• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Three Dimensional Crack Path Prediction of Brittle Fracture in Weldment Under Fatigue Load

    2017-05-13 02:33:38YANGDapengPANHaiyangZHAOYaoLITianyun
    船舶力學 2017年3期
    關(guān)鍵詞:華中科技大學二階鄭州

    YANG Da-peng,PAN Hai-yang,ZHAO Yao,LI Tian-yun

    (1.Mechanical Engineering Department,Zhengzhou Technical College,Zhengzhou 450121,China;2.School of Naval Architecture&Ocean Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;3.Zheng Zhou Technical College,Urban Rail Transport Department,Zhengzhou 450121,China)

    Three Dimensional Crack Path Prediction of Brittle Fracture in Weldment Under Fatigue Load

    YANG Da-peng1,2,PAN Hai-yang3,ZHAO Yao2,LI Tian-yun2

    (1.Mechanical Engineering Department,Zhengzhou Technical College,Zhengzhou 450121,China;2.School of Naval Architecture&Ocean Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;3.Zheng Zhou Technical College,Urban Rail Transport Department,Zhengzhou 450121,China)

    Based on a second order perturbation method,three dimensional fatigue stress intensity factors are analyzed for a curved crack.The method is extended to obtain an approximate representation of a three dimensional fatigue stress intensity factors at the tip of a curved crack.A fatigue energy release rate due to three dimensional curved crack growth can be calculated by using Irwin’s formula.Considerations are made for a three dimensional fatigue curved crack in materials with inhomogeneous fracture toughness.Paths of a brittle three dimensional fatigue curved crack propagating along a welded joint are predicted as a practical application of the present method,where the effects of fatigue applied stresses,residual stresses,and material deterioration due to welding are taken into considerations.

    three dimensional fatigue stress intensity factor;curved crack;a second order perturbation method;a fatigue energy release rate

    0 Introduction

    Perturbation analyses for quasi-static slightly curved crack were first performed by Banichuk[1],and Goldstein and Salganik[2-3],in which they satisfied the boundary conditions approximately along the slightly curved crack surfaces with the use of Muskhelishvili’s complex potentials.Having obtained a rather simple expression of stress intensity factors by using the same method,Cotterell and Rice[4]examined the crack growth path of a semi-infinite crack in an infinitely extended plane.A second order perturbation solution was calculated by Karihaloo et al[5],in which they considered a straight crack of finite length with slightly kinked-curved extension in an unbounded plane that was subjected to uniaxial tensile stress at infinity.First order perturbation analyses were also performed by Sumi et al[6-7]for a straight crack in a fi-nite body with a slightly branched and curved extension.The shape of branched and curved extension was approximated by a continuous function with three shape parameters,and the approximate stress intensity factors at the extended crack tip were obtained in terms of these parameters and the near tip stress field parameters ahead of the crack tip prior to its extension,where the effects of the geometry of the domain were also taken into account.Yang et al[8]have obtained approximate descriptions of the stress intensity factors at the two dimensional curved crack tip,where the cracked body was subjected to dynamic loads.Wu[9],Amestoy and Leblond[10]have acquired the exact asymptotic results of the path of a crack warp ramification and the stress intensity factors existing in crack warp ramification tip.But as far as application of second order perturbation solution is concerned,the grand old men’research productions were all localized in those of crack warp development in weldment while enduring loads of static state on linear elasticity conditions[13].At the present time,operators of science and technology have not taken measure of second order perturbation analysis to work over problems which a three dimensional curved crack develops and extends in crack body enduring fatigue loads in elasticity state or quasi elasticity state[14-15].

    In this paper,a three dimensional curved crack tip fatigue stress intensity factors have been analyzed and calculated on the basis of the research production of Sumi et al.Furthermore,the shape of a three dimensional curved crack has been predicted when crack body was received fatigue loads.When received fatigue loads,the original three dimensional straight crack will stretch to incurvate because of uneven fracture toughness or material inhomogeneity such as a local degradation zone.Using a second order perturbation analysis solution,fracture behaviors of a three dimensional brittle fatigue curved crack will be researched into.

    1 Approximate description of a three dimensional curved crack in a finite body receiving fatigue load

    1.1 Modification of the second order perturbation solution to a three dimensional fatigue curved crack

    Fig.1 A three dimensional curved crack in a finite body enduring fatigue load

    And the finite body corrections of the fatigue stress intensity factor amplitudes at the three dimensional curved crack tip are given by:

    Therefore,the three dimensional fatigue stress intensity factor amplitudes ΔKIZand ΔKIIZat the three dimensional curved crack tip are respectively given by:

    where ΔKIZand ΔKIIZare the three dimensional dynamic stress intensity factors which arecontaining three axis stress constraints. Thereinto[16-17]:

    where TZis off surface confinement factor[16-17].

    1.2 Criterion of the three dimensional curved crack unsteady extending in weldment when enduring fatigue load

    Let fatigue fracture toughness of the three dimensional crack body be KCZ,let type one fatigue fracture toughness of the three dimensional crack body be KICZ,let type two fatigue fracture toughness of the three dimensional crack body be KIICZ,let stress intensity factor variation amplitude threshold value be ΔKthZ,let stress ratio of fatigue load be R,let curved crack length be LZ,thereupon calculation formula of the three dimensional fatigue curved crack steady propagation rate will be acquired as follows:

    where C and m are material constants.

    Condition or criterion of three dimensional fatigue curved crack steady existing and not extending:

    Condition or criterion of three dimensional fatigue curved crack steady extending:

    Condition or criterion of three dimensional fatigue curved crack unsteady extending:

    If combining Eqs.(5-11),we can know the extending state of the three dimensional fatigue curved crack.

    2 Discussion on fatigue crack path criteria

    2.1 Fatigue energy release rate

    Based on the research production of Bilby and Cardew[11],the dynamic elastic energy release rate ΔGZ,due to the slightly branched and curved crack extension in homogeneous materials receiving dynamic loads can be calculated as:

    where μ and ν are shear modulus and Poisson’s ratio,respectively,and ΔKIZand ΔKIIZare the three dimensional dynamic stress intensity factors at the extended crack tip.According to subsistent research products[8,16],ΔGZis given by:

    The three dimensional dynamic energy release rate of three dimensional curved crack is initially governed by the first term G0Zwritten as:

    The first and second variations of G0Zare calculated as:

    which gives rise to the three dimensional maximum dynamic elastic energy release rate of the crack body.

    One of the criteria often used in crack path prediction is the condition of local symmetry, which requires that ΔkIIZvanishes along curved crack[8].When the crack body is receiving dynamic loads,this criteria will demand that the discretionary ΔkIIZdue to dynamic loads all vanishes along curved crack extension.This means that in homogeneous materials the both criteria designate equivalent crack paths within the second order approximation theory.

    2.2 The effects of inhomogeneous distribution of three dimensional fatigue fracture toughness

    Here a crack under pure Mode-I fatigue loading condition is considered,whose tip intersects a specially oriented line degradation zone at angle αZ*(see Fig.2),and where the critical fatigue energy release rates for the base material and the degraded material are ΔGCZand ΔGCZ*,respectively.The three dimensional fatigue stress intensity factor at the instance of fracture is calculated from Eq.(14)and given by:

    By comparison,if the crack extends in the degraded zone,the kink angle is αZ*and corresponding the fatigue stress intensity factor prior to the crack extension is also calculated from Eq.(14)as:

    3 The three dimensional curved crack path prediction of brittle fracture in weldment receiving fatigue load

    3.1 An analytical model of a brittle fatigue crack in weldment

    Based on the aforementioned quasi-static crack analysis,investigations are made for a transverse welded joint in an infinite plate under a uniaxial tensile stress Δσawhich is dynamic.The sum of the longitudinal component of welding dynamic residual stress σrand the outer dynamic stresses Δσbwhich is acting parallel to the welded joint is accordingly fatigue in the region.Here,let Δσr′=σr+Δσbin order to analyze them conveniently.As is shown in Fig.2,the initial crack of length 2Hzis assumed to be parallel to the welding line.Material deterioration is observed along the heat affected zone,which is modeled as a line degradation being also parallel to the welded joint with the distance Lsfrom the initial crack line.The resistance forces of three dimensional fatigue curved crack propagation can be denoted by ΔGCZfor base and weld metals,and ΔGCZ*for the heat affected zones respectively.Brittle fatigue crack propagation is assumed to occur from the right hand side of the crack tip where the origin of the Cartesian coordinate system O-X1X2X3is established.Since a slightly warp ramifi-cation extension under fatigue stresses may be expected,the fatigue crack intersects the degradation line at angle αZ*with x1=hz*.

    Fig.2 A mathematical modeling of three dimensional curved crack propagation along a welded joint receiving fatigue load

    The stress field parameters at the original crack tip are obtained as:

    3.2 Three dimensional fatigue crack path prediction

    As was discussed in the previous subsection,in the case where the initial crack tip is contained in a homogeneous material receiving fatigue loads,a fatigue crack path can be determined by the local symmetry criterion,which is equivalent to the condition ΔkIIZ=0 along the curved trajectory.The three dimensional fatigue curved crack path is approximated by Eq.(23), and the shearing mode of stress intensity factor can be approximated by the first order terms of Eq.(6).Putting the equation to be identically zero and disregarding the second order terms, the shape parameters of the fatigue curved crack path are determined as:

    Substituting Eq.(21)into Eq.(22),equation αZ=βZ=γZ=0 will be obtained.

    This three dimensional straight fatigue crack extension could occur only for the perfect system,which means that the loading condition and the geometry have the perfect symmetry with respect to the crack line.Let us study the case in which non-collinear crack propagation is caused by some load induced disturbances in the system with a small initial three dimensional kink angle αZat the original crack tip used as the imperfection parameter of the system.

    where αZ,βZand λZare the shape parameters.

    The three dimensional fatigue crack path stability is then examined by considering the second and third terms of Eq.(23).The effect of fatigue crack path stability should be examined by means of the rest of the terms being proportional to αZ.So the three dimensional fatigue crack path stability should be evaluated by the quantity range ΔDSZthat is expressed as:

    where ΔBSZand ΔCSZare the three dimensional amplitude parameters representing the destabilizing effect against the fatigue curved crack:

    Fig.3 Three dimensional fatigue curved crack path destabilizing factors

    Fig.3 shows the crack path destabilizing factors ΔBSZand ΔCSZfor the present analysis model,where the ratios of applied fatigue stress and the sum of the outer fatigue stress and the residual stress are chosen as 0.25 and 0.5.From the moment t=0(s)the approximate moment t=5(s),the fatigue crack path destabilizing factors ΔBSZand ΔCSZare increasing,and will get up to maximum approximately when t=5(s).In the case where the applied fatigue stress level is relatively low compared with the sum of the outer fatigue stress and the residual stress,and where the size of the initial crack is relatively small,these parameters have large values.This means that fatigue crack paths of low stress brittle fracture initiated from a small initial crack at weldment can most probably be branched into the base metal approximately when the fatigue crack path destabilizing factors get up to maximum.

    As the fatigue crack further extends,it begins to intersect the line degradation zone.Here the question presents itself on whether the fatigue crack intersects the zone and penetrates into the base metal,or whether it branches to the heat affected zone,where the fracture toughness is lower than that of the base metal.For the sake of solving the question,the angle αZ* is calculated,which is shaped by the fatigue crack and the degradation line by means of equa-tions(21),(22)and(23).The condition of three dimensional fatigue crack extension along the degradation line could be acquired by using inequality(20).

    3.3 Results and discussions

    In this subsection,fatigue crack paths of brittle fracture in weldments are analyzed based on the numerical results.Numerical calculations are performed for the cases in which the initial half crack length is chosen as H=100,200,300,400 and 500 mm.Since the distance LSZ, between the initial crack line and the degradation line is of the order of the beads width,it is chosen as 25 or 50 mm.The imperfection parameter αZis selected as 0.5,1.0,1.5,2.0,2.5 and 3.0 degrees.

    Fig.4 Critical relations between the material degradation and the applied stress or the outer stress which is fatigue for various initial three dimensional crack lengths;three dimensional fatigue cracks penetrate into the base metal for the conditions corresponding to the upper left regions with respect to the curve

    4 Conclusions remarks

    In this paper,three dimensional fatigue brittle crack development in a finite body is analyzed by using a second order perturbation solution.And it is applied to examine the relation between the fatigue energy criterion and the fatigue stress criterion for the fatigue crack path prediction.As far as homogeneous materials are concerned,both criteria designate equivalent fatigue crack paths within the second order approximation theory.It should be contrasted for fatigue crack paths in materials with inhomogeneous fracture toughness,in which the energy criterion predominates over the stress criterion.As a practical application of the method,morphological characteristics of three dimensional fatigue brittle fracture in weldment are studied, and the critical curves for the three dimensional fatigue crack propagation along the degraded zone have been acquired considering many factors such as the applied fatigue stresses,the welding residual stresses,the localized material deterioration and the defect sizes.

    There are a large number of three dimensional curved cracks in ship structures,and three dimensional curved cracks are more than two dimensional curved cracks,so the research of this paper is very meaningful.

    [1]Banichuk N V.Determination of the form of a curvilinear crack by small parameter technique,Izv[J].An SSSR MTT, 1970,7-2:130-137.(in Russian)

    [2]Goldstein R V,Salganik R L.Plane problem of curvilinear cracks in an elastic solid,Izv[J].An SSSR MTT,1970,7-3:69-82.(in Russian)

    [3]Goldstein R V,Salganik R L.Brittle fracture of solids with arbitrary cracks[J].Int.J Fracture,1974,10:507-523.

    [4]Cotterell B,Rice J R.Slightly curved or kinked cracks[J].Int.J Fracture,1980,16:155-169.

    [5]Karihaloo B L,Keer L M,Nemat-Nasser S,Oranratnachai A.Approximate description of crack Kinking and curving[J].J Appl.Mech.,1981,48:515-519.

    [6]Sumi Y,Nemat-Nasser S,Keer L M.On crack branching and curving in a finite body[J].Int.J Fracture,1983,21:67-79;Erratum,Int,J Fracture,1984,24:159.

    [7]Sumi Y.A note on the first order perturbation solution of a straight crack with slightly branched and curved extension under a general geometric and loading condition[J].Engng.Fracture Mech.,1986,24:479-481.

    [8]Yang Dapeng,Zhang Xueyan,Zhao Yao,Bai Ling,Zhao Hui.Crack path prediction of brittle fracture in weldment under dynamic loads[J].Journal of Ship Mechanics,2012,16(3):254-270.

    [9]Wu C H.Explicit asymptotic solution for the maximum-energy-release-rate problem[J].Int.J Solids Structures,1979,15:561-566.

    [10]Amestoy M,Leblond J B.On the criterion giving the direction of propagation of cracks in the Griffith theory[J].Comptes Rendus,1985,301,serie II:969-972.(in French)

    [11]Bilby B A,Cardew G E.The crack with a kinked tip[J].Int.J Fracture,1975,11:708-712.

    [12]Sumi Y,Nemat-Nasser S,Keer L M.On crack path stability in a finite body[J].Engng.Fracture Mech.,1985,22:759-771.

    [13]Richard H A.Theoretical crack path prediction.(Institute of Applied Mechanics,University of Paderborn);Fulland M, Sander M S.Fatigue and fracture of engineering materials and structures[J].2005,28(1-2):3-12.

    [14]Wang Lei,Wu Jiankang.Flow behavior in microchannel made of different materials with wall slip velocity and electroviscous effects[J].Acta Mechanica Sinica,2010,26(1):73-80.

    [15]Zhang Weifeng,Feng Hua.The wavelet analysis of vibration detection for structure’s crack fault[J].Mechanics in Engineering,2010,32(1):20-23.

    [16]Zhao Xinwei,Luo Jinheng,Yang Zheng,Zhang Hua,zhang Guangli.3-D fracture mechanics characteristics for pipeline steel with surface crack under fatigue load[J].Journal of Mechanical Strength,2009,31(4):654-660.(In Chinese)

    [17]Qi Guiying.Study on 3D-fracture behavior in CTS-specimen with inclined crack[D].Dissertation for the Degree of D. Engineering,Harbin Engineering University,2011:46-47.

    疲勞載荷作用下焊接點三維線彈性彎曲裂紋路徑預測

    楊大鵬1,2,潘海洋3,趙耀2,李天勻2
    (1.鄭州職業(yè)技術(shù)學院機械工程系,鄭州450121;2.華中科技大學船舶與海洋工程學院,武漢430074;3.鄭州職業(yè)技術(shù)學院城市軌道交通系,鄭州450121)

    利用二階攝動方法研究了疲勞載荷作用下結(jié)構(gòu)線彈性裂紋的彎曲擴展問題并求解了三維動態(tài)應力強度因子。利用二階攝動方法研究了疲勞載荷作用下裂紋路徑預測時的應力準則與能量準則之間的關(guān)系。就均勻物質(zhì)而言,在二階攝動分析理論的框架內(nèi),兩種準則指明了相同的三維疲勞彎曲裂紋擴展路徑。但在具有非均勻斷裂韌度的物質(zhì)中,能量準則優(yōu)越于應力準則。作為二階攝動方法的實際運用,研究了焊接結(jié)構(gòu)中疲勞線彈性裂紋的形態(tài)特征和彎曲擴展路徑問題,綜合考慮了諸如遠場動態(tài)作用應力、焊接殘余應力、局部物質(zhì)衰變以及不同尺寸的缺陷的存在等因素,繪制出疲勞載荷作用下退化區(qū)域中裂紋彎曲擴展的臨界軌跡曲線。

    三維疲勞應力強度因子;彎曲裂紋;二階攝動方法;疲勞能量釋放率

    O343

    :A

    楊大鵬(1974-),男,博士,鄭州職業(yè)技術(shù)學院副教授;

    1007-7294(2017)03-0318-11

    O343

    :A

    10.3969/j.issn.1007-7294.2017.03.007

    潘海洋(1986-),男,鄭州職業(yè)技術(shù)學院助教;

    趙耀(1958-),男,華中科技大學教授,博士生導師

    李天勻(1969-),男,華中科技大學教授,博士生導師。

    Received date:2016-09-23

    Foundation item:Supported by Henan Province Basic and Advanced Technology Research Plan Project (No.152300410003);The Training Program of the Major Research Plan of the National Natural Science Foundation of China(No.91016026)

    Biography:YANG Da-peng(1974-),male,Ph.D.,associate professor,E-mail:ydpzpysh@163.com;

    PAN Hai-yang(1986-),male,assistant.

    猜你喜歡
    華中科技大學二階鄭州
    華中科技大學機械科學與工程學院(二)
    華中科技大學機械科學與工程學院(一)
    第九屆“博博會”將在鄭州舉辦
    客家文博(2022年1期)2022-08-22 06:31:04
    哥哥從鄭州來
    哥哥從鄭州來
    趣味(語文)(2021年11期)2021-03-09 03:11:28
    一類二階迭代泛函微分方程的周期解
    一類二階中立隨機偏微分方程的吸引集和擬不變集
    二階線性微分方程的解法
    夢啟鄭州
    青年歌聲(2018年2期)2018-10-20 02:02:52
    一類二階中立隨機偏微分方程的吸引集和擬不變集
    久久99热6这里只有精品| 老女人水多毛片| 精品久久久久久久久久久久久| 国产成人a区在线观看| 欧美97在线视频| 成年版毛片免费区| 少妇人妻一区二区三区视频| 又粗又硬又长又爽又黄的视频| 久久97久久精品| 麻豆av噜噜一区二区三区| 秋霞伦理黄片| av.在线天堂| 久久久久精品久久久久真实原创| 国产黄片视频在线免费观看| 人妻系列 视频| 国产激情偷乱视频一区二区| 国产精品一区二区性色av| 美女黄网站色视频| 大片免费播放器 马上看| 三级国产精品片| 国产探花在线观看一区二区| 欧美日韩一区二区视频在线观看视频在线 | 亚洲最大成人av| 免费观看的影片在线观看| 日本三级黄在线观看| 看免费成人av毛片| 国产真实伦视频高清在线观看| 久久久精品欧美日韩精品| 成人性生交大片免费视频hd| 国产淫语在线视频| 人妻夜夜爽99麻豆av| 丰满人妻一区二区三区视频av| 亚洲精品影视一区二区三区av| 日韩成人伦理影院| 亚洲av中文av极速乱| 少妇的逼好多水| 久久午夜福利片| 如何舔出高潮| 日本熟妇午夜| 91aial.com中文字幕在线观看| 国产亚洲最大av| 简卡轻食公司| 一级毛片aaaaaa免费看小| 精品一区二区三区人妻视频| 亚洲国产欧美在线一区| 老司机影院成人| 日本一本二区三区精品| 日本黄大片高清| 你懂的网址亚洲精品在线观看| 国产精品国产三级专区第一集| 激情五月婷婷亚洲| 一级黄片播放器| 精品一区二区三卡| 22中文网久久字幕| 色综合站精品国产| 国产中年淑女户外野战色| 成年女人在线观看亚洲视频 | 亚洲精品乱久久久久久| 国产亚洲精品久久久com| 免费黄频网站在线观看国产| 亚洲国产高清在线一区二区三| 国产成人免费观看mmmm| 久久久久九九精品影院| 国产 一区 欧美 日韩| 大陆偷拍与自拍| 最近最新中文字幕免费大全7| 丰满少妇做爰视频| 精品亚洲乱码少妇综合久久| 插逼视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 亚洲四区av| 又黄又爽又刺激的免费视频.| 亚洲电影在线观看av| 最近最新中文字幕免费大全7| 日本一二三区视频观看| 免费少妇av软件| 国产免费福利视频在线观看| 一级a做视频免费观看| av女优亚洲男人天堂| 日韩电影二区| 91午夜精品亚洲一区二区三区| 色综合站精品国产| 成人鲁丝片一二三区免费| 高清视频免费观看一区二区 | 极品少妇高潮喷水抽搐| 一级毛片黄色毛片免费观看视频| 久久久久久久久久黄片| 久久久久网色| 80岁老熟妇乱子伦牲交| av在线观看视频网站免费| 青春草亚洲视频在线观看| 麻豆av噜噜一区二区三区| 国产探花极品一区二区| 91av网一区二区| 久久97久久精品| 欧美成人午夜免费资源| 在线天堂最新版资源| 亚洲熟妇中文字幕五十中出| 男人爽女人下面视频在线观看| 成年女人在线观看亚洲视频 | 亚洲最大成人av| 啦啦啦啦在线视频资源| 少妇熟女aⅴ在线视频| 91aial.com中文字幕在线观看| 国产av不卡久久| 国产人妻一区二区三区在| 久久久精品免费免费高清| freevideosex欧美| 日本免费a在线| 亚洲av电影不卡..在线观看| 夫妻性生交免费视频一级片| 免费不卡的大黄色大毛片视频在线观看 | 国产成人一区二区在线| 男人舔女人下体高潮全视频| 欧美成人一区二区免费高清观看| 黄色欧美视频在线观看| 日韩精品青青久久久久久| 久久综合国产亚洲精品| 蜜桃久久精品国产亚洲av| 欧美最新免费一区二区三区| 五月玫瑰六月丁香| 三级毛片av免费| 亚洲性久久影院| 久久精品国产自在天天线| 午夜福利在线观看吧| 真实男女啪啪啪动态图| 18禁在线播放成人免费| 超碰97精品在线观看| 色综合色国产| 在线免费观看的www视频| 国产精品熟女久久久久浪| 美女被艹到高潮喷水动态| 中文字幕av成人在线电影| 有码 亚洲区| 久久久久九九精品影院| 欧美成人午夜免费资源| 亚洲精品一二三| av天堂中文字幕网| 大话2 男鬼变身卡| 亚洲精品日韩av片在线观看| www.色视频.com| 亚洲欧洲日产国产| 嫩草影院精品99| 国产淫片久久久久久久久| 亚洲久久久久久中文字幕| 精品久久久久久久人妻蜜臀av| 亚洲成人av在线免费| 国产真实伦视频高清在线观看| 亚洲精品国产成人久久av| 一区二区三区乱码不卡18| 99久国产av精品| 亚洲在久久综合| 人人妻人人澡欧美一区二区| 床上黄色一级片| 能在线免费看毛片的网站| 免费黄色在线免费观看| 老师上课跳d突然被开到最大视频| 久久久久国产网址| 国产黄色免费在线视频| 夫妻午夜视频| 在线免费十八禁| 精品一区二区三卡| 国产午夜精品久久久久久一区二区三区| 国产av国产精品国产| 国产久久久一区二区三区| 亚洲欧美一区二区三区黑人 | 日本熟妇午夜| 99热这里只有精品一区| 全区人妻精品视频| 国产黄a三级三级三级人| 在线免费观看不下载黄p国产| 国产午夜精品论理片| 久久精品久久久久久噜噜老黄| 插阴视频在线观看视频| 免费看不卡的av| 看非洲黑人一级黄片| 能在线免费看毛片的网站| 美女被艹到高潮喷水动态| 亚洲欧美日韩无卡精品| 女人十人毛片免费观看3o分钟| 在线观看人妻少妇| 日韩精品青青久久久久久| 两个人视频免费观看高清| 老女人水多毛片| 亚洲精品视频女| 成人午夜高清在线视频| 国产乱人偷精品视频| 两个人的视频大全免费| 日韩成人av中文字幕在线观看| 伊人久久国产一区二区| 久久精品人妻少妇| 69av精品久久久久久| 国产日韩欧美在线精品| 亚洲乱码一区二区免费版| 男女视频在线观看网站免费| 日韩电影二区| 日本与韩国留学比较| 精品久久久久久久久av| 肉色欧美久久久久久久蜜桃 | 欧美最新免费一区二区三区| 久久国产乱子免费精品| 亚洲av成人av| 国产高清有码在线观看视频| 人妻系列 视频| 午夜精品一区二区三区免费看| 国产熟女欧美一区二区| 美女国产视频在线观看| 毛片一级片免费看久久久久| 亚洲av不卡在线观看| 99re6热这里在线精品视频| 人人妻人人澡欧美一区二区| av一本久久久久| 午夜爱爱视频在线播放| 国产成人a区在线观看| 白带黄色成豆腐渣| 婷婷色综合大香蕉| 校园人妻丝袜中文字幕| 午夜精品国产一区二区电影 | av在线蜜桃| av在线天堂中文字幕| 欧美成人午夜免费资源| 亚洲av中文av极速乱| 精品久久久久久久末码| 久久久欧美国产精品| 亚洲欧洲国产日韩| 在线免费观看不下载黄p国产| 国产黄片美女视频| or卡值多少钱| 天堂影院成人在线观看| 免费观看a级毛片全部| 国产精品熟女久久久久浪| 久久精品国产亚洲av涩爱| 久久久久久伊人网av| 国产视频内射| 国产成人精品久久久久久| 少妇裸体淫交视频免费看高清| 男女那种视频在线观看| 哪个播放器可以免费观看大片| 国产在视频线精品| 九草在线视频观看| 亚洲最大成人av| 亚洲一区高清亚洲精品| www.av在线官网国产| 97在线视频观看| 中文字幕亚洲精品专区| av网站免费在线观看视频 | 97超碰精品成人国产| www.色视频.com| 久久精品国产亚洲网站| 寂寞人妻少妇视频99o| 欧美性猛交╳xxx乱大交人| 午夜激情福利司机影院| 岛国毛片在线播放| 亚洲国产欧美人成| 久久人人爽人人片av| 人人妻人人看人人澡| 亚洲精品视频女| 爱豆传媒免费全集在线观看| 两个人的视频大全免费| 亚洲一级一片aⅴ在线观看| 青春草亚洲视频在线观看| 欧美成人a在线观看| 亚洲图色成人| 亚洲av二区三区四区| 草草在线视频免费看| 欧美成人一区二区免费高清观看| 国产亚洲av片在线观看秒播厂 | 天天一区二区日本电影三级| 狠狠精品人妻久久久久久综合| 欧美+日韩+精品| 国产爱豆传媒在线观看| 免费av毛片视频| 好男人视频免费观看在线| 欧美成人午夜免费资源| 国产av码专区亚洲av| 国产精品人妻久久久影院| 春色校园在线视频观看| 中文在线观看免费www的网站| 欧美区成人在线视频| av免费在线看不卡| 午夜老司机福利剧场| 欧美97在线视频| 在线观看av片永久免费下载| or卡值多少钱| 免费看av在线观看网站| 色综合色国产| 一级毛片 在线播放| 简卡轻食公司| 久久精品国产亚洲av涩爱| 久久99热这里只有精品18| 99热全是精品| 亚洲欧美一区二区三区黑人 | 99re6热这里在线精品视频| 少妇的逼好多水| 久久精品国产鲁丝片午夜精品| 亚洲精品,欧美精品| 成年人午夜在线观看视频 | 亚洲欧美日韩卡通动漫| 国产黄色小视频在线观看| 99热这里只有是精品50| www.色视频.com| 中文字幕亚洲精品专区| 国产av在哪里看| 国产片特级美女逼逼视频| 久久久久久久久久人人人人人人| 天美传媒精品一区二区| 午夜视频国产福利| 美女黄网站色视频| 内地一区二区视频在线| 中文欧美无线码| 国产成人aa在线观看| 日本免费在线观看一区| 欧美xxxx黑人xx丫x性爽| 国产毛片a区久久久久| or卡值多少钱| 欧美变态另类bdsm刘玥| 久久久精品94久久精品| 啦啦啦韩国在线观看视频| 国产成人91sexporn| 又爽又黄无遮挡网站| 午夜福利高清视频| 99久国产av精品国产电影| 成年版毛片免费区| 国产成人a∨麻豆精品| 国产精品99久久久久久久久| 成人漫画全彩无遮挡| 看黄色毛片网站| 日韩三级伦理在线观看| 日日啪夜夜爽| 欧美bdsm另类| 青春草国产在线视频| 亚洲精品自拍成人| 精品一区二区三区视频在线| 一级毛片黄色毛片免费观看视频| 丰满少妇做爰视频| 网址你懂的国产日韩在线| 少妇裸体淫交视频免费看高清| 在线播放无遮挡| 国产一区二区亚洲精品在线观看| 精品久久久噜噜| 日本wwww免费看| 免费看av在线观看网站| 黄片无遮挡物在线观看| 国产一级毛片在线| 91av网一区二区| 色视频www国产| 蜜臀久久99精品久久宅男| 熟女人妻精品中文字幕| 日韩av在线免费看完整版不卡| 99久国产av精品国产电影| 美女脱内裤让男人舔精品视频| 国产成人a∨麻豆精品| 搞女人的毛片| 日韩成人av中文字幕在线观看| 日韩一区二区视频免费看| 亚洲av成人av| 午夜免费观看性视频| 国产成人精品婷婷| 欧美97在线视频| 国产亚洲91精品色在线| 国产成人精品一,二区| 99久久精品热视频| 最近最新中文字幕大全电影3| 亚洲国产精品专区欧美| 丝袜喷水一区| av免费在线看不卡| 日韩欧美国产在线观看| 丰满人妻一区二区三区视频av| 精品亚洲乱码少妇综合久久| 婷婷六月久久综合丁香| 亚洲精品中文字幕在线视频 | 简卡轻食公司| 久久久亚洲精品成人影院| 成人av在线播放网站| 91久久精品电影网| 成人性生交大片免费视频hd| 天天躁夜夜躁狠狠久久av| 亚洲欧美中文字幕日韩二区| 成人亚洲欧美一区二区av| 亚洲国产精品成人综合色| 亚洲性久久影院| 成人漫画全彩无遮挡| 亚洲精华国产精华液的使用体验| or卡值多少钱| 国产精品不卡视频一区二区| a级毛片免费高清观看在线播放| av专区在线播放| 欧美另类一区| 午夜免费观看性视频| 一级片'在线观看视频| 乱码一卡2卡4卡精品| 一级毛片 在线播放| 又黄又爽又刺激的免费视频.| 99热网站在线观看| 综合色丁香网| 亚洲天堂国产精品一区在线| 久久久午夜欧美精品| 精品久久久精品久久久| 亚洲精品一二三| 97人妻精品一区二区三区麻豆| 日韩欧美精品免费久久| 一级毛片aaaaaa免费看小| 成人国产麻豆网| 国产视频内射| 欧美日韩综合久久久久久| 国产精品精品国产色婷婷| 久久久久久久亚洲中文字幕| 欧美日韩在线观看h| 国产老妇伦熟女老妇高清| 女人久久www免费人成看片| 国产av不卡久久| 亚洲不卡免费看| 婷婷色麻豆天堂久久| 精品久久久精品久久久| 免费大片黄手机在线观看| 久久久国产一区二区| 亚洲图色成人| 国产精品福利在线免费观看| 免费观看的影片在线观看| 高清视频免费观看一区二区 | 精品亚洲乱码少妇综合久久| 97超视频在线观看视频| 80岁老熟妇乱子伦牲交| 嫩草影院精品99| 国产精品人妻久久久久久| 淫秽高清视频在线观看| 国内精品一区二区在线观看| 好男人视频免费观看在线| 夫妻性生交免费视频一级片| 丰满少妇做爰视频| ponron亚洲| 国产黄色视频一区二区在线观看| 久久久亚洲精品成人影院| 国产69精品久久久久777片| 精品久久久久久久久亚洲| 国产91av在线免费观看| 我的女老师完整版在线观看| 久久久精品免费免费高清| 最近视频中文字幕2019在线8| 在线播放无遮挡| 一区二区三区四区激情视频| 欧美日韩综合久久久久久| 日韩亚洲欧美综合| 久久久亚洲精品成人影院| 人妻系列 视频| 3wmmmm亚洲av在线观看| 亚洲天堂国产精品一区在线| 久久精品综合一区二区三区| 特级一级黄色大片| 亚洲婷婷狠狠爱综合网| 肉色欧美久久久久久久蜜桃 | 免费人成在线观看视频色| av一本久久久久| 伦精品一区二区三区| 久久99热这里只频精品6学生| 亚洲成色77777| 国产在视频线精品| 午夜日本视频在线| 人妻系列 视频| 欧美日韩在线观看h| 一级av片app| 草草在线视频免费看| 欧美一级a爱片免费观看看| 2018国产大陆天天弄谢| 国产精品不卡视频一区二区| 欧美成人a在线观看| 精品熟女少妇av免费看| 久久精品夜色国产| 久久精品久久久久久噜噜老黄| 日韩欧美国产在线观看| 久久鲁丝午夜福利片| 偷拍熟女少妇极品色| 午夜福利在线在线| 亚洲精品国产av蜜桃| 美女黄网站色视频| 国产在线男女| 最近视频中文字幕2019在线8| 国产成人精品福利久久| 性色avwww在线观看| 国内精品美女久久久久久| 乱系列少妇在线播放| 亚洲欧美日韩无卡精品| 日日啪夜夜爽| 国产成人精品婷婷| a级一级毛片免费在线观看| 国产黄色小视频在线观看| 看十八女毛片水多多多| 日本欧美国产在线视频| 男人舔奶头视频| 亚洲人成网站在线播| 国产精品国产三级国产av玫瑰| 99久久精品一区二区三区| 青青草视频在线视频观看| 欧美不卡视频在线免费观看| 久久久久九九精品影院| 国内少妇人妻偷人精品xxx网站| 亚洲一区高清亚洲精品| 丰满人妻一区二区三区视频av| 国产探花在线观看一区二区| 免费看美女性在线毛片视频| 国产熟女欧美一区二区| 精品人妻熟女av久视频| 国产 一区精品| 丝袜喷水一区| 日韩强制内射视频| 亚洲色图av天堂| 午夜精品在线福利| 国产三级在线视频| 国产乱人偷精品视频| 国产精品日韩av在线免费观看| 十八禁网站网址无遮挡 | 日韩一本色道免费dvd| 久热久热在线精品观看| 免费不卡的大黄色大毛片视频在线观看 | 黄片wwwwww| videos熟女内射| 午夜激情久久久久久久| 亚洲欧美日韩东京热| 国语对白做爰xxxⅹ性视频网站| 国产一级毛片七仙女欲春2| 国产黄色视频一区二区在线观看| 看非洲黑人一级黄片| 亚洲三级黄色毛片| 我要看日韩黄色一级片| 免费无遮挡裸体视频| 乱系列少妇在线播放| 精品人妻视频免费看| 精品久久久久久久久久久久久| 久久久久久国产a免费观看| 伦理电影大哥的女人| 午夜福利视频1000在线观看| 亚洲av中文av极速乱| 欧美高清性xxxxhd video| 精品久久久久久久久av| 亚洲,欧美,日韩| 亚洲国产精品成人综合色| 寂寞人妻少妇视频99o| 蜜桃亚洲精品一区二区三区| www.色视频.com| 少妇的逼水好多| 欧美成人a在线观看| 成人毛片60女人毛片免费| 麻豆乱淫一区二区| eeuss影院久久| 免费观看精品视频网站| 丝袜美腿在线中文| 身体一侧抽搐| 免费看av在线观看网站| 国产男人的电影天堂91| 搞女人的毛片| 大香蕉97超碰在线| 久久99蜜桃精品久久| 在线观看人妻少妇| 激情 狠狠 欧美| 欧美日韩综合久久久久久| 久久99热6这里只有精品| 亚洲怡红院男人天堂| 午夜视频国产福利| 丰满少妇做爰视频| 亚洲精品日韩在线中文字幕| 欧美成人精品欧美一级黄| 中文精品一卡2卡3卡4更新| 十八禁网站网址无遮挡 | 亚洲真实伦在线观看| 亚洲不卡免费看| 麻豆国产97在线/欧美| 久久鲁丝午夜福利片| 男人爽女人下面视频在线观看| 国产不卡一卡二| 免费少妇av软件| 免费观看性生交大片5| 大话2 男鬼变身卡| 亚洲av不卡在线观看| 国产黄a三级三级三级人| 亚洲av二区三区四区| 水蜜桃什么品种好| 国产伦精品一区二区三区视频9| 免费av观看视频| 亚洲婷婷狠狠爱综合网| 汤姆久久久久久久影院中文字幕 | 最新中文字幕久久久久| 久久精品熟女亚洲av麻豆精品 | 色5月婷婷丁香| 免费观看的影片在线观看| 3wmmmm亚洲av在线观看| 免费观看精品视频网站| 色播亚洲综合网| 日产精品乱码卡一卡2卡三| 最近最新中文字幕大全电影3| 国产高清国产精品国产三级 | 99久久九九国产精品国产免费| 水蜜桃什么品种好| 久久精品夜夜夜夜夜久久蜜豆| av专区在线播放| 一级毛片我不卡| 2021天堂中文幕一二区在线观| 亚洲人成网站高清观看| 一二三四中文在线观看免费高清| 国产免费一级a男人的天堂| 国产单亲对白刺激| 高清av免费在线| 国产高清不卡午夜福利| 久久久久性生活片| 亚洲av免费在线观看| 国内精品一区二区在线观看| 亚洲欧美一区二区三区国产| 亚洲国产精品专区欧美| 不卡视频在线观看欧美| 成人性生交大片免费视频hd| 亚洲怡红院男人天堂| 欧美激情国产日韩精品一区| 男人爽女人下面视频在线观看| 国产精品久久久久久精品电影| 国产午夜精品论理片| 简卡轻食公司|