• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nonlinear Self-Adjointness,Conservation Laws and Soliton-Cnoidal Wave Interaction Solutions of(2+1)-Dimensional Modi fi ed Dispersive Water-Wave System?

    2017-05-18 05:56:14YaRongXia夏亞榮XiangPengXin辛祥鵬andShunLiZhang張順利CenterforNonlinearStudiesSchoolofMathematicsNorthwestUniversityXian710069China
    Communications in Theoretical Physics 2017年1期

    Ya-Rong Xia(夏亞榮),Xiang-Peng Xin(辛祥鵬), and Shun-Li Zhang(張順利)Center for Nonlinear Studies,School of Mathematics,Northwest University,Xi’an 710069,China

    2School of Information Engineering,Xi’an University,Xi’an 710065,China

    3School of Mathematical Sciences,Liaocheng University,Liaocheng 252059,China

    1 Introduction

    Conservation laws,essential in the study of differential equations mathematically and physically,propose one of the primary principles to formulate and investigate models,especially in existence,uniqueness and stability of solutions.In addition,the integrability of the system is quite possible should conservation laws exist in it.[1?2]For conservation laws,different methods have been mobilized.The celebrated Noether’s theorem[3]proves to be a systematic and efficient approach in finding conservation laws of PDEs unless there exists a Lagrangian.However,there exist some equations not having a Lagrangian.Hence the Noether’s theorem cannot be used to obtain conservation laws directly because of the equation symmetries.This,however,can be solved with the general concept of nonlinear self-adjointness proposed by Ibragimov,[4?7]and Gandarias to construct the conservation laws for any differential equation.[8]This procedure can be true of classes of single differential equations of any order but of the systems where the number of equations is equal to that of dependent variables.[9?11]

    On the other hand,it is an important and major subject to seek exact solutions and interactions among solutions to nonlinear equation to explain some physical phenomena further.The special solutions to an integrable system can be derived from many e ff ective methods such as symmetry reductions,[12]the variable separation approach,[13]the inverse scattering transformation approach,[14]the Darboux transformation(DT),[15?16]thetransformation(BT),[17]the bilinear method,[18]and Painlev′e analysis,[19]to name just a few.However,it is difficult to find the interaction solutions among different types of nonlinear excitations besides the soliton-soliton interaction.Recently,Lou etal.made a breakthrough in interaction solutions between solitons and any other types of nonlinear soliton waves by using two equivalent simple methods:the truncated Painlev′e analysis and the generalized tanh expansion approaches,[20?21]which are proved to be e ff ective for more types of solutions to many integrable systems.

    This paper concentrates on investigating the nonlinear self-adjointness,conservation laws and interaction solutions between a soliton and cnoidal wave[22?26]of the(2+1)-dimensional modi fi ed dispersive water-wave(MDWW)system,which can be written as

    system(1),modeling nonlinear and dispersive long gravity waves in two horizontal directions on shallow waters of uniform depth.MDWW is derived from the famous Kadomtsev–Petviashvili(KP)equation with the symmetry constraints.[27]In Refs.[28]–[29],Painlev′e–B¨acklund transformations,along with a multilinear variable separation approach help a lot in securing abundant propagating localized excitations.Reference[30]shows many new types of non-traveling solutions acquired via a further generalized projective Riccati equation method.In[31],the extended mapping approach assists in getting some nonpropagating and propagating solitons.Reference[32]en-gages in new types of interactions between solitons such as a compacton-like semi-foldon and a compacton,a peakonlike semi-foldon and a peakon based on new variable separation solutions with arbitrary functions for MDWW(1)by using the projective Riccati equation expansion.In Ref.[33],special types of periodic folded waves are derived from the WTC truncation method.In Ref.[34],Hirota bilinear method is of great assistance in constructing multiple soliton solutions with arbitrary functions for system(1).For system(1),Ref.[35]emphasizes symmetry reduction.However,the research into the nonlinear self-adjoint,conservation law and soliton-cnodial wave solution of Eqs.(1)have not been mentioned in the above literature.

    This paper is arranged as follows.Section 2 introduces the main notations and theorems used in this paper.In Sec.3,the nonlinear self-adjointness for the(2+1)-dimensional(MDWW)system will be discussed,which is a vital link in applying Ibragimov’s theorem.In Sec.4,based on Lie symmetry analysis acquired and Ibragimov’s theorem,conservation laws of system(1)are established.In Sec.5,we derive new explicit interactions solutions between solitons and cnoidal periodic waves by the truncated Painlev′e analysis and the consistent tanh expansion(CTE)method for the(2+1)-dimensional MDWW system.In the last section,some conclusions and discussion will be given.

    2 Preliminaries

    This section aims to present the notations and theorems used in this paper.

    Definition 1(Ref.[6])Consider a system of equations

    with n independent variables x=(x1,...,xn),m dependent variables u=(u1,...,um)and where u(s)denotes the set of the partial derivatives of s-th order of u.The adjoint equation to Eqs.(2)is

    with

    where L is the formal Lagrangian for Eq.(2)given by

    with v=(v1,...,vm)as new dependent variables,vα=vα(x),and δ/δuαas the variational derivative

    Definition 2(Ref.[7])The system(2)is said to be nonlinearly self-adjoint if the following equations hold:

    with ?(x,u)/=0,whereare undetermined coefficients,and ? is the m-dimensional vector ? =(?1,...,?m).

    In Ref.[6],Eqs.(3)succeeds the symmetries of the system(2),which has been proved by Ibragimov.In other words,if the system(2)admits a point transformation group with a generator

    then the adjoint system(3)admits the operator(7)extended to the variables vαby the formula

    Theorem 1(Ref.[6])Any in fi nitesimal symmetry(Lie point,Lie B¨acklund,nonlocal)

    of a system equations(2)provides a conservation law Di(Ci)=0 for the system of differential equations consisting of Eqs.(2)and the adjoint Eqs.(3).The conserved vector is given by

    and

    3 Nonlinear Self-Adjointness of System(1)

    For system(1),according to Definition 1,the following formal Lagrangian can be deduced

    whereandare two new dependent variables.The adjoint system of the system(1)is

    where,in this case

    with Dx,Dyand Dtdenoting the operator of total differentiation with x,y,and t respectively.Should Eq.(10)be considered,the adjoint system(11)for system(1)will change into

    System(1)is not recovered if u is substituted forand v for,so system(1)is not self adjoint.[10]Based on Definition 2,nonlinearly self-adjoint will the system(1)become if each equation(i=1,2)of the adjoint system(12)satis fi es the following condition

    with regular undetermined coefficients λij(i,j=1,2)after substituting the following expression

    with ?(x,y,t,u,v)/=0 or ψ(x,y,t,u,v)/=0.Were the differential consequences of(14)to be introduced,system(12)split into the following equations for the coefficients λij(i,j=1,2)

    and into the system for the substitution(14)

    Once they are solved,the following solution will come

    where g1,g2,g3are arbitrary functions of t,and g4of y,and the dot over the function denotes its derivative with respect to its variable.Then,according to the Definition 2,system(1)is nonlinearly self adjoint.

    4 Lie Symmetries and Conservation Laws of System(1)

    The performance of corresponding Lie symmetry analysis by classical lie group method is the prerequisite to derive conservation laws for system(1).It needs to consider a one-parameter Lie group of in fi nitesimal transformations

    with a small parameter ?? 1.The vector field related to the above transformations can be described as

    Then the invariance of system(1)under transformation(17)makes the functions ξ1,ξ2,ξ3,η1,η2take the form

    where f1is arbitrary function of y,f2,f3of t,and the dot over the functions means their derivative with respect to their variable.An in fi nite-dimensional Lie algebra of symmetries is resulted from the existence of the arbitrary functions.A general element of this algebra is depicted as

    where

    What follows is to apply the Theorem 1 to seek for conservation laws of system(1).For(1),the adjoint equation is given by

    and the Lagrangian in the symmetrized form

    Consider Theorem 1,the corresponding vector fields can be written as

    The conservation law is decided by

    Here the conserved vector C=(C1,C2,C3)is given by(9)and the concrete forms are as follows

    Substituting(25)into(28),it will change into

    with

    In regard to(21),we consider the following cases.

    Case 1For the generator

    the Lie characteristic functions are

    one can obtain the conservation vector of(1)

    Case 2For the generator

    the Lie characteristic functions are

    we can get the conservation vector of(1)

    Case 3For the generator

    the Lie characteristic functions are

    we derive the conservation vector of(1)

    Remark 1Clearly,the above conservation vector Ci(i=1,2,3)includes an arbitrary solutionto adjoint Eqs.(24),so the number of the conservation laws it presents is in fi nite.

    5 Soliton-Cnoidal Wave Interaction Solutions of System(1)

    Obviously,the Painlev′e analysis is one of the e ff ective approaches for special solutions to nonlinear physical systems.For the(2+1)-dimensional MDWW system,its truncated Painlev′e expansion can be expressed as

    with u0,u1,v0,v1,v2,? being the functions of x,y and t.By substituting Eq.(29)into system(1)and vanishing all the coefficients of different powers of 1/? comes

    and then we obtain

    which is the solution to the MDWW system,and the field

    ? satis fi es the following Schwarzian form

    where λ is an arbitrary integral parameter,and

    The Schwarzian form(32)is invariant under the M¨obious transformation

    That is to say,Eq.(32)bears three symmetries σ?=d1,σ?=d2?,and σ?=d3?2with arbitrary constants d1,d2and d3.

    Adopting the following straightening transformation,

    where w is the function of x,y,and t.After substituting the expression(33)into system(31),the equivalent solutions to MDWW system come as

    and the equivalent compatibility condition for w as

    where

    Clearly,the solutions(34)are derived from the transformation(33),where the usual truncated Painlev′e expansion approach is converted into the most general extension of the special tanh function expansion method,so it can be said the solutions(34)are the generalization of the usual tanh function expansion method.Here we can obtain the solution(34)by the CTE approaches.[36]

    For the MDWW system(1),the application of leading order analysis can result in the following generalized truncated tanh function expansion

    where u0,u1,v0,v1,v2and w are functions of x,y,and t.Substituting expression(36)into system(1)and vanishing all the coefficients of tanhi(w),we have

    and then we deduce the same solution(34)to the MDWW system(1)with the consistent condition(35).

    Fig.1 The soliton-cnodial periodic wave solution to u:(a)The pro fi le of the special structure with t=0 and y=0.(b)The pro fi le of the special structure at t=0 and x=0.(c)Perspective view of the wave.

    Fig.2 The soliton-cnodial periodic wave solutions to v:(a)The pro fi le of the special structure with t=0 and y=0.(b)The pro fi le of the special structure with t=0 and x=0.(c)Perspective view of the wave.

    The above shows that the single soliton(or solitary wave)solution to the MDWW system(1)is only a straightened solution w=k1x+l1y+d1t to Eq.(35),which implies that to find the interaction solutions between solitons and other nonlinear excitations,what is needed is to acquire the solution to Eq.(35).In this paper we focus on the following special Jacobi elliptic function

    as the solution to Eq.(35),which characterizes the interactions between a soliton and a cnoidal wave.h1,h2,h3,q1,q2,q3,λ,m and n are determined later.In(38),sn(z,m)is the usual Jacobi elliptic sine function and

    is the third type of incomplete elliptic integral.By substituting(38)into(35)and solving the over-determined equations with the help of maple will come

    where h2,h3,λ,m,n,q1,q2and q3are arbitrary constants.Substituting Eqs.(37),(38),and(39)into(36),we can obtain the interaction solution between soliton and cnoidal periodic waves.The result is omitted here because of its prolixity.Corresponding images are as follows and the parameters used in the fi gure are selected as{h2=1.4,h3= ?0.5,λ= ?0.3,q1= ?0.9,q2= ?0.5,q3=0.2,m=0.8,n=0.5}.

    Remark 3Figures 1 and 2 illustrate the soliton-cnoidal periodic wave solutions to the fields u and v describing a soliton travels on a cnoidal wave background for the MDWW system.Clearly,the interaction between the soliton and every peak of the cnoidal periodic wave is elastic as phase changes.Solutions and fi gures obtained in this paper might be helpful in further understanding the propagation of nonlinear and dispersive long gravity waves on shallow waters.

    6 Summary and Discussion

    It is proved that the(2+1)-dimensional MDWW system(1)is nonlinearly self-adjoint.With the support of the general theorem of conservation laws by Ibragimov,[6]the property can be applied to construct countless conservation laws for(1).Mathematically,the basic conserved quantity can be applied in obtaining various estimates for smooth solutions and de fi ning suitable norms for weak solutions,so it is worthy to be further investigated.

    In addition,with the truncated Painlev′e analysis and the CTE method,the soliton-cnoidal wave solution to system(1)is obtained.A good understanding of the solutions to system(1)is very helpful for coastal and civil engineers in applying the nonlinear water model to coastal harbor design.For their practicability,the study on the CTE method and more types of the interaction solutions among different kinds of nonlinear excitations should be furthered.

    References

    [1]G.W.Bluman and S.Kumei,Symmetries and differential Equations,Springer-Verlag,New York(1989).

    [2]A.R.Adem and C.M.Khalique,Commun.Nonlinear Sci.Numer.Simul.17(2012)3465.

    [3]E.Noether,Math.Phys.Kl.Heft.2(1918)235.

    [4]N.H.Ibragimov,J.Math.Anal.Appl.318(2006)742.

    [5]N.H.Ibragimov,Arch.ALGA 4(2007)55.

    [6]N.H.Ibragimov,J.Math.Anal.Appl.333(2007)311.

    [7]N.H.Ibragimov,Arch.ALGA 7(2011)1.

    [8]M.L.Gandarias,J.Phys.A:Math.Theor.44(2011)262001.

    [9]N.H.Ibragimov,M.Torrisi,and R.Tracin′a,J.Phys.A:Math.Theor.44(2011)145201.

    [10]N.H.Ibragimov,J.Phys.A:Math.Theor.43(2011)432002.

    [11]R.Tracin′a,M.S.Bruzon,M.L.Gandarias,and M.Torrisi,Commun.Nonlinear Sci.Numer.Simul.19(2014)3036.

    [12]S.Y.Lou,X.Y.Tang,and J.Lin,J.Math.Phys.41(2000)8286.

    [13]S.Y.Lou,Phys.Lett.A 277(2000),94.

    [14]M.J.Ablowitz and P.A.Clarkson,Soliton,Nonlinear Evolution Equations and Inverse Scattering,Cambridge Univ.,New York(1991).

    [15]Y.S.Li and J.E.Zhang,Phys.Lett.A 284(2001)253.

    [16]A.H.Chen and X.M.Li,Chaos,Solitons&Fractals 27(2006)43.

    [17]H.R.Miura,Backlund Transformation,Springer-Verlag,Berlin(1978).

    [18]R.Hirota,Phys.Rev.Lett.27(1971)1192.

    [19]S.Y.Lou,Phys.Rev.Lett.80(1998)5027.

    [20]S.Y.Lou,X.P.Cheng,and X.Y.Tang,arXiv:1208.5314v2(2012).

    [21]S.Y.Lou,X.R.Hu,and Y.Chen,J Phys.A:Math.Theor.45(2012)155209.

    [22]W.G.Cheng,B.Li,and Y.Chen,Commun.Theor.Phys.63(2015)549.

    [23]L.L.Huang,Y.Chen,and Z.Y.Ma,Commun.Theor.Phys.66(2016)189.

    [24]J.X.Fei,Z.Y.Ma,and Y.M.Chen,Appl.Math.Comput.268(2015)432.

    [25]X.R.Hu and Y.Q.Li,Appl.Math.Lett.51(2016)20.

    [26]J.C.Chen and Z.Y.Ma,Appl.Math.Lett.64(2017)87.

    [27]S.Y.Lou and X.B.Hu,J.Math.Phys.38(1997)6401.

    [28]X.Y.Tang,S.Y.Lou,and Y.Zhang,Phys.Rev.E 66(2002)046601.

    [29]X.Y.Tang and S.Y.Lou,J.Math.Phys.44(2003)4000.

    [30]D.S.Li and H.Q.Zhang,Appl.Math.Comput.147(2004)789.

    [31]C.L.Zheng,J.P.Fang,and L.Q.Chen,Chaos,Solitons and Fractals 23(2005)1741.

    [32]Z.Y.Ma,Chin.Phys.B 16(2007)1848.

    [33]W.H.Huang,Chin.Phys.B 8(2009)3163.

    [34]X.Y.Wen,Appl.Math.Comput.219(2013)7730.

    [35]Z.Y.Ma,J.X.Fei,and X.Y.Du,Commun.Theor.Phys.64(2015)127.

    [36]C.L.Chen and S.Y.Lou,Commun.Theor.Phys.61(2014)545.

    三级国产精品欧美在线观看| 中国美女看黄片| 91午夜精品亚洲一区二区三区 | 国产一区二区在线av高清观看| 国产成人福利小说| 乱人视频在线观看| 男女之事视频高清在线观看| 99国产精品一区二区蜜桃av| 一边摸一边抽搐一进一小说| 国产淫片久久久久久久久| aaaaa片日本免费| 欧美中文日本在线观看视频| 亚洲国产精品久久男人天堂| 日日摸夜夜添夜夜添小说| 国产精品乱码一区二三区的特点| 成人av一区二区三区在线看| 成年女人永久免费观看视频| 99热6这里只有精品| 免费在线观看日本一区| 国内少妇人妻偷人精品xxx网站| 99热只有精品国产| 久久久久久久精品吃奶| 久久久久精品国产欧美久久久| 日韩精品中文字幕看吧| 97人妻精品一区二区三区麻豆| 国产一区二区在线av高清观看| 久9热在线精品视频| 亚洲精品乱码久久久v下载方式| 天天一区二区日本电影三级| 五月伊人婷婷丁香| 我要搜黄色片| 91麻豆av在线| 欧美激情久久久久久爽电影| 国产免费av片在线观看野外av| 免费人成视频x8x8入口观看| 99久久成人亚洲精品观看| 一个人看的www免费观看视频| 午夜福利欧美成人| 男女之事视频高清在线观看| 亚洲av电影不卡..在线观看| 亚洲经典国产精华液单| 99热只有精品国产| 久久国内精品自在自线图片| 亚洲人成网站高清观看| 久久久久久九九精品二区国产| 亚洲精品色激情综合| 一本久久中文字幕| 成人欧美大片| 国产精品久久久久久亚洲av鲁大| 国产黄色小视频在线观看| 久久99热6这里只有精品| netflix在线观看网站| 精品人妻偷拍中文字幕| 免费看美女性在线毛片视频| 成年女人毛片免费观看观看9| 欧美+日韩+精品| 精品久久久久久,| 日本免费a在线| 干丝袜人妻中文字幕| 色5月婷婷丁香| 国产av在哪里看| av在线天堂中文字幕| 久久精品国产亚洲网站| 亚洲欧美日韩东京热| 日本色播在线视频| 欧美xxxx黑人xx丫x性爽| 亚洲不卡免费看| 国产黄片美女视频| 亚洲精品色激情综合| 国产精品嫩草影院av在线观看 | 日本色播在线视频| 一边摸一边抽搐一进一小说| 九色国产91popny在线| 亚洲成人免费电影在线观看| 成年女人永久免费观看视频| 蜜桃亚洲精品一区二区三区| 欧美日韩综合久久久久久 | 蜜桃亚洲精品一区二区三区| 精品不卡国产一区二区三区| 国产av不卡久久| 国产麻豆成人av免费视频| 看黄色毛片网站| 人人妻,人人澡人人爽秒播| 中文字幕熟女人妻在线| 亚洲人成网站在线播| 黄色日韩在线| 亚洲自偷自拍三级| 夜夜夜夜夜久久久久| 国产探花极品一区二区| 亚洲av.av天堂| 禁无遮挡网站| 国产av麻豆久久久久久久| 嫩草影视91久久| 黄色视频,在线免费观看| 久久久国产成人精品二区| 日韩国内少妇激情av| 美女大奶头视频| 亚洲aⅴ乱码一区二区在线播放| 国产久久久一区二区三区| 又紧又爽又黄一区二区| 国产成年人精品一区二区| 亚洲欧美日韩高清专用| 亚洲无线观看免费| av国产免费在线观看| 啪啪无遮挡十八禁网站| 中文在线观看免费www的网站| 精品一区二区三区视频在线观看免费| 日韩强制内射视频| 国产久久久一区二区三区| 日本黄色视频三级网站网址| 听说在线观看完整版免费高清| 桃色一区二区三区在线观看| 亚洲经典国产精华液单| 国国产精品蜜臀av免费| 婷婷丁香在线五月| 人妻夜夜爽99麻豆av| a级毛片免费高清观看在线播放| 免费在线观看成人毛片| 亚洲经典国产精华液单| 久久精品久久久久久噜噜老黄 | 淫妇啪啪啪对白视频| 最近最新中文字幕大全电影3| 亚洲精品乱码久久久v下载方式| 日韩一区二区视频免费看| 国产精品一区二区三区四区免费观看 | 我要搜黄色片| 国产精华一区二区三区| 国产单亲对白刺激| 窝窝影院91人妻| av天堂中文字幕网| 无遮挡黄片免费观看| 麻豆国产97在线/欧美| 国产成人影院久久av| 老司机福利观看| 日韩欧美在线乱码| av在线蜜桃| 男女做爰动态图高潮gif福利片| 99九九线精品视频在线观看视频| 亚洲av免费高清在线观看| 国产在视频线在精品| 亚洲色图av天堂| 色在线成人网| 国产精品福利在线免费观看| 午夜福利高清视频| 亚洲在线自拍视频| 欧美另类亚洲清纯唯美| 亚洲在线自拍视频| 又紧又爽又黄一区二区| 国内揄拍国产精品人妻在线| 嫩草影院新地址| 91精品国产九色| 成人永久免费在线观看视频| 欧美日韩综合久久久久久 | 日韩欧美国产一区二区入口| 日本 av在线| 免费观看人在逋| 一级黄片播放器| 免费人成在线观看视频色| 人妻夜夜爽99麻豆av| 日韩欧美三级三区| 天天躁日日操中文字幕| 国内精品久久久久久久电影| 精品久久久久久久久久免费视频| 黄色日韩在线| 亚洲成人精品中文字幕电影| 美女黄网站色视频| 色播亚洲综合网| 两人在一起打扑克的视频| 免费一级毛片在线播放高清视频| 色哟哟哟哟哟哟| 亚洲国产欧美人成| 人妻少妇偷人精品九色| 亚洲av成人精品一区久久| 看十八女毛片水多多多| 亚洲自拍偷在线| 国内毛片毛片毛片毛片毛片| 久9热在线精品视频| 天堂av国产一区二区熟女人妻| 麻豆久久精品国产亚洲av| 久久精品综合一区二区三区| 欧美色视频一区免费| 免费观看精品视频网站| 国产极品精品免费视频能看的| 国产欧美日韩精品亚洲av| 一个人观看的视频www高清免费观看| 91麻豆av在线| 成人国产综合亚洲| 久久热精品热| 十八禁网站免费在线| 成人午夜高清在线视频| 日韩av在线大香蕉| 欧美高清性xxxxhd video| 国产亚洲精品综合一区在线观看| 97碰自拍视频| a级毛片免费高清观看在线播放| 99热6这里只有精品| 精品久久久久久久人妻蜜臀av| 亚洲精品一卡2卡三卡4卡5卡| 搡老岳熟女国产| 日本a在线网址| 欧美中文日本在线观看视频| 欧美日韩国产亚洲二区| 美女大奶头视频| 欧美人与善性xxx| 韩国av一区二区三区四区| 黄色日韩在线| 神马国产精品三级电影在线观看| 亚洲自偷自拍三级| 日韩一区二区视频免费看| 我的老师免费观看完整版| 热99在线观看视频| 日韩欧美精品免费久久| 淫妇啪啪啪对白视频| 成人特级黄色片久久久久久久| 国产精品日韩av在线免费观看| 亚洲一区高清亚洲精品| 国产探花极品一区二区| 亚洲成人精品中文字幕电影| 日韩欧美免费精品| 麻豆av噜噜一区二区三区| 在线观看舔阴道视频| 亚洲国产精品sss在线观看| 欧美日韩乱码在线| 欧洲精品卡2卡3卡4卡5卡区| 成人特级黄色片久久久久久久| 亚洲av.av天堂| 日韩亚洲欧美综合| 精品国内亚洲2022精品成人| 大型黄色视频在线免费观看| 变态另类丝袜制服| 别揉我奶头~嗯~啊~动态视频| 免费一级毛片在线播放高清视频| 亚洲美女黄片视频| 国产伦人伦偷精品视频| 精品久久久久久成人av| 亚洲成人免费电影在线观看| 床上黄色一级片| 少妇人妻精品综合一区二区 | 国产精品1区2区在线观看.| 最新中文字幕久久久久| 免费搜索国产男女视频| 色尼玛亚洲综合影院| 中文亚洲av片在线观看爽| 亚洲自偷自拍三级| 国产淫片久久久久久久久| 成人欧美大片| 波多野结衣高清无吗| 极品教师在线免费播放| 一级av片app| 国产精品98久久久久久宅男小说| 黄色女人牲交| 99久久精品国产国产毛片| 窝窝影院91人妻| 亚洲精品一区av在线观看| 日本爱情动作片www.在线观看 | 男女那种视频在线观看| 免费av不卡在线播放| av国产免费在线观看| 两个人视频免费观看高清| 蜜桃亚洲精品一区二区三区| 免费看光身美女| 久久精品国产自在天天线| 天天躁日日操中文字幕| 老女人水多毛片| 国产一区二区亚洲精品在线观看| 国产麻豆成人av免费视频| 搞女人的毛片| 日韩精品有码人妻一区| 一本久久中文字幕| 中文字幕久久专区| 午夜影院日韩av| 国产黄色小视频在线观看| 夜夜夜夜夜久久久久| 熟妇人妻久久中文字幕3abv| 久久久午夜欧美精品| 亚洲精品粉嫩美女一区| 51国产日韩欧美| 在线播放无遮挡| 久久99热这里只有精品18| 性色avwww在线观看| 国产av麻豆久久久久久久| 国产午夜精品久久久久久一区二区三区 | 免费无遮挡裸体视频| 亚洲一级一片aⅴ在线观看| 国产美女午夜福利| 搞女人的毛片| 久久精品夜夜夜夜夜久久蜜豆| 国产亚洲av嫩草精品影院| 国产伦在线观看视频一区| 亚洲一级一片aⅴ在线观看| 99在线视频只有这里精品首页| 欧美潮喷喷水| 91午夜精品亚洲一区二区三区 | 国产精品人妻久久久久久| 国产精品福利在线免费观看| www.www免费av| 国产精品一区二区免费欧美| 亚洲专区中文字幕在线| 嫩草影院新地址| 亚洲久久久久久中文字幕| 亚洲中文字幕一区二区三区有码在线看| 丰满乱子伦码专区| 亚洲精品456在线播放app | 97热精品久久久久久| 午夜精品一区二区三区免费看| 国产三级中文精品| 一个人观看的视频www高清免费观看| 午夜精品一区二区三区免费看| 午夜福利18| 亚洲欧美清纯卡通| 日日摸夜夜添夜夜添av毛片 | 精品日产1卡2卡| 亚洲成人免费电影在线观看| 91久久精品国产一区二区三区| 亚洲欧美精品综合久久99| 国产精品1区2区在线观看.| 精品午夜福利在线看| 51国产日韩欧美| 看免费成人av毛片| 久久久久久伊人网av| 午夜精品久久久久久毛片777| 一个人看视频在线观看www免费| 国产免费av片在线观看野外av| 桃红色精品国产亚洲av| 国产亚洲精品综合一区在线观看| 精品国产三级普通话版| 午夜精品久久久久久毛片777| 熟妇人妻久久中文字幕3abv| 我的女老师完整版在线观看| 美女 人体艺术 gogo| 亚洲色图av天堂| 亚洲精品粉嫩美女一区| 特大巨黑吊av在线直播| 麻豆成人av在线观看| 深夜精品福利| 美女 人体艺术 gogo| 欧美日韩国产亚洲二区| 久久久久久伊人网av| 亚洲人与动物交配视频| 黄色一级大片看看| 天堂动漫精品| 日本黄色片子视频| 国产视频一区二区在线看| 亚洲av日韩精品久久久久久密| 人妻久久中文字幕网| 三级国产精品欧美在线观看| 欧美日韩乱码在线| 亚洲人成网站高清观看| 精品久久久久久,| 亚洲最大成人手机在线| 欧美激情国产日韩精品一区| 免费不卡的大黄色大毛片视频在线观看 | netflix在线观看网站| 亚洲美女黄片视频| 亚洲七黄色美女视频| 久久99热6这里只有精品| 国产高清不卡午夜福利| 国产高清视频在线观看网站| 国产视频内射| 国产精品久久久久久久电影| 国产伦人伦偷精品视频| 内地一区二区视频在线| 22中文网久久字幕| 一个人观看的视频www高清免费观看| 欧美一级a爱片免费观看看| 午夜福利在线在线| 亚洲国产精品成人综合色| 中文字幕高清在线视频| 国产伦精品一区二区三区视频9| 99在线视频只有这里精品首页| 成人高潮视频无遮挡免费网站| 亚洲精品色激情综合| 国产久久久一区二区三区| 最好的美女福利视频网| 男人的好看免费观看在线视频| 又黄又爽又免费观看的视频| 麻豆国产97在线/欧美| 直男gayav资源| 精品人妻1区二区| 亚洲欧美日韩卡通动漫| 欧美潮喷喷水| 3wmmmm亚洲av在线观看| 午夜激情福利司机影院| 网址你懂的国产日韩在线| АⅤ资源中文在线天堂| 欧美极品一区二区三区四区| 久久久久久九九精品二区国产| 亚洲av日韩精品久久久久久密| 色av中文字幕| 成人毛片a级毛片在线播放| 毛片一级片免费看久久久久 | 国产一级毛片七仙女欲春2| 天天躁日日操中文字幕| 看免费成人av毛片| 欧美一区二区亚洲| 亚洲av成人精品一区久久| 久久精品久久久久久噜噜老黄 | 中文字幕高清在线视频| 免费电影在线观看免费观看| 又爽又黄无遮挡网站| 午夜福利高清视频| 国产成人影院久久av| 国产精品乱码一区二三区的特点| 色综合站精品国产| 无遮挡黄片免费观看| 国产成人av教育| 国产精品久久久久久亚洲av鲁大| 亚洲人成伊人成综合网2020| 精品人妻视频免费看| 蜜桃亚洲精品一区二区三区| 国产蜜桃级精品一区二区三区| 国产综合懂色| 色哟哟·www| 窝窝影院91人妻| 高清日韩中文字幕在线| 人妻久久中文字幕网| 18禁黄网站禁片午夜丰满| 精品久久久久久久人妻蜜臀av| 欧美bdsm另类| 精品欧美国产一区二区三| .国产精品久久| 久久久久久久精品吃奶| 日韩,欧美,国产一区二区三区 | 一边摸一边抽搐一进一小说| 成人精品一区二区免费| 一级a爱片免费观看的视频| 99久久精品国产国产毛片| 搡老熟女国产l中国老女人| 午夜a级毛片| 国产人妻一区二区三区在| 中文字幕av成人在线电影| 久久精品人妻少妇| 国产亚洲精品久久久com| 在线a可以看的网站| 少妇猛男粗大的猛烈进出视频 | 噜噜噜噜噜久久久久久91| 亚洲在线观看片| 91麻豆精品激情在线观看国产| 一卡2卡三卡四卡精品乱码亚洲| av天堂在线播放| 人妻少妇偷人精品九色| 精品不卡国产一区二区三区| 国产精品爽爽va在线观看网站| 国产aⅴ精品一区二区三区波| 黄色女人牲交| 色5月婷婷丁香| 亚洲中文字幕日韩| 夜夜爽天天搞| 少妇熟女aⅴ在线视频| 亚洲最大成人av| 国产精品电影一区二区三区| 免费电影在线观看免费观看| 欧美另类亚洲清纯唯美| 色在线成人网| 国产麻豆成人av免费视频| 亚洲一区二区三区色噜噜| 在线观看午夜福利视频| 久久久久国产精品人妻aⅴ院| 深爱激情五月婷婷| 国产在线男女| 99在线人妻在线中文字幕| 亚洲人成网站高清观看| 久久久久久伊人网av| 蜜桃久久精品国产亚洲av| 婷婷色综合大香蕉| 干丝袜人妻中文字幕| 一a级毛片在线观看| 男女那种视频在线观看| 我要看日韩黄色一级片| 国产精品98久久久久久宅男小说| 在线免费十八禁| 日韩人妻高清精品专区| 简卡轻食公司| 22中文网久久字幕| 国产欧美日韩一区二区精品| 白带黄色成豆腐渣| 美女xxoo啪啪120秒动态图| 中文字幕久久专区| 亚州av有码| 亚洲图色成人| 久久人人精品亚洲av| 国产精品美女特级片免费视频播放器| 999久久久精品免费观看国产| 国模一区二区三区四区视频| 精品福利观看| 夜夜爽天天搞| 白带黄色成豆腐渣| 岛国在线免费视频观看| 日韩国内少妇激情av| 少妇裸体淫交视频免费看高清| 国产精品人妻久久久久久| 91久久精品国产一区二区三区| 精品久久久久久久人妻蜜臀av| 欧美一区二区国产精品久久精品| 日日摸夜夜添夜夜添小说| 亚洲内射少妇av| av专区在线播放| 女生性感内裤真人,穿戴方法视频| 啦啦啦韩国在线观看视频| 国产国拍精品亚洲av在线观看| 国产成人a区在线观看| 国产高清视频在线观看网站| 国产午夜精品论理片| 午夜福利在线观看吧| 男女啪啪激烈高潮av片| 亚洲美女搞黄在线观看 | 日韩亚洲欧美综合| 久久国产乱子免费精品| 国产在线精品亚洲第一网站| 国内毛片毛片毛片毛片毛片| 亚洲中文字幕日韩| 色视频www国产| 久久精品国产清高在天天线| 日韩在线高清观看一区二区三区 | 内射极品少妇av片p| 国产成人影院久久av| 精品人妻1区二区| 在线播放国产精品三级| 久久久久久久午夜电影| h日本视频在线播放| 亚洲国产色片| 3wmmmm亚洲av在线观看| 免费人成在线观看视频色| 日日干狠狠操夜夜爽| 国内精品美女久久久久久| 最新在线观看一区二区三区| 91麻豆精品激情在线观看国产| 18+在线观看网站| 亚洲精品影视一区二区三区av| 国产爱豆传媒在线观看| 精品99又大又爽又粗少妇毛片 | 欧美日韩瑟瑟在线播放| 麻豆国产av国片精品| 日韩中字成人| 可以在线观看毛片的网站| 亚洲aⅴ乱码一区二区在线播放| 一区二区三区高清视频在线| 精品久久久久久成人av| 欧美性猛交黑人性爽| 波野结衣二区三区在线| 很黄的视频免费| 亚洲av.av天堂| av在线亚洲专区| 99久久精品国产国产毛片| 国产精品无大码| 成人美女网站在线观看视频| 狠狠狠狠99中文字幕| 我的老师免费观看完整版| 午夜福利成人在线免费观看| 国产一区二区亚洲精品在线观看| 国产精品1区2区在线观看.| x7x7x7水蜜桃| 久久中文看片网| 国产免费男女视频| 欧美色视频一区免费| 色噜噜av男人的天堂激情| 亚洲av中文字字幕乱码综合| 国产精品久久视频播放| 自拍偷自拍亚洲精品老妇| 九色国产91popny在线| 午夜亚洲福利在线播放| 国产女主播在线喷水免费视频网站 | 日韩 亚洲 欧美在线| 亚洲成人中文字幕在线播放| 可以在线观看毛片的网站| 欧美成人a在线观看| 午夜福利在线在线| 男女那种视频在线观看| 日日干狠狠操夜夜爽| 国内少妇人妻偷人精品xxx网站| 别揉我奶头 嗯啊视频| 最近视频中文字幕2019在线8| 成人特级黄色片久久久久久久| 免费看日本二区| 麻豆国产97在线/欧美| 亚洲专区国产一区二区| 99热这里只有是精品在线观看| 亚州av有码| 国产毛片a区久久久久| 国产麻豆成人av免费视频| 国产私拍福利视频在线观看| 日韩国内少妇激情av| 精品人妻熟女av久视频| 久久久久久久久大av| 搞女人的毛片| 精品人妻熟女av久视频| 亚洲av.av天堂| 一个人看视频在线观看www免费| 99精品久久久久人妻精品| 精品一区二区免费观看| 欧美激情国产日韩精品一区| 成人性生交大片免费视频hd| 国产蜜桃级精品一区二区三区| 色5月婷婷丁香| 麻豆成人午夜福利视频| 精品一区二区免费观看| 老司机深夜福利视频在线观看| 久99久视频精品免费| 亚洲av.av天堂| 少妇熟女aⅴ在线视频| 国产成人av教育| 美女高潮喷水抽搐中文字幕| 国产精品一区二区三区四区免费观看 | 久久草成人影院| 国产精品日韩av在线免费观看| 在线天堂最新版资源| 欧美成人免费av一区二区三区| 综合色av麻豆| 国产极品精品免费视频能看的| 亚洲久久久久久中文字幕| av在线天堂中文字幕| 一进一出抽搐gif免费好疼| 直男gayav资源| 嫩草影院新地址| 国产精品久久久久久亚洲av鲁大|