• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    EVALUATING DNA BARCODE MARKERS FOR FRESHWATER RED ALGAE: A CASE STUDY USING FAMILY BATRACHOSPERMACEAE

    2017-05-16 09:07:50JILiFENGJiaNANFangRuCHENLeHUBianFangandXIEShuLian
    水生生物學(xué)報 2017年3期
    關(guān)鍵詞:紅藻藻屬串珠

    JI Li, FENG Jia, NAN Fang-Ru, CHEN Le, HU Bian-Fangand XIE Shu-Lian

    (1. College of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan 030024, China; 2. School of Life Science, Shanxi University, Taiyuan 030006, China; 3. Department of Biology, Jinzhong University, Jinzhong 030600, China)

    EVALUATING DNA BARCODE MARKERS FOR FRESHWATER RED ALGAE: A CASE STUDY USING FAMILY BATRACHOSPERMACEAE

    JI Li1, FENG Jia2, NAN Fang-Ru2, CHEN Le2, HU Bian-Fang3and XIE Shu-Lian2

    (1. College of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan 030024, China; 2. School of Life Science, Shanxi University, Taiyuan 030006, China; 3. Department of Biology, Jinzhong University, Jinzhong 030600, China)

    DNA barcoding refers to the application of a small number of DNA fragments to achieve reliable, automatable species-level identification. In this study, the suitability of four candidate sequence regions were assessed-mitochondrial COI-5P and cox2-3 spacer, plastid rbcL and UPA-for species delimitation and discrimination in family Batrachospermaceae. The percentage of successful PCR amplifications of COI-5P, cox2-3 spacer, UPA, and rbcL markers was 96%, 100%, 96%, and 98%, respectively. COI-5P, UPA, and cox2-3 spacer sequence lengths were amenable to the acquisition of bidirectional sequencing reads using single primer pairs and met our size criterion of 300—800 bp. Phylogenetic analyses revealed that all four sequence regions were useful for species-level identification in the genus Batrachospermum except for some allied species. The two Chinese endemic species B. hongdongense and B. longipedicellatum were unable to differentiate from B. arcuatum using COI-5P, cox2-3 spacer, and rbcL markers, excepted for the UPA region. For species-level identification, the UPA locus exhibited the highest interspecific distances. We therefore recommended the plastid UPA gene as a standard DNA barcode in Batrachospermaceae, but acknowledge that there are no shared alleles between the endemic species.

    DNA barcoding; Batrachospermaceae; Molecular phylogeny; Rhodophyta

    DNA barcoding is the application of one or a few DNA fragments to achieve reliable, automatable identification at the species level[1,2]. The core idea behind DNA barcoding is the fact that sequence variation is ordinarily much lower among individuals than between closely related species. Following the initial assessment of the mitochondrial COI barcode in 2005, this diagnostic technology has attracted considerable attention as a powerful tool for algal species delimitation[3—16]. Remarkable progress has been achieved through the contributions of the large-scale DNA barcoding project and Red Algal Tree of Life initiatives[16].

    A number of genomic regions used for phylogenetic analyses and species identification of algal samples over the past two decades have recently been investigated in greater detail for their suitability for barcoding analyses. Algal barcode genomic candidates have included chloroplast rbcL[14,17]and psbA[18], COI-5P[3,10,14]and cox2-3 spacer[18], nuclear SSU, LSU[10]and ITS[18,19], and plastid UPA[10,12,20,21]. The increasing number of publications had shown the superiority of COI-5P in species level identification for red macroalgae[3,10,14,21]. Domain V of the 23S plastid rRNA gene (UPA) as a DNA barcode also draws much attention in the identification of multiple eukaryotic algal groups. The UPA gene could be easily amplified and could distinguish samples at species level, even though the intra and inter species diversity values was relatively lower[12,22]. Many of thecited studies, however, have been based on incomplete sampling of large genera-thus overestimating the discriminatory power of the barcoding because an insufficient number of closely related species were considered—or have not entailed a comprehensive evaluation of potential barcode loci.

    Batrachospermaceae, the largest freshwater red algal family in Rhodophyta, consists of nine genera comprising approximately 150 species[23]. Batrachospermum Roth, the type genus, has been split into Batrachospermum Roth and Kumanoa Entwisle, Vis, Chiasson, Necchi et Sherwood[23,24]based on molecular and morphological support, aiming reduce paraphyly with the Batrachospermum sensulato. For this case study, we selected four candidate sequence regions—COI-5P, cox2-3 spacer, UPA, and rbcL—to assess their suitability for species-level identification within Batrachospermaceae. The specific aims of this work were to evaluate ease of sequence acquisition and universality of primers, to analyze sequence variation and substitutional saturation at generaric level, and to estimate the effectiveness of these DNA barcodes for species differentiation within the genus.

    1 Material and methods

    1.1 Sampling strategy

    In total, 49 samples representing four Batrachospermum, one Thorea, and one Bangia species were collected from China (Tab. 1). Two to seven individuals of each species were included. Voucher specimens were deposited at Shanxi University. Taxa, collection information, and DNA sequences were submitted to GenBank or the plant barcode data management system of Kunming Institute of Botany, Chinese Academy of Sciences. Specimens used for morphological examination were preserved in freshwater containing 4% formalin or 2.5% calcium carbonate-buffered glutaraldehyde, while those used for the molecular analysis were frozen at –20°C. To assess the utility of the four candidate markers for identification of these freshwater red algae, we additionally downloaded 214 sequences representing 11 species from GenBank.

    1.2 DNA extraction, amplification, and sequencing

    Total DNA was extracted using an Aqua-SPIN Plant gDNA Isolation mini kit (Watson Biotechnologies, Shanghai, China) following the manufacturer’s instructions. Primer pairs used to amplify the four regions (COI-5P, cox2-3 spacer, UPA, and rbcL) selected for barcoding Batrachospermum species were as follows: GazF1 and GazR1 (COI-5P[3]); cox2F and cox3R (cox2-3 spacer[25]); p23SrV_f1 and p23SrV_r1 (UPA[26]) and F160 and rbcL Rev (rbcL[26]) (Tab. 2). Standard polymerase chain reaction (PCR) amplifications were carried out in a MyCycler Thermal thermocycler (BIO-RAD, USA). PCR products were purified with a Gel Extraction mini kit (Watson Biotechnologies) according to the manufacturer’s recommendations for direct sequencing. The PCR products were sent to Takara Biotechnology Co. (Dalian, China) or Beijing AuGCT DNA-SYN Biotechnology Co. for sequencing.

    1.3 DNA barcoding and phylogenetic analyses

    Sequences were aligned and edited in ClustalX 2.0[27]. Pairwise Kimura 2-parameter distances were calculated for COI-5P, cox2-3 spacer, UPA and rbcL sequences in MEGA v4.1[28]to evaluate intraspecific and interspecific divergence of each candidate barcode. BLAST[29]was used to evaluate the genericlevel identification efficiency[30]of the four markers in the present study. Substitution saturation analyses for each marker were performed by using DAMBE v5.2.6[31].

    Tab. 1 Batrachopsermum and outgroup taxa sampled, collection, and voucher specimen information

    Molecular identification and monophyletic assessment of species were performed in this study using two tree-based methods: maximum likelihood and Bayesian inference. The program jModeltest[32,33]was used to determine parameters for all maximum likelihood analyses, which were performed using PhyML 3.0[33]. Bootstrap resampling (1000 replicates) was carried out to estimate the robustness of trees generated from the maximum likelihood analysis[34]. Bayesian analyses were conducted in MrBayes 3.1.2[35]using a Metropolis-coupled Markov chain Monte Carlo algorithm running four simultaneous Markov chains. Each Markov chain was started from a random tree and run for 1000000 generations, sampling every 100 generations, for a total of 10000 samples per run. The first 2500 samples of each run were discarded as burn-in. The majority rule consensus tree was summarized from the remaining samples. Posterior probability was used to estimate robustness of Bayesian trees.

    2 Results

    2.1 Sequence analyses

    The cited primers used in this study were universally applicable to all obtained samples, with target DNA regions successfully amplified and sequenced for most taxa (Tab. 3). The percentage of successful PCR amplifications of COI-5P, cox2-3 spacer, UPA, and rbcL regions was 96%, 100%, 96%, and 98%, respectively. Sequencing success rates were 86% for COI-5P, 100% for the cox2-3 spacer, 100% for UPA, and 92% for rbcL.

    The length of the aligned COI-5P sequence dataset was 585 bp, with 236 (40%) informative sites. The aligned cox2-3 spacer dataset was 398 bp long and contained 182 (46%) informative sites. The length of aligned sequences in the UPA matrix was 338 bp, with 113 (33%) sites informative. A total of 115 rbcL sequences were generated; the aligned dataset encompassed 1124 bp including 419 (37%) informative sites. The percentage of indels in the tested loci ranged from 0 to 11.6% of the aligned sequences. Mean interspecific distances of the four target DNA regions were much greater than mean intraspecific distances, with the minimum interspecific distances of UPA and cox2-3 spacer sequences higher than those of the other two loci (Tab. 3). The distribution of intra- and interspecific distances is shown in Tab. 3.

    We visually examined the transitional saturation of the four DNA fragments by plotting the estimated number of transitions and transversions for each pairwise comparison against the TN93 (Tamura & Nei distance) distance (Fig. 1). The transitions of the four DNA fragments have not achieved saturation, and the datasets can be used in phylogenetic analysis. For the complete COI-5P and UPA marker datasets, transitional saturation was reached at a distance of approximately 0.20 and 0.15, respectively. Saturation for cox2-3 spacer and rbcL markers occurred very close to their maximum divergence in these datasets.

    Tab. 2 Primers used for PCR in the present study

    Tab. 3 Properties of the five candidate barcoding regions evaluated in the present study

    Fig. 1 Saturation curves for (a) COI-5P, (b) rbcL, (c) cox2-3 spacer, and (d) UPA markers for BatrachospermaceaeThe estimated number of transitions (indicated by ‘×’) and transversions (indicated by triangles) for each pairwise sequence comparison was plotted against TN93 distance

    2.2 Assessment of monophyly

    To test the ability of COI-5P, cox2-3, UPA, and rbcL markers to confirm the monophyly of each species, phylogenetic analyses based on maximum likelihood and Bayesian inference were carried out using sequences of all four barcode candidates. Because the topologies recovered by maximum likelihood and Bayesian analyses were similar, only the Bayesian trees are described. Support values for all analyses were shown as follows: Bayesian posterior probabilities/ ML bootstrap.

    For phylogenetic analyses of COI-5P sequences, we used previously published data from nine Batrachospermum species: B. helminthosum Bory emend. Sheath, Vis et Cole, B. cayennense Montagne, B. guyanense (Montagne) Kumano, B. gelatinosum (Linnaeaus) De Candolle, B. arcuatum Kylin, B. hongdongense Xie et Feng, B. longipedicellatum Hua et Shi, B. turfosum Bory, and B. macrosporum Montagne. Thorea hispida (Thore) Desvaux emend. Sheath, Vis et Cole and Bangia atropurpurea (Roth) Agardh were selected as outgroups. Most terminal branches in the resulting Bayesian and maximum likelihood trees were strongly supported. Among the selected taxa, samples of six species formed well-supported monophyletic groups. B. hongdongense, B. longipedicellatum, and B. arcuatum from China, which are morphologically distinct, were closely associated with one another in COI-5P tree and therefore could not be distinguished solely on the basis of this DNA barcoding locus (Fig. 2). A similar relationship was observed among the three taxa in the rbcL trees (Fig. 3) and cox2-3 spacer trees (trees were not shown). In the UPA tree, however, a different placement was evident: B. hongdongense and B. longipedicellatum were separate from the B. arcuatum clade, but formed a separate clade sister with B. gelatinosum clade (Fig. 4).

    To assess the suitability of the rbcL locus, we analyzed 11 Batrachospermum taxa: B. macrosporum, B. helminthosum, B. cayennense, B. turfosum, B. gelatinosum, B. arcuatum, B. hongdongense, B. longipedicellatum, B. pseudogelatinosum Entwisle et Vis, B. theaquum Skuja ex Entwisle et Foard, B. boryanum Sirodot, and B. antipodites Entwisle et Foard. Most of the taxa formed well-supported clades of distinct species. One of the five B. antipodites haplotypes (DQ523252), however, was included in the well-supported (100%) B. boryanum clade and may have been misidentified.

    3 Discussion

    Fig. 2 Hypothesized phylogenetic relationships based on Bayesian analysis of the COI-5P maker for Batrachospermaceae specimensSupport values shown as Bayesian posterior probabilities / maximum likelihood (ML) bootstrap. Bootstrap values (>70%) are shown above the relevant branches. The same applies below

    Four potential DNA barcode regions (COI-5P, cox2-3 spacer, UPA, and rbcL) were studied to assess their usefulness for species delimitation and discrimination within family Batrachospermaceae. The universality of PCR and sequencing primers is one of the most important criteria for candidate DNA barcoding markers[36]. In this study, primers to amplify the four candidate sequence regions performed well across all sampled species. The rbcL sequence primers have shown a high level of universality in freshwater red algae[26], working well for most Rhodophyta species, whereas degenerate primers were needed to amplify the cox2-3 spacer region.

    Fig. 3 Hypothesized phylogenetic relationships based on Bayesian analysis of the rbcL maker for Batrachospermaceae specimens

    Fig. 4 Hypothesized phylogenetic relationships based on Bayesian analysis of the UPA maker for Batrachospermaceae specimens

    Another criterion for an ideal DNA barcode is a relatively short sequence length (300—800 bp) to facilitate DNA extraction and amplification[1,2]. The lengths of the four proposed barcodes were given in Table 3. Sizes of COI-5P, UPA, and cox2-3 spacer sequences met these criteria and were amenable to the acquisition of bidirectional sequence reads using single primer pairs. The rbcL sequence can be used first because of the high amplification and sequencing success of its universal primer, while the cox2-3 spacer can be incorporated into analyses with ambiguous results or some cryptic species. Our data indicate that more sampling is needed to build a better picture of intraspecific variation. The UPA locus exhibited the highest interspecific distance for species-level identification and was more informative than the cox2-3 spacer sequence.

    A portion of mitochondrial COI, namely, COI-5P, has been suggested for use as a barcode in the red algal group[3,5]. In this study, molecular analyses confirmed that COI-5P, rbcL, UPA, and cox2-3 spacer sequences work well for species-level identification of Batrachospermum except for some allied species. B. hongdongense and B. longipedicellatum, formerly placed in Batrachospermum sect. Batrachospermum and subsequently transferred into sect. Helminthoidea, are two Chinese endemic species that seem to have a closer relationship with B. arcuatum[24]. The results obtained for COI-5P, cox2-3 spacer, and rbcL sequences are in agreement with the findings of Ji et al.[24], who reported that 18S rDNA sequences of B. hongdongense and B. longipedicellatum were identical. In this study, COI-5P, rbcL and cox2-3 spacer sequences do not lend support for the classification of B. hongdongense, B. longipedicellatum, and B. arcuatum as distinct species as well, despite their clear morphological differences[37,38]. B. hongdongense was an endemic species, distinguished from other species based on carpogonial branches are long, straight, and not distinct from the primary fascicle cells[38]. B. longipedicellatum was first reported by Hua & Shi[37]which was also endemic to China. The distinct morphological features of B. longipedicellatum were that its branch not only arising from whorls, but also arising from cortex, carposporophyte obviously extending out of the whorl, trichogyne of carpogonia narrowly cylindrical, and branch also arising from the internode, which was very rare and only found in a few species[24]. However, the rbcL, COI-5P and cox2-3 spacer phylogenies resulted in identical topologies for B. hongdongense, B. longipedicellatum, and B. arcuatum which had not confirmed the attributes of the two endemic species proposed by the morphological features.

    The UPA analysis presented here break up the phylogenetic framework of Batrachospermum hongdongense, B. longipedicellatum, and B. arcuatum. Compared with the other three potential DNA barcode regions, the UPA marker seems to provide more useful information and was able to separate B. hongdongense and B. longipedicellatum from the B. arcuatum branch, and formed a separate clade sister with B. gelatinosum clade. The high taxon sampling and more markers sequencing that represent the majority of type species for genera in the tribe may provide a strong phylogenetic framework in which taxonomy can be re-evaluated. Because B. hongdongense and B. longipedicellatum are both endemic to China, and can be clearly morphologically distinguished from varieties of B. arcuatum, it is practical to consider them as good species even in the absence of sufficient molecular evidence. For species-level identification, the UPA locus exhibited the highest interspecific distances in Batrachospermaceae. We therefore recommended the plastid UPA gene as a standard DNA barcode in Batrachospermaceae, but acknowledge that there are no shared alleles between the endemic species. A least, UPA gene has the potential to be an additional marker for COI barcode to

    [1]Hebert P D N, Cywinska A, Ball S L, et al. Biological identifications through DNA barcodes [J]. Proceedings of the Royal Society of London B Biology, 2003, 270(1512): 313—321

    [2]Hebert P D N, Ratnasingham S, Dewaard J R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species [J]. Proceedings of the Royal Society of London B Biology, 2003, 270(suppl. 1): 96—99

    [3]Saunders G W. Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications [J]. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 2005, 360(1462): 1879—1888

    [4]Saunders G W. Routine DNA barcoding of Canadian Gracilariales (Rhodophyta) reveals the invasive species Gracilaria vermiculophylla in British Columbia [J]. Molecular Ecology Resources, 2009, 9(suppl. S1): 140—150

    [5]Robba L, Russell S J, Barker G L, et al. Assessing the use of the mitochondrial cox1 marker for use in DNA barcoding of red algae (Rhodophyta) [J]. American Journal of Botany, 2006, 93(8): 1101—1108

    [6]Lane C E, Lindstrom S, Saunders G W. A molecular assessment of northeast Pacific Alaria species (Laminariales, Phaeophyceae) with reference to the utility of DNA barcoding [J]. Molecular Phylogenetics and Evolution, 2007, 44(2): 634—648

    [7]House D L, Vandenbroek A M, Vis M L. Intraspecific genetic variation of Batrachospermum gelatinosum (Batrachospermales, Rhodophyta) in eastern North America [J]. Phycologia, 2010, 49(5): 501—507

    [8]Kucera H, Saunders G W. Assigning morphological variants of Fucus (Fucales, Phaeophyceae) in Canadian waters to reensure sufficient data, unless taxon-specific or more universal primer combinations for COI are designed, optimized and made available[10].

    The utility of four short markers for construction of DNA barcode like data frameworks for a family of fresh water red algae have been contrasted in this paper. In the present study, the COI-5P, cox2-3 spacer and rbcL loci could identify most of the taxa correctly at species level in family Batrachospermaceae, but there were still a few species can not be identified or misidentified only through the candidate DNA barcode. Although only two endemic species were collected, it nonetheless indicates that the use of UPA marker should be expanded to a supplementary DNA barcode, at least in intractable taxa where routine DNA barcode have been found problematic.

    Acknowledgements:

    We thank Edanz Editing company for editorial assistance with the English.

    [9]Sherwood A R, Vis M L, Entwisle T J, et al. Contrasting intra versus interspecies DNA sequence variation for representatives of the Batrachospermales (Rhodophyta): insights from a DNA barcoding approach [J]. Phycological Research, 2008, 56(4): 269—279

    [10]Sherwood A R, Sauvage T, Kurihara A, et al. A comparative analysis of COI-5P, LSU and UPA maker data for the Hawaiian florideophyte Rhodophyta: implications for DNA barcoding of red algae [J]. Cryptogamie Algol, 2010, 31(4): 451—465

    [11]McDevit D C, Saunders G W. On the utility of DNA barcoding for species differentiation among brown macroalgae (Phaeophyceae) including a novel extraction protocol [J]. Phycological Research, 2009, 57(2): 131—141

    [12]Clarkston B E, Saunders G W. A comparison of two DNA barcode markers for species discrimination in the red algal family Kallymeniaceae (Gigartinales, Florideophyceae), with a description of Euthora timburtonii sp. nov [J]. Botany, 2010, 88(2): 119—131

    [13]Le Gall L, Saunders G W. DNA barcoding is a powerful tool to uncover algal diversity: a case study of the Phyllophoraceae (Gigartinales, Rhodophyta) in the Canadian flora [J]. Journal of Phycology, 2010, 46(2): 374—389

    [14]Manghisi A, Morabito M, Bertuccio C, et al. Is routine DNA barcoding an efficient tool to reveal introductions of alien macroalgae? A case study of Agardhiella subulata (Solieriaceae, Rhodophyta) in Cape Peloro lagoon (Sicily, Italy) [J]. Cryptogamie Algol, 2010, 31(4): 423—433

    [15]Rueness J. DNA barcoding of select freshwater and marine red algae (Rhodophyta) [J]. Cryptogamie Algol, 2010, 31(4): 377—386

    [16]Saunders G W, Moore T E. Refinements for the amplification and sequencing of red algal DNA barcode and RedToL phylogenetic markers: a summary of current primers, profiles and strategies [J]. Algae, 2013, 28(1): 31—43

    [17]Geoffroy A, Le Gall L, Destombe C. Cryptic introduction of the red alga Polysiphonia morrowii Harvey (Rhodomelaceae, Rhodophyta) in the North Atlantic Ocean highlighted by a DNA barcoding approach [J]. Aquatic Botany, 2012, 100(1): 67—71

    [18]Chong J, Jackson C, Kim J I, et al. Molecular markers from different genomic compartments reveal cryptic diversity within glaucophyte species [J]. Molecular Phylogenetics and Evolution, 2014, 76(1):181—188

    [19]Ji L, Xie S L, Chen L, et al. Phylogeography of Batrachospermum arcuatum in North China based on ITS sequence data [J]. Chinese Journal of Oceanology and Limnology, 2014, 32(2): 372—376

    [20]Nan F R, Feng J, Xie S L. Phylogenetic relationship of genus Kumanoa (Batrachospermuales, Rhodophyta) based on Chloroplast UPA genes [J]. Bulletin of Botanical Research,2014, 34(5): 584—591 [南芳茹, 馮佳, 謝樹蓮. 中國熊野藻屬植物系統(tǒng)發(fā)育分析——基于葉綠體UPA序列. 植物研究, 2014, 34(5): 584—591]

    [21]Zhao X, Pang S, Shan T, et al. Applications of three DNA barcodes in assorting intertidal red Macroalgal Flora in Qingdao, China [J]. Journal of Ocean University of China, 2013, 12(1): 139—145

    [22]Sherwood A R, Presting G G. Universal primers amplify a 23s rDNA plastid marker in eukaryotic algae and cyanobacterial [J]. Journal of Phycology, 2007, 43(3): 605—608

    [23]Entwisle T J, Vis M L, Chiasson W B, et al. Systematics of the Batrachospermales (Rhodophyta)-A synthesis [J]. Journal of Phycology, 2009, 45(3): 704—715

    [24]Ji L, Xie S L, Feng J, et al. Molecular systematics of four endemic Batrachospermaceae (Rhodophyta) species in China with multilocus data [J]. Journal of Systematics and Evolution, 2014, 52(1): 92—100

    [25]Zuccarello G C, Burger G, West J A, et al. A mitochondrial marker for red algal intraspecific relationships [J]. Molecular Ecology, 1999, 8(9): 1443—1447

    [26]Vis M L, Sheath R G. A molecular investigation of the systematic relationship among Sirodotia species (Batrachospermales, Rhodophyta) in North America [J]. Phycologia, 1999, 38(4): 261—266

    [27]Larkin M A, Blackshields G, Brown N P, et al. Clustal W and Clustal X, version 2.0 [J]. Bioinformatics, 2007, 23(21): 2947—2948

    [28]Tamura K, Dudley J, Nei M, et al. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0 [J]. Molecular Biology and Evolution, 2007, 24(8): 1596—1599

    [29]Altschul S F, Gish W, Miller W, et al. Basic local alignment search tool [J]. Journal of Molecular Biology, 1990, 215(3): 403—410

    [30]Little D P, Stevenson D W. A comparison of algorithms for the identification of specimens using DNA barcodes: examples from gymnosperms [J]. Cladistics, 2007, 23(1): 1—21

    [31]Xia X. DAMBE v.5.2.6. Distributed by the author at http://dambe.bio.uottawa.ca. 2010

    [32]Posada D. jModelTest: Phylogenetic Model Averaging [J]. Molecular Biology and Evolution, 2008, 25(7): 1253—1256

    [33]Guindon S, Gascuel O. A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood [J]. Systerms Biology, 2003, 52(5): 696—704

    [34]Felsenstein J. Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods [J]. Methods in Enzymology, 1996, 266(1): 418—427

    [35]Ronquist F, Huelsenbeck J P. MRBAYES 3: Bayesian phylogenetic inference under mixed models [J]. Bioinformatics, 2003, 19(12): 1572—1574

    [36]Hollingsworth P M. DNA barcoding plants in biodiversity hot spots: progress and outstanding questions [J]. Heredity, 2008, 101(1): 1—2

    [37]Hua D, Shi Z X. A new species of Batrachospermum from Jiangsu, China [J]. Acta Phytotaxonomica Sinica, 1996, 34(3): 324—326 [華棟, 施之新. 江蘇串珠藻屬一新種. 植物分類學(xué)報, 1996, 34(3): 324—326]

    [38]Xie S L, Feng J. Batrachospermum hongdongense (sect. Batrachospermum, Batrachospermaceae), a new species from Shanxi, China [J]. Botanical Studies, 2007, 48(1): 459—464

    cognized species using DNA barcoding [J]. Botany, 2008, 86(9): 1065—1079

    DNA條形碼在淡水紅藻中的應(yīng)用評價——基于串珠藻科植物

    吉 莉1馮 佳2南方茹2陳 樂2胡變芳3謝樹蓮2

    (1. 太原科技大學(xué)環(huán)境與安全學(xué)院,太原 030024; 2. 山西大學(xué)生命科學(xué)學(xué)院,太原 030006; 3. 晉中學(xué)院生物科學(xué)與技術(shù)學(xué)院,晉中 030600)

    研究采用4種DNA序列, 分析了各片段序列特征以及在串珠藻科植物中種屬水平的鑒定能力, 包括線粒體COI-5P、cox2-3 spacer序列, 以及葉綠體rbcL、UPA序列。結(jié)果表明, COI-5P、cox2-3 spacer、UPA以及rbcL序列的PCR擴增成功率分別為96%、100%、96%和98%。其中, COI-5P、cox2-3 spacer和UPA的片段大小符合標(biāo)準DNA條形碼的判定標(biāo)準, 即片段大小在300—800 bp, 能夠通過單對引物雙向測序獲得。系統(tǒng)發(fā)育分析的結(jié)果顯示, 這4種DNA片段在串珠藻屬植物的鑒定中能夠鑒定大部分的種類, 但COI-5P、cox2-3 spacer以及rbcL序列均不能將兩種中國特有種洪洞串珠藻B. hongdongense和長柄串珠藻B. longipedicellatum與弧形串珠藻B. arcuatum分開。在種水平的鑒定中, UPA基因的種間差異最大, 顯示了較好的分離效果, 在串珠藻科植物的鑒定中可以作為一個標(biāo)準的DNA條形碼。

    DNA條形碼; 串珠藻科; 分子系統(tǒng)發(fā)育; 紅藻門

    Q949.29

    A

    1000-3207(2017)03-0643-09

    10.7541/2017.82

    Received date: 2016-06-06; Accepted date: 2016-11-12

    Foundation item: Supported by the National Natural Science Foundation of China (31370239, 31440026); the PhD Start-up Fund of TYUST (20132013)

    Brief introduction of author: JI Li(1982—), Female, Shanxi Linfen; Doctor; Research field: Phylogeny of fresh water red algae. E-mail: jili@tyust.edu.cn

    XIE Shu-Lian, E-mail: xiesl@sxu.edu.cn, Fax: +86 (0)351 7018121

    猜你喜歡
    紅藻藻屬串珠
    京杭大運河通航段水域硅藻分布
    簡易金剛石串珠鋸的設(shè)計
    石材(2020年10期)2021-01-08 09:19:54
    高溫脅迫下壇紫菜中紅藻糖苷及其異構(gòu)體的含量變化
    藻類光競爭模型構(gòu)建及水體紊動對競爭的影響
    串珠里藏著數(shù)學(xué)
    紅藻
    串珠中的數(shù)學(xué)
    串珠里藏著數(shù)學(xué)
    成都市主城區(qū)水中尸體多發(fā)河流區(qū)段硅藻分布
    微囊藻屬一日內(nèi)垂向分布的數(shù)值模擬
    欧美精品啪啪一区二区三区| АⅤ资源中文在线天堂| 亚洲av成人av| 禁无遮挡网站| 可以在线观看的亚洲视频| 久久天躁狠狠躁夜夜2o2o| 色在线成人网| 久久人人精品亚洲av| 男女床上黄色一级片免费看| 国产精品香港三级国产av潘金莲| 美女高潮喷水抽搐中文字幕| 大型av网站在线播放| 国产欧美日韩一区二区精品| 婷婷丁香在线五月| 日日爽夜夜爽网站| 日日爽夜夜爽网站| 又黄又粗又硬又大视频| 国产精品久久久久久亚洲av鲁大| 99在线人妻在线中文字幕| 一本久久中文字幕| 成人18禁在线播放| 午夜久久久在线观看| 亚洲精品国产精品久久久不卡| 99国产精品免费福利视频| 日韩欧美免费精品| 婷婷丁香在线五月| 国产精品1区2区在线观看.| 一区在线观看完整版| 久久草成人影院| 咕卡用的链子| 国产99白浆流出| 国产男靠女视频免费网站| 中文字幕人成人乱码亚洲影| 欧美黄色片欧美黄色片| 亚洲精华国产精华精| 国产精品久久电影中文字幕| av免费在线观看网站| 日韩 欧美 亚洲 中文字幕| 亚洲精品中文字幕一二三四区| 女人被狂操c到高潮| 好看av亚洲va欧美ⅴa在| 午夜免费成人在线视频| 欧美激情高清一区二区三区| 亚洲第一欧美日韩一区二区三区| 岛国在线观看网站| 国产蜜桃级精品一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 国产精品 国内视频| 精品日产1卡2卡| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品一区av在线观看| 久久久久久大精品| 女人被狂操c到高潮| 两性午夜刺激爽爽歪歪视频在线观看 | 中文字幕色久视频| 手机成人av网站| 在线视频色国产色| 日韩av在线大香蕉| 精品第一国产精品| 欧美一区二区精品小视频在线| 天堂动漫精品| 无人区码免费观看不卡| 一本综合久久免费| 一区二区日韩欧美中文字幕| 夜夜爽天天搞| 亚洲男人的天堂狠狠| 欧美日韩精品网址| 一区二区日韩欧美中文字幕| 香蕉国产在线看| 久久久久久久久免费视频了| 999精品在线视频| 亚洲精品美女久久久久99蜜臀| 制服诱惑二区| 丁香六月欧美| 91字幕亚洲| 露出奶头的视频| 很黄的视频免费| 9191精品国产免费久久| 欧美在线黄色| 午夜福利免费观看在线| 18禁裸乳无遮挡免费网站照片 | 高清毛片免费观看视频网站| 国产在线精品亚洲第一网站| 精品电影一区二区在线| 90打野战视频偷拍视频| 99久久综合精品五月天人人| 又紧又爽又黄一区二区| АⅤ资源中文在线天堂| 十分钟在线观看高清视频www| 成人永久免费在线观看视频| 欧美黑人精品巨大| tocl精华| 午夜福利影视在线免费观看| 老司机在亚洲福利影院| 国产一卡二卡三卡精品| 真人一进一出gif抽搐免费| 免费在线观看日本一区| 久久人人精品亚洲av| 一夜夜www| 成人亚洲精品av一区二区| 成年版毛片免费区| 十八禁网站免费在线| 精品熟女少妇八av免费久了| 亚洲自偷自拍图片 自拍| 97人妻精品一区二区三区麻豆 | 男人操女人黄网站| 国产1区2区3区精品| 久久欧美精品欧美久久欧美| 制服丝袜大香蕉在线| 成人亚洲精品av一区二区| 在线观看66精品国产| 国产91精品成人一区二区三区| 久久性视频一级片| 99久久99久久久精品蜜桃| 日本五十路高清| 亚洲七黄色美女视频| √禁漫天堂资源中文www| 黑人巨大精品欧美一区二区mp4| 精品乱码久久久久久99久播| 在线观看免费午夜福利视频| 99国产精品一区二区三区| 国产精品香港三级国产av潘金莲| 成年人黄色毛片网站| 窝窝影院91人妻| 国产av在哪里看| 性色av乱码一区二区三区2| 精品久久久久久成人av| 少妇粗大呻吟视频| 国产高清有码在线观看视频 | 久久九九热精品免费| 亚洲最大成人中文| 久久中文看片网| 99香蕉大伊视频| 亚洲国产欧美网| 丁香欧美五月| 后天国语完整版免费观看| 成人精品一区二区免费| 美女大奶头视频| 亚洲精品美女久久av网站| 久久香蕉激情| 脱女人内裤的视频| 每晚都被弄得嗷嗷叫到高潮| 国产精品精品国产色婷婷| 自拍欧美九色日韩亚洲蝌蚪91| 精品福利观看| 久久久久久国产a免费观看| 桃色一区二区三区在线观看| 一边摸一边做爽爽视频免费| 欧美日韩中文字幕国产精品一区二区三区 | 精品高清国产在线一区| 波多野结衣av一区二区av| 亚洲国产精品成人综合色| av天堂久久9| 女人被躁到高潮嗷嗷叫费观| 色播亚洲综合网| 国产高清videossex| 黄色 视频免费看| 国内毛片毛片毛片毛片毛片| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品中文字幕在线视频| 亚洲狠狠婷婷综合久久图片| 亚洲男人的天堂狠狠| 欧美日韩黄片免| 日韩视频一区二区在线观看| 日韩欧美国产在线观看| 亚洲精品在线观看二区| 一边摸一边抽搐一进一小说| 搡老熟女国产l中国老女人| avwww免费| 久久九九热精品免费| 黑人操中国人逼视频| 国产不卡一卡二| 给我免费播放毛片高清在线观看| 一本大道久久a久久精品| 久久精品国产亚洲av香蕉五月| 欧美乱妇无乱码| 99国产精品99久久久久| 美女午夜性视频免费| 午夜福利视频1000在线观看 | 啪啪无遮挡十八禁网站| 波多野结衣巨乳人妻| 亚洲第一av免费看| 可以在线观看的亚洲视频| 久久久久国产精品人妻aⅴ院| 亚洲男人天堂网一区| 99香蕉大伊视频| 亚洲中文日韩欧美视频| 纯流量卡能插随身wifi吗| 变态另类丝袜制服| 制服诱惑二区| 欧美日韩精品网址| 日韩视频一区二区在线观看| 欧美一级a爱片免费观看看 | 亚洲成人精品中文字幕电影| 别揉我奶头~嗯~啊~动态视频| 两性午夜刺激爽爽歪歪视频在线观看 | 在线观看免费视频日本深夜| 精品久久久久久久毛片微露脸| 亚洲国产精品久久男人天堂| 女人高潮潮喷娇喘18禁视频| 成人手机av| 亚洲一区二区三区不卡视频| 长腿黑丝高跟| 日本三级黄在线观看| 一进一出抽搐gif免费好疼| 性色av乱码一区二区三区2| 9色porny在线观看| 午夜a级毛片| bbb黄色大片| av免费在线观看网站| 欧美日韩中文字幕国产精品一区二区三区 | 岛国在线观看网站| 一个人免费在线观看的高清视频| 黑人欧美特级aaaaaa片| 国产不卡一卡二| 国产欧美日韩综合在线一区二区| 一边摸一边做爽爽视频免费| 69av精品久久久久久| 久久青草综合色| 男女下面进入的视频免费午夜 | www国产在线视频色| 成人特级黄色片久久久久久久| 国内毛片毛片毛片毛片毛片| 99国产精品99久久久久| 亚洲久久久国产精品| 亚洲成国产人片在线观看| 久久久久久免费高清国产稀缺| 黄频高清免费视频| 热re99久久国产66热| 久热这里只有精品99| 一级作爱视频免费观看| 91精品国产国语对白视频| 99国产极品粉嫩在线观看| 一级,二级,三级黄色视频| 国产亚洲精品综合一区在线观看 | 久久狼人影院| 国产97色在线日韩免费| ponron亚洲| 久久精品成人免费网站| 757午夜福利合集在线观看| 女生性感内裤真人,穿戴方法视频| 亚洲国产中文字幕在线视频| 国产精品久久久久久亚洲av鲁大| 欧美人与性动交α欧美精品济南到| 日韩精品中文字幕看吧| 国产亚洲精品久久久久5区| 怎么达到女性高潮| 国产精品免费一区二区三区在线| 国产成人啪精品午夜网站| 国产精品影院久久| 精品熟女少妇八av免费久了| 亚洲精品中文字幕在线视频| 嫁个100分男人电影在线观看| 99国产精品一区二区三区| 欧美激情极品国产一区二区三区| 黄色a级毛片大全视频| av在线播放免费不卡| 国产成人av教育| 久久国产精品影院| av网站免费在线观看视频| 热re99久久国产66热| 免费在线观看完整版高清| 亚洲欧美精品综合久久99| 午夜福利高清视频| 香蕉国产在线看| 777久久人妻少妇嫩草av网站| 亚洲狠狠婷婷综合久久图片| 波多野结衣巨乳人妻| 国产av一区二区精品久久| 一本久久中文字幕| 免费在线观看日本一区| 自线自在国产av| 久久天躁狠狠躁夜夜2o2o| 一本大道久久a久久精品| 黄色视频不卡| 啦啦啦观看免费观看视频高清 | 丁香六月欧美| 久久精品影院6| 亚洲欧洲精品一区二区精品久久久| 久久国产精品男人的天堂亚洲| 国产精品美女特级片免费视频播放器 | 中文字幕人妻丝袜一区二区| 久久影院123| 美女免费视频网站| 欧美黄色淫秽网站| 亚洲一区二区三区色噜噜| 免费人成视频x8x8入口观看| 欧美 亚洲 国产 日韩一| 美女高潮到喷水免费观看| 级片在线观看| 欧美午夜高清在线| 欧美一级毛片孕妇| 国产av在哪里看| 中文字幕人妻熟女乱码| 色哟哟哟哟哟哟| 亚洲五月天丁香| 日韩国内少妇激情av| 久久久久久国产a免费观看| 9色porny在线观看| 久热这里只有精品99| 亚洲人成电影免费在线| 免费在线观看视频国产中文字幕亚洲| 欧美黑人精品巨大| 中文字幕人妻熟女乱码| 美国免费a级毛片| 国产在线观看jvid| 久久这里只有精品19| 亚洲一区二区三区色噜噜| 亚洲精品久久国产高清桃花| 国产精品1区2区在线观看.| а√天堂www在线а√下载| 在线观看舔阴道视频| 啦啦啦 在线观看视频| 久久热在线av| 欧美老熟妇乱子伦牲交| xxx96com| 午夜福利一区二区在线看| 可以免费在线观看a视频的电影网站| 亚洲精品在线观看二区| aaaaa片日本免费| ponron亚洲| 男人操女人黄网站| 日韩中文字幕欧美一区二区| 在线观看免费日韩欧美大片| 妹子高潮喷水视频| 如日韩欧美国产精品一区二区三区| 亚洲专区国产一区二区| 久久天躁狠狠躁夜夜2o2o| 国产精品国产高清国产av| 日韩欧美免费精品| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品久久久久久亚洲av鲁大| 免费在线观看黄色视频的| 欧美亚洲日本最大视频资源| 午夜精品久久久久久毛片777| 午夜两性在线视频| 久久精品91无色码中文字幕| 一级a爱视频在线免费观看| 满18在线观看网站| 欧美日韩精品网址| 日韩av在线大香蕉| av免费在线观看网站| 亚洲黑人精品在线| 久热爱精品视频在线9| 日韩av在线大香蕉| 一二三四在线观看免费中文在| av网站免费在线观看视频| 欧美激情久久久久久爽电影 | 在线观看www视频免费| 久久精品91无色码中文字幕| 亚洲成人免费电影在线观看| 国产色视频综合| 精品国产亚洲在线| 欧美人与性动交α欧美精品济南到| 亚洲中文字幕一区二区三区有码在线看 | 成在线人永久免费视频| www.精华液| 男人舔女人的私密视频| 久久久久久久久久久久大奶| 一级毛片精品| avwww免费| 美女 人体艺术 gogo| 国产乱人伦免费视频| 国产精品日韩av在线免费观看 | 欧美黑人精品巨大| 一进一出抽搐动态| 国产精品98久久久久久宅男小说| 国产精品九九99| √禁漫天堂资源中文www| 亚洲av成人不卡在线观看播放网| 人成视频在线观看免费观看| 成人精品一区二区免费| 国产精品久久久久久精品电影 | 国产精品一区二区在线不卡| 亚洲精品一区av在线观看| 69精品国产乱码久久久| 日韩免费av在线播放| 在线观看日韩欧美| 嫩草影视91久久| 非洲黑人性xxxx精品又粗又长| 大型黄色视频在线免费观看| 夜夜夜夜夜久久久久| 最好的美女福利视频网| 久久精品国产99精品国产亚洲性色 | 国内毛片毛片毛片毛片毛片| 757午夜福利合集在线观看| 国产高清有码在线观看视频 | 国产av一区在线观看免费| 午夜福利一区二区在线看| 亚洲精品国产色婷婷电影| 丰满的人妻完整版| 黄片播放在线免费| 国产精品日韩av在线免费观看 | 国产精品 国内视频| 国产精品免费视频内射| 一本久久中文字幕| 每晚都被弄得嗷嗷叫到高潮| 很黄的视频免费| 村上凉子中文字幕在线| 国产激情久久老熟女| 国产精品久久久人人做人人爽| av天堂久久9| 日本精品一区二区三区蜜桃| 99国产精品99久久久久| 欧美日韩乱码在线| 亚洲色图av天堂| 亚洲精品久久国产高清桃花| 亚洲成人久久性| av福利片在线| 国产三级在线视频| 老司机福利观看| 久久精品国产亚洲av香蕉五月| 国产人伦9x9x在线观看| 天堂动漫精品| 亚洲国产欧美网| 日韩欧美免费精品| 九色亚洲精品在线播放| 禁无遮挡网站| www.自偷自拍.com| 性欧美人与动物交配| 国产不卡一卡二| 亚洲精品国产色婷婷电影| 欧美黄色片欧美黄色片| 真人做人爱边吃奶动态| 国产伦人伦偷精品视频| 老司机在亚洲福利影院| 久久九九热精品免费| 日本免费一区二区三区高清不卡 | 精品一品国产午夜福利视频| 黄色丝袜av网址大全| 亚洲成av片中文字幕在线观看| 国产成人免费无遮挡视频| 极品教师在线免费播放| 国产精品国产高清国产av| www.www免费av| 身体一侧抽搐| e午夜精品久久久久久久| 国产又爽黄色视频| 久久影院123| 亚洲精品粉嫩美女一区| 搞女人的毛片| 日韩大码丰满熟妇| ponron亚洲| 欧美丝袜亚洲另类 | 免费观看精品视频网站| 99国产综合亚洲精品| 又黄又爽又免费观看的视频| 禁无遮挡网站| 人人妻,人人澡人人爽秒播| 久久精品国产99精品国产亚洲性色 | cao死你这个sao货| 国产午夜福利久久久久久| 国产国语露脸激情在线看| 18禁裸乳无遮挡免费网站照片 | 在线十欧美十亚洲十日本专区| 视频区欧美日本亚洲| 一级毛片女人18水好多| 国产一卡二卡三卡精品| 久久草成人影院| 亚洲少妇的诱惑av| 欧美日韩一级在线毛片| 黄网站色视频无遮挡免费观看| 中亚洲国语对白在线视频| 亚洲国产精品合色在线| 性色av乱码一区二区三区2| 欧美日本视频| 一个人免费在线观看的高清视频| 日日摸夜夜添夜夜添小说| 十八禁网站免费在线| 国产精品一区二区免费欧美| 久热这里只有精品99| 国产亚洲欧美精品永久| 免费少妇av软件| 狂野欧美激情性xxxx| 亚洲美女黄片视频| av片东京热男人的天堂| 波多野结衣高清无吗| 日韩有码中文字幕| 一进一出抽搐gif免费好疼| 国产区一区二久久| 黄色女人牲交| 窝窝影院91人妻| 18禁美女被吸乳视频| 黑人巨大精品欧美一区二区mp4| 一级作爱视频免费观看| 日本欧美视频一区| 亚洲欧美日韩高清在线视频| 少妇裸体淫交视频免费看高清 | 亚洲情色 制服丝袜| 成人免费观看视频高清| 激情在线观看视频在线高清| 制服诱惑二区| 美女大奶头视频| 精品第一国产精品| 久久中文字幕人妻熟女| 欧美成人午夜精品| 无人区码免费观看不卡| 日韩欧美一区视频在线观看| 欧美最黄视频在线播放免费| 午夜亚洲福利在线播放| 国产99白浆流出| 欧美黄色淫秽网站| 免费少妇av软件| 色综合欧美亚洲国产小说| av欧美777| 久久午夜综合久久蜜桃| 嫩草影院精品99| 午夜激情av网站| 一级作爱视频免费观看| 午夜福利欧美成人| 国产激情欧美一区二区| 国产成人精品久久二区二区91| 亚洲电影在线观看av| 免费不卡黄色视频| 国产一卡二卡三卡精品| 香蕉久久夜色| 久久性视频一级片| 99久久久亚洲精品蜜臀av| 操出白浆在线播放| 纯流量卡能插随身wifi吗| 黄色片一级片一级黄色片| 成人av一区二区三区在线看| 久久香蕉激情| 欧美av亚洲av综合av国产av| 九色国产91popny在线| 美女高潮到喷水免费观看| 成人国产综合亚洲| 国产精品美女特级片免费视频播放器 | 国产成人av教育| 婷婷六月久久综合丁香| 黄色毛片三级朝国网站| 亚洲国产欧美一区二区综合| 国产视频一区二区在线看| 一本久久中文字幕| 亚洲国产高清在线一区二区三 | 视频区欧美日本亚洲| 麻豆一二三区av精品| 18禁美女被吸乳视频| 999精品在线视频| 亚洲欧美精品综合久久99| 亚洲精品美女久久av网站| 欧美激情久久久久久爽电影 | 夜夜看夜夜爽夜夜摸| 国产色视频综合| 亚洲一区二区三区色噜噜| 久99久视频精品免费| 午夜免费成人在线视频| 国产亚洲欧美98| 国产又色又爽无遮挡免费看| 法律面前人人平等表现在哪些方面| 久久婷婷人人爽人人干人人爱 | 亚洲,欧美精品.| 欧美最黄视频在线播放免费| 淫秽高清视频在线观看| 老司机深夜福利视频在线观看| 国产亚洲精品久久久久5区| 成年版毛片免费区| 久久这里只有精品19| 91麻豆精品激情在线观看国产| 香蕉久久夜色| 后天国语完整版免费观看| 久久狼人影院| 中文字幕高清在线视频| 18美女黄网站色大片免费观看| 此物有八面人人有两片| 亚洲欧洲精品一区二区精品久久久| 黄色视频,在线免费观看| 午夜两性在线视频| 精品久久蜜臀av无| 欧美日本中文国产一区发布| 亚洲av五月六月丁香网| 免费在线观看亚洲国产| 美女高潮喷水抽搐中文字幕| 亚洲国产精品合色在线| 国产成人一区二区三区免费视频网站| 午夜免费观看网址| 日韩国内少妇激情av| 欧美日韩福利视频一区二区| 久久精品aⅴ一区二区三区四区| 9191精品国产免费久久| 久久九九热精品免费| av在线播放免费不卡| 热re99久久国产66热| 男人的好看免费观看在线视频 | av天堂在线播放| 淫妇啪啪啪对白视频| 欧美在线一区亚洲| 99国产极品粉嫩在线观看| 久久久久久久久免费视频了| or卡值多少钱| 99国产精品一区二区三区| 在线观看午夜福利视频| 女人被躁到高潮嗷嗷叫费观| 免费不卡黄色视频| 男女做爰动态图高潮gif福利片 | 国产精品综合久久久久久久免费 | 亚洲欧美激情在线| 成年女人毛片免费观看观看9| АⅤ资源中文在线天堂| 变态另类成人亚洲欧美熟女 | 国产精品免费一区二区三区在线| 亚洲va日本ⅴa欧美va伊人久久| 日本一区二区免费在线视频| 亚洲成人国产一区在线观看| 免费在线观看视频国产中文字幕亚洲| 国产极品粉嫩免费观看在线| 免费av毛片视频| 国产1区2区3区精品| 日本a在线网址| 亚洲成人免费电影在线观看| 精品国产一区二区久久| 亚洲欧美日韩无卡精品| 免费观看精品视频网站| 免费看十八禁软件| 日本免费一区二区三区高清不卡 |