• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      Measure Functional Differential Equations with Infinite Delay: Differentiability of Solutions with Respect to Initial Conditions

      2017-05-15 11:09:30LIBaolinWANGBaodi
      關(guān)鍵詞:西北師范大學(xué)初值國(guó)家自然科學(xué)基金

      LI Baolin, WANG Baodi

      (College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu)

      Measure Functional Differential Equations with Infinite Delay: Differentiability of Solutions with Respect to Initial Conditions

      LI Baolin, WANG Baodi

      (CollegeofMathematicsandStatistics,NorthwestNormalUniversity,Lanzhou730070,Gansu)

      In this paper, we consider a measure functional differential equation with infinite delay,which can be changed into a generalized ordinary differential equation. By differentiability of solutions with respect to initial condition for the generalized ODE, we obtain the differentiability for the measure functional differential equation.

      measure functional differential equation; differentiability of solutions; Kurzweil integral; generalized ordinary differential equation

      1 Introduction

      There are many sources that describe the differentiability of solutions with respect to initial conditions for ordinary differential equations, such as [1-2]. From [3], we can see the description of a similar type for ordinary differential equations, and for dynamic equations on time scales. Similar work as [3] was also carried out in [4]. In this paper, we consider the measure differential equations.

      When a system described by ordinary differential equation

      (1)

      is acted upon by perturbation, the resultant perturbed system is generally given by ordinary differential equation of the form dx/dt=f(t,x)+G(t,x), where we assume the perturbation termG(t,x) is well-behaved, i.e.,G(t,x) is continuous or integrable and as such the state of the system changes continuously with respect to time. However, in some system, the perturbations are impulsive, so we cannot expect the perturbation is always well-behaved. Therefore, the following equation

      (2)

      was defined in [5], whereDudenotes the distributional derivative of functionu. Ifuis a function of bounded variation,Ducan be identified with a Stieltjes measure, it will suddenly change the state of the system at a discontinuity ofu. In [5], equations of the form (2) are called measure differential equations, also a special case of the equation (2). Inspired by [5], the authors of [6] have generalized a very useful functional differential equation as following

      (3)

      wherextrepresents the restriction of the functionx(·) (x(·) denotes a solution of equation (2)) means a function of bounded variation whose distributional derivativeDxsatisfies the equation (2) on the interval [m(t),n(t)],mandnbeing functions with the propertym(t)≤n(t)≤t.

      Moreover, in [7], an important theorem was proved. The main contents are as following:

      x(·) is a solution of (2) through (t0,x0) on an intervalI, with left end pointt0, if and only ifx(·) satisfies the following equations

      Authors of [8] especially proved the following measure functional differential equation with infinite delay

      (4)

      is equivalent to the generalized ordinary differential equation under some conditions. Also, equations (4) is the integral form of the following measure equation

      Dx=G(s,xs)dg(s),

      whereg(s) is a nondecreasing function, and the integral on the right-hand side of (4) is the Kurzweil-Stieltjes integral.

      In this paper, we shall consider differentiability of initial value problem for measure differential equations

      (5)

      wherexis an unknown function with values inRnandthesymbolxsdenotesthefunctionxs(τ)=x(s+τ)definedon(-∞,0],whichcorrespondingtothelengthofthedelay, f:P×[t0,t0+σ]→Rnis a function satisfies the following conditions (A)-(C):

      (B)ThereexistsafunctionM:[t0,t0+σ] →R+,whichisKurzweil-Stieltjiesintegrablewithrespecttog,suchthat

      wheneverx∈Oand[a,b]?[t0,to+σ].

      (C)ThereexistsafunctionL :[t0,to+σ] →R+,which is Kurzweil-Stieltjies integrable with respect tog, such that

      wheneverx,y∈Oand [a,b]?[t0,to+σ].(we assume that the integral on the right-hand side exists).

      Andg:[t0,t0+σ]→Risanondecreasingfunction, P={xt:x∈O,t∈[t0, t0+σ]}? H0,H0? G((-∞,0],Rn) is a Banach space equipped with a norm denoted by ‖·‖. We assumeH0satisfies the following conditions (H1)-(H6):

      (H1)H0is complete.

      (H2) Ifx∈H0andt<0, thenxt∈H0.

      (H3) There exists a locally bounded functionk1:(-∞,0]→R+suchthatifx∈H0andt≤0,then‖x(t)‖≤k1(t)‖x‖.

      (H4)Thereexistsafunctionk2: (0,∞) →[1,∞)suchthatifσ > 0andx∈H0isafunctionwhosesupportiscontainedin[-σ,0],then

      (H5) There exists a locally bounded functionk3:(-∞,0]→R+suchthatifx∈H0andt≤0,then

      (H6)Ifx∈H0,thenthefunctiont |→‖xt‖isregulatedon(-∞,0].

      t0∈R,σ>0,O?Ht0+σis a space satisfying conditions 1)-6) of Lemma 2.7.G((-∞,0],Rn)denotesthesetofallregulatedfunctionsf:(-∞,0]→Rn.

      Our main result is to derive the differentiability of solutions with respect to initial conditions for measure function differential equations with infinite delay.

      2 Preliminaries

      We start this section with a short summary of Kurzweil integral.

      Letδ:[a,b]→R+beafunction,andτbeapartitionofinterval[a,b]withdivisionpointsa=α0≤α1≤…≤αk=b.Thetagsτi∈[αi-1,αi]iscalledδ-fineif[αi-1,αi]?[τi-δ(τi),τi+δ(τi)],i=1,2,…,k.

      Definition2.1[2]Amatrix-valuedfunctionF:[a,b]×[a,b]→Rn×mis called Kurzweil integrable on [a,b], if there is a matrixI∈Rn×msuchthatforeveryε>0,thereisagaugeδon[a,b]suchthat

      AnimportantspecialcaseistheKurzweil-Stieltjesintegralofafunctionf:[a,b]→Rnwith respect to a functiong:[a,b]→R, which corresponds to the choice

      Definition 2.2[1]G?Rn× R,(x,t)∈G, a functionx:[a,b]→Bis called a solution of the generalized ordinary differential equation

      (7)

      whenever

      Definition 2.3[8]LetXbe a Banach space. Consider a setO?X. A functionF:O×[t0,t0+σ] →Xbelongs to the classF(O × [t0,t0+σ] ,h,k),ifthefollowingconditionsaresatisfied:

      (F1)Thereexistsanondecreasingfunctionh:[t0,t0+σ]→R such thatF:O×[t0,t0+σ] →Xsatisfies

      for everyx∈Oands1,s2∈[t0,t0+σ],

      (F2) There exists a nondecreasing functionk:[t0,t0+σ]→RsuchthatF:O×[t0,t0+σ] →Xsatisfies

      (9)

      foreveryx,y∈Oands1,s2∈[t0,t0+σ],

      Lemma 2.2[2]LetU:[a,b]×[a,b]→Rn×nbeaKurzweilintegrablefunction,assumethereexistsapairoffunctionsf:[a,b]→Rnandg:[a,b]→Rsuchthatfisregulated, gisnondecreasing,and

      (10)

      Then

      Lemma2.3[9]AssumethatU:[a,b]×[a,b]→Rn×mis Kurzweil integrable andu:[a,b]→Rn×misitsprimitive,i.e.,

      IfUisregulatedinthesecondvariable,thenuisregulatedandsatisfies

      Moreover,ifthereexistsanondecreasingfunctionh:[a,b]→R such that

      then

      Lemma 2.4[9]Leth:[a,b]→[0,+∞) be a nondecreasing left-continuous function,k>0,l≥0. If thatψ:[a,b]→[0,+∞) is bounded and satisfies

      thenψ(ξ)≤kel(h(ξ)-h(a))for everyξ∈[a,b].

      Lemma 2.5[2]Assume thatF:[a,b]×[a,b]→Rn×nsatisfies(8).Lety,z :[a,b]→Rnbe a pair of functions such that

      Then,zis regulated on [a,b].

      Lemma 2.6[2]Assume thatF:[a,b]×[a,b]→Rn×nisKurzweilintegrableandsatisfies(8)withaleft-continuousfunctionh.Thenforeveryz0∈Rn, the initial value problem

      (12)

      has a unique solutionz:[a,b]→Rn.

      Toestablishthecorrespondencebetweenmeasurefunctionaldifferentialequationsandgeneralizedordinarydifferentialequations,wealsoneedasuitablespaceHaofregulatedfunctionsdefinedon(-∞,a],wherea∈R, the next lemma shows that the spacesHainherit all important properties ofH0.

      Lemma 2.7[8]IfH0?G((-∞,0],Rn)isaspacesatisfyingconditions1)-6),thenthefollowingstatementsaretrueforeverya∈R:

      1)Hais complete; 2) Ifx∈Haandt≤a, thenxt∈H0; 3) Ift≤aandx∈Ha, then ‖x(t)‖≤k1(t-a)‖x‖; 4) Ifσ> 0 andx∈Ha+σis a function whose support is contained in [a,a+σ], then

      5) Ifx∈Ha+σandt≤a+σ, then ‖xt‖≤k3(t-a-σ)‖x‖; 6) Ifx∈Ha+σ, then the functiont|→‖xt‖is regulated on (-∞,a+σ].

      Theorem 2.8[8]Assume thatOis a subset ofHt0+σhaving the prolongation property fort≥t0,P={xt:x∈O,t∈[t0,t0+σ]},?∈P,g:[t0,t0+σ]→Risanondecreasingfunction, f:P×[t0,t0+σ]→Rnsatisfies conditions (A), (B), (C), andF:O×[t0,t0+σ]→G((-∞,t0+σ],Rn)givenby(13)hasvaluesinHa+σ.Ify∈Oisasolutionofthemeasurefunctionaldifferentialequation

      then the functionx:[t0,t0+σ]→Ogiven by

      is a solution of the generalized ordinary differential equation

      Wherextakes values inO, andF:O×[t0,t0+σ]→G((-∞,t0+σ],Rn)isgivenby

      (13)

      for everyx∈Oandt∈[t0,t0+σ].

      Proof The statement follows easily from Theorem 3.6 in [8]

      3 Main result

      Now, we discuss the differentiability theorem of solutions with respect to initial conditions for equation (5).

      Theorem 3.1 Letf:P×[t0,t0+σ]→RnbeacontinuousfunctionwhosederivativefxexistsandiscontinuousonP×[t0,t0+σ],andsatisfiestheaforementionedconditions(A)-(C),whereP={xt:x∈O, t∈[t0, t0+σ]}? H0,andH0? G((-∞,0],Rn) be a Banach space satisfying the aforementioned conditions (H1)-(H6),t0∈{R},σ>0, O? Ht0+σ.Ifg : [t0,t0+σ]→R is a nondecreasing function andλ0∈Rl,σ>0,Λ={λ∈Rl; ‖λ-λ0‖<σ},x0:Λ→O× [t0,t0+σ] for everyλ∈Λ, the initial value problem of the measure functional differential equations with infinite delay (5) is equivalent to the initial value problem

      (14)

      then (14) has a solution defined on [t0,t0+σ]. Letx(t,λ) be the value of that solution att∈[t0,t0+σ].

      Moreover, let the following conditions be satisfied:

      1) For every fixedt∈[t0,t0+σ], the functionx|→F(x,t) is continuously differentiable onO× [t0,t0+σ].

      2) The functionx0is differentiable atλ0.

      Then the functionλ|→x(t,λ) is differentiable atλ0, uniformly for allt∈[t0,t0+σ]. Moreover, its derivativeZ(t)=xλ(t,λ0),t∈[t0,t0+σ] is the unique solution of the generalized differential equation

      (15)

      Proof Our proof is based on the idea from [2].

      According to the assumptions, there exist positive constantsA1,A2such that

      for everyx,y∈O,t∈[t0,t0+σ], andt0≤t1

      for everyx∈O, the fourth statement of Lemma 2.7 implies

      where

      by the fifth statement of Lemma 2.7. The last expression is smaller than or equal to

      where

      i.e.,Fx∈F(O × [t0,t0+σ],h,k).

      BecauseofO × [t0,t0+σ]isclosed,accordingtothemean-valuetheoremforvectorvaluedfunctionandFx∈F(O× [t0,t0+σ],h,k)

      (16)

      By the assumptions, we have

      According to the Lemma 2.3, every solutionxis a regulated and left-continuous function on [t0,t0+σ]. If Δλ∈Rlissuchthat‖Δλ‖<σ,then

      where

      By(16),weobtain

      andbyusingLemma2.2,foreverys∈[t0,t0+σ],weobtain

      Consequently,byusingLemma2.4,wehave

      SowecanseethatwhenΔλ→0, x(s,λ0+Δλ)→x(s,λ0)uniformlyforalls∈[t0,t0+σ].

      LetW(τ,t)=Fx(x(τ,λ0),t).BecauseFx∈F(O× [t0,t0+σ] ,h,k),W(τ,t) satisfies (16), by Lemma 2.6, (15) has a unique solutionZ:[t0,t0+σ]→Rn× n.ByusingLemma2.5,thesolutionisregulated.SothereexistsaconstantN>0suchthat‖Z(t)‖≤N,t∈[t0,t0+σ].ForeveryΔλ∈Rlsuch that ‖Δλ‖<σ, let

      Next, we will prove that if Δλ→0, thenφ(r,Δλ)→0 uniformly forr∈[t0,t0+σ].

      Letε>0 be given, there exists aδ>0 such that if Δλ∈Rland‖Δλ‖<σ,then

      and

      It is obvious that

      where

      Thus,

      Because of the functionx|→F(x,t) is continuously differentiable onO×[t0,t0+σ] and the definition of theφ(r,Δλ), so for any givenε>0,t,s∈[t0,t0+σ], we have

      and thus (usingFx∈F(O × [t0,t0+σ] ,h,k) )

      Consequently

      Finally,Gronwall’sinequalityleadstotheestimate

      Sinceε→0+,wehavethatifΔλ→0,thenφ(r,Δλ)→0uniformlyforanyr∈[t0,t0+σ].

      [1] KEllEY W G, PETERSON A C. The Theory of Differential Equations[M]. 2nd ed. New York:Springer-Verlag,2010.

      [3] LAKSHMIKANTHAM V, BAINOV D D, SIMEONOV P S. Theory of Impulsive Differential Equations[M]. Singapore:World Scientific,1989.

      [4] HILSHCER R, ZEIDAN V, KRATZ W. Differentiation of solutions of dynamic equations on time scales with respect to parameters[J]. Adv Dyn Syst Appl,2009,4(1):35-54.

      [5] SCHMAEDEKE W W. Optimal control theory for nonlinear vector differential equations containing measures[J]. SIAM Control,1965,3(2):231-280.

      [6] DAS P C, SHARMA R R. On optimal comtrols for measure delay-differential equations[J]. SIAM Control,1971,9(1):43-61.

      [7] PURNA C D, RISHI R S. Existence and stability of measure differential equations[J]. Czechoslovak Math J,1972,22(97):145-158.

      [12] VERHUST F. Nonlinear Differential Equations and Dynamical Systems[M]. 2nd ed. New York:Springer-Verlag,2000.

      [13] KURZWEIL J. Generalized ordinary differential equations and continuous dependence on a parameter[J]. Czechoslovak Math,1957,82(7):418-449.

      [14] 朱雯雯,徐有基. 帶非線性邊界條件的一階微分方程多個(gè)正解的存在性[J]. 四川師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,39(2):226-230.

      [15] KURZWEIL J. Generalized ordinary differential equations[J]. Czechoslovak Math J,1958,83(8):360-389.

      無(wú)限滯后測(cè)度泛函微分方程的解關(guān)于初值條件的可微性

      李寶麟, 王保弟

      (西北師范大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院, 甘肅 蘭州 730070)

      利用廣義常微分方程的解關(guān)于初值條件的可微性,考慮可以轉(zhuǎn)化為廣義常微分方程的無(wú)限時(shí)滯測(cè)度泛函微分方程,得到這類方程的解關(guān)于初值條件的可微性.

      測(cè)度泛函微分方程; 解的可微性; Kurzweil 積分; 廣義常微分方程

      O175.12

      A

      1001-8395(2017)01-0061-07

      2016-07-01

      國(guó)家自然科學(xué)基金(11061031)

      李寶麟(1963—)男,教授,主要從事常微分方程和拓?fù)鋭?dòng)力系統(tǒng)的研究,E-mail:libl@nwnu.edu.cn

      Foundation Items:This work is supported by National Natural Science Foundation of China (No.11061031)

      10.3969/j.issn.1001-8395.2017.01.010

      (編輯 陶志寧)

      Received date:2016-07-01

      2010 MSC:26A39; 30G30; 34A20; 34G10

      猜你喜歡
      西北師范大學(xué)初值國(guó)家自然科學(xué)基金
      西北師范大學(xué)作品
      大眾文藝(2023年9期)2023-05-17 23:55:52
      西北師范大學(xué)美術(shù)學(xué)院作品選登
      具非定常數(shù)初值的全變差方程解的漸近性
      常見(jiàn)基金項(xiàng)目的英文名稱(一)
      西北師范大學(xué)美術(shù)學(xué)院作品選登
      西北師范大學(xué)美術(shù)學(xué)院作品選登
      一種適用于平動(dòng)點(diǎn)周期軌道初值計(jì)算的簡(jiǎn)化路徑搜索修正法
      三維擬線性波方程的小初值光滑解
      我校喜獲五項(xiàng)2018年度國(guó)家自然科學(xué)基金項(xiàng)目立項(xiàng)
      2017 年新項(xiàng)目
      施甸县| 云安县| 彰化市| 司法| 临潭县| 二连浩特市| 永川市| 大竹县| 乃东县| 延吉市| 吕梁市| 东丰县| 辽阳市| 桦甸市| 双鸭山市| 鸡西市| 原平市| 北辰区| 浦城县| 虹口区| 南通市| 密云县| 曲松县| 潞西市| 商洛市| 喀什市| 厦门市| 普宁市| 合江县| 鄂托克旗| 曲周县| 福州市| 巴楚县| 浙江省| 精河县| 万宁市| 江西省| 安康市| 利川市| 驻马店市| 朝阳市|