• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modal Pole Placement for Coupled Structural Acoustic System Based on Reduced Order Model

    2017-05-13 02:33:44YUDanzhuLISheng
    船舶力學(xué) 2017年3期
    關(guān)鍵詞:降階大連理工大學(xué)工程學(xué)院

    YU Dan-zhu,LI Sheng,2

    (1.State Key Laboratory of Structural Analysis for Industrial Equipment,School of Naval Architecture,Faculty of Vehicle Engineering and Mechanics,Dalian University of Technology,Dalian 116024,China;2.Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration,Shanghai 200240,China)

    于丹竹1,黎勝1,2

    (1.大連理工大學(xué)工業(yè)裝備結(jié)構(gòu)分析國(guó)家重點(diǎn)實(shí)驗(yàn)室運(yùn)載工程與力學(xué)學(xué)部船舶工程學(xué)院,遼寧大連116024;2.高新船舶與深海開發(fā)裝備協(xié)同創(chuàng)新中心,上海200240)

    Modal Pole Placement for Coupled Structural Acoustic System Based on Reduced Order Model

    YU Dan-zhu1,LI Sheng1,2

    (1.State Key Laboratory of Structural Analysis for Industrial Equipment,School of Naval Architecture,Faculty of Vehicle Engineering and Mechanics,Dalian University of Technology,Dalian 116024,China;2.Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration,Shanghai 200240,China)

    The problem of modal pole assignment of a coupled structural acoustic system based on reduced order model from the forced responses is addressed.The reduced order model might be obtained entirely from measured vibration data,there being no need to determine or to know the structural matrices and the acoustic impedance matrix.The modal natural frequencies and damping ratios of the coupled system are assigned separately and simultaneously using output feedback control by collocated actuator-sensor arrangements.Different control configurations are discussed and active structural acoustic control is demonstrated numerically using a fluid-loaded plate.The numerical examples show that the chosen eigenvalues may be assigned to predetermined values.

    pole placement;reduced order model;acoustic fluid-structure interaction; output feedback;active structural acoustic control

    0 Introduction

    There are many areas of engineering in which fluid-structure coupling is an important issue,with regard to both the sound radiated into the fluid and the effect of the fluid on the vibrations of the structures.Examples include the study of interior noise in automotive,aerospace, and marine vehicles,and the effect of heavy external fluid loading on marine structures.For a coupled structural acoustic problem,such as an acoustic fluid-structure interaction problem[1], the fluid,accelerated and compressed by the vibrating structure,exerts radiation loading,i.e., oscillatory surface pressures that combine with the applied loads,thereby modifying the structural response.Therefore,the effect of fluid-structure interaction has to be included in the coupled structural acoustic system.What is more,the heavy fluid loading is frequency dependent[2]and this makes the determination of the fluid-loaded modes and the corresponding modal control more difficult.In 2006,Li and Li[3]used a matrix-free formulation of rational Krylov projection to construct Reduced Order Models(ROM)and then estimate modal parameters of the fluid-loaded structures from forced responses.The frequency dependence of the acousticimpedance matrix in the coupled structural acoustic system is automatically removed,and there is no need to determine or to know the structural M,C,K matrices and the acoustic impedance matrix.

    The problem of pole placement has received considerable attention from the active-control and vibrations communities over several decades[4].The pole placement is about to set natural frequencies and damping to specified values and the applications include the avoidance of large-amplitude vibrations close to resonance,and the design of adaptive structures,capable of changing their behavior to respond in a desirable way to a varying demand[5].The wellknown Independent Modal Space Control(IMSC)method,proposed by Meirovitch in the 1980s[6],is a modal pole assignment method and allows the frequency and damping of the controlled modes to be changed independently using diagonal control gain matrices.Starting from the original IMSC,many improvements were developed to improve its performance and robustness[7].In 2007,a pole assignment approach based on measured receptances to eigenvalue assignment in structural vibration problems was introduced by Ram and Mottershead[8]and became known as the‘receptance method’.The receptance method is very different from previous pole assignment method in a way that it does not require evaluation or knowledge of the system matrices M,C,K.

    For the active modal control of structural vibration and sound radiation of fluid-loaded structures,Fein et al[9]presented a modal state-space formulation for a fluid-loaded plate and considered active vibration control of the fluid-loaded plate by means of a modal concept using piezoelectric actuators/sensors.They obtained the modal parameters for the fluid-loaded structure from experimental modal analysis and conducted experiments to verify the active modal control.Li[10]presented an active modal damping control of a fluid-loaded plate via negative velocity feedback,and the feedback gain between the piezoelectric actuators/sensors for the modal control is obtained by using the in-vacuo modal matrix and the incompressible fluid-loaded modal matrix.So far very few reports have concerned with the pole assignment of coupled structural acoustic systems.

    This paper presents a pole assignment approach for coupled structural acoustic systems. The approach makes use of Li and Li’s method[3]for modal pole placement,the advantage is even if the explicit system matrix form is not available,the ROM can still be constructed directly from transfer functions by experimental measurements.The problem of assigning the poles of the system to predetermined values is then solved by choosing the appropriate feedback gain matrix.The present method is demonstrated by means of a numerical example of active control of structural vibration and acoustic radiation of a plate underwater.

    1 Theory

    1.1 Coupled structural acoustic model

    For structures with fluid-loading,based on the well-established coupled finite element and boundary element analysis,the matrix equation of motion is given by[11],

    The link between the acoustic pressure and the velocity distribution on the surface of the structure can be always written as[3],

    where Z denotes the acoustic impedance matrix and vnthe vector of the surface normal velocity.For acoustic radiation problems,Z in general being complex-valued and frequency dependent,could be obtained by boundary element method for an arbitrary shaped three-dimensional bodies or by the surface Rayleigh integral for a baffled plate.

    The normal velocity vector vnis related to the structural velocity vector v and the vector of the structural displacement x through the transformation matrix G,

    Substituting Eqs.(2)and(3)into Eq.(1)yields,

    where contains the structural displacement vector x as the only unknown variable to describe the coupled structural acoustic system.

    1.2 Active control of coupled structural acoustic system

    Consider the active control problem below,

    where the vector Ffrepresents the control force derived from the action of a set of force actuators represented by,

    where the m×1 vector u denotes the m inputs,one for each control device(actuator),and Bfdenotes the nd×m matrix of weighting factors,(influence coefficients)or actuator gains,ndis the total number of structural degrees of freedom(DOF).

    In order to control the system,we need a feedback loop.Let y be an s×1 vector of sensor outputs denoted and defined by,

    where Cdand Cvare s×ndmatrices of displacement and velocity influence coefficients,respectively.The output is feedback to the input vector u of the actuator array in the form,

    where the m×s matrix Gfconsists of constant feedback gains.

    In the way above,the active control problem is then reduced to the modified form,

    The pole placement in the such way is equivalent to find suitable control matrix to realize the desirable eigenvalue distribution.

    2.3 Modal parameter estimation by ROM using transfer function

    The receptance matrix,which is measurable experimentally,is the inverse of the dynamic stiffness matrix.The receptance matrix H()ωof the open-loop coupled system is now defined as,

    To identify the modal parameter of the coupled structural acoustic system from the measured transfer function,we use the reduced order model[3],which is based on rational Krylov projection.First introduce a transfer function,

    Any other transfer function can also be used as soon as it captures the dynamics of the coupled system.System matrices of the ROM are derived from the above transfer functions at a set of interpolation frequencies,theα,()βblock of the stiffness and mass matrices of the ROM is given by,

    2.4 Modal pole assignment[12]

    To cause the closed-loop system to have the desired poles(eigenvalues)and,hence,a desired response,the Bf,Cd,Cvand Gfmust be chosen appropriately.When the velocity feedback is used,the choice of the gain is through the equation

    When the displacement feedback is used,the choice of the gain is through the equation

    2.5 Active control simulation and vibro-acoustic response

    For a fluid-loaded structure and a Multiple-Input-Multiple-Output(MIMO)control system using displacement/velocity feedback,if the actuator and sensor locations are chosen,then the input matrix Bf,the output displacement matrix Cdand the output velocity matrix Cvare known,the pole assignment problem is to solve gain Gffrom Eq.(16)and Eq.(17)to get desired modal response information.Once Gfis chosen appropriately,the eigenvalues of the controlled system and the corresponding vibro-acoustic response x,vnand p are determined.Further,the acoustic power Π radiated from the structure can be calculated as,

    where S0is the area of the structure surface.

    3 Numerical examples

    The dimensions of a simply supported plate in a baffle are Lx=0.455 m,Ly=0.379 m,and thickness h=0.003 m.The plate is made of steel with density ρs=7 850 kg/m3,Young’s modulus E=2.1×1011N/m2,and Poison’s ratio v=0.3.The disturbance is assumed to be a point force with amplitude F0=1 N and located at the plate center.The plate is assumed to be vi-brating in water with a density ρ=1 000 kg/m3and a sound speed c=1 500 m/s.The proportional damping coefficient α=7.522 7 and β=1.136 42×10-5.The plate is modeled by 16×16 four-noded quadrilateral isoparametric elements and the element mesh is shown in Fig.1.The finite element is based on the Mindlin plate theory(the first-order shear deformation theory). The Rayleigh integral on the plate surface is calculated by discretisizing the plate surface with the same mesh as the plate finite element mesh.The total number of structural DOFs is nd=803.Twelve evenly distributed interpolation frequencies in the frequency band(10,560)Hz and force matrix consisting of five probing vectors are used to obtain the transfer functions and construct the ROM.

    Fig.1 Plate element mesh and collocated sensor/actuator locations

    Fig.2 Sound power level before and after control for Case1 and Case 2

    Fig.3 Mean-square normal velocity level before and after control for Case 1 and Case 2

    Fig.4 Sound power level before and after control for Case 3 and Case 4

    Fig.5 Mean-square normal velocity level before and after control for Case 3 and Case 4

    Fig.6 Sound power level before and after control for Case 5

    Fig.7 Mean-square normal velocity level before and after control for Case 5

    Tab.1 Natural frequencies and modal damping rations of the plate before and after control for Case 1 and Case 2

    Tab.2 Natural frequencies and modal damping rations of the plate after control for Case 3,Case 4 and Case 5

    Figs.2-7 show the sound power level(dB,re:10-12W)and the mean-square normal velocity level(dB,re:1 m2/s2)of the plate without and with control for all cases of the five different control configurations,the numerical results are obtained by a frequency sweep with increments of 1 Hz.The first 10 natural frequencies and modal damping ratios of the plate without and with control for all cases are listed in Tab.1 and Tab.2.

    From the figures and tables,we can see that for Case 1,the first-mode natural frequency is changed from 30.4 Hz to 50.1 Hz,the sound power level at 30 Hz is reduced from 94 dB to 61 dB.For Case 2,the first-mode damping ratio is changed from 0.964 90%to 6.092 80%, the sound power level at 30 Hz is reduced from 94 dB to 84 dB.For Case 3,the first-mode natural frequency is changed from 30.4 Hz to 50.1 Hz,the sound power level at 30 Hz is reduced from 94 dB to 61 dB.For Case 4,the first-mode damping ratio is changed from 0.964 90%to 5.643 91%,the sound power level at 30 Hz is reduced from 94 dB to 84 dB.For Case 5,the first-mode natural frequency and damping ratio are changed simultaneously to 50.1 Hz and 6. 028 78%,the sound power level at 30 Hz is reduced from 94 dB to 61 dB,at the assigned resonant frequency 50 Hz the sound power level is 85 dB which is less than 94 dB.To see the control performance on sound pressure at field points,Fig.8 shows the sound pressure level(dB,re:10-6Pa)at a field point(0.24 m,0.15 m,1.50 m).We can see that the effects of active control on the field pressure are similar as on the sound power.

    Fig.8 Sound pressure level before and after control

    Fig.9 Mode shapes of Modes 1,4,5,and 7 of control configuration Case 3

    It is clear that the realizations of the eigenvalue assignment are achieved.However,we also can see that the controls on the first mode affect uncontrolled modes,especially in Case 3,Case 4 and Case 5.As we know,if the mass matrix,the stiffness matrix and the damping matrix can be diagonalized by the modal matrix,independent modal control can be achieved. For a fluid-loaded structure,to whatever degree that these conditions are hard to exactly meet since the heavy fluid loading is frequency dependent and the fluid-loaded modes are complex modes.In addition,the active control especially the actuator locations also affect the mode shapes(modal matrix).From Tab.2,we can see from the modal indices(m,n)that the modal order of Case 3 and Case 5 is different from that of uncontrolled plate.Fig.9 illustrates the mode shapes of Modes 1,4,5,and 7 of control configuration Case 3.It is clear that the controlled water-loaded shapes display big perturbations of the conventional mode shapes of the plate with Modal indices(1,1),(3,1),(2,2)and(1,3),respectively.To avoid the side effects of the above control strategy,what we can do is to have a control only in the working frequency range such as in a narrow band around 30 Hz,the design of a practical feedback control system thus generally involves a compromise between having a high control gain to achieve good performance in the working frequency range,and having a lower control gain to avoidside effects on other modes outside the working frequency range.

    4 Conclusions

    In this paper,a transfer function which might be obtained from measurements is used to construct the ROM of a coupled structural acoustic system,the problem of assigning the poles of the coupled system to predetermined values is then solved by choosing the appropriate feedback gain matrix.The method is demonstrated by means of a numerical example of active control of structural vibration and acoustic radiation of a plate with different control configurations.Numerical results of water-loaded natural frequencies and damping ratios,radiated sound power,mean-square normal velocity and field pressure of the plate with and without control show that the realizations of the eigenvalue assignment are achieved.

    [1]Junger M C.Acoustic fluid-elastic structure interactions:Basic concepts[J].Computers&Structures,1997,65(3):287-293.

    [2]Giordano J A,Koopmann G H.State-space boundary element-finite element coupling for fluid-structure interaction analysis[J].Journal of the Acoustical Society of America,1995,98:363-372.

    [3]Li X,Li S.Modal parameters estimation for fluid-loaded structures from reduced order models[J].Journal of the Acoustical Society of America,2006,120:1996-2003.

    [4]Wei X,Mottershead J E,Ram Y M.Partial pole placement by feedback control with inaccessible degrees of freedom[J]. Mechanical Systems and Signal Processing,2016,70-71:334-344.

    [5]Tehrani M G,Elliott R N R,Mottershead J E.Partial pole placement in structures by the method of receptances:Theory and experiments[J].Journal of Sound and Vibration,2010,329(24):5017-5035.

    [6]Meirovitch L.Dynamics and control of structures[M].New York:John Wiley and Sons,1990.

    [7]Serra M,Resta F,Ripamonti F.Dependent modal space control[J].Smart Materials&Structures,2013,22(10):622-629.

    [8]Ram Y M,Mottershead J E.Receptance method in active vibration control[J].AIAA Journal,2007,45(3):562-567.

    [9]Fein O M,Gaul L,Stobener U.Vibration reduction of a fluid-loaded plate by modal control[J].Journal of Intelligent Material Systems and Structures,2005,16:541-552.

    [10]Li S.Active modal control simulation of vibro-acoustic response of a fluid-loaded plate[J].Journal of Sound and Vibration,2011,330(23):5545-5557.

    [11]Everstine G C,Henderson F M.Coupled finite element/boundary element approach for fluid-structure interaction[J].Journal of the Acoustical Society of America,1990,87:1938-1947.

    [12]Inman D J.Vibration,with control,measurement and stability[M].Englewood Cliffs,New Jersey:Prentice Hall,1989.

    于丹竹1,黎勝1,2

    (1.大連理工大學(xué)工業(yè)裝備結(jié)構(gòu)分析國(guó)家重點(diǎn)實(shí)驗(yàn)室運(yùn)載工程與力學(xué)學(xué)部船舶工程學(xué)院,遼寧大連116024;2.高新船舶與深海開發(fā)裝備協(xié)同創(chuàng)新中心,上海200240)

    摘要:基于結(jié)構(gòu)聲耦合系統(tǒng)的降階模型實(shí)現(xiàn)了水下結(jié)構(gòu)振動(dòng)和聲輻射的極點(diǎn)配置。文中的降階模型可完全基于結(jié)構(gòu)聲耦合系統(tǒng)的振動(dòng)響應(yīng)通過(guò)實(shí)驗(yàn)來(lái)獲取,可以不需要形成或知道結(jié)構(gòu)的質(zhì)量陣、阻尼陣、剛度陣和流體的聲阻抗矩陣。以水中板結(jié)構(gòu)的振動(dòng)和聲輻射為例使用同位的傳感器/作動(dòng)器布置采用輸出反饋控制對(duì)流體加載下的板的固有頻率和阻尼進(jìn)行了配置,并對(duì)不同的控制構(gòu)型進(jìn)行了分析和討論。數(shù)值模擬結(jié)果表明基于降階模型進(jìn)行水下結(jié)構(gòu)振動(dòng)和聲輻射的極點(diǎn)配置是可行的。

    基于降階模型的結(jié)構(gòu)聲耦合系統(tǒng)的極點(diǎn)配置

    極點(diǎn)配置;降階模型;流固耦合;輸出反饋;結(jié)構(gòu)聲主動(dòng)控制

    TB53

    :A

    于丹竹(1985-),女,大連理工大學(xué)船舶工程學(xué)院博士研究生;

    1007-7294(2017)03-0361-11

    TB53

    :A

    10.3969/j.issn.1007-7294.2017.03.011

    黎勝(1973-),男,大連理工大學(xué)船舶工程學(xué)院教授,博士生導(dǎo)師。

    Received date:2016-09-27

    Foundation item:Supported by the Funds of Science and Technology on Underwater Test and Control Laboratory under Grant No.9140C260101130C26095

    Biography:YU Dan-zhu(1985-),female,Ph.D.student;

    LI Sheng(1973-),male,professor/tutor,E-mail:shengli@dlut.edu.cn.

    猜你喜歡
    降階大連理工大學(xué)工程學(xué)院
    福建工程學(xué)院
    福建工程學(xué)院
    單邊Lipschitz離散非線性系統(tǒng)的降階觀測(cè)器設(shè)計(jì)
    福建工程學(xué)院
    Research on the Globalization of English in the Internet era
    大東方(2019年1期)2019-09-10 20:30:40
    福建工程學(xué)院
    偽隨機(jī)碼掩蔽的擴(kuò)頻信息隱藏
    降階原理在光伏NPC型逆變微網(wǎng)中的應(yīng)用研究
    基于Krylov子空間法的柔性航天器降階研究
    基于CFD降階模型的陣風(fēng)減緩主動(dòng)控制研究
    中亚洲国语对白在线视频| 一区二区三区乱码不卡18| 久久精品亚洲熟妇少妇任你| 黑人巨大精品欧美一区二区蜜桃| 午夜福利一区二区在线看| 亚洲国产精品一区二区三区在线| 一区二区av电影网| 熟女少妇亚洲综合色aaa.| 脱女人内裤的视频| 日韩一区二区三区影片| 欧美黑人精品巨大| 国产精品一区二区在线观看99| 在线观看免费日韩欧美大片| 久久久久精品国产欧美久久久| 女性被躁到高潮视频| 精品亚洲成国产av| 午夜福利免费观看在线| av福利片在线| 黄色丝袜av网址大全| 久久精品亚洲熟妇少妇任你| 亚洲少妇的诱惑av| 欧美日本中文国产一区发布| 欧美成狂野欧美在线观看| √禁漫天堂资源中文www| 久久精品亚洲熟妇少妇任你| 国产又爽黄色视频| 狠狠婷婷综合久久久久久88av| 一区二区三区精品91| 菩萨蛮人人尽说江南好唐韦庄| 国产精品 欧美亚洲| 天天躁日日躁夜夜躁夜夜| 国产高清视频在线播放一区| 午夜福利,免费看| 免费看十八禁软件| 成人18禁在线播放| 五月天丁香电影| 欧美精品高潮呻吟av久久| 亚洲九九香蕉| 日韩一卡2卡3卡4卡2021年| 国产成人免费无遮挡视频| 久久久久久免费高清国产稀缺| 亚洲视频免费观看视频| 1024视频免费在线观看| 男女高潮啪啪啪动态图| 国产精品免费视频内射| 国产免费av片在线观看野外av| 99国产精品一区二区蜜桃av | 日韩中文字幕视频在线看片| 久久精品亚洲精品国产色婷小说| 亚洲成人免费av在线播放| 国产一区二区三区在线臀色熟女 | 大香蕉久久成人网| 成人18禁高潮啪啪吃奶动态图| 九色亚洲精品在线播放| 国产av一区二区精品久久| 啪啪无遮挡十八禁网站| 国产亚洲午夜精品一区二区久久| a级毛片黄视频| 天天影视国产精品| 99国产综合亚洲精品| 国产麻豆69| 午夜福利视频精品| 国产精品影院久久| 久久国产精品大桥未久av| 日本wwww免费看| 成人精品一区二区免费| 精品亚洲乱码少妇综合久久| 精品国产一区二区三区久久久樱花| 99久久精品国产亚洲精品| 久久精品国产综合久久久| 国产在线一区二区三区精| videosex国产| 99久久精品国产亚洲精品| 一区二区三区乱码不卡18| 一个人免费看片子| 亚洲一码二码三码区别大吗| 免费av中文字幕在线| 又紧又爽又黄一区二区| 欧美激情 高清一区二区三区| 嫁个100分男人电影在线观看| 国产日韩一区二区三区精品不卡| 国产一区二区三区视频了| 亚洲久久久国产精品| 后天国语完整版免费观看| 日本av手机在线免费观看| 12—13女人毛片做爰片一| 国产欧美亚洲国产| 极品人妻少妇av视频| 久久精品国产综合久久久| 色在线成人网| 夜夜爽天天搞| 精品第一国产精品| 久久久久久久国产电影| 日韩视频一区二区在线观看| 欧美黄色淫秽网站| 一边摸一边抽搐一进一出视频| 亚洲国产看品久久| 中国美女看黄片| 成人影院久久| 老司机靠b影院| 大香蕉久久网| 极品人妻少妇av视频| 中文字幕精品免费在线观看视频| 国产主播在线观看一区二区| 久久久久久久精品吃奶| 黄色丝袜av网址大全| 精品国产超薄肉色丝袜足j| 中文字幕人妻丝袜一区二区| 国产欧美日韩一区二区精品| 大片免费播放器 马上看| 在线观看人妻少妇| 大型av网站在线播放| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美精品综合一区二区三区| 人人妻人人爽人人添夜夜欢视频| 欧美日韩福利视频一区二区| 欧美日韩国产mv在线观看视频| 少妇精品久久久久久久| 老鸭窝网址在线观看| 欧美精品av麻豆av| 中文字幕制服av| 午夜福利在线免费观看网站| 精品欧美一区二区三区在线| 在线观看66精品国产| 免费在线观看完整版高清| 欧美成狂野欧美在线观看| 久久 成人 亚洲| 午夜免费成人在线视频| 男女免费视频国产| 色尼玛亚洲综合影院| 激情视频va一区二区三区| 日韩三级视频一区二区三区| 日韩大片免费观看网站| 欧美精品亚洲一区二区| 亚洲三区欧美一区| 高清视频免费观看一区二区| 老司机午夜十八禁免费视频| 热99国产精品久久久久久7| 久久精品aⅴ一区二区三区四区| 99riav亚洲国产免费| 亚洲精品av麻豆狂野| 免费看a级黄色片| 黑丝袜美女国产一区| av网站在线播放免费| 中文亚洲av片在线观看爽 | 亚洲人成电影免费在线| 欧美日韩国产mv在线观看视频| 男女无遮挡免费网站观看| 国产黄色免费在线视频| 日日摸夜夜添夜夜添小说| 亚洲国产毛片av蜜桃av| 18在线观看网站| 啦啦啦视频在线资源免费观看| 十八禁高潮呻吟视频| 最近最新中文字幕大全免费视频| 搡老乐熟女国产| 精品国产超薄肉色丝袜足j| 国产免费现黄频在线看| 一级片'在线观看视频| 国产亚洲一区二区精品| 人人妻人人澡人人爽人人夜夜| 成年女人毛片免费观看观看9 | 好男人电影高清在线观看| 老司机影院毛片| 欧美成人免费av一区二区三区 | 亚洲全国av大片| 亚洲精品中文字幕一二三四区 | 色94色欧美一区二区| 老司机福利观看| 麻豆乱淫一区二区| 成人免费观看视频高清| 国产成人啪精品午夜网站| 久久久精品区二区三区| 成在线人永久免费视频| 免费av中文字幕在线| 久久久久久久大尺度免费视频| 18禁美女被吸乳视频| 国产aⅴ精品一区二区三区波| 纯流量卡能插随身wifi吗| 免费女性裸体啪啪无遮挡网站| 在线播放国产精品三级| 好男人电影高清在线观看| 69av精品久久久久久 | 香蕉丝袜av| 黑人猛操日本美女一级片| 久久久久久久大尺度免费视频| 亚洲av第一区精品v没综合| 久久午夜综合久久蜜桃| 99久久人妻综合| a级毛片在线看网站| 啦啦啦在线免费观看视频4| 日本欧美视频一区| tocl精华| av不卡在线播放| 精品人妻在线不人妻| 香蕉国产在线看| 一本大道久久a久久精品| 他把我摸到了高潮在线观看 | h视频一区二区三区| 美女主播在线视频| 在线 av 中文字幕| 国产在线免费精品| 免费av中文字幕在线| 天天躁夜夜躁狠狠躁躁| 最近最新免费中文字幕在线| 国产1区2区3区精品| 日本欧美视频一区| 免费在线观看黄色视频的| 免费日韩欧美在线观看| 亚洲精品国产精品久久久不卡| av又黄又爽大尺度在线免费看| 国产无遮挡羞羞视频在线观看| 精品国产一区二区三区久久久樱花| 亚洲精品国产色婷婷电影| 久久精品国产a三级三级三级| 亚洲精华国产精华精| 久久国产亚洲av麻豆专区| 美女午夜性视频免费| 69精品国产乱码久久久| 老熟妇乱子伦视频在线观看| 人人妻人人澡人人爽人人夜夜| 男女高潮啪啪啪动态图| 亚洲美女黄片视频| 国产熟女午夜一区二区三区| 国产精品久久久久久精品电影小说| 欧美激情极品国产一区二区三区| 国产精品久久电影中文字幕 | 国产精品香港三级国产av潘金莲| 18禁黄网站禁片午夜丰满| 欧美日韩精品网址| 午夜福利在线免费观看网站| 成人18禁高潮啪啪吃奶动态图| 午夜福利视频在线观看免费| 免费观看a级毛片全部| 超碰成人久久| 黄色视频不卡| 久久午夜综合久久蜜桃| 亚洲国产毛片av蜜桃av| 国产精品美女特级片免费视频播放器 | 国产野战对白在线观看| 国产黄频视频在线观看| 岛国在线观看网站| 露出奶头的视频| 亚洲精品国产色婷婷电影| 91成人精品电影| 亚洲一区二区三区欧美精品| 天天躁日日躁夜夜躁夜夜| 精品乱码久久久久久99久播| 美女扒开内裤让男人捅视频| 丁香六月天网| 日韩有码中文字幕| 黑人巨大精品欧美一区二区mp4| 久久中文字幕一级| 免费一级毛片在线播放高清视频 | 少妇猛男粗大的猛烈进出视频| 免费少妇av软件| 91国产中文字幕| 老司机亚洲免费影院| 日韩三级视频一区二区三区| 国产日韩一区二区三区精品不卡| 精品一品国产午夜福利视频| 国产成人欧美在线观看 | 久久av网站| 中文字幕色久视频| 男人舔女人的私密视频| 成人手机av| 老熟妇乱子伦视频在线观看| 免费观看人在逋| 淫妇啪啪啪对白视频| 搡老岳熟女国产| 最黄视频免费看| 国产视频一区二区在线看| 狠狠婷婷综合久久久久久88av| 国产av国产精品国产| 久久久欧美国产精品| 91麻豆av在线| av天堂在线播放| 欧美乱妇无乱码| 91麻豆av在线| 精品亚洲成国产av| 日本wwww免费看| 久久婷婷成人综合色麻豆| 男女边摸边吃奶| 午夜福利影视在线免费观看| 色94色欧美一区二区| 天堂8中文在线网| 久久精品aⅴ一区二区三区四区| e午夜精品久久久久久久| 侵犯人妻中文字幕一二三四区| 精品国产一区二区三区久久久樱花| 精品国内亚洲2022精品成人 | 色94色欧美一区二区| 黄色a级毛片大全视频| 国产淫语在线视频| 国产区一区二久久| 亚洲伊人色综图| 久久精品成人免费网站| 99国产精品一区二区三区| 美女高潮到喷水免费观看| 国产精品一区二区在线不卡| av欧美777| 少妇的丰满在线观看| 18禁观看日本| 国产av又大| 亚洲专区国产一区二区| 夜夜爽天天搞| 9热在线视频观看99| 免费女性裸体啪啪无遮挡网站| 国产成人精品久久二区二区免费| 亚洲精品国产精品久久久不卡| 9色porny在线观看| a级片在线免费高清观看视频| 狂野欧美激情性xxxx| 国产视频一区二区在线看| 亚洲七黄色美女视频| 美国免费a级毛片| 国产精品九九99| 国产一区二区 视频在线| 日韩欧美一区视频在线观看| 美女扒开内裤让男人捅视频| 精品国产一区二区三区四区第35| 亚洲国产欧美在线一区| 午夜福利视频在线观看免费| 日韩大片免费观看网站| 午夜免费成人在线视频| 日韩一卡2卡3卡4卡2021年| 18禁观看日本| 视频区图区小说| 欧美日韩亚洲高清精品| 最黄视频免费看| 国产一区二区三区视频了| 丝袜人妻中文字幕| 日韩一区二区三区影片| 欧美日韩成人在线一区二区| 成人特级黄色片久久久久久久 | 色婷婷久久久亚洲欧美| 国产伦人伦偷精品视频| 国产成+人综合+亚洲专区| 人人妻人人澡人人爽人人夜夜| 日日爽夜夜爽网站| 国产午夜精品久久久久久| 9色porny在线观看| 高清视频免费观看一区二区| 我的亚洲天堂| 99精品欧美一区二区三区四区| 成人影院久久| 18禁国产床啪视频网站| 黄色丝袜av网址大全| 久久久精品免费免费高清| 亚洲国产中文字幕在线视频| 国产av一区二区精品久久| 国产精品久久电影中文字幕 | 精品少妇黑人巨大在线播放| 91老司机精品| 日本黄色日本黄色录像| 啦啦啦在线免费观看视频4| 捣出白浆h1v1| 国产1区2区3区精品| 亚洲精品国产精品久久久不卡| 国产av国产精品国产| 国产一区二区三区综合在线观看| 亚洲 欧美一区二区三区| 精品人妻熟女毛片av久久网站| 久久热在线av| 91精品三级在线观看| 国产一区二区 视频在线| 亚洲第一青青草原| 怎么达到女性高潮| 五月开心婷婷网| 真人做人爱边吃奶动态| 国产免费现黄频在线看| 香蕉久久夜色| 性色av乱码一区二区三区2| 超碰成人久久| 夜夜爽天天搞| 亚洲熟女毛片儿| 亚洲人成电影观看| 久久久久久免费高清国产稀缺| 中文欧美无线码| 国产精品久久久久久精品古装| 国产黄频视频在线观看| 12—13女人毛片做爰片一| 美女主播在线视频| 日韩欧美国产一区二区入口| 日本wwww免费看| 97在线人人人人妻| 精品午夜福利视频在线观看一区 | 国产成人一区二区三区免费视频网站| 亚洲av成人不卡在线观看播放网| 十分钟在线观看高清视频www| 午夜福利视频在线观看免费| 熟女少妇亚洲综合色aaa.| 久久亚洲精品不卡| 最新美女视频免费是黄的| 欧美老熟妇乱子伦牲交| 国产99久久九九免费精品| 日本黄色日本黄色录像| 亚洲av成人一区二区三| 一本一本久久a久久精品综合妖精| 无人区码免费观看不卡 | 国产精品欧美亚洲77777| 另类亚洲欧美激情| 国产一区二区 视频在线| 精品少妇黑人巨大在线播放| 热re99久久国产66热| 黄色视频,在线免费观看| 精品少妇内射三级| 国内毛片毛片毛片毛片毛片| 五月天丁香电影| 夜夜爽天天搞| 热re99久久精品国产66热6| 男人操女人黄网站| 亚洲精品在线观看二区| 亚洲综合色网址| 久久精品国产亚洲av香蕉五月 | 超碰97精品在线观看| 香蕉国产在线看| 午夜精品国产一区二区电影| aaaaa片日本免费| 欧美精品高潮呻吟av久久| 熟女少妇亚洲综合色aaa.| 少妇被粗大的猛进出69影院| 黑人欧美特级aaaaaa片| 日韩三级视频一区二区三区| 一区二区三区乱码不卡18| 男女免费视频国产| 国产日韩欧美视频二区| 亚洲人成电影免费在线| 亚洲成人免费av在线播放| 一级片'在线观看视频| 少妇被粗大的猛进出69影院| 久久99热这里只频精品6学生| 成人免费观看视频高清| 两性午夜刺激爽爽歪歪视频在线观看 | 美女午夜性视频免费| 色尼玛亚洲综合影院| 深夜精品福利| 大片免费播放器 马上看| 性色av乱码一区二区三区2| 欧美精品亚洲一区二区| 男人操女人黄网站| 欧美乱码精品一区二区三区| 男女之事视频高清在线观看| 国产亚洲av高清不卡| 国产熟女午夜一区二区三区| 涩涩av久久男人的天堂| www.精华液| 国产不卡av网站在线观看| 免费在线观看日本一区| 日韩视频一区二区在线观看| 老熟妇乱子伦视频在线观看| 日本av免费视频播放| 丝瓜视频免费看黄片| 99热网站在线观看| 午夜福利乱码中文字幕| 亚洲欧美日韩高清在线视频 | 亚洲欧美一区二区三区黑人| 一级黄色大片毛片| 国产极品粉嫩免费观看在线| 无遮挡黄片免费观看| 国产激情久久老熟女| 人妻一区二区av| 一级毛片精品| 一夜夜www| 精品少妇一区二区三区视频日本电影| 日韩有码中文字幕| 国产又爽黄色视频| 黑人欧美特级aaaaaa片| 久久国产精品大桥未久av| 久久久久网色| 后天国语完整版免费观看| 丝瓜视频免费看黄片| 欧美成人免费av一区二区三区 | 老司机影院毛片| 国产老妇伦熟女老妇高清| 黄片大片在线免费观看| 国产在线一区二区三区精| 国产亚洲欧美精品永久| 午夜福利,免费看| 大片免费播放器 马上看| 亚洲一码二码三码区别大吗| 999久久久精品免费观看国产| 国产成人av教育| 国产xxxxx性猛交| 搡老乐熟女国产| videosex国产| 97人妻天天添夜夜摸| 两性夫妻黄色片| 极品少妇高潮喷水抽搐| av一本久久久久| 欧美日本中文国产一区发布| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美变态另类bdsm刘玥| 91老司机精品| 欧美激情高清一区二区三区| 日韩中文字幕欧美一区二区| aaaaa片日本免费| 人妻 亚洲 视频| 亚洲精品av麻豆狂野| 亚洲精品中文字幕一二三四区 | 99久久精品国产亚洲精品| 日韩欧美一区视频在线观看| av国产精品久久久久影院| 久久中文字幕一级| 亚洲成人免费电影在线观看| 夜夜夜夜夜久久久久| 久久精品aⅴ一区二区三区四区| 国产99久久九九免费精品| 免费观看av网站的网址| 在线观看www视频免费| 亚洲国产av新网站| 80岁老熟妇乱子伦牲交| 精品高清国产在线一区| 亚洲黑人精品在线| 狠狠精品人妻久久久久久综合| 老司机午夜福利在线观看视频 | 国产精品 欧美亚洲| 国产在线免费精品| 下体分泌物呈黄色| 99热国产这里只有精品6| 国产又爽黄色视频| 免费在线观看日本一区| 国产成人精品无人区| 黄色 视频免费看| 中文字幕色久视频| 十八禁网站网址无遮挡| 女性被躁到高潮视频| 69精品国产乱码久久久| 国产精品香港三级国产av潘金莲| 啦啦啦在线免费观看视频4| 在线看a的网站| 另类精品久久| 精品久久蜜臀av无| 捣出白浆h1v1| 美女国产高潮福利片在线看| 免费在线观看黄色视频的| 成年动漫av网址| 久久青草综合色| 大型av网站在线播放| 老熟妇仑乱视频hdxx| 免费久久久久久久精品成人欧美视频| 国产亚洲欧美在线一区二区| 黄色成人免费大全| 性少妇av在线| 1024香蕉在线观看| 9191精品国产免费久久| 桃红色精品国产亚洲av| 在线观看人妻少妇| 色视频在线一区二区三区| 亚洲七黄色美女视频| 每晚都被弄得嗷嗷叫到高潮| 国产精品免费大片| 人人妻人人澡人人爽人人夜夜| 又紧又爽又黄一区二区| 夜夜夜夜夜久久久久| 一本一本久久a久久精品综合妖精| 超碰成人久久| 99精品久久久久人妻精品| 亚洲精品久久成人aⅴ小说| 成人精品一区二区免费| 日韩大码丰满熟妇| 亚洲国产毛片av蜜桃av| 久久青草综合色| 亚洲av欧美aⅴ国产| 自线自在国产av| 黄色视频在线播放观看不卡| 久久性视频一级片| 国产xxxxx性猛交| 久久 成人 亚洲| 午夜福利在线观看吧| 丝瓜视频免费看黄片| 久久影院123| 天堂中文最新版在线下载| 欧美 日韩 精品 国产| 高清av免费在线| 90打野战视频偷拍视频| 日韩中文字幕欧美一区二区| 精品欧美一区二区三区在线| 女人久久www免费人成看片| 侵犯人妻中文字幕一二三四区| 桃花免费在线播放| 久久久久精品人妻al黑| 777久久人妻少妇嫩草av网站| 精品久久久久久电影网| 亚洲第一青青草原| 757午夜福利合集在线观看| 黄色片一级片一级黄色片| 国产不卡av网站在线观看| 国产精品久久久久成人av| 波多野结衣一区麻豆| 久热这里只有精品99| 精品久久久精品久久久| 欧美乱妇无乱码| 精品一品国产午夜福利视频| 午夜91福利影院| 亚洲天堂av无毛| 日韩欧美一区视频在线观看| 一区二区三区乱码不卡18| 亚洲天堂av无毛| 午夜福利一区二区在线看| 久久精品亚洲精品国产色婷小说| 69精品国产乱码久久久| 欧美变态另类bdsm刘玥| 免费在线观看视频国产中文字幕亚洲| 99热国产这里只有精品6| 亚洲成人国产一区在线观看| 女性被躁到高潮视频| 国产一区二区在线观看av| 99国产精品免费福利视频| 国产精品1区2区在线观看. | 久久久久精品国产欧美久久久| 免费观看av网站的网址| 亚洲 国产 在线| 人人澡人人妻人| 欧美精品人与动牲交sv欧美|