• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nonlinear Self-Adjointness,Conservation Laws and Soliton-Cnoidal Wave Interaction Solutions of(2+1)-Dimensional Modi fi ed Dispersive Water-Wave System?

    2017-05-18 05:56:14YaRongXia夏亞榮XiangPengXin辛祥鵬andShunLiZhang張順利CenterforNonlinearStudiesSchoolofMathematicsNorthwestUniversityXian710069China
    Communications in Theoretical Physics 2017年1期

    Ya-Rong Xia(夏亞榮),Xiang-Peng Xin(辛祥鵬), and Shun-Li Zhang(張順利)Center for Nonlinear Studies,School of Mathematics,Northwest University,Xi’an 710069,China

    2School of Information Engineering,Xi’an University,Xi’an 710065,China

    3School of Mathematical Sciences,Liaocheng University,Liaocheng 252059,China

    1 Introduction

    Conservation laws,essential in the study of differential equations mathematically and physically,propose one of the primary principles to formulate and investigate models,especially in existence,uniqueness and stability of solutions.In addition,the integrability of the system is quite possible should conservation laws exist in it.[1?2]For conservation laws,different methods have been mobilized.The celebrated Noether’s theorem[3]proves to be a systematic and efficient approach in finding conservation laws of PDEs unless there exists a Lagrangian.However,there exist some equations not having a Lagrangian.Hence the Noether’s theorem cannot be used to obtain conservation laws directly because of the equation symmetries.This,however,can be solved with the general concept of nonlinear self-adjointness proposed by Ibragimov,[4?7]and Gandarias to construct the conservation laws for any differential equation.[8]This procedure can be true of classes of single differential equations of any order but of the systems where the number of equations is equal to that of dependent variables.[9?11]

    On the other hand,it is an important and major subject to seek exact solutions and interactions among solutions to nonlinear equation to explain some physical phenomena further.The special solutions to an integrable system can be derived from many e ff ective methods such as symmetry reductions,[12]the variable separation approach,[13]the inverse scattering transformation approach,[14]the Darboux transformation(DT),[15?16]thetransformation(BT),[17]the bilinear method,[18]and Painlev′e analysis,[19]to name just a few.However,it is difficult to find the interaction solutions among different types of nonlinear excitations besides the soliton-soliton interaction.Recently,Lou etal.made a breakthrough in interaction solutions between solitons and any other types of nonlinear soliton waves by using two equivalent simple methods:the truncated Painlev′e analysis and the generalized tanh expansion approaches,[20?21]which are proved to be e ff ective for more types of solutions to many integrable systems.

    This paper concentrates on investigating the nonlinear self-adjointness,conservation laws and interaction solutions between a soliton and cnoidal wave[22?26]of the(2+1)-dimensional modi fi ed dispersive water-wave(MDWW)system,which can be written as

    system(1),modeling nonlinear and dispersive long gravity waves in two horizontal directions on shallow waters of uniform depth.MDWW is derived from the famous Kadomtsev–Petviashvili(KP)equation with the symmetry constraints.[27]In Refs.[28]–[29],Painlev′e–B¨acklund transformations,along with a multilinear variable separation approach help a lot in securing abundant propagating localized excitations.Reference[30]shows many new types of non-traveling solutions acquired via a further generalized projective Riccati equation method.In[31],the extended mapping approach assists in getting some nonpropagating and propagating solitons.Reference[32]en-gages in new types of interactions between solitons such as a compacton-like semi-foldon and a compacton,a peakonlike semi-foldon and a peakon based on new variable separation solutions with arbitrary functions for MDWW(1)by using the projective Riccati equation expansion.In Ref.[33],special types of periodic folded waves are derived from the WTC truncation method.In Ref.[34],Hirota bilinear method is of great assistance in constructing multiple soliton solutions with arbitrary functions for system(1).For system(1),Ref.[35]emphasizes symmetry reduction.However,the research into the nonlinear self-adjoint,conservation law and soliton-cnodial wave solution of Eqs.(1)have not been mentioned in the above literature.

    This paper is arranged as follows.Section 2 introduces the main notations and theorems used in this paper.In Sec.3,the nonlinear self-adjointness for the(2+1)-dimensional(MDWW)system will be discussed,which is a vital link in applying Ibragimov’s theorem.In Sec.4,based on Lie symmetry analysis acquired and Ibragimov’s theorem,conservation laws of system(1)are established.In Sec.5,we derive new explicit interactions solutions between solitons and cnoidal periodic waves by the truncated Painlev′e analysis and the consistent tanh expansion(CTE)method for the(2+1)-dimensional MDWW system.In the last section,some conclusions and discussion will be given.

    2 Preliminaries

    This section aims to present the notations and theorems used in this paper.

    Definition 1(Ref.[6])Consider a system of equations

    with n independent variables x=(x1,...,xn),m dependent variables u=(u1,...,um)and where u(s)denotes the set of the partial derivatives of s-th order of u.The adjoint equation to Eqs.(2)is

    with

    where L is the formal Lagrangian for Eq.(2)given by

    with v=(v1,...,vm)as new dependent variables,vα=vα(x),and δ/δuαas the variational derivative

    Definition 2(Ref.[7])The system(2)is said to be nonlinearly self-adjoint if the following equations hold:

    with ?(x,u)/=0,whereare undetermined coefficients,and ? is the m-dimensional vector ? =(?1,...,?m).

    In Ref.[6],Eqs.(3)succeeds the symmetries of the system(2),which has been proved by Ibragimov.In other words,if the system(2)admits a point transformation group with a generator

    then the adjoint system(3)admits the operator(7)extended to the variables vαby the formula

    Theorem 1(Ref.[6])Any in fi nitesimal symmetry(Lie point,Lie B¨acklund,nonlocal)

    of a system equations(2)provides a conservation law Di(Ci)=0 for the system of differential equations consisting of Eqs.(2)and the adjoint Eqs.(3).The conserved vector is given by

    and

    3 Nonlinear Self-Adjointness of System(1)

    For system(1),according to Definition 1,the following formal Lagrangian can be deduced

    whereandare two new dependent variables.The adjoint system of the system(1)is

    where,in this case

    with Dx,Dyand Dtdenoting the operator of total differentiation with x,y,and t respectively.Should Eq.(10)be considered,the adjoint system(11)for system(1)will change into

    System(1)is not recovered if u is substituted forand v for,so system(1)is not self adjoint.[10]Based on Definition 2,nonlinearly self-adjoint will the system(1)become if each equation(i=1,2)of the adjoint system(12)satis fi es the following condition

    with regular undetermined coefficients λij(i,j=1,2)after substituting the following expression

    with ?(x,y,t,u,v)/=0 or ψ(x,y,t,u,v)/=0.Were the differential consequences of(14)to be introduced,system(12)split into the following equations for the coefficients λij(i,j=1,2)

    and into the system for the substitution(14)

    Once they are solved,the following solution will come

    where g1,g2,g3are arbitrary functions of t,and g4of y,and the dot over the function denotes its derivative with respect to its variable.Then,according to the Definition 2,system(1)is nonlinearly self adjoint.

    4 Lie Symmetries and Conservation Laws of System(1)

    The performance of corresponding Lie symmetry analysis by classical lie group method is the prerequisite to derive conservation laws for system(1).It needs to consider a one-parameter Lie group of in fi nitesimal transformations

    with a small parameter ?? 1.The vector field related to the above transformations can be described as

    Then the invariance of system(1)under transformation(17)makes the functions ξ1,ξ2,ξ3,η1,η2take the form

    where f1is arbitrary function of y,f2,f3of t,and the dot over the functions means their derivative with respect to their variable.An in fi nite-dimensional Lie algebra of symmetries is resulted from the existence of the arbitrary functions.A general element of this algebra is depicted as

    where

    What follows is to apply the Theorem 1 to seek for conservation laws of system(1).For(1),the adjoint equation is given by

    and the Lagrangian in the symmetrized form

    Consider Theorem 1,the corresponding vector fields can be written as

    The conservation law is decided by

    Here the conserved vector C=(C1,C2,C3)is given by(9)and the concrete forms are as follows

    Substituting(25)into(28),it will change into

    with

    In regard to(21),we consider the following cases.

    Case 1For the generator

    the Lie characteristic functions are

    one can obtain the conservation vector of(1)

    Case 2For the generator

    the Lie characteristic functions are

    we can get the conservation vector of(1)

    Case 3For the generator

    the Lie characteristic functions are

    we derive the conservation vector of(1)

    Remark 1Clearly,the above conservation vector Ci(i=1,2,3)includes an arbitrary solutionto adjoint Eqs.(24),so the number of the conservation laws it presents is in fi nite.

    5 Soliton-Cnoidal Wave Interaction Solutions of System(1)

    Obviously,the Painlev′e analysis is one of the e ff ective approaches for special solutions to nonlinear physical systems.For the(2+1)-dimensional MDWW system,its truncated Painlev′e expansion can be expressed as

    with u0,u1,v0,v1,v2,? being the functions of x,y and t.By substituting Eq.(29)into system(1)and vanishing all the coefficients of different powers of 1/? comes

    and then we obtain

    which is the solution to the MDWW system,and the field

    ? satis fi es the following Schwarzian form

    where λ is an arbitrary integral parameter,and

    The Schwarzian form(32)is invariant under the M¨obious transformation

    That is to say,Eq.(32)bears three symmetries σ?=d1,σ?=d2?,and σ?=d3?2with arbitrary constants d1,d2and d3.

    Adopting the following straightening transformation,

    where w is the function of x,y,and t.After substituting the expression(33)into system(31),the equivalent solutions to MDWW system come as

    and the equivalent compatibility condition for w as

    where

    Clearly,the solutions(34)are derived from the transformation(33),where the usual truncated Painlev′e expansion approach is converted into the most general extension of the special tanh function expansion method,so it can be said the solutions(34)are the generalization of the usual tanh function expansion method.Here we can obtain the solution(34)by the CTE approaches.[36]

    For the MDWW system(1),the application of leading order analysis can result in the following generalized truncated tanh function expansion

    where u0,u1,v0,v1,v2and w are functions of x,y,and t.Substituting expression(36)into system(1)and vanishing all the coefficients of tanhi(w),we have

    and then we deduce the same solution(34)to the MDWW system(1)with the consistent condition(35).

    Fig.1 The soliton-cnodial periodic wave solution to u:(a)The pro fi le of the special structure with t=0 and y=0.(b)The pro fi le of the special structure at t=0 and x=0.(c)Perspective view of the wave.

    Fig.2 The soliton-cnodial periodic wave solutions to v:(a)The pro fi le of the special structure with t=0 and y=0.(b)The pro fi le of the special structure with t=0 and x=0.(c)Perspective view of the wave.

    The above shows that the single soliton(or solitary wave)solution to the MDWW system(1)is only a straightened solution w=k1x+l1y+d1t to Eq.(35),which implies that to find the interaction solutions between solitons and other nonlinear excitations,what is needed is to acquire the solution to Eq.(35).In this paper we focus on the following special Jacobi elliptic function

    as the solution to Eq.(35),which characterizes the interactions between a soliton and a cnoidal wave.h1,h2,h3,q1,q2,q3,λ,m and n are determined later.In(38),sn(z,m)is the usual Jacobi elliptic sine function and

    is the third type of incomplete elliptic integral.By substituting(38)into(35)and solving the over-determined equations with the help of maple will come

    where h2,h3,λ,m,n,q1,q2and q3are arbitrary constants.Substituting Eqs.(37),(38),and(39)into(36),we can obtain the interaction solution between soliton and cnoidal periodic waves.The result is omitted here because of its prolixity.Corresponding images are as follows and the parameters used in the fi gure are selected as{h2=1.4,h3= ?0.5,λ= ?0.3,q1= ?0.9,q2= ?0.5,q3=0.2,m=0.8,n=0.5}.

    Remark 3Figures 1 and 2 illustrate the soliton-cnoidal periodic wave solutions to the fields u and v describing a soliton travels on a cnoidal wave background for the MDWW system.Clearly,the interaction between the soliton and every peak of the cnoidal periodic wave is elastic as phase changes.Solutions and fi gures obtained in this paper might be helpful in further understanding the propagation of nonlinear and dispersive long gravity waves on shallow waters.

    6 Summary and Discussion

    It is proved that the(2+1)-dimensional MDWW system(1)is nonlinearly self-adjoint.With the support of the general theorem of conservation laws by Ibragimov,[6]the property can be applied to construct countless conservation laws for(1).Mathematically,the basic conserved quantity can be applied in obtaining various estimates for smooth solutions and de fi ning suitable norms for weak solutions,so it is worthy to be further investigated.

    In addition,with the truncated Painlev′e analysis and the CTE method,the soliton-cnoidal wave solution to system(1)is obtained.A good understanding of the solutions to system(1)is very helpful for coastal and civil engineers in applying the nonlinear water model to coastal harbor design.For their practicability,the study on the CTE method and more types of the interaction solutions among different kinds of nonlinear excitations should be furthered.

    References

    [1]G.W.Bluman and S.Kumei,Symmetries and differential Equations,Springer-Verlag,New York(1989).

    [2]A.R.Adem and C.M.Khalique,Commun.Nonlinear Sci.Numer.Simul.17(2012)3465.

    [3]E.Noether,Math.Phys.Kl.Heft.2(1918)235.

    [4]N.H.Ibragimov,J.Math.Anal.Appl.318(2006)742.

    [5]N.H.Ibragimov,Arch.ALGA 4(2007)55.

    [6]N.H.Ibragimov,J.Math.Anal.Appl.333(2007)311.

    [7]N.H.Ibragimov,Arch.ALGA 7(2011)1.

    [8]M.L.Gandarias,J.Phys.A:Math.Theor.44(2011)262001.

    [9]N.H.Ibragimov,M.Torrisi,and R.Tracin′a,J.Phys.A:Math.Theor.44(2011)145201.

    [10]N.H.Ibragimov,J.Phys.A:Math.Theor.43(2011)432002.

    [11]R.Tracin′a,M.S.Bruzon,M.L.Gandarias,and M.Torrisi,Commun.Nonlinear Sci.Numer.Simul.19(2014)3036.

    [12]S.Y.Lou,X.Y.Tang,and J.Lin,J.Math.Phys.41(2000)8286.

    [13]S.Y.Lou,Phys.Lett.A 277(2000),94.

    [14]M.J.Ablowitz and P.A.Clarkson,Soliton,Nonlinear Evolution Equations and Inverse Scattering,Cambridge Univ.,New York(1991).

    [15]Y.S.Li and J.E.Zhang,Phys.Lett.A 284(2001)253.

    [16]A.H.Chen and X.M.Li,Chaos,Solitons&Fractals 27(2006)43.

    [17]H.R.Miura,Backlund Transformation,Springer-Verlag,Berlin(1978).

    [18]R.Hirota,Phys.Rev.Lett.27(1971)1192.

    [19]S.Y.Lou,Phys.Rev.Lett.80(1998)5027.

    [20]S.Y.Lou,X.P.Cheng,and X.Y.Tang,arXiv:1208.5314v2(2012).

    [21]S.Y.Lou,X.R.Hu,and Y.Chen,J Phys.A:Math.Theor.45(2012)155209.

    [22]W.G.Cheng,B.Li,and Y.Chen,Commun.Theor.Phys.63(2015)549.

    [23]L.L.Huang,Y.Chen,and Z.Y.Ma,Commun.Theor.Phys.66(2016)189.

    [24]J.X.Fei,Z.Y.Ma,and Y.M.Chen,Appl.Math.Comput.268(2015)432.

    [25]X.R.Hu and Y.Q.Li,Appl.Math.Lett.51(2016)20.

    [26]J.C.Chen and Z.Y.Ma,Appl.Math.Lett.64(2017)87.

    [27]S.Y.Lou and X.B.Hu,J.Math.Phys.38(1997)6401.

    [28]X.Y.Tang,S.Y.Lou,and Y.Zhang,Phys.Rev.E 66(2002)046601.

    [29]X.Y.Tang and S.Y.Lou,J.Math.Phys.44(2003)4000.

    [30]D.S.Li and H.Q.Zhang,Appl.Math.Comput.147(2004)789.

    [31]C.L.Zheng,J.P.Fang,and L.Q.Chen,Chaos,Solitons and Fractals 23(2005)1741.

    [32]Z.Y.Ma,Chin.Phys.B 16(2007)1848.

    [33]W.H.Huang,Chin.Phys.B 8(2009)3163.

    [34]X.Y.Wen,Appl.Math.Comput.219(2013)7730.

    [35]Z.Y.Ma,J.X.Fei,and X.Y.Du,Commun.Theor.Phys.64(2015)127.

    [36]C.L.Chen and S.Y.Lou,Commun.Theor.Phys.61(2014)545.

    女人被狂操c到高潮| 网址你懂的国产日韩在线| 99久久人妻综合| 欧美xxxx黑人xx丫x性爽| 国产精品三级大全| 色吧在线观看| 色综合亚洲欧美另类图片| 看非洲黑人一级黄片| 97人妻精品一区二区三区麻豆| 亚洲欧美精品专区久久| 亚洲电影在线观看av| 国产精品一区二区性色av| 国产精品1区2区在线观看.| 内射极品少妇av片p| 亚洲欧美日韩东京热| 三级经典国产精品| 欧美日韩综合久久久久久| 老司机影院毛片| 亚洲欧美一区二区三区黑人 | 国产精品女同一区二区软件| 我的女老师完整版在线观看| 18禁裸乳无遮挡免费网站照片| 国产淫片久久久久久久久| 久久久久久久国产电影| 美女被艹到高潮喷水动态| 人人妻人人澡人人爽人人夜夜 | 听说在线观看完整版免费高清| 一区二区三区免费毛片| 成年免费大片在线观看| 青春草视频在线免费观看| 成年版毛片免费区| 久久久亚洲精品成人影院| 五月伊人婷婷丁香| 色哟哟·www| 久久99热这里只频精品6学生| 国内精品宾馆在线| 国产老妇伦熟女老妇高清| 啦啦啦啦在线视频资源| 免费看av在线观看网站| 日本欧美国产在线视频| 欧美激情在线99| 色吧在线观看| 99久久中文字幕三级久久日本| 亚洲乱码一区二区免费版| 亚洲精品乱码久久久久久按摩| 男女边摸边吃奶| 亚洲精品自拍成人| 色综合色国产| 国产伦一二天堂av在线观看| 男女那种视频在线观看| 在线免费十八禁| 五月天丁香电影| 69av精品久久久久久| av一本久久久久| 搡老乐熟女国产| 免费av毛片视频| 99久久中文字幕三级久久日本| 日韩制服骚丝袜av| 免费观看a级毛片全部| 亚洲欧美一区二区三区黑人 | 亚洲欧美日韩卡通动漫| 亚州av有码| 久久久久久久久大av| 亚洲经典国产精华液单| 国产伦一二天堂av在线观看| 国产亚洲精品av在线| 国产成人精品一,二区| 亚洲天堂国产精品一区在线| 欧美高清性xxxxhd video| 久久久精品免费免费高清| 99久久精品一区二区三区| 国产欧美日韩精品一区二区| 久久亚洲国产成人精品v| 色综合色国产| 美女脱内裤让男人舔精品视频| 身体一侧抽搐| 免费看光身美女| 人妻制服诱惑在线中文字幕| 国产成人a区在线观看| 成年免费大片在线观看| 麻豆精品久久久久久蜜桃| 国产精品美女特级片免费视频播放器| 大香蕉97超碰在线| 91在线精品国自产拍蜜月| 噜噜噜噜噜久久久久久91| 一级毛片 在线播放| 亚洲真实伦在线观看| 亚洲精品自拍成人| 少妇丰满av| 午夜福利高清视频| av.在线天堂| 三级国产精品欧美在线观看| 亚洲自拍偷在线| 高清日韩中文字幕在线| 草草在线视频免费看| 亚洲精品色激情综合| av一本久久久久| a级毛片免费高清观看在线播放| 一夜夜www| 久久久久网色| 成人鲁丝片一二三区免费| 观看免费一级毛片| 18+在线观看网站| 成人亚洲欧美一区二区av| 2022亚洲国产成人精品| 亚洲国产精品专区欧美| 夫妻午夜视频| av在线播放精品| av女优亚洲男人天堂| 免费黄网站久久成人精品| 天堂av国产一区二区熟女人妻| 天天一区二区日本电影三级| 女人久久www免费人成看片| 免费av不卡在线播放| 成人亚洲精品一区在线观看 | 日韩av不卡免费在线播放| 亚洲精品aⅴ在线观看| 99热这里只有是精品在线观看| 插阴视频在线观看视频| 精品一区在线观看国产| 边亲边吃奶的免费视频| 夜夜爽夜夜爽视频| 欧美成人精品欧美一级黄| 国产久久久一区二区三区| 国产视频内射| 国产淫片久久久久久久久| 校园人妻丝袜中文字幕| 最近视频中文字幕2019在线8| 精品一区在线观看国产| 欧美精品国产亚洲| 少妇丰满av| 亚洲美女视频黄频| 26uuu在线亚洲综合色| 亚洲精品日韩av片在线观看| 汤姆久久久久久久影院中文字幕 | 美女主播在线视频| 亚洲精品日韩av片在线观看| 日韩不卡一区二区三区视频在线| 男人舔奶头视频| 日韩av不卡免费在线播放| 亚洲国产高清在线一区二区三| 99re6热这里在线精品视频| 国产成人一区二区在线| 赤兔流量卡办理| 国产又色又爽无遮挡免| 国产午夜精品一二区理论片| 日韩,欧美,国产一区二区三区| 亚洲av中文字字幕乱码综合| 少妇高潮的动态图| 久久精品人妻少妇| xxx大片免费视频| 日韩欧美精品免费久久| 成人亚洲精品av一区二区| 欧美变态另类bdsm刘玥| 亚洲欧美一区二区三区黑人 | 特级一级黄色大片| 亚洲成人av在线免费| 国产女主播在线喷水免费视频网站 | 一个人看的www免费观看视频| av网站免费在线观看视频 | 欧美另类一区| 日日撸夜夜添| 久久久成人免费电影| 少妇被粗大猛烈的视频| 日本色播在线视频| 久久这里只有精品中国| 天堂√8在线中文| 国产视频首页在线观看| 最近视频中文字幕2019在线8| 激情五月婷婷亚洲| 免费观看性生交大片5| 国产亚洲av嫩草精品影院| 麻豆成人午夜福利视频| 麻豆av噜噜一区二区三区| 成年av动漫网址| 老女人水多毛片| 久久久精品免费免费高清| 欧美三级亚洲精品| 国产精品av视频在线免费观看| 偷拍熟女少妇极品色| 亚洲欧美中文字幕日韩二区| 亚洲精品国产av蜜桃| 免费大片黄手机在线观看| 街头女战士在线观看网站| 欧美一区二区亚洲| 午夜福利视频1000在线观看| 国产精品国产三级国产专区5o| 亚洲国产精品国产精品| 亚洲国产日韩欧美精品在线观看| 我的老师免费观看完整版| 精华霜和精华液先用哪个| 又大又黄又爽视频免费| 色吧在线观看| 少妇裸体淫交视频免费看高清| 国产乱来视频区| 亚洲精品一二三| 久久久久久久久久久免费av| 久久久久久伊人网av| 男插女下体视频免费在线播放| 精品人妻熟女av久视频| 晚上一个人看的免费电影| 国产伦在线观看视频一区| 亚洲精品自拍成人| 亚洲国产欧美人成| 亚洲av免费高清在线观看| 最近最新中文字幕大全电影3| 中文字幕久久专区| 精品酒店卫生间| 午夜日本视频在线| 日韩不卡一区二区三区视频在线| 久久久久久久午夜电影| 免费观看的影片在线观看| 男人狂女人下面高潮的视频| 老师上课跳d突然被开到最大视频| 久久久久免费精品人妻一区二区| freevideosex欧美| 欧美高清成人免费视频www| 伦理电影大哥的女人| 国产一区二区三区av在线| 一级a做视频免费观看| 午夜精品在线福利| 黄色欧美视频在线观看| 国产乱人视频| 国产精品爽爽va在线观看网站| 国产精品国产三级国产专区5o| 日韩成人伦理影院| freevideosex欧美| 日韩强制内射视频| 麻豆精品久久久久久蜜桃| 国产午夜精品论理片| 精品久久久久久久久亚洲| 六月丁香七月| 最近最新中文字幕大全电影3| 国产成人freesex在线| 免费播放大片免费观看视频在线观看| 亚洲国产最新在线播放| 欧美97在线视频| 成人毛片a级毛片在线播放| 色哟哟·www| 国产乱来视频区| 少妇熟女aⅴ在线视频| 日韩伦理黄色片| 成人无遮挡网站| 亚洲av中文字字幕乱码综合| 日产精品乱码卡一卡2卡三| 亚洲国产欧美人成| 国内精品宾馆在线| 直男gayav资源| 欧美日韩一区二区视频在线观看视频在线 | 最近视频中文字幕2019在线8| 又爽又黄无遮挡网站| 久久鲁丝午夜福利片| 男女下面进入的视频免费午夜| 大片免费播放器 马上看| 最近最新中文字幕大全电影3| 麻豆久久精品国产亚洲av| 热99在线观看视频| 一区二区三区四区激情视频| 亚洲精品中文字幕在线视频 | 久久亚洲国产成人精品v| 精品不卡国产一区二区三区| 七月丁香在线播放| 99久久精品国产国产毛片| 免费黄频网站在线观看国产| 精品国产一区二区三区久久久樱花 | 国产一级毛片七仙女欲春2| 国产成人91sexporn| 免费观看无遮挡的男女| 日日啪夜夜爽| av在线蜜桃| 我要看日韩黄色一级片| 91精品国产九色| 国产老妇女一区| 国产成人精品婷婷| 国产老妇伦熟女老妇高清| 亚洲人成网站在线播| 国产高清不卡午夜福利| 又大又黄又爽视频免费| 久久久久九九精品影院| 免费少妇av软件| 两个人的视频大全免费| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲91精品色在线| 亚洲成人久久爱视频| 久久精品国产亚洲av涩爱| 久久精品久久久久久噜噜老黄| 91精品伊人久久大香线蕉| 亚洲av中文字字幕乱码综合| 男女下面进入的视频免费午夜| 水蜜桃什么品种好| 少妇熟女aⅴ在线视频| 高清av免费在线| 亚洲精品国产av蜜桃| 男的添女的下面高潮视频| 日本爱情动作片www.在线观看| 国产成人精品一,二区| 2021天堂中文幕一二区在线观| 校园人妻丝袜中文字幕| 又爽又黄无遮挡网站| 国产成人精品福利久久| 国产一区二区在线观看日韩| 亚洲国产精品成人综合色| 免费黄网站久久成人精品| 三级经典国产精品| 99久久中文字幕三级久久日本| 一级毛片我不卡| av在线老鸭窝| 中文天堂在线官网| 日韩强制内射视频| 女人被狂操c到高潮| 全区人妻精品视频| 乱人视频在线观看| 天堂影院成人在线观看| 日韩av在线免费看完整版不卡| 亚洲aⅴ乱码一区二区在线播放| 免费少妇av软件| 哪个播放器可以免费观看大片| 国产亚洲av嫩草精品影院| 色5月婷婷丁香| 国产成人免费观看mmmm| 一级黄片播放器| 人妻制服诱惑在线中文字幕| 欧美精品国产亚洲| 欧美 日韩 精品 国产| 两个人的视频大全免费| 嫩草影院新地址| 久久精品熟女亚洲av麻豆精品 | 美女xxoo啪啪120秒动态图| 伊人久久国产一区二区| 只有这里有精品99| 性色avwww在线观看| 日韩成人伦理影院| 亚洲精品乱久久久久久| 国产单亲对白刺激| 午夜福利网站1000一区二区三区| av在线播放精品| 精品一区二区三卡| 亚洲成人中文字幕在线播放| 国产精品久久久久久精品电影小说 | 亚洲av男天堂| 色视频www国产| 免费观看av网站的网址| 观看美女的网站| 天堂网av新在线| 精品久久久久久久久亚洲| 男人爽女人下面视频在线观看| 黄色配什么色好看| 少妇的逼好多水| 日韩av在线大香蕉| 亚洲精品一区蜜桃| 国产av在哪里看| 日本欧美国产在线视频| 高清视频免费观看一区二区 | 少妇熟女欧美另类| 亚洲成人av在线免费| 18禁在线播放成人免费| 中文字幕免费在线视频6| 麻豆久久精品国产亚洲av| 国产免费视频播放在线视频 | 久久精品综合一区二区三区| 日日啪夜夜爽| 亚洲熟女精品中文字幕| 国产人妻一区二区三区在| 国产男女超爽视频在线观看| 综合色丁香网| 欧美潮喷喷水| 亚洲综合色惰| 亚洲精品456在线播放app| 在线观看av片永久免费下载| 亚洲高清免费不卡视频| 国产成人一区二区在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 精品久久久久久久久av| 99热这里只有精品一区| 2022亚洲国产成人精品| 五月天丁香电影| 国产精品一区二区在线观看99 | 非洲黑人性xxxx精品又粗又长| 亚洲在久久综合| 国产精品三级大全| 熟妇人妻不卡中文字幕| 国产极品天堂在线| 99久久精品国产国产毛片| 三级经典国产精品| 国产亚洲午夜精品一区二区久久 | 可以在线观看毛片的网站| 日韩制服骚丝袜av| 天堂俺去俺来也www色官网 | 淫秽高清视频在线观看| 国产高清三级在线| 久久精品久久久久久噜噜老黄| 日韩一区二区三区影片| 永久免费av网站大全| 大片免费播放器 马上看| 国产成人一区二区在线| 亚洲内射少妇av| videos熟女内射| 欧美日韩精品成人综合77777| 在线免费观看不下载黄p国产| 天堂中文最新版在线下载 | 精品99又大又爽又粗少妇毛片| 日韩av在线免费看完整版不卡| 日本一二三区视频观看| 99久久九九国产精品国产免费| 99九九线精品视频在线观看视频| 国产探花在线观看一区二区| 日韩不卡一区二区三区视频在线| 国产中年淑女户外野战色| 九九在线视频观看精品| 成人午夜高清在线视频| 成人午夜精彩视频在线观看| 哪个播放器可以免费观看大片| 国产亚洲av嫩草精品影院| 国产精品人妻久久久久久| 日韩精品有码人妻一区| 亚洲国产精品成人久久小说| 十八禁网站网址无遮挡 | 亚洲av福利一区| 欧美成人精品欧美一级黄| 精品一区二区三区人妻视频| 激情五月婷婷亚洲| 国产在线一区二区三区精| 国产爱豆传媒在线观看| 97在线视频观看| 久久久a久久爽久久v久久| 久久国产乱子免费精品| 欧美日韩国产mv在线观看视频 | 女人被狂操c到高潮| 亚洲av国产av综合av卡| 亚洲最大成人手机在线| 国产男女超爽视频在线观看| 免费观看性生交大片5| 人妻一区二区av| 激情 狠狠 欧美| 少妇的逼水好多| 2018国产大陆天天弄谢| 国产高清三级在线| 久久久久久久久大av| 直男gayav资源| 又大又黄又爽视频免费| 青春草国产在线视频| 欧美xxⅹ黑人| 久久久久九九精品影院| .国产精品久久| 一区二区三区四区激情视频| 亚洲国产日韩欧美精品在线观看| 国产亚洲午夜精品一区二区久久 | 在线播放无遮挡| 97在线视频观看| 免费观看精品视频网站| 七月丁香在线播放| 国产久久久一区二区三区| 国产一区二区在线观看日韩| 亚洲一区高清亚洲精品| 91午夜精品亚洲一区二区三区| 久久久久九九精品影院| 欧美性猛交╳xxx乱大交人| 天堂网av新在线| 九九久久精品国产亚洲av麻豆| 啦啦啦啦在线视频资源| 天天躁夜夜躁狠狠久久av| 最近中文字幕高清免费大全6| 欧美变态另类bdsm刘玥| 国产精品一区二区三区四区久久| 高清毛片免费看| 哪个播放器可以免费观看大片| 狂野欧美白嫩少妇大欣赏| 夜夜看夜夜爽夜夜摸| 免费观看性生交大片5| 夜夜爽夜夜爽视频| 看非洲黑人一级黄片| 欧美日韩在线观看h| 卡戴珊不雅视频在线播放| 蜜桃久久精品国产亚洲av| 欧美不卡视频在线免费观看| 国产一区二区亚洲精品在线观看| 狠狠精品人妻久久久久久综合| 美女脱内裤让男人舔精品视频| 一级二级三级毛片免费看| 国产在线一区二区三区精| 夜夜看夜夜爽夜夜摸| 久久韩国三级中文字幕| 欧美高清成人免费视频www| 99久久中文字幕三级久久日本| 在线免费观看不下载黄p国产| 免费av不卡在线播放| 嫩草影院精品99| 观看免费一级毛片| 精品久久久久久久久亚洲| 男人爽女人下面视频在线观看| 大香蕉久久网| 最近视频中文字幕2019在线8| 欧美潮喷喷水| 日韩欧美三级三区| 九九爱精品视频在线观看| 亚洲精品久久久久久婷婷小说| 一区二区三区乱码不卡18| 看免费成人av毛片| 久久久久久国产a免费观看| 国产综合懂色| 亚洲av成人精品一二三区| 免费看av在线观看网站| 亚洲精品亚洲一区二区| 国产精品久久久久久精品电影小说 | 国内少妇人妻偷人精品xxx网站| 日本一二三区视频观看| 黄色日韩在线| 成人午夜高清在线视频| 女人久久www免费人成看片| 天天躁日日操中文字幕| 欧美+日韩+精品| 国产精品爽爽va在线观看网站| 可以在线观看毛片的网站| 中文精品一卡2卡3卡4更新| 久久久a久久爽久久v久久| 菩萨蛮人人尽说江南好唐韦庄| 成人亚洲精品av一区二区| 街头女战士在线观看网站| 男女视频在线观看网站免费| 18+在线观看网站| 日韩制服骚丝袜av| 青春草国产在线视频| 在线天堂最新版资源| 国产av国产精品国产| 亚洲精华国产精华液的使用体验| 久久精品久久久久久噜噜老黄| 久久精品夜色国产| 成人亚洲欧美一区二区av| 日日干狠狠操夜夜爽| kizo精华| 久久久国产一区二区| 亚洲图色成人| 日本与韩国留学比较| 国产成人aa在线观看| 免费观看在线日韩| or卡值多少钱| 人人妻人人看人人澡| av一本久久久久| 国产激情偷乱视频一区二区| 日韩av免费高清视频| 国产日韩欧美在线精品| 亚洲国产精品专区欧美| 免费黄网站久久成人精品| 免费播放大片免费观看视频在线观看| 18禁动态无遮挡网站| 哪个播放器可以免费观看大片| 免费看日本二区| 婷婷色综合大香蕉| 久久精品夜色国产| 精品国产露脸久久av麻豆 | 一本一本综合久久| 亚洲经典国产精华液单| 日日干狠狠操夜夜爽| 色5月婷婷丁香| 久久久国产一区二区| 中文字幕人妻熟人妻熟丝袜美| 黄片无遮挡物在线观看| 成人av在线播放网站| 久久久久久久久久人人人人人人| 卡戴珊不雅视频在线播放| 国产又色又爽无遮挡免| 91久久精品国产一区二区三区| 97超碰精品成人国产| 色综合站精品国产| 久久久欧美国产精品| 日韩av免费高清视频| 欧美高清成人免费视频www| 综合色av麻豆| 欧美变态另类bdsm刘玥| 九色成人免费人妻av| 午夜视频国产福利| 一级二级三级毛片免费看| 久久精品国产亚洲av涩爱| 综合色丁香网| 黄色一级大片看看| videossex国产| 国产av码专区亚洲av| 亚洲综合精品二区| 大话2 男鬼变身卡| 美女cb高潮喷水在线观看| 成人毛片60女人毛片免费| 久久久久精品性色| 亚洲精品亚洲一区二区| 成年免费大片在线观看| av国产免费在线观看| 直男gayav资源| 爱豆传媒免费全集在线观看| 亚洲三级黄色毛片| 久久久精品94久久精品| 日日摸夜夜添夜夜添av毛片| 久久6这里有精品| 免费av不卡在线播放| 久久久久九九精品影院| 三级国产精品欧美在线观看| 最近2019中文字幕mv第一页| 国产午夜精品久久久久久一区二区三区| 久久久久性生活片| 少妇人妻一区二区三区视频| 亚洲精品456在线播放app| 最新中文字幕久久久久| av线在线观看网站| www.色视频.com| 久久久久久久亚洲中文字幕| 中文精品一卡2卡3卡4更新| 久久这里有精品视频免费| 搡老乐熟女国产| 特级一级黄色大片| 国产av国产精品国产| 波野结衣二区三区在线| 春色校园在线视频观看| 亚洲av日韩在线播放| 51国产日韩欧美| 亚洲精品,欧美精品| 国产v大片淫在线免费观看| 男人舔女人下体高潮全视频|