黃蓓 吳惠涓 錢禛穎 王繼軍 趙忠新
·綜述·
診斷性經(jīng)顱磁刺激研究進(jìn)展
黃蓓 吳惠涓 錢禛穎 王繼軍 趙忠新
經(jīng)顱磁刺激是一種無(wú)創(chuàng)性神經(jīng)電生理學(xué)技術(shù),經(jīng)顱磁刺激運(yùn)動(dòng)誘發(fā)電位已廣泛應(yīng)用于運(yùn)動(dòng)皮質(zhì)興奮性與皮質(zhì)延髓束、皮質(zhì)脊髓束傳導(dǎo)功能的評(píng)價(jià)。近年隨著對(duì)磁刺激原理的深入了解和刺激線圈、刺激模式的不斷多樣化,經(jīng)顱磁刺激在神經(jīng)病學(xué)臨床診斷中的應(yīng)用不斷拓展,逐漸形成更加科學(xué)和標(biāo)準(zhǔn)化的運(yùn)動(dòng)誘發(fā)電位操作流程。本文擬對(duì)診斷性經(jīng)顱磁刺激常規(guī)刺激模式研究進(jìn)展、特殊模式刺激方案,以及經(jīng)顱磁刺激與腦電圖、fMRI的聯(lián)合應(yīng)用進(jìn)行綜述。
經(jīng)顱磁刺激;誘發(fā)電位,運(yùn)動(dòng);綜述
(Email:huijuan.w@163.com)
This study was supported by"Twelfth Five?Year"Major Foundation by the Ministry of Science and Technology of China(No.2011ZXJ09202-015).
經(jīng)顱磁刺激(TMS)系利用瞬變的脈沖磁場(chǎng)穿過(guò)顱骨,改變大腦皮質(zhì)神經(jīng)細(xì)胞膜電位,產(chǎn)生感應(yīng)電流,從而影響腦組織代謝和神經(jīng)電活動(dòng)。若刺激運(yùn)動(dòng)皮質(zhì),誘發(fā)并記錄到肌肉收縮反應(yīng),稱為運(yùn)動(dòng)誘發(fā)電位(MEP)[1]。該項(xiàng)技術(shù)最早于1985年由Barker等[2]發(fā)表于Lancet。經(jīng)顱磁刺激對(duì)運(yùn)動(dòng)皮質(zhì)的非侵入性磁刺激具有安全、無(wú)創(chuàng)和無(wú)痛特點(diǎn),使其成為評(píng)價(jià)皮質(zhì)脊髓通路和皮質(zhì)延髓通路功能整合的常規(guī)電生理學(xué)檢查方法。近年來(lái),經(jīng)顱磁刺激不僅用于大腦皮質(zhì),而且用于幾乎所有傳統(tǒng)電刺激部位,如腦干、神經(jīng)根和周圍神經(jīng)。通過(guò)改變刺激強(qiáng)度、刺激模式和靶肌肉狀態(tài),或者與電刺激、腦電圖(EEG)、肌電圖(EMG)和fMRI檢查相結(jié)合,極大地拓展其在基礎(chǔ)研究和臨床診斷與預(yù)后判斷等領(lǐng)域的應(yīng)用。
經(jīng)顱磁刺激器通過(guò)電磁轉(zhuǎn)換,使刺激線圈產(chǎn)生時(shí)變感應(yīng)磁場(chǎng),感應(yīng)磁場(chǎng)可以無(wú)衰減地在大腦淺層皮質(zhì)神經(jīng)元產(chǎn)生感應(yīng)電流[3],進(jìn)而影響神經(jīng)細(xì)胞膜電位。刺激線圈形狀和大小決定磁場(chǎng)和感應(yīng)電場(chǎng)分布,即刺激深度和范圍(聚焦性)。通常線圈直徑越大、刺激深度越深、聚焦性越差。臨床較為常用的是圓形、“8”字形和蝶形線圈,圓形線圈刺激面積大、刺激作用強(qiáng),與顱骨表面接觸時(shí)線圈與頭皮相切點(diǎn)刺激強(qiáng)度最大,可以用于誘發(fā)運(yùn)動(dòng)誘發(fā)電位或刺激周圍神經(jīng);“8”字形線圈刺激深度較淺,但在“8”字形交叉處磁感應(yīng)強(qiáng)度較大、聚焦性較好,可以刺激固定的大腦區(qū)域,故臨床應(yīng)用廣泛。
由于傳統(tǒng)刺激線圈的場(chǎng)強(qiáng)隨刺激部位深度的增加而迅速衰減,故經(jīng)顱磁刺激僅局限于大腦皮質(zhì)下2~3 cm層面。刺激腦深部組織如內(nèi)側(cè)額葉、下扣帶回或脊髓圓錐時(shí),需特殊設(shè)計(jì)的深部刺激線圈,例如,2個(gè)直徑110 mm的圓形線圈呈100°組成的雙錐形線圈(double?cone coil),可以刺激支配盆底肌和下肢肌肉的腦深部皮質(zhì)[4];Hesed線圈家族導(dǎo)線在三維空間內(nèi)呈直角彎折,使磁場(chǎng)向量在刺激部位疊加,可以有效刺激腦深部組織[5]。
經(jīng)顱磁刺激模式可以分為單脈沖經(jīng)顱磁刺激(spTMS)、成對(duì)脈沖經(jīng)顱磁刺激(pp TMS)和重復(fù)經(jīng)顱磁刺激(rTMS)三種類型[6?7]。單脈沖經(jīng)顱磁刺激多用于運(yùn)動(dòng)誘發(fā)電位檢測(cè),包括運(yùn)動(dòng)閾值(MT)、波幅和潛伏期、皮質(zhì)安靜期(CSP)、中樞運(yùn)動(dòng)傳導(dǎo)時(shí)間(CMCT)和運(yùn)動(dòng)誘發(fā)電位募集曲線等,為疾病相關(guān)運(yùn)動(dòng)皮質(zhì)興奮性改變和皮質(zhì)脊髓束輸出改變提供重要證據(jù)[8]。
1.運(yùn)動(dòng)閾值運(yùn)動(dòng)閾值系指靶肌肉記錄到最小運(yùn)動(dòng)誘發(fā)電位波幅時(shí)的最小刺激強(qiáng)度,反映運(yùn)動(dòng)皮質(zhì)錐體細(xì)胞軸突膜電位興奮性,通常以最大輸出強(qiáng)度(MSO)百分比表示。可于雙手和前臂肌肉記錄到最低運(yùn)動(dòng)閾值,而軀干、下肢和骨盆肌群的運(yùn)動(dòng)閾值依次增高[8]。靜息運(yùn)動(dòng)閾值(RMT)于靶肌肉完全放松狀態(tài)下測(cè)得,根據(jù)2012年國(guó)際臨床神經(jīng)生理學(xué)聯(lián)合會(huì)(IFCN)指南[9],推薦改良相對(duì)頻率法:自閾下刺激開始,逐漸升高。測(cè)定靜息運(yùn)動(dòng)閾值時(shí),首次檢測(cè)為35%最大輸出強(qiáng)度,再逐次增加5%直至經(jīng)顱磁刺激能夠持續(xù)引出峰?峰波幅>50 μV的運(yùn)動(dòng)誘發(fā)電位,然后逐次降低1%直至10次刺激中出現(xiàn)少于5次有效運(yùn)動(dòng)誘發(fā)電位,這一刺激強(qiáng)度增加1%即定義為靜息運(yùn)動(dòng)閾值。由于皮質(zhì)和脊髓運(yùn)動(dòng)神經(jīng)元興奮性存在內(nèi)在波動(dòng)性,同一個(gè)體的運(yùn)動(dòng)誘發(fā)電位波幅可能存在差異,因此檢測(cè)時(shí)應(yīng)盡量保持檢測(cè)技術(shù)和生理狀態(tài)的一致性,如線圈位置和方向、運(yùn)動(dòng)狀態(tài)(靶肌肉收縮狀態(tài))、個(gè)體覺醒和環(huán)境噪音等,以減少運(yùn)動(dòng)閾值測(cè)量誤差。運(yùn)動(dòng)閾值的準(zhǔn)確性還與每種強(qiáng)度的刺激次數(shù)有關(guān),刺激次數(shù)從10次調(diào)整至20次時(shí),可以顯著提高測(cè)量結(jié)果的準(zhǔn)確性[10]。閉塞性腦血管病患者患側(cè)皮質(zhì)靜息運(yùn)動(dòng)閾值高于健側(cè),而手術(shù)重建患側(cè)血運(yùn)后3個(gè)月,雙側(cè)皮質(zhì)靜息運(yùn)動(dòng)閾值趨于一致[11]。腦卒中康復(fù)期健側(cè)運(yùn)動(dòng)皮質(zhì)興奮性過(guò)高可以增強(qiáng)患側(cè)運(yùn)動(dòng)皮質(zhì)抑制性傳入沖動(dòng),予重復(fù)經(jīng)顱磁刺激降低健側(cè)皮質(zhì)興奮性后,促進(jìn)腦卒中患者康復(fù)[12]。
2.波幅和潛伏期波幅是以適宜刺激強(qiáng)度作用于運(yùn)動(dòng)皮質(zhì),引起對(duì)側(cè)靶肌肉收縮,于靶肌肉表面記錄到的電信號(hào)變化。單個(gè)運(yùn)動(dòng)誘發(fā)電位通常以峰?峰波幅表示,也可以調(diào)整后的運(yùn)動(dòng)誘發(fā)電位曲線下面積表示。(1)運(yùn)動(dòng)誘發(fā)電位與復(fù)合肌肉動(dòng)作電位(CMAP):復(fù)合肌肉動(dòng)作電位由電刺激周圍神經(jīng)誘發(fā),與經(jīng)顱磁刺激誘發(fā)的運(yùn)動(dòng)反應(yīng)具有不同的神經(jīng)電生理學(xué)表現(xiàn)。予初級(jí)皮質(zhì)運(yùn)動(dòng)區(qū)(M1)單脈沖經(jīng)顱磁刺激可以引起一系列沿皮質(zhì)脊髓束傳導(dǎo)的下行沖動(dòng)[13],由于脊髓運(yùn)動(dòng)神經(jīng)元激活閾值不同,潛伏期亦存在輕微差異。因此,相較于復(fù)合肌肉動(dòng)作電位,運(yùn)動(dòng)誘發(fā)電位同步性降低、時(shí)限延長(zhǎng)、波幅降低[2,13]。然而,予皮質(zhì)超大刺激時(shí),經(jīng)顱磁刺激引起的運(yùn)動(dòng)誘發(fā)電位波幅可以高于復(fù)合肌肉動(dòng)作電位,這是由于在強(qiáng)烈的皮質(zhì)脊髓束傳導(dǎo)的下行沖動(dòng)下發(fā)生運(yùn)動(dòng)神經(jīng)元運(yùn)動(dòng)電位疊加。(2)三重刺激技術(shù)(TST):三重刺激技術(shù)由Magistris等[14]于1998年首次提出,依次為運(yùn)動(dòng)皮質(zhì)的經(jīng)顱磁刺激、對(duì)側(cè)腕部的超強(qiáng)電刺激和對(duì)側(cè)Erb點(diǎn)的超強(qiáng)電刺激,通過(guò)控制3次刺激間隔(ISI)形成2次對(duì)沖。最后記錄波形為對(duì)側(cè)腕部復(fù)合肌肉動(dòng)作電位和Erb點(diǎn)下行沖動(dòng)在對(duì)沖后形成的運(yùn)動(dòng)誘發(fā)電位測(cè)試波,再進(jìn)行外周三重刺激(Erb點(diǎn)?腕部?Erb點(diǎn))以獲得運(yùn)動(dòng)誘發(fā)電位對(duì)照波。生理狀態(tài)下,運(yùn)動(dòng)誘發(fā)電位測(cè)試波/對(duì)照波比值接近1,而運(yùn)動(dòng)傳導(dǎo)通路受損時(shí),該比值減小。由于三重刺激技術(shù)個(gè)體反應(yīng)差異較小,臨床應(yīng)用價(jià)值高于運(yùn)動(dòng)誘發(fā)電位波幅和潛伏期,可用于多發(fā)性硬化(MS)的診斷與長(zhǎng)期隨訪研究[15]、吉蘭?巴雷綜合征(GBS)近端傳導(dǎo)阻滯的診斷和靜脈注射免疫球蛋白(IVIg)的療效評(píng)價(jià)等[16]。(3)刺激?反應(yīng)曲線:刺激?反應(yīng)曲線反映同一個(gè)體、相同狀態(tài)下不同強(qiáng)度經(jīng)顱磁刺激與運(yùn)動(dòng)誘發(fā)電位波幅的關(guān)聯(lián)性。刺激?反應(yīng)曲線并非靜止,而是隨生理狀態(tài)的改變而迅速改變,靶肌肉自放松狀態(tài)至緊張性收縮,可以引起刺激?反應(yīng)曲線左移(閾值減?。?、斜率增大和最大波幅增高,進(jìn)行一定強(qiáng)度的運(yùn)動(dòng)訓(xùn)練后,主動(dòng)肌刺激?反應(yīng)曲線斜率增大、拮抗肌斜率減?。?7]。刺激?反應(yīng)曲線也可以反映出運(yùn)動(dòng)傳導(dǎo)通路損傷,如疾病相關(guān)皮質(zhì)脊髓束損傷、傳導(dǎo)阻滯或脫髓鞘等均可導(dǎo)致刺激?反應(yīng)曲線斜率減小和最大波幅降低。有文獻(xiàn)報(bào)道,腦卒中[18]和肌萎縮側(cè)索硬化癥(ALS)[19]患者均存在異常的刺激?反應(yīng)曲線,其中,肌萎縮側(cè)索硬化癥的刺激?反應(yīng)曲線提示皮質(zhì)脊髓束興奮性增高,尤其是疾病早期階段。此外,刺激?反應(yīng)曲線的敏感性較高,一項(xiàng)比較正常人群服用勞拉西泮和拉莫三嗪等中樞抑制性藥物后皮質(zhì)興奮性變化的研究結(jié)果顯示,與皮質(zhì)內(nèi)抑制、皮質(zhì)內(nèi)易化和運(yùn)動(dòng)閾值相比,刺激?反應(yīng)曲線改變更早、更顯著[20]。
3.中樞運(yùn)動(dòng)傳導(dǎo)時(shí)間中樞運(yùn)動(dòng)傳導(dǎo)時(shí)間反映初級(jí)運(yùn)動(dòng)皮質(zhì)至脊髓前角α運(yùn)動(dòng)神經(jīng)元的傳導(dǎo)時(shí)間,通常以運(yùn)動(dòng)誘發(fā)電位潛伏期與周圍運(yùn)動(dòng)傳導(dǎo)時(shí)間(PMCT)差值表示。中樞運(yùn)動(dòng)傳導(dǎo)時(shí)間和運(yùn)動(dòng)誘發(fā)電位潛伏期與中樞神經(jīng)系統(tǒng)尤其是皮質(zhì)脊髓束成熟度有關(guān)。新生兒運(yùn)動(dòng)誘發(fā)電位潛伏期明顯長(zhǎng)于成人,至3歲時(shí)四肢遠(yuǎn)端肌肉周圍運(yùn)動(dòng)傳導(dǎo)時(shí)間已接近成人水平,直至10歲時(shí)中樞運(yùn)動(dòng)傳導(dǎo)時(shí)間方與成人相同[21]。中樞運(yùn)動(dòng)傳導(dǎo)時(shí)間與性別、年齡、側(cè)別無(wú)或僅有微弱相關(guān)性,但下肢周圍運(yùn)動(dòng)傳導(dǎo)時(shí)間與身高具有明顯相關(guān)性[9,17]。
4.成對(duì)關(guān)聯(lián)刺激成對(duì)刺激可以用于皮質(zhì)內(nèi)抑制和皮質(zhì)內(nèi)易化的評(píng)價(jià),包括1個(gè)條件刺激(CS)和1個(gè)測(cè)試刺激(TS)。不同的檢測(cè)指標(biāo),條件刺激和測(cè)試刺激強(qiáng)度和刺激間隔也不盡一致。通過(guò)比較予或不予條件刺激時(shí)測(cè)試刺激引起的運(yùn)動(dòng)誘發(fā)電位波幅或閾值的差異,檢測(cè)皮質(zhì)內(nèi)或皮質(zhì)間抑制或易化現(xiàn)象。成對(duì)關(guān)聯(lián)刺激(PAS)的測(cè)試刺激是經(jīng)顱磁刺激,條件刺激是周圍神經(jīng)電刺激,通常于靶肌肉放松狀態(tài)下進(jìn)行。周圍神經(jīng)電刺激的傳入信息可改變對(duì)側(cè)感覺運(yùn)動(dòng)皮質(zhì)神經(jīng)元興奮性[4],刺激間隔為25 ms時(shí)可見較強(qiáng)的運(yùn)動(dòng)誘發(fā)電位易化作用,稱為PAS25。成對(duì)關(guān)聯(lián)刺激引起的神經(jīng)元之間的聯(lián)系改變代表峰值時(shí)間相關(guān)可塑性形成,刺激間隔的差異可以導(dǎo)致突觸長(zhǎng)時(shí)程增強(qiáng)(LTP)或長(zhǎng)時(shí)程抑制(LTD)[22],與記憶和學(xué)習(xí)相關(guān)長(zhǎng)時(shí)程突觸可塑性改變相似[23]。神經(jīng)變性病如小腦萎縮患者初級(jí)運(yùn)動(dòng)皮質(zhì)PAS25誘發(fā)的長(zhǎng)時(shí)程增強(qiáng)選擇性缺失,且與小腦萎縮程度相關(guān),提示此類患者感覺運(yùn)動(dòng)皮質(zhì)可塑性受損,小腦對(duì)感覺運(yùn)動(dòng)皮質(zhì)的投射參與皮質(zhì)認(rèn)知加工過(guò)程[24];帕金森病(PD)患者皮質(zhì)可塑性增強(qiáng)可以推遲臨床癥狀的出現(xiàn)時(shí)間,且隨臨床癥狀的加重,皮質(zhì)可塑性逐漸減弱[25]。
1.皮質(zhì)?腦干和腦干?脊髓根傳導(dǎo)時(shí)間腦干或枕骨大孔水平也可予電刺激或磁刺激,將“8”字形線圈中心置于枕骨隆突或枕骨隆突和同側(cè)乳突中點(diǎn),強(qiáng)大的感應(yīng)電流集中于枕骨大孔水平,可以激活皮質(zhì)脊髓束的錐體交叉[26],但與皮質(zhì)刺激引起的多個(gè)下行沖動(dòng)相反,其引起的是單個(gè)下行沖動(dòng)[7]。通過(guò)記錄腦干運(yùn)動(dòng)誘發(fā)電位潛伏期,測(cè)定皮質(zhì)?腦干和腦干?脊髓根傳導(dǎo)時(shí)間,不僅可以研究脊髓興奮性改變,還有助于定位皮質(zhì)脊髓束損害是在錐體交叉之上還是之下。但此種刺激模式也存在固有缺點(diǎn),如皮質(zhì)脊髓束嚴(yán)重?fù)p害患者,可能激活慢傳導(dǎo)下行纖維,也可能完全無(wú)法引出運(yùn)動(dòng)誘發(fā)電位,此時(shí),可以通過(guò)預(yù)先予以腦干成對(duì)刺激使脊髓運(yùn)動(dòng)神經(jīng)元形成短暫性興奮性突觸后電位(EPSP),從而測(cè)定準(zhǔn)確的運(yùn)動(dòng)誘發(fā)電位潛伏期[27]。
2.皮質(zhì)?圓錐和馬尾傳導(dǎo)時(shí)間普通線圈刺激強(qiáng)度和深度難以有效激活脊髓圓錐,2009年Matsumoto等[28]設(shè)計(jì)一種直徑20 cm的超大線圈,稱為穿腰骶增強(qiáng)磁刺激線圈,可以引起足夠的感應(yīng)電流以誘發(fā)腿部肌肉運(yùn)動(dòng)誘發(fā)電位。皮質(zhì)刺激與脊髓圓錐刺激引起的運(yùn)動(dòng)誘發(fā)電位潛伏期差值即為皮質(zhì)?圓錐傳導(dǎo)時(shí)間。嚴(yán)重周圍神經(jīng)病變患者由于馬尾傳導(dǎo)時(shí)間延長(zhǎng),可表現(xiàn)為中樞運(yùn)動(dòng)傳導(dǎo)時(shí)間延長(zhǎng)而皮質(zhì)?圓錐傳導(dǎo)時(shí)間不變[29]。然而,由于予以圓錐超大線圈刺激較為困難,故限制此種刺激模式對(duì)馬尾傳導(dǎo)阻滯能力的探測(cè)及其臨床應(yīng)用。
3.特殊肌肉皮質(zhì)運(yùn)動(dòng)傳導(dǎo)檢測(cè)(1)面?。好嫔窠?jīng)由顱內(nèi)和顱外兩部分組成,傳統(tǒng)周圍神經(jīng)電刺激僅能激活顱外部分,而運(yùn)動(dòng)誘發(fā)電位聯(lián)合周圍神經(jīng)電刺激可以分析面神經(jīng)叢皮質(zhì)至肌肉的傳導(dǎo)情況。刺激方式主要分為三部分,其一為顱外刺激,于乳突前方或下方予以超強(qiáng)電刺激。其二為顱內(nèi)髓外刺激,將磁刺激線圈置于同側(cè)頂枕部且線圈下半部分覆蓋乳突,其有效刺激位點(diǎn)為面神經(jīng)管內(nèi)段,這是由于面神經(jīng)進(jìn)入顳骨巖部時(shí),周圍組織導(dǎo)電率明顯改變,故這部分面神經(jīng)對(duì)感應(yīng)電流最為敏感[30]。其三為皮質(zhì)刺激,刺激初級(jí)運(yùn)動(dòng)皮質(zhì)面區(qū)(M1?FACE),從而獲得面部肌肉運(yùn)動(dòng)誘發(fā)電位。通過(guò)上述三部分刺激,可以分別獲得皮質(zhì)至面神經(jīng)管、面神經(jīng)管至莖乳孔遠(yuǎn)端和面神經(jīng)顱外部分傳導(dǎo)時(shí)間。通常情況下,皮質(zhì)至面神經(jīng)管傳導(dǎo)時(shí)間可以作為面神經(jīng)中樞運(yùn)動(dòng)傳導(dǎo)時(shí)間,約為10 ms。面部口輪匝肌、提上唇肌、頰肌和鼻部肌肉均適宜作為測(cè)定運(yùn)動(dòng)誘發(fā)電位潛伏期的靶肌肉,并可記錄到清晰的起始負(fù)波,如以口輪匝肌作為靶肌肉,記錄電極置于口角外側(cè)1 cm處、參考電極置于記錄電極外側(cè)2 cm處、接地電極置于前額部或顴弓[8]。值得注意的是,面神經(jīng)檢測(cè)存在較多干擾,如眨眼或刺激三叉神經(jīng)引起的其他肌肉收縮等,是未來(lái)檢測(cè)技術(shù)改革的方向。(2)軀干肌群:咽喉肌、呼吸肌和盆底肌也可以作為經(jīng)顱磁刺激的靶肌肉,用于腦干或高位頸髓損傷患者呼吸功能和吞咽功能的評(píng)價(jià)[8]。但是由于檢測(cè)時(shí)靶肌肉需維持較高張力,故增加檢測(cè)的不穩(wěn)定性,同時(shí),表面電極難以記錄到明顯誘發(fā)電位,常需借助有創(chuàng)性針極電極??傊瑢?duì)軀干肌群進(jìn)行磁刺激存在較大困難,相關(guān)研究較少,目前尚未形成公認(rèn)的模式化刺激方案。
經(jīng)顱磁刺激還可與腦電圖、fMRI、PET和功能性近紅外光譜成像技術(shù)(fNIRS)等聯(lián)合應(yīng)用,研究不同腦區(qū)功能及其相互聯(lián)系[31]。
2.經(jīng)顱磁刺激聯(lián)合fMRI實(shí)時(shí)交互式經(jīng)顱磁刺激功能磁共振成像(TMS?fMRI)將經(jīng)顱磁刺激與fMRI相結(jié)合,可以觀察磁刺激時(shí)腦神經(jīng)網(wǎng)絡(luò)協(xié)調(diào)活動(dòng)的變化。Bohning等[36]的技術(shù)革新可以使經(jīng)顱磁刺激與MRI磁場(chǎng)間的相互干擾明顯減弱[37],該項(xiàng)技術(shù)逐漸應(yīng)用于臨床。經(jīng)顱磁刺激聯(lián)合fMRI可以為意識(shí)障礙患者意識(shí)水平提供客觀的生物學(xué)評(píng)價(jià),從而有助于臨床醫(yī)師判斷病情和選擇適宜的治療方案[38]。顱骨切開術(shù)中予以意識(shí)清醒患者直接皮質(zhì)電刺激(DCS)是定位皮質(zhì)功能區(qū)的“金標(biāo)準(zhǔn)”[39?40]。Ille等[41]研究顯示,術(shù)前采用重復(fù)經(jīng)顱磁刺激聯(lián)合fMRI定位語(yǔ)言功能區(qū),可以獲得高敏感性和高特異性的語(yǔ)言地圖。此外,由于該項(xiàng)技術(shù)的無(wú)創(chuàng)性,未來(lái)也可以作為長(zhǎng)期隨訪神經(jīng)外科手術(shù)術(shù)后皮質(zhì)功能區(qū)恢復(fù)的有效評(píng)價(jià)方法。
綜上所述,盡管經(jīng)顱磁刺激是一種較新的神經(jīng)電生理學(xué)技術(shù),但在評(píng)價(jià)運(yùn)動(dòng)皮質(zhì)通路快速傳導(dǎo)中的作用令人矚目,可以作為運(yùn)動(dòng)障礙性疾病早期診斷、鑒別診斷和預(yù)后判斷的重要輔助方法。近年來(lái)隨著經(jīng)顱磁刺激運(yùn)動(dòng)誘發(fā)電位技術(shù)的成熟,及其與腦電圖、fMRI和PET等的聯(lián)合應(yīng)用,使其在認(rèn)知科學(xué)領(lǐng)域和神經(jīng)網(wǎng)絡(luò)交互聯(lián)系中的作用逐漸突顯。診斷性經(jīng)顱磁刺激必將成為未來(lái)神經(jīng)科學(xué)臨床研究的重要方向之一。
[1]Dou ZL,Liao JH,Song WQ.Transcranial magnetic stimulation technique fundamental theory and clinical practice.Beijing: People's Medical Publishing House,2012:1?2[.竇祖林,廖家華,宋為群.經(jīng)顱磁刺激技術(shù)基礎(chǔ)與臨床應(yīng)用.北京:人民衛(wèi)生出版社,2012:1?2.]
[2]Barker AT,Jalinous R,Freeston IL.Non?invasive magnetic stimulation of human motor cortex.Lancet,1985,1:1106?1107.
[3]Wang ZD,Xu YL.Transcranial magnetic stimulation?motor evoked potential.Beijing Yi Xue,2009,31:228?230.[王子德,徐宇倫.經(jīng)顱磁刺激運(yùn)動(dòng)誘發(fā)電位.北京醫(yī)學(xué),2009,31:228?230.]
[4]Deng ZD,Lisanby SH,Peterchev AV.Coil design considerations for deep transcranial magnetic stimulation.Clin Neurophysiol,2014,125:1202?1212.
[5]Roth Y,Amir A,Levkovitz Y,Zangen A.Three?dimensional distribution of the electric field induced in the brain by transcranial magnetic stimulation using figure?8 and deep H?coils.J Clin Neurophysiol,2007,24:31?38.
[6]Ma R,Tao HY,Xue R.Clinical study on repetitive transcranial magnetic stimulation for the improvement of sleep quality in patients with depression.Zhongguo Xian Dai Shen Jing Ji Bing Za Zhi,2013,13:500?505[.馬蕊,陶華英,薛蓉.重復(fù)經(jīng)顱磁刺激對(duì)抑郁障礙患者睡眠質(zhì)量改善的臨床研究.中國(guó)現(xiàn)代神經(jīng)疾病雜志,2013,13:500?505.]
[7]Wang MW,Wang QD,Dong QY,Qiang J,Ma QY.Efficacy of repetitive transcranial magnetic stimulation treatment with MPTP Parkinson's disease mice.Zhongguo Xian Dai Shen Jing Ji Bing Za Zhi,2011,11:65?70.[王銘維,王全懂,董巧云,強(qiáng)靜,馬芹穎.重復(fù)經(jīng)顱磁刺激治療MPTP帕金森病模型小鼠的觀察.中國(guó)現(xiàn)代神經(jīng)疾病雜志,2011,11:65?70.]
[8]Rossini PM,Burke D,Chen R,Cohen LG,Daskalakis Z,Di Iorio R,Di Lazzaro V,Ferreri F,Fitzgerald PB,George MS, Hallett M,Lefaucheur JP,Langguth B,Matsumoto H,Miniussi C,Nitsche MA,Pascual?Leone A,Paulus W,Rossi S,Rothwell JC,Siebner HR,Ugawa Y,Walsh V,Ziemann U.Non?invasive electrical and magnetic stimulation of the brain,spinal cord, roots and peripheral nerves:basic principles and procedures for routine clinical and research application.An updated report from an I.F.C.N.Committee.Clin Neurophysiol,2015,126:1071?1107.
[9]Groppa S,Oliviero A,Eisen A,Quartarone A,Cohen LG,Mall V,Kaelin?Lang A,Mima T,Rossi S,Thickbroom GW,Rossini PM,Ziemann U,Valls?Solé J,Siebner HR.A practical guide to diagnostic transcranial magnetic stimulation:report of an IFCN committee.Clin Neurophysiol,2012,123:858?882.
[10]Awiszus F.On relative frequency estimation of transcranial magnetic stimulation motor threshold.Clin Neurophysiol,2012, 123:2319?2320.
[11]Jussen D,Zdunczyk A,Schmidt S,Rosler J,Buchert R, Julkunen P,Karhu J,Brandt S,Picht T,Vajkoczy P.Motor plasticity after extra?intracranial bypass surgery in occlusive cerebrovascular disease.Neurology,2016,87:27?35.
[12]Thickbroom GW,Cortes M,Rykman A,Volpe BT,Fregni F, Krebs HI,Pascual?Leone A,Edwards DJ.Stroke subtype and motor impairment influence contralesional excitability. Neurology,2015,85:517?520.
[13]Rossini PM,Caramia MD,Iani C,Desiato MT,Sciarretta G, Bernardi G.Magnetic transcranial stimulation in healthy humans:influence on the behavior of upper limb motor units. Brain Res,1995,676:314?324.
[14]Magistris MR,R?sler KM,Truffert A,Myers JP.Transcranial stimulation excites virtually all motor neurons supplying the target muscle:a demonstration and a method improving the study of motor evoked potentials.Brain,1998,121(Pt 3):437?450.
[15]Hofstadt?van Oy U,Keune PM,Muenssinger J,Hagenburger D, Oschmann P.Normative data and long?term test?retest reliability of the triple stimulation technique(TST)in multiple sclerosis.Clin Neurophysiol,2015,126:356?364.
[16]Attarian S,Franques J,Elisabeth J,Trébuchon A,Duclos Y, Wybrecht D,Verschueren A,Salort?Campana E,Pouget J. Triple?stimulation technique improves the diagnosis of chronic inflammatory demyelinating polyradiculoneuropathy.Muscle Nerve,2015,51:541?548.
[17]Suzuki M,Kirimoto H,Onish H,Yamada S,Tamaki H, Maruyama A,Yamamoto J.Reciprocal changes in input?output curves of motor evoked potentials while learning motor skills. Brain Res,2012,1473:114?123.
[18]Ward NS,Newton JM,Swayne OB,Lee L,Thompson AJ, Greenwood RJ,Rothwell JC,Frackowiak RS.Motor system activation after subcortical stroke depends on corticospinal system integrity.Brain,2006,129(Pt 3):809?819.
[19]Vucic S,Kiernan MC.Abnormalities in cortical and peripheral excitability in flail arm variant amyotrophic lateral sclerosis.J Neurol Neurosurg Psychiatry,2007,78:849?852.
[20]Boroojerdi B,Battaglia F,Muellbacher W,Cohen LG. Mechanisms influencing stimulus?response properties of the human corticospinal system.Clin Neurophysiol,2001,112:931?937.
[21]Muller K,Homberg V,Lenard HG.Magnetic stimulation of motor cortex and nerve roots in children:maturation of cortico?motoneuronal projections.Electroencephalogr Clin Neurophysiol,1991,81:63?70.
[22]Dan Y,Poo MM.Spike timing?dependent plasticity of neural circuits.Neuron,2004,44:23?30.
[23]Classen J,Wolters A,Stefan K,Wycislo M,Sandbrink F, Schmidt A,Kunesch E.Paired associative stimulation.Suppl Clin Neurophysiol,2004,57:563?569.
[24]Dubbioso R,Pellegrino G,Antenora A,De Michele G,Filla A, Santoro L,Manganelli F.The effect of cerebellar degeneration on human sensori?motor plasticity.Brain Stimul,2015,8:1144?1150.
[25]Kojovic M,Bologna M,Kassavetis P,Murase N,Palomar FJ, Berardelli A,Rothwell JC,Edwards MJ,Bhatia KP.Functional reorganization of sensorimotor cortex in early Parkinson disease. Neurology,2012,78:1441?1448.
[26]Shirota Y,Hanajima R,Hamada M,Terao Y,Matsumoto H, Tsutsumi R,Ohminami S,Furubayashi T,Ugawa Y.Inter?individual variation in the efficient stimulation site for magnetic brainstem stimulation.Clin Neurophysiol,2011,122: 2044?2048.
[27]Matsumoto H,Hanajima R,Terao Y,Hamada M,Yugeta A, Shirota Y,Yuasa K,Sato F,Matsukawa T,Takahashi Y,Goto J, Tsuji S,Ugawa Y.Efferent and afferent evoked potentials in patients with adrenomyeloneuropathy.Clin Neurol Neurosurg, 2010,112:131?136.
[28]Matsumoto H,Octaviana F,Hanajima R,Terao Y,Yugeta A, Hamada M,Inomata?Terada S,Nakatani?Enomoto S,Tsuji S, Ugawa Y.Magnetic lumbosacral motor root stimulation with a flat,large round coil.Clin Neurophysiol,2009,120:770?775.
[29]Matsumoto H,Shirota Y,Ugawa Y.Magnetic augmented translumbosacral stimulation coil stimulation method for accurate evaluation of corticospinal tract function in peripheral neuropathy.Neurol India,2010,58:796?797.
[30]Schmid UD,Moller AR,Schmid J.Transcranial magnetic stimulation of the facial nerve:intraoperative study on the effect of stimulus parameters on the excitation site in man.Muscle Nerve,1992,15:829?836.
[31]Kimiskidis VK.Transcranial magnetic stimulation(TMS) coupled with electroencephalography(EEG):biomarker of the future.Rev Neurol(Paris),2016,172:123?126.
[32]Cracco RQ,Amassian VE,Maccabee PJ,Cracco JB. Comparison of human transcallosal responses evoked by magnetic coil and electrical stimulation.Electroencephalogr Clin Neurophysiol,1989,74:417?424.
[33]Ferreri F,Rossini PM.TMS and TMS?EEG techniques in the study of the excitability,connectivity,and plasticity of the human motor cortex.Rev Neurosci,2013,24:431?442.
[34]Bai Y,Li XL.Transcranial magnetic stimulation?electroencephalogram imaging system.Zhongguo Yi Liao She Bei,2015,30:5?9[.白洋,李小俚.經(jīng)顱磁刺激?腦電成像系統(tǒng).中國(guó)醫(yī)療設(shè)備,2015,30:5?9.]
[35]Hill AT,Rogasch NC,Fitzgerald PB,Hoy KE.TMS?EEG:a window into the neurophysiological effects of transcranial electrical stimulation in non?motor brain regions.Neurosci Biobehav Rev,2016,64:175?184.
[36]Bohning DE,Shastri A,Nahas Z,Lorberbaum JP,Andersen SW,Dannels WR,Haxthausen EU,Vincent DJ,George MS. Echoplanar BOLD fMRI of brain activation induced by concurrent transcranial magnetic stimulation.Invest Radiol, 1998,33:336?340.
[37]Mu QW.Development and application of interleaved transcranial magnetic stimulation functional magnetic resonance imaging.Shi Jie Fu He Yi Xue,2015,1:20?23[.母其文.交互式經(jīng)顱磁刺激功能磁共振成像技術(shù)進(jìn)展述評(píng).世界復(fù)合醫(yī)學(xué),2015,1:20?23.]
[38]Guller Y,Giacino J.Potential applications of concurrent transcranial magnetic stimulation and functional magnetic resonance imaging in acquired brain injury and disorders of consciousness.Brain Inj,2014,28:1190?1196.
[39]Talacchi A,Santini B,Casartelli M,Monti A,Capasso R, Miceli G.Awake surgery between art and science.PartⅡ: language and cognitive mapping.Funct Neurol,2013,28:223?239.
[40]Li S,Zhang K,Lin Y,Jin JN,Jin F.Primary study on hand motor cortex mapping by using navigated transcranial magnetic stimulation.Zhongguo Xian Dai Shen Jing Ji Bing Za Zhi, 2016,16:522?526[.李帥,張愷,林雨,靳靜娜,金芳.導(dǎo)航經(jīng)顱磁刺激定位手運(yùn)動(dòng)功能區(qū)初步研究.中國(guó)現(xiàn)代神經(jīng)疾病雜志, 2016,16:522?526.]
[41]Ille S,Sollmann N,Hauck T,Maurer S,Tanigawa N, Obermueller T,Negwer C,Droese D,Zimmer C,Meyer B, Ringel F,Krieg SM.Combined noninvasive language mapping by navigated transcranial magnetic stimulation and functional MRI and its comparison with direct cortical stimulation.J Neurosurg,2015,123:212?225.
Research progress of diagnostic transcranial magnetic stimulation
HUANG Bei1,WU Hui?juan1,QIAN Zhen?ying2,WANG Ji?jun2,ZHAO Zhong?xin1
1Department of Neurology,Changzheng Hospital,the Second Military Medical University of Chinese PLA, Shanghai 200003,China
2Department of EEG Source Imaging,Shanghai Mental Health Center,Shanghai 200030,China
Transcranial magnetic stimulation(TMS)is a non?invasive and painless neuroelectrophysiological examination technology.TMS?motor evoked potential(TMS?MEP)is widely used to assess motor cortex excitability and conduction of descending corticobulbar tract and corticospinal tract. Recently,deeper understanding on principles of magnetic stimulation and diversification of stimulation coil and pattern has greatly expanded the application of TMS in clinical diagnosis.Moreover,MEP operation procedures are becoming more scientific and standardized.This paper reviews the progress of conventional diagnostic TMS pattern,several special stimulation patterns and the combined application of TMS, electroencephalograpy(EEG)and fMRI.
Transcranial magnetic stimulation;Evoked potentials,motor;Review
s:ZHAO Zhong?xin(Email:zhaozx@medmail.com.cn);WU Hui?juan
2017?02?20)
10.3969/j.issn.1672?6731.2017.04.011
國(guó)家科技部“十二五”重大專項(xiàng)課題(項(xiàng)目編號(hào):2011ZXJ09202-015)
200003上海,第二軍醫(yī)大學(xué)附屬長(zhǎng)征醫(yī)院神經(jīng)內(nèi)科(黃蓓,吳惠涓,趙忠新);200030上海市精神衛(wèi)生中心腦電磁影像眼動(dòng)研究室(錢禛穎,王繼軍)
趙忠新(Email:zhaozx@medmail.com.cn);吳惠涓(Email:huijuan.w@163.com)