嫩少妇大欣赏| 尤物成人国产欧美一区二区三区| 欧美精品一区二区大全| 国产男人的电影天堂91| 国产成人aa在线观看| 国产成人a区在线观看| 欧美精品一区二区大全| 啦啦啦在线观看免费高清www| 日日摸夜夜添夜夜爱| 黄色视频在线播放观看不卡| 国产v大片淫在线免费观看| 狠狠精品人妻久久久久久综合| 国产免费又黄又爽又色| 欧美三级亚洲精品| 高清日韩中文字幕在线| 少妇猛男粗大的猛烈进出视频| 干丝袜人妻中文字幕| 久久这里有精品视频免费| 免费观看av网站的网址| 丰满人妻一区二区三区视频av| 国精品久久久久久国模美| 性色av一级| 欧美高清成人免费视频www| 成人毛片a级毛片在线播放| 日韩三级伦理在线观看| 高清欧美精品videossex| 亚洲精品一区蜜桃| 成人免费观看视频高清| 国产成人免费观看mmmm| 18禁裸乳无遮挡免费网站照片| 国产无遮挡羞羞视频在线观看| 久久久欧美国产精品| 我的老师免费观看完整版| 交换朋友夫妻互换小说| 黑人猛操日本美女一级片| 亚洲av免费高清在线观看| 国产久久久一区二区三区| 国产探花极品一区二区| 国产精品偷伦视频观看了| 久久国产亚洲av麻豆专区| 成人美女网站在线观看视频| 一区二区三区精品91| 亚洲婷婷狠狠爱综合网| 一级毛片aaaaaa免费看小| 一区二区三区精品91| 欧美成人a在线观看| 一级爰片在线观看| 日本与韩国留学比较| 欧美xxxx黑人xx丫x性爽| 联通29元200g的流量卡| 亚洲精品日韩av片在线观看| 老司机影院成人| 中文资源天堂在线| 国产精品一及| 99热这里只有是精品在线观看| 国产精品一区二区在线观看99| 精品一区二区免费观看| 插阴视频在线观看视频| 亚洲精品国产av蜜桃| 亚洲久久久国产精品| av播播在线观看一区| 欧美bdsm另类| 免费观看性生交大片5| 亚洲精品第二区| 少妇的逼水好多| 在线播放无遮挡| 国产白丝娇喘喷水9色精品| 在线精品无人区一区二区三 | 伊人久久国产一区二区| 一个人免费看片子| 国产精品国产av在线观看| 国产精品一区二区性色av| 女性生殖器流出的白浆| 大陆偷拍与自拍| 男女边摸边吃奶| 又大又黄又爽视频免费| 一边亲一边摸免费视频| 欧美精品国产亚洲| 人人妻人人添人人爽欧美一区卜 | 一级毛片 在线播放| 国产亚洲午夜精品一区二区久久| 九色成人免费人妻av| 亚洲内射少妇av| 久久6这里有精品| 麻豆乱淫一区二区| 日韩成人伦理影院| av国产免费在线观看| a级毛片免费高清观看在线播放| 美女主播在线视频| 亚洲精品第二区| 国产精品久久久久久av不卡| 嫩草影院入口| 高清欧美精品videossex| 九色成人免费人妻av| 制服丝袜香蕉在线| 国产伦在线观看视频一区| 少妇精品久久久久久久| 在线观看人妻少妇| 亚洲精华国产精华液的使用体验| 精品酒店卫生间| 免费人妻精品一区二区三区视频| 亚洲精品久久午夜乱码| 狠狠精品人妻久久久久久综合| 亚洲色图av天堂| 国内揄拍国产精品人妻在线| 嫩草影院新地址| 国产高清三级在线| 日产精品乱码卡一卡2卡三| 毛片一级片免费看久久久久| 国产成人精品一,二区| 亚洲成人中文字幕在线播放| 91精品国产国语对白视频| 直男gayav资源| 免费黄频网站在线观看国产| 国内少妇人妻偷人精品xxx网站| 五月玫瑰六月丁香| 熟女人妻精品中文字幕| 青春草视频在线免费观看| 在线天堂最新版资源| 亚洲一级一片aⅴ在线观看| 男人爽女人下面视频在线观看| 老女人水多毛片| 身体一侧抽搐| 国产男女内射视频| 人妻系列 视频| 高清视频免费观看一区二区| 久久精品国产自在天天线| 国产免费视频播放在线视频| 国产 一区 欧美 日韩| 永久网站在线| 成人影院久久| 香蕉精品网在线| 欧美最新免费一区二区三区| 午夜激情久久久久久久| a 毛片基地| 老师上课跳d突然被开到最大视频| 久久久午夜欧美精品| 欧美日韩视频高清一区二区三区二| 中文字幕免费在线视频6| 国产精品一区二区在线观看99| 免费不卡的大黄色大毛片视频在线观看| 日韩免费高清中文字幕av| 精品视频人人做人人爽| 只有这里有精品99| 91久久精品国产一区二区成人| 国产深夜福利视频在线观看| 寂寞人妻少妇视频99o| 久久久久久久久大av| 美女福利国产在线 | 一级毛片久久久久久久久女| 妹子高潮喷水视频| 亚洲成人av在线免费| 中文精品一卡2卡3卡4更新| 乱系列少妇在线播放| 国产毛片在线视频| 成人国产麻豆网| av不卡在线播放| 国产欧美日韩精品一区二区| 少妇丰满av| 成人无遮挡网站| 极品少妇高潮喷水抽搐| av在线蜜桃| 国产男人的电影天堂91| 午夜福利影视在线免费观看| 一边亲一边摸免费视频| 搡女人真爽免费视频火全软件| 一级a做视频免费观看| 国产黄片视频在线免费观看| 久久国内精品自在自线图片| 色视频www国产| 精品一品国产午夜福利视频| 黄色一级大片看看| 亚洲激情五月婷婷啪啪| 日韩三级伦理在线观看| 日本av手机在线免费观看| 在现免费观看毛片| 99热这里只有是精品在线观看| 日本欧美视频一区| 99re6热这里在线精品视频| 亚洲精品自拍成人| 精品久久久久久电影网| 深爱激情五月婷婷| 亚洲人与动物交配视频| 在线观看一区二区三区激情| 黄色一级大片看看| 国产黄频视频在线观看| 麻豆国产97在线/欧美| 99热这里只有是精品在线观看| 中文字幕制服av| 国产精品国产av在线观看| 日本免费在线观看一区| 成人国产麻豆网| 欧美一区二区亚洲| 国产精品久久久久久精品电影小说 | 日韩三级伦理在线观看| 国精品久久久久久国模美| 美女视频免费永久观看网站| 亚洲成人av在线免费| 国产精品一区二区在线不卡| 成人二区视频| 九九在线视频观看精品| 欧美另类一区| 中文字幕亚洲精品专区| 午夜福利在线观看免费完整高清在| 欧美少妇被猛烈插入视频| 欧美极品一区二区三区四区| 欧美日韩一区二区视频在线观看视频在线| 有码 亚洲区| 久热久热在线精品观看| 老熟女久久久| 美女中出高潮动态图| 久久热精品热| 校园人妻丝袜中文字幕| 国产乱人偷精品视频| 高清黄色对白视频在线免费看 | 在线观看一区二区三区| 国产精品熟女久久久久浪| 在线播放无遮挡| 天天躁夜夜躁狠狠久久av| 综合色丁香网| videos熟女内射| 91久久精品电影网| 色视频在线一区二区三区| 精品亚洲成a人片在线观看 | 国产老妇伦熟女老妇高清| 国产伦理片在线播放av一区| 男女边吃奶边做爰视频| 久久毛片免费看一区二区三区| 国产亚洲午夜精品一区二区久久| 国产淫语在线视频| 九色成人免费人妻av| 亚洲三级黄色毛片| 国产国拍精品亚洲av在线观看| 一级爰片在线观看| 啦啦啦在线观看免费高清www| 国产高清三级在线| 大码成人一级视频| h视频一区二区三区| 国产精品免费大片| 日韩欧美一区视频在线观看 | 丝袜脚勾引网站| 亚洲欧美精品自产自拍| 色婷婷久久久亚洲欧美| 国产永久视频网站| 最近2019中文字幕mv第一页| 国产极品天堂在线| 国产亚洲一区二区精品| 亚洲成人中文字幕在线播放| 免费黄网站久久成人精品| 欧美日韩精品成人综合77777| 如何舔出高潮| 国产伦精品一区二区三区视频9| 亚洲美女搞黄在线观看| 99久久中文字幕三级久久日本| videos熟女内射| 丰满人妻一区二区三区视频av| 乱码一卡2卡4卡精品| 草草在线视频免费看| 九九爱精品视频在线观看| 少妇丰满av| 九九爱精品视频在线观看| 亚洲国产av新网站| 又黄又爽又刺激的免费视频.| 我的女老师完整版在线观看| 精品一区二区三卡| 亚洲精品国产色婷婷电影| 国产av一区二区精品久久 | 又黄又爽又刺激的免费视频.| 97超视频在线观看视频| 国产色婷婷99| 国产精品爽爽va在线观看网站| 熟女av电影| 成人漫画全彩无遮挡| 日韩在线高清观看一区二区三区| 黄色怎么调成土黄色| 99re6热这里在线精品视频| 久久97久久精品| 亚洲经典国产精华液单| 一本久久精品| 三级国产精品欧美在线观看| 久久久色成人| 91午夜精品亚洲一区二区三区| 久久精品国产亚洲网站| 最黄视频免费看| 久久精品国产亚洲av天美| 菩萨蛮人人尽说江南好唐韦庄| 老师上课跳d突然被开到最大视频| 久久久久视频综合| 国产午夜精品一二区理论片| 日韩成人av中文字幕在线观看| 黄色一级大片看看| 日韩免费高清中文字幕av| 三级国产精品欧美在线观看| 99热全是精品| 亚洲精品日韩av片在线观看| 九九爱精品视频在线观看| 国产精品一及| 午夜免费观看性视频| 亚洲av电影在线观看一区二区三区| 中国美白少妇内射xxxbb| 最近中文字幕高清免费大全6| 看十八女毛片水多多多| 亚洲综合精品二区| 国产高潮美女av| 国产黄色视频一区二区在线观看| 亚洲av国产av综合av卡| 亚洲av不卡在线观看| 日韩制服骚丝袜av| 国产成人精品一,二区| 亚洲欧洲日产国产| 人妻一区二区av| 91在线精品国自产拍蜜月| 免费大片黄手机在线观看| 久久99热这里只频精品6学生| 国产高清有码在线观看视频| 日日摸夜夜添夜夜添av毛片| 国产高清有码在线观看视频| 在线天堂最新版资源| 简卡轻食公司| 亚洲熟女精品中文字幕| 日日啪夜夜爽| 多毛熟女@视频| 中文资源天堂在线| 成人影院久久| 看十八女毛片水多多多| 国产精品久久久久成人av| 插逼视频在线观看| 日韩中字成人| 色视频www国产| 亚洲激情五月婷婷啪啪| 男人爽女人下面视频在线观看| 九九在线视频观看精品| 久久韩国三级中文字幕| 不卡视频在线观看欧美| 亚洲av电影在线观看一区二区三区| 午夜免费观看性视频| 国产精品免费大片| 日韩视频在线欧美| 亚洲av福利一区| 国产成人精品一,二区| 啦啦啦在线观看免费高清www| 精品一区二区三卡| 大片电影免费在线观看免费| 国产免费又黄又爽又色| 一本色道久久久久久精品综合| 九九爱精品视频在线观看| 日本av免费视频播放| 国产精品99久久99久久久不卡 | 亚洲精品国产成人久久av| 久热这里只有精品99| 一级片'在线观看视频| 久久精品国产鲁丝片午夜精品| 蜜臀久久99精品久久宅男| 国产精品熟女久久久久浪| 免费观看av网站的网址| 国模一区二区三区四区视频| 欧美人与善性xxx| 国产精品国产三级国产av玫瑰| 精品人妻一区二区三区麻豆| 亚洲欧美成人综合另类久久久| 特大巨黑吊av在线直播| 深夜a级毛片| 热re99久久精品国产66热6| 国产亚洲5aaaaa淫片| 最近的中文字幕免费完整| 国产精品一区二区性色av| 性色avwww在线观看| 中文字幕av成人在线电影| 男人狂女人下面高潮的视频| 97超视频在线观看视频| 中文资源天堂在线| 一区二区三区免费毛片| 久久热精品热| 精品99又大又爽又粗少妇毛片| 亚洲一级一片aⅴ在线观看| 久久久a久久爽久久v久久| 亚洲美女视频黄频| 老熟女久久久| 色吧在线观看| 亚洲国产毛片av蜜桃av| av又黄又爽大尺度在线免费看| 成人美女网站在线观看视频| 777米奇影视久久| 久久精品国产亚洲av天美| 久久久成人免费电影| 精品人妻一区二区三区麻豆| 中国三级夫妇交换| 老师上课跳d突然被开到最大视频| 精品国产三级普通话版| 精品99又大又爽又粗少妇毛片| 又大又黄又爽视频免费| 男人狂女人下面高潮的视频| 少妇丰满av| 亚洲人成网站在线播| 日韩中字成人| 伊人久久国产一区二区| 久久久久视频综合| 大又大粗又爽又黄少妇毛片口| 精品久久国产蜜桃| 国产欧美日韩精品一区二区| 精品久久久久久久久av| 国产在线一区二区三区精| 日本午夜av视频| 久久久久久人妻| 亚洲精品日韩av片在线观看| 亚洲人成网站在线播| 九九久久精品国产亚洲av麻豆| 新久久久久国产一级毛片| 18禁裸乳无遮挡动漫免费视频| 国产成人a区在线观看| 久久人人爽人人爽人人片va| 欧美变态另类bdsm刘玥| 久久久久人妻精品一区果冻| 亚洲精品一二三| 视频中文字幕在线观看| 伦理电影大哥的女人| 97热精品久久久久久| 日本-黄色视频高清免费观看| 国产淫片久久久久久久久| 91久久精品电影网| 青春草国产在线视频| 黄片无遮挡物在线观看| 久久久久久人妻| 国产精品一及| 成人美女网站在线观看视频| 国产视频首页在线观看| 欧美最新免费一区二区三区| 日韩一区二区三区影片| 亚洲av男天堂| 欧美老熟妇乱子伦牲交| 午夜老司机福利剧场| 国产黄频视频在线观看| 一个人免费看片子| 嫩草影院新地址| 交换朋友夫妻互换小说| 亚洲精品国产av蜜桃| 黑人猛操日本美女一级片| 性高湖久久久久久久久免费观看| 97精品久久久久久久久久精品| 亚洲伊人久久精品综合| 欧美日本视频| 夜夜骑夜夜射夜夜干| 中文欧美无线码| 国产免费又黄又爽又色| 久久97久久精品| 国产乱人视频| 亚洲国产成人一精品久久久| 欧美另类一区| 精品国产露脸久久av麻豆| 国产亚洲一区二区精品| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲熟女精品中文字幕| 欧美97在线视频| 国产av国产精品国产| 亚洲av欧美aⅴ国产| 亚洲美女搞黄在线观看| 在线观看国产h片| 在线天堂最新版资源| 干丝袜人妻中文字幕| 少妇的逼好多水| .国产精品久久| 最近的中文字幕免费完整| av免费在线看不卡| 国产伦理片在线播放av一区| 久久久色成人| 草草在线视频免费看| 97超碰精品成人国产| 国产亚洲精品久久久com| 哪个播放器可以免费观看大片| 国产淫语在线视频| 欧美xxxx黑人xx丫x性爽| 欧美精品一区二区免费开放| 久久国产精品男人的天堂亚洲 | 夜夜看夜夜爽夜夜摸| 免费在线观看成人毛片| 大码成人一级视频| 午夜免费男女啪啪视频观看| 精品少妇久久久久久888优播| h视频一区二区三区| 蜜桃在线观看..| 六月丁香七月| 黑丝袜美女国产一区| 精品久久久精品久久久| 两个人的视频大全免费| 男人狂女人下面高潮的视频| 亚洲伊人久久精品综合| 少妇的逼水好多|