• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Three-Dimensional Problem of the Compressible Water-gas Mixture Impacting on Rigid Plates

    2017-05-13 02:33:37GELiangZHANGZhongyuYAOXiongliangSUNLongquan
    船舶力學(xué) 2017年3期
    關(guān)鍵詞:葛亮哈爾濱工程大學(xué)水氣

    GE Liang,ZHANG Zhong-yu,YAO Xiong-liang,SUN Long-quan

    (College of Shipbuilding Engineering,Harbin Engineering University,Harbin 150001,China)

    Three-Dimensional Problem of the Compressible Water-gas Mixture Impacting on Rigid Plates

    GE Liang,ZHANG Zhong-yu,YAO Xiong-liang,SUN Long-quan

    (College of Shipbuilding Engineering,Harbin Engineering University,Harbin 150001,China)

    On the basis of the mass and momentum conservation,an inviscid model is established to investigate water-gas mixture impact problems,for which weak compressibility should be taken into consideration.The Internal Doubly Asymptotic Approximation method is adopted to solve the governing equation.A separate treatment on the free surface and rigid plate is used to satisfy the boundary conditions.The numerical results are in excellent agreement with those calculated by the Autodyn solver and the corresponding theoretical formula.The influence of volume fractions of gas on the impact load characteristics is investigated.The results reveal that with the volume fraction of gas increasing,the peak of load will decrease significantly.Meanwhile,the pulse width and the minimum value of the pressure will increase for homogeneous water-gas mixture impact.

    water-gas mixture;compressibility;internal DAA method

    0 Introduction

    Water jet impact problems have been paid great attention since they are common phenomena in many fields,such as the collapse of a spherical bubble in an underwater explosion, green water and wave impact.The impact pressure may cause material damage,although it only lasts a short period.With the development of engineering technology in the recent years,the gas is taken into account in the impact process,such as‘cushion effect’[1],which occurs when the flat structures entry into the water with a high velocity.Since when the flat structure falling fast,a portion of the air will be trapped and push into the water by flat structure.Thus,a layer of air cushion is formed.The formation of air cushion[2]was investigated experimentally, and the experimental results showed that the expansion and compression of air cushion would make the hydrodynamic pressure pulsating in the anaphase of the impact process.Another experimental study was conducted[3],in which the Slingshot Impact Testing System was used to launch objects with different speeds and dead rise angles.The air cushion was captured at a small dead rise angle by a high-speed camera.The problem of two-dimensional unsteady im-act on a layer of liquid which is mixed with air near the wall is solved with the linear theory of the velocity potential[4].The air cushion was also studied using the finite element method[5]. It was found that the impact pressure lasted a short period and the drop splashing only appeared latterly during the process of the plate entering the water.

    The phenomenon is similar to the above when the high-speed slender with cavitation exiting from the water[6].The cavitation begins to be compressed,and the water-gas mixture will impact on the surface of slender,which will be subjected to a large impact force.However,due to the involved gas,the problem of water-gas mixture impact becomes more complex.Since the mixture density changes along with gas volume fraction increasing,the acoustic velocity of the mixture will change as well.Fortunately,the formula for acoustic velocity was derived for the homogeneous mixture[7],with the assumption that one phase was the elastic boundary of another phase,the results of which were in good agreement with the experimental data[8].

    To our knowledge,previous studies have achieved some characteristics of water impact, but few studies have been carried out for water-gas mixture impact problems.In this work,a three-dimensional inviscid model is proposed for the water-gas mixture impact problems.The influence of gas volume fractions on impact load characteristics is analyzed,which aims at providing some reference for the design of marine engineering structures.

    1 Mathematical model and numerical procedure

    The water-gas mixture domain is cylindrical with the diameter D and the length L.A Cartesian coordinate system o-xyz is introduced with its origin located at the center of the plane z= 0.Initially the mixture moves to the rigid plate at an instant velocity V.Sband Sfare the solid boundary and free surface boundary,respectively,and L is the length of fluid domain,as shown in Fig.1.Then the continuity equation can be obtained as follows:

    where U is the velocity of the water-gas mixture and ρhis the density of the water-gas mixture.

    Furthermore,we assume that the mixture is homogeneous. Then based on the mixture model,the density of mixture is only dependent on the volume fraction of gas and can be expressed as

    where ρland ρgare the densities of water and gas,and α is the volume fraction of gas.

    The mixture is inviscid and weakly compressible,and the gravity and surface tensor are ignored,so we can obtain the momentum equations:

    Fig.1 Sketch of the water-gas mixture impact problem

    where p is the impact pressure.Fortunately,the change of ρhis very gentle and thus ρhcan be assumed to be a constant.Then Eq.(3)can be reduced as

    Based on the state of mixture,we have that:

    where chis acoustic velocity of the mixture[7],which can be expressed as:

    where cland cgare acoustic velocities of water and gas,respectively.

    Together with Eqs.(1-6),we can obtain the following governing equation for water-gas impact:

    where φ0is the disturbed potential.

    The no-flux condition normal to the rigid plate takes the form with the linear approximation:

    Note that the normal n goes into the fluid at a point on the plate.

    The Internal Double Asymptotic Approximations[9-10]is an effective boundary element method for the general solution in the Eq.(7).These approximations approach exactness in both the early time and the later approximation.In the early approximation,when the time is small, the velocity potential is only linking to the surface around the point Q,so we can introduce the second-order early approximation

    where rQis the position vector of the point Q,κ and s˙nare the local mean curvature and the normal velocity of the point Q,respectively.

    The later approximation corresponds to that t is large.Then the Taylor expansion is used for the retarded variables and the second order form is taken

    where Ω is the volume of the fluid domain,A is the area of the surface,and the spatial integral operators can be defined by:

    Based on the operator matching method for the early approximation and later approximation,we can introduce the second order DAA for internal acoustic domain

    where the operators M,Π,d are defined by

    The fluid boundaries are discretized into a set of triangular elements with N nodes.Each element is mapped into the isosceles right triangle[11],and the shape function is chosen as

    Thus the spatial integral operators can be obtained numerically at each element as follows:

    The spatial integral operators can be calculated by assembling the above equations from each element,and then the Eq.(10)can also be rewritten in the matrix form

    The velocity potential of the vertexes at the free surface is moved to the left hand side of Eq.(15)and the displacement of the nodes is moved to the right.The Eq.(15)then becomes

    where the superscript or subscript b denotes the node at the solid boundary and f denotes the nodes at the free surface.

    The forward difference scheme is adopted to solve the above equation and the value of the time step is chosen as the following equation[12]

    The intersections of the solid boundary and the free surface should be treated especially since the normal may not be continuous,which has an influence on the convergence[13].Similar to the Ref.[14],the spatial integral operators at the intersections can be split into two parts:one from the integration over the solid boundary and the other from the integration over the free surface.

    2 Results and discussions

    2.1 Comparisons for the water impact problem

    The present method is first verified by the problem of water impact,which means that the volume fraction of gas is zero.The diameter of fluid domain is 1 m and the length is 20 m.The boundaries of fluid domain are divided into a set of 1 620 triangle elements with 812 nodes. Note that all the following cases use the same set of elements.The same case is also solved by Autodyn-3D solver[15],and the fluid domain is divided into the 400 000 hexahedron elements. The two-dimensional impact problem was solved by Autodyn-2D solver[15]with the rectangle domain(1 m×20 m),which is divided into the 100 000 quadrilateral elements.The SNL model is chosen for water.

    Fig.2 Comparisons of(a)maximum pressures and(b)minimum pressures due to the change of velocity by different solvers

    Due to the change of velocity,the comparisons of maximum and minimum pressures at the center are shown in Fig.2.It can be seen that the maximum pressures obtained by the three solvers are almost identical,while there are significant differences in minimum pressures between the Autodyn-2D and the present method or Autodyn-3D.It should be noted that the two-dimensional domain is infinite compared with the three-dimensional domain,and no reflect pressure wave is generated at infinity.Therefore,the minimum pressures obtained by Autodyn-2D will be larger than those obtained by the present method or Autodyn-3D.

    2.2 Characteristics for the water-gas mixture impact

    The characteristics of the loads for the water-gas mixture impact are investigated with different volume fractions of gas.The results are non-dimensional in order to be compared with those for water impact,including the time t,the impact pressure p and the resultant.The dimension D is the length scale,the velocity V is the velocity scale,and the water hammer pressure ρCV is the pressure scale,here ρ is the density of water and C is the acoustic velocity of water.Thus we have:

    Tab.1 Comparisons of peak pressure between the present results and the empirical results

    Tab.1 provides the comparisons of peak pressure between the present results and the empirical results[7,16]with the volume fraction of gas varying from 1‰to 4‰.It is found that the two methods have good agreements and the maximum relative error is 0.42%.

    Fig.3 History of the impact pressures at the center with different volume fractions of gas

    Fig.4 History of the resultants with different volume fractions of gas

    Fig.3 presents the history of the impact pressure at the rigid plate center with volume fraction of gas varying from 1‰to 4‰.It can be seen that with the volume fraction of gas increasing,the peak pressure will decrease gradually,but the pulse width will increase.In addition,the peak pressure is 1 and the pulse width is 1 for water impact from the Ref.[16].So it can be obtained obviously that due to the presence of gas,the peak pressure will reduce significantly and the pulse width will increase simultaneously.As the gas exists in the form of bubbles with the small radius in the physical world,a very low acoustic velocity can be obtained according to the Eq.(6),even at small gas volume fraction.The acoustic velocity attenuation can be accounted for by considering the individual response of bubbles to the pressure wave.In other words,the state of mixture has changed as a result of the involved gas.The acoustic velocity of mixture reduces more greatly than those of water,and it will take more time for reflected pressure wave to propagate into the center of plate,which makes the impact pressure pulse widened.The history of resultant for the rigid plate is shown in Fig.4,which has the similar tendency with those of impact pressure at the rigid plate center.

    Fig.5 Contours of impact pressure at the time T=0.5 with(a)α=1‰;(b)α=2‰;(c)α=3‰;(d)α=4‰

    The contours of impact pressure with different volume fractions of gas at T=0.5 are shown in Fig.5.At the initial time,the compressibility of the liquid is of significance.Most of regions are subjected to large impact pressure and the pressure is comparable to ρhchV(chis acoustic velocity of mixture).The mixture may have the similar impact property with water, though the gas exits in the form of bubbles in the water.

    Fig.6 provides the contours of impact pressure at the time when the resultants reach the minimum respectively.At this moment,there exists negative pressure at the vicinity of thecenter due to the reflected pressure wave generated by the free surface.In practice,the negative pressure will lead to the appearance of cavities attached to the rigid plate.Then the pressure increases again,which leads to a collapse of the bubbles with the formation of new impact.It can also found that gas can restrain negative pressure effectively as the absolute values of the minimum pressures decrease with the volume fraction of gas.The impact pressures of mixture decline rapidly and stabilize in the later jet impact.After this time,the steady state is reached and the pressure approaches hydrodynamic pressure.

    Fig.6 Contours of impact pressure at the time of the minimum resultant with(a)α=1‰,T=2.9;(b)α=2‰,T=3.8;(c)α=3‰,T=5.2;(d)α=4‰,T=5.6

    3 Conclusions

    A three-dimensional inviscid physical model is established for the compressible watergas mixture impact problems.The Internal Doubly Asymptotic Approximation method was adopted to solve the water-gas mixture impact problems.The results show that the compressibility of the liquid is dominant and gas plays an important role in the impact process.As the gas exists in the form of bubbles with the small radius in the physical world,the state of mixture will change.So the peak of load can decrease significantly with the volume fraction of gas increasing.Rapid temporal evolution of the pressure can be observed during this stage.This behavior can be partly explained by the pressure wave propagated from the free surface.

    [1]Chuang S L.Experiments on flat bottom slamming[J].Journal of Ship Research,1966,10:10-17.

    [2]Lin M C,Shieh L D.Simultaneous measurements of water impact on a two-dimensional body[J].Fluid Dynamics Research,1997,19(3):125-148.

    [3]Huera-Huarte F J,Jeon D,Gharib M.Experimental investigation of water slamming loads on panels[J].Ocean Engineering,2011,38:1347-1355.

    [4]Korobkin A A.Two-dimensional problem of the impact of a vertical wall on a layer of a partially aerated liquid[J].Journal of Applied Mechanics and Technical Physics,1996,47:643-653.

    [5]Chen Z,Xiao X,Wang DY.Simulation of flat bottom structure slamming[J].China Ocean Engineering,2005,19(3):385-394.

    [6]Wang Y W,Huang C G,Du T Z,et,al.Shedding phenomenon of ventilated partial cavitation around an underwater projectile[J].Chinese Physics Letter,2012,29(1):014601-04.

    [7]Nguyen D L,Winter E R F,Greiner M.Sonic velocity in two-phase systems[J].Journal of Multiphase Flow,1981,7:311-320.

    [8]Coste C,Laroche C.Acoustic behaviour of a liquid/vapour mixture in a standing-wave tube[J].J Fluid Mech,1993,246:67-89.

    [9]Geers T L.Doubly asymptotic approximation for transient motions of submerged structures[J].The Journal of the Acoustical Society of America,1978,64:1500-1508.

    [10]Geers T L,Zhang P Z.Doubly asymptotic approximations for submerged structures with internal fluid volumes:Formulation[J].Journal of Applied Mechanics,1994,61:893-899.

    [11]Ye X,Yao X L,Zhang A M,Pang F Z.The motion and acoustic radiation characteristics for cavitation in the compressible vortex fluid[J].Acta Phys.Sin.,2013,62:114702.

    [12]Zhang A M,Wang S P,Wu G X.Simulation of bubble motion in a compressible liquid based on the three dimensional wave equation[J].Engineering Analysis with Boundary Elements,2013,37:1179-1188.

    [13]Dommermuth D,Yue D K P.Numerical simulations of nonlinear axisymmetric flows with a free surface[J].Journal of Fluid Mechanics,1987,178:195-219.

    [14]Ni B Y,Zhang A M,Wu G X.Numerical simulation of motion and deformation of ring bubble along body surface[J].Applied Mathematics and Mechanics,2013,34(12):1495-1512.

    [15]ANSYS,ANSYS/Autodyn[K].User Documentation,Version 6.1,2007.

    [16]Sun S L,Hu J,Hu J Z.Impact of a compressible water column on an elastic plate[J].Journal of Ship Mechanics,2013, 17(9):1031-1037.

    三維可壓縮水氣混合物射流沖擊平板特性研究

    葛亮,張忠宇,姚熊亮,孫龍泉
    (哈爾濱工程大學(xué)船舶工程學(xué)院,哈爾濱150001)

    根據(jù)質(zhì)量和動(dòng)量守恒方程,忽略流體的粘性,計(jì)入流體的可壓縮性,建立水氣混合物射流沖擊平板問(wèn)題的物理模型。采用內(nèi)域雙漸進(jìn)方法對(duì)控制方程進(jìn)行數(shù)值離散,平板邊界和水域分別進(jìn)行處理以滿(mǎn)足各自的邊界條件。數(shù)值結(jié)果與解析解及Autodyn的數(shù)值結(jié)果吻合較好。在驗(yàn)證方法合理性的基礎(chǔ)上,深入地分析了含氣量對(duì)射流沖擊載荷特性的影響規(guī)律。數(shù)值結(jié)果表明:隨著含氣量的增加,沖擊壓力峰值將會(huì)顯著地降低,而脈寬和射流沖擊壓力的極小值都會(huì)增大。

    水氣混合物;可壓縮性;內(nèi)域DAA方法

    O353.4

    :A

    葛亮(1989-),男,哈爾濱工程大學(xué)船舶工程學(xué)院博士研究生;

    1007-7294(2017)03-0309-09

    O353.4

    :A

    10.3969/j.issn.1007-7294.2017.03.006

    張忠宇(1988-),男,哈爾濱工程大學(xué)船舶工程學(xué)院博士研究生;

    姚熊亮(1963-),男,哈爾濱工程大學(xué)船舶工程學(xué)院教授,博士生導(dǎo)師;

    孫龍泉(1983-),男,哈爾濱工程大學(xué)船舶工程學(xué)院副教授。

    Received date:2016-10-27

    Biography:GE Liang(1989-),male,a graduate student in Harbin Engineering University; ZHANG Zhong-yu(1988-),male,a graduate student in Harbin Engineering University,E-mail:zhangyu061031@126.com;

    YAO Xiong-liang(1963-),male,professor/tutor.

    猜你喜歡
    葛亮哈爾濱工程大學(xué)水氣
    遼中區(qū)患病草魚(yú)體內(nèi)嗜水氣單胞菌分離、鑒定與致病力測(cè)定
    海上邊水氣藏利用試井資料確定水侵狀況研究
    海洋石油(2021年3期)2021-11-05 07:42:26
    Research on Real Meaning of American Dream in Great Gatsby
    速讀·中旬(2021年2期)2021-07-23 22:33:04
    Research on Uranium Mining
    鳶起之時(shí)何處往
    ——關(guān)于葛亮研究的總結(jié)與思考
    大眾文藝(2018年10期)2018-01-28 08:51:43
    謎鴉
    讀讀書(shū)(2017年1期)2017-06-14 13:40:31
    An Analysis of Mood System of Narrative Rock Song Lyrics and Its Interpersonal Functions
    葛亮:感受到了新媒體報(bào)道的特有優(yōu)勢(shì)
    免費(fèi)旅游
    小品文選刊(2014年6期)2014-05-08 04:58:20
    醫(yī)院感染嗜水氣單胞菌的臨床治療分析
    国产av国产精品国产| 亚洲av国产av综合av卡| 精品国产一区二区三区久久久樱花| 女的被弄到高潮叫床怎么办| 亚洲精品国产av成人精品| 日韩欧美精品免费久久| 婷婷色综合www| 性色avwww在线观看| 成人影院久久| 中文精品一卡2卡3卡4更新| 日产精品乱码卡一卡2卡三| 色5月婷婷丁香| 老女人水多毛片| 人妻系列 视频| 午夜福利影视在线免费观看| av国产久精品久网站免费入址| 七月丁香在线播放| 在线观看免费日韩欧美大片 | 少妇的逼好多水| 国产男女内射视频| 色吧在线观看| av免费观看日本| 亚洲欧美一区二区三区黑人 | 精品久久蜜臀av无| 九九久久精品国产亚洲av麻豆| 日韩av在线免费看完整版不卡| 精品国产露脸久久av麻豆| 夜夜看夜夜爽夜夜摸| 亚洲,欧美,日韩| www.av在线官网国产| 国产一区二区三区综合在线观看 | 久久久精品免费免费高清| 日韩精品免费视频一区二区三区 | 两个人的视频大全免费| 在线播放无遮挡| 久久亚洲国产成人精品v| 国产午夜精品一二区理论片| 国产又色又爽无遮挡免| 午夜福利,免费看| 国产在线免费精品| 99国产精品免费福利视频| 久久久久久久久久成人| 成人亚洲精品一区在线观看| 精品熟女少妇av免费看| 男女免费视频国产| 亚洲精品亚洲一区二区| 如日韩欧美国产精品一区二区三区 | 蜜桃国产av成人99| 狂野欧美白嫩少妇大欣赏| 少妇 在线观看| 91精品国产九色| 18禁动态无遮挡网站| 精品人妻一区二区三区麻豆| 免费少妇av软件| 欧美精品高潮呻吟av久久| 亚洲欧美色中文字幕在线| 久久久精品免费免费高清| 蜜桃在线观看..| 在线精品无人区一区二区三| 日韩熟女老妇一区二区性免费视频| 熟女av电影| 欧美+日韩+精品| 欧美最新免费一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 久久精品人人爽人人爽视色| 国产免费现黄频在线看| 国产精品麻豆人妻色哟哟久久| 国产精品蜜桃在线观看| 亚洲人成网站在线播| 一个人免费看片子| 久久久欧美国产精品| 国产精品一区二区三区四区免费观看| 看免费成人av毛片| av.在线天堂| 国产乱来视频区| 国产黄频视频在线观看| 午夜日本视频在线| 亚洲精品,欧美精品| 日韩精品有码人妻一区| 成人国语在线视频| 国产欧美另类精品又又久久亚洲欧美| 十分钟在线观看高清视频www| 亚洲综合色惰| 自拍欧美九色日韩亚洲蝌蚪91| 女人精品久久久久毛片| 99久久中文字幕三级久久日本| 3wmmmm亚洲av在线观看| 七月丁香在线播放| 午夜激情久久久久久久| 丰满迷人的少妇在线观看| 精品少妇久久久久久888优播| 91在线精品国自产拍蜜月| 亚洲,一卡二卡三卡| 国产在视频线精品| 人妻少妇偷人精品九色| 妹子高潮喷水视频| 亚洲不卡免费看| tube8黄色片| 18+在线观看网站| 精品国产一区二区三区久久久樱花| 免费黄频网站在线观看国产| 内地一区二区视频在线| 内地一区二区视频在线| 美女中出高潮动态图| 欧美老熟妇乱子伦牲交| av有码第一页| 男的添女的下面高潮视频| 亚洲一区二区三区欧美精品| 少妇丰满av| 五月玫瑰六月丁香| 视频中文字幕在线观看| 能在线免费看毛片的网站| 水蜜桃什么品种好| 18禁动态无遮挡网站| 涩涩av久久男人的天堂| 黄色欧美视频在线观看| 国产精品国产av在线观看| 国产熟女欧美一区二区| 91午夜精品亚洲一区二区三区| 亚洲美女黄色视频免费看| 国产国语露脸激情在线看| 免费av不卡在线播放| 日韩一区二区视频免费看| 看免费成人av毛片| 在线看a的网站| 日产精品乱码卡一卡2卡三| 搡女人真爽免费视频火全软件| 如日韩欧美国产精品一区二区三区 | 国产精品人妻久久久久久| 亚洲精品一二三| 成年人免费黄色播放视频| 欧美最新免费一区二区三区| 伊人亚洲综合成人网| 3wmmmm亚洲av在线观看| 日本wwww免费看| 国产精品女同一区二区软件| 插阴视频在线观看视频| 精品人妻熟女av久视频| 亚洲精品成人av观看孕妇| 成年av动漫网址| 午夜视频国产福利| 波野结衣二区三区在线| 久久人妻熟女aⅴ| 中文天堂在线官网| 亚洲av国产av综合av卡| 国产伦精品一区二区三区视频9| 国产伦精品一区二区三区视频9| 2018国产大陆天天弄谢| 色视频在线一区二区三区| 精品国产国语对白av| 亚洲精品日本国产第一区| 如何舔出高潮| 久久国产精品男人的天堂亚洲 | av专区在线播放| 久久鲁丝午夜福利片| 中文天堂在线官网| 亚洲国产av影院在线观看| 伦理电影免费视频| 午夜免费鲁丝| 国产精品熟女久久久久浪| 热re99久久精品国产66热6| 少妇精品久久久久久久| 国产午夜精品一二区理论片| 你懂的网址亚洲精品在线观看| 国产永久视频网站| 哪个播放器可以免费观看大片| 26uuu在线亚洲综合色| 亚洲欧洲日产国产| av国产精品久久久久影院| 亚洲国产色片| 丰满饥渴人妻一区二区三| 国产日韩欧美亚洲二区| 亚洲国产精品999| 成人亚洲欧美一区二区av| 国产精品国产三级专区第一集| av播播在线观看一区| 国产欧美另类精品又又久久亚洲欧美| 色哟哟·www| 一本久久精品| 亚洲精品中文字幕在线视频| 国产亚洲av片在线观看秒播厂| 少妇被粗大的猛进出69影院 | 在线免费观看不下载黄p国产| 最近的中文字幕免费完整| 十八禁高潮呻吟视频| 99re6热这里在线精品视频| 一级毛片黄色毛片免费观看视频| 成人毛片a级毛片在线播放| 精品人妻偷拍中文字幕| 亚洲一级一片aⅴ在线观看| 免费大片18禁| 曰老女人黄片| 精品99又大又爽又粗少妇毛片| 国产免费又黄又爽又色| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 色94色欧美一区二区| 日韩一本色道免费dvd| 欧美日韩精品成人综合77777| 一本色道久久久久久精品综合| 国产亚洲午夜精品一区二区久久| 久久综合国产亚洲精品| 老司机亚洲免费影院| 亚洲av综合色区一区| 亚洲欧美色中文字幕在线| 国产不卡av网站在线观看| 精品人妻熟女毛片av久久网站| 欧美日韩综合久久久久久| 久久99精品国语久久久| 国产精品三级大全| 最近中文字幕高清免费大全6| 久久韩国三级中文字幕| 狂野欧美激情性bbbbbb| 午夜影院在线不卡| 成年人免费黄色播放视频| 国产av码专区亚洲av| 五月伊人婷婷丁香| 国产男人的电影天堂91| 18禁在线无遮挡免费观看视频| 成年人午夜在线观看视频| 亚洲国产毛片av蜜桃av| 色94色欧美一区二区| 免费人妻精品一区二区三区视频| 我的女老师完整版在线观看| 最近中文字幕高清免费大全6| 日韩 亚洲 欧美在线| 久久久a久久爽久久v久久| 久久久久久久久久成人| kizo精华| 午夜福利在线观看免费完整高清在| 最黄视频免费看| 久久ye,这里只有精品| 欧美日韩av久久| 在线观看一区二区三区激情| 亚洲人成77777在线视频| 国产一区二区在线观看日韩| 久久人人爽av亚洲精品天堂| 狂野欧美激情性bbbbbb| 午夜影院在线不卡| 国产熟女欧美一区二区| 视频区图区小说| av在线播放精品| 亚洲成人一二三区av| 少妇被粗大的猛进出69影院 | 十八禁高潮呻吟视频| 性高湖久久久久久久久免费观看| 亚洲精品乱码久久久久久按摩| 搡女人真爽免费视频火全软件| 成人18禁高潮啪啪吃奶动态图 | 久久狼人影院| 亚洲欧美一区二区三区黑人 | 成人综合一区亚洲| 成年美女黄网站色视频大全免费 | 国产69精品久久久久777片| 美女中出高潮动态图| 欧美xxⅹ黑人| 国产一区亚洲一区在线观看| 欧美 亚洲 国产 日韩一| tube8黄色片| 国产精品久久久久久久电影| 一本—道久久a久久精品蜜桃钙片| 丰满迷人的少妇在线观看| 国产精品久久久久久精品古装| 国产高清三级在线| 黑丝袜美女国产一区| 日韩精品有码人妻一区| 卡戴珊不雅视频在线播放| 18禁观看日本| 老司机影院毛片| 日韩制服骚丝袜av| 嫩草影院入口| 中文字幕免费在线视频6| 国产在线视频一区二区| 街头女战士在线观看网站| 成人漫画全彩无遮挡| 亚洲国产欧美日韩在线播放| 国产成人午夜福利电影在线观看| a级毛片在线看网站| 日本猛色少妇xxxxx猛交久久| 国产精品久久久久成人av| 男人添女人高潮全过程视频| 国产永久视频网站| 中国国产av一级| 久久人人爽人人片av| 国产精品99久久久久久久久| 久久99蜜桃精品久久| 99九九线精品视频在线观看视频| 欧美日韩av久久| 亚洲精品久久成人aⅴ小说 | 中文精品一卡2卡3卡4更新| 男人爽女人下面视频在线观看| 18禁观看日本| 日韩视频在线欧美| 国产成人精品福利久久| 国产一区二区三区av在线| 亚洲一级一片aⅴ在线观看| 欧美 亚洲 国产 日韩一| 成年女人在线观看亚洲视频| 交换朋友夫妻互换小说| 97在线视频观看| 在线观看www视频免费| 伦理电影大哥的女人| 极品人妻少妇av视频| 色婷婷久久久亚洲欧美| 国产在线视频一区二区| 色婷婷av一区二区三区视频| 午夜福利影视在线免费观看| 国产一区有黄有色的免费视频| 亚洲中文av在线| av免费在线看不卡| 亚洲av免费高清在线观看| 中文字幕久久专区| 超色免费av| 日本爱情动作片www.在线观看| 国产乱来视频区| 国产一区二区三区综合在线观看 | 日本av免费视频播放| av国产精品久久久久影院| 国产在线一区二区三区精| 亚洲经典国产精华液单| 美女国产视频在线观看| 国产精品嫩草影院av在线观看| 考比视频在线观看| 观看av在线不卡| 成人无遮挡网站| 亚洲精品中文字幕在线视频| 黄色一级大片看看| 草草在线视频免费看| 一本一本综合久久| 日韩一区二区视频免费看| 国产精品一国产av| 18禁在线无遮挡免费观看视频| 自线自在国产av| 在线天堂最新版资源| 日本猛色少妇xxxxx猛交久久| 亚洲欧美中文字幕日韩二区| 18+在线观看网站| 最黄视频免费看| 美女cb高潮喷水在线观看| 18+在线观看网站| 成人国产麻豆网| 欧美 亚洲 国产 日韩一| 91精品一卡2卡3卡4卡| 日韩精品有码人妻一区| 欧美 亚洲 国产 日韩一| 中国美白少妇内射xxxbb| 99热国产这里只有精品6| 国产精品久久久久成人av| 18+在线观看网站| 久久精品久久久久久噜噜老黄| 久久青草综合色| 亚洲国产毛片av蜜桃av| 日韩人妻高清精品专区| 国产精品免费大片| 国内精品宾馆在线| 97超碰精品成人国产| 亚洲美女视频黄频| 2021少妇久久久久久久久久久| 亚洲国产毛片av蜜桃av| 亚洲av国产av综合av卡| 男男h啪啪无遮挡| 久久婷婷青草| 美女主播在线视频| 插阴视频在线观看视频| 少妇的逼水好多| 日本午夜av视频| 国产在视频线精品| 国产精品人妻久久久久久| 日韩av不卡免费在线播放| 大片电影免费在线观看免费| 精品一区二区免费观看| 人妻制服诱惑在线中文字幕| 久久97久久精品| 在线播放无遮挡| 欧美日韩视频高清一区二区三区二| 人人澡人人妻人| 国产精品蜜桃在线观看| 久久久久国产网址| 色哟哟·www| 99久久人妻综合| 亚洲精品日韩在线中文字幕| 热re99久久国产66热| 日本欧美视频一区| 蜜臀久久99精品久久宅男| 精品卡一卡二卡四卡免费| 一级毛片aaaaaa免费看小| 五月伊人婷婷丁香| 国产片特级美女逼逼视频| 大香蕉久久网| 精品久久国产蜜桃| 内地一区二区视频在线| 我的老师免费观看完整版| 久久青草综合色| 中文字幕久久专区| 久久精品国产自在天天线| 春色校园在线视频观看| 国产又色又爽无遮挡免| 少妇人妻 视频| 亚洲人与动物交配视频| 久久国产精品大桥未久av| 欧美性感艳星| 精品亚洲成a人片在线观看| freevideosex欧美| 国语对白做爰xxxⅹ性视频网站| 人妻 亚洲 视频| 亚洲伊人久久精品综合| 少妇人妻精品综合一区二区| 看免费成人av毛片| 777米奇影视久久| 久久久久久久大尺度免费视频| 国产有黄有色有爽视频| 搡老乐熟女国产| 国产亚洲av片在线观看秒播厂| 美女大奶头黄色视频| 久久青草综合色| 日韩电影二区| 人人妻人人澡人人看| 亚洲精品成人av观看孕妇| 精品国产露脸久久av麻豆| 久久人人爽av亚洲精品天堂| 亚洲欧美色中文字幕在线| 69精品国产乱码久久久| 99久国产av精品国产电影| 另类亚洲欧美激情| 亚洲av.av天堂| 建设人人有责人人尽责人人享有的| 看免费成人av毛片| 多毛熟女@视频| 久久久a久久爽久久v久久| 国产一区二区在线观看日韩| 熟女人妻精品中文字幕| 夫妻性生交免费视频一级片| 丰满迷人的少妇在线观看| 在线观看一区二区三区激情| 少妇丰满av| 亚洲精品第二区| 黑丝袜美女国产一区| 日韩强制内射视频| 国产日韩欧美亚洲二区| av播播在线观看一区| 高清欧美精品videossex| 日日摸夜夜添夜夜添av毛片| 各种免费的搞黄视频| 中文字幕免费在线视频6| 视频在线观看一区二区三区| 婷婷色综合www| 国产在线视频一区二区| 男女国产视频网站| 国产高清三级在线| 22中文网久久字幕| 高清av免费在线| 亚洲美女搞黄在线观看| 日韩av不卡免费在线播放| 插阴视频在线观看视频| 精品少妇黑人巨大在线播放| √禁漫天堂资源中文www| 国产在线一区二区三区精| 免费高清在线观看视频在线观看| 黄色毛片三级朝国网站| 日韩在线高清观看一区二区三区| 精品久久久久久久久亚洲| 美女国产高潮福利片在线看| 亚洲经典国产精华液单| 成人影院久久| 国产色婷婷99| 最新中文字幕久久久久| 99热这里只有是精品在线观看| 免费高清在线观看日韩| 国产成人av激情在线播放 | 国产av一区二区精品久久| 日日撸夜夜添| 特大巨黑吊av在线直播| 免费高清在线观看视频在线观看| 能在线免费看毛片的网站| 看免费成人av毛片| 激情五月婷婷亚洲| 精品亚洲成a人片在线观看| 看非洲黑人一级黄片| 久久精品国产亚洲网站| 三级国产精品欧美在线观看| 国模一区二区三区四区视频| 伊人久久精品亚洲午夜| 成人18禁高潮啪啪吃奶动态图 | 熟女电影av网| 啦啦啦视频在线资源免费观看| 欧美97在线视频| 一级毛片 在线播放| 亚洲av不卡在线观看| 18在线观看网站| 午夜激情av网站| 免费观看av网站的网址| 精品久久久久久久久av| 如何舔出高潮| 欧美亚洲 丝袜 人妻 在线| 亚洲国产精品成人久久小说| 人体艺术视频欧美日本| 高清不卡的av网站| 99国产精品免费福利视频| 国产亚洲最大av| 久久婷婷青草| 啦啦啦在线观看免费高清www| 在线亚洲精品国产二区图片欧美 | 高清欧美精品videossex| 国产白丝娇喘喷水9色精品| 久久人人爽av亚洲精品天堂| 日韩欧美一区视频在线观看| 成人国产av品久久久| 最近中文字幕高清免费大全6| 在线观看免费视频网站a站| 大码成人一级视频| 又黄又爽又刺激的免费视频.| 亚洲色图 男人天堂 中文字幕 | 成人影院久久| 80岁老熟妇乱子伦牲交| 亚洲精品乱久久久久久| 狠狠精品人妻久久久久久综合| 午夜日本视频在线| 国产精品99久久99久久久不卡 | 欧美日韩在线观看h| 韩国高清视频一区二区三区| 亚洲一区二区三区欧美精品| 日韩 亚洲 欧美在线| 成人毛片60女人毛片免费| 国产亚洲精品久久久com| 免费观看在线日韩| 高清欧美精品videossex| 在线天堂最新版资源| 婷婷色综合www| 日本-黄色视频高清免费观看| 美女福利国产在线| 久久久久久久久久久免费av| 91精品国产国语对白视频| 看十八女毛片水多多多| 国精品久久久久久国模美| 亚洲在久久综合| 色视频在线一区二区三区| 99re6热这里在线精品视频| 天堂8中文在线网| 欧美激情国产日韩精品一区| 欧美日韩视频高清一区二区三区二| 国产精品国产av在线观看| 激情五月婷婷亚洲| 久久久欧美国产精品| 青春草亚洲视频在线观看| 高清视频免费观看一区二区| 成人影院久久| 日日摸夜夜添夜夜添av毛片| 美女xxoo啪啪120秒动态图| 国产精品不卡视频一区二区| 制服人妻中文乱码| 欧美激情国产日韩精品一区| 观看美女的网站| 亚洲在久久综合| 啦啦啦视频在线资源免费观看| 国产探花极品一区二区| 有码 亚洲区| 男人添女人高潮全过程视频| 精品久久国产蜜桃| 国产又色又爽无遮挡免| 国产亚洲最大av| a级片在线免费高清观看视频| 国产国拍精品亚洲av在线观看| 久久精品国产亚洲av天美| 一区二区av电影网| 国产日韩欧美亚洲二区| 各种免费的搞黄视频| 亚洲丝袜综合中文字幕| 男女边吃奶边做爰视频| 久久久欧美国产精品| 久久人人爽av亚洲精品天堂| 欧美日本中文国产一区发布| 日日爽夜夜爽网站| 波野结衣二区三区在线| 中文字幕精品免费在线观看视频 | 大陆偷拍与自拍| 最近手机中文字幕大全| 成人亚洲欧美一区二区av| 性色avwww在线观看| 欧美xxⅹ黑人| 九色亚洲精品在线播放| 国产精品国产三级专区第一集| 99热全是精品| 亚洲精品日韩av片在线观看| 久久久久久人妻| 七月丁香在线播放| 少妇精品久久久久久久| 有码 亚洲区| 中国美白少妇内射xxxbb| av在线播放精品| 99国产综合亚洲精品| 日韩亚洲欧美综合| 久久免费观看电影| 999精品在线视频| 国产精品秋霞免费鲁丝片| 亚洲欧美色中文字幕在线| 亚洲欧洲日产国产| 日日摸夜夜添夜夜添av毛片| 亚洲精品av麻豆狂野| 熟女电影av网| 午夜激情av网站| 午夜av观看不卡| 亚洲精品乱码久久久v下载方式| 少妇人妻 视频| 在线观看一区二区三区激情| 亚洲内射少妇av| 中国美白少妇内射xxxbb| 中文字幕av电影在线播放| 大陆偷拍与自拍| 下体分泌物呈黄色| 在线观看免费日韩欧美大片 | 汤姆久久久久久久影院中文字幕| 最近的中文字幕免费完整| 免费观看a级毛片全部| 国产在线一区二区三区精| av又黄又爽大尺度在线免费看| 男女无遮挡免费网站观看|