• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tracking characteristics of tracer particles for PIV measurements in supersonic flows

    2017-11-20 12:06:55ChenFngLiuHongYngZifengHuHui
    CHINESE JOURNAL OF AERONAUTICS 2017年2期

    Chen Fng,Liu Hong,Yng Zifeng,Hu Hui

    aSchool of Aeronautics and Astronautics,Shanghai Jiao Tong University,Shanghai 200240,China

    bDepartment of Mechanical and Materials Engineering,Wright State University,Dayton,OH 45435,USA

    cDepartment of Aerospace Engineering,Iowa State University,Ames,IA 50011,USA

    Tracking characteristics of tracer particles for PIV measurements in supersonic flows

    Chen Fanga,*,Liu Honga,Yang Zifengb,Hu Huic

    aSchool of Aeronautics and Astronautics,Shanghai Jiao Tong University,Shanghai 200240,China

    bDepartment of Mechanical and Materials Engineering,Wright State University,Dayton,OH 45435,USA

    cDepartment of Aerospace Engineering,Iowa State University,Ames,IA 50011,USA

    Particle Image Velocimetry(PIV);Seeding;Supersonic flow;Tracers;Tracking characteristics

    The tracking characteristics of tracer particles for particle image velocimetry(PIV)measurements in supersonic flows were investigated.The experimental tests were conducted at Mach number 4 in Multi-Mach Wind Tunnel(MMWT)of Shanghai Jiao Tong University.The motion of tracer particles carried by the supersonic flow across shockwaves was theoretically modelled,and then their aerodynamic characteristics with compressibility and rarefaction effects were evaluated.According to the proposed selection criterion of tracer particles,the PIV measured results clearly identified that the shockwave amplitude is in good agreement with theory and Schlieren visualizations.For the tracer particles in nanoscales,their effective aerodynamic sizes in the diagnostic zone can be faithfully estimated to characterize the tracking capability and dispersity performance based on their relaxation motion across oblique shockwaves.On the other hand,the seeding system enabled the tracer particles well-controlled and repeatable dispersity against the storage and humidity.

    1.Introduction

    The occurrence of shockwaves with physical interruption in compressible flows,where a significant flow deceleration occurs across a very thin region,challenges the applications of measurement techniques.1With the appearance of short interframing-time CCD cameras and nanosecond-duration double-pulsed Nd:YAG lasers,the recent extension of PIV technique in supersonic flows becomes mature and practical.Haertig et al.2performed nozzle calibration measurements in a shock tunnel at Mach number 3.5 and 4.5.Scarano3conducted a series of investigation on supersonic turbulent wakes as well as shockwave turbulent boundary-layer interaction.A challenging application of particle image velocimetry(PIV)was pioneered by Schrijer et al.4,5to investigate the flow over a double ramp configuration in a Mach number 7 flow.Schrijer and Walpot6pointed out that the reliability of PIV applications under extreme high-speed conditions demands smaller relaxation time of the tracer particles.Nanoparticlebased planar laser scattering(NPLS)method7was alsodeveloped to demonstrate the tracking ability of nanoparticles to capture the space-time structure in supersonic flows.

    The quantitative determination of the particle tracking characteristics is commonly conducted by PIV measurements with the evaluation of the particle response time across a stationary shock wave.Earlier study demonstrated a response time of 3–4 ls for TiO2and more than 20 ls for Al2O3particles.8Another PIV measurement claimed a relaxation time below 2 ls for TiO2particles from the particle velocity profile downstream of an oblique shockwave.9Then,the nanostructured Al2O3aggregates around 10 nm in diameter yield a relaxation time of 0.27 ls,which is an order of magnitude reduction with respect to the compact TiO2nanoparticles.10A more recent discussion is given by Ragni et al.11,who obtained the relaxation time of different solid particles in the range of 0.4–3.7 ls based on a systematic investigation.However,few investigation takes the characterization of compressibility and rarefaction effects into consideration.This motivates the present efforts to experimentally and theoretically analyze the particles’motion allowing for measurement conditions variation to develop the seeding-particle-selection and seeding-distribution techniques within a higher Mach number regimes.

    The experiments were conducted by PIV techniques in Multi-Mach Wind Tunnel(MMWT)of Shanghai Jiao Tong University(SJTU).The tracer particles’motion across a shockwave was theoretically modelled considering compressibility and rarefaction effects and then experimentally analyzed from PIV measurements.It can yield qualitative information on particles’motion to estimate the available size of tracer particles in selection before experiments and analyze their effective aerodynamic diameters after experiments.In order to reach the requirements for tracer particles,advances in the seeding system integrating a pressurized vessel with a fluidized bed enabled the seeded particles to track the supersonic flows.

    2.Experimental apparatus and procedure

    Fig.1 shows the diagram and components of MMWT,which is capable of providing supersonic and hypersonic flows with nominal Mach numberMa1=2.5,3,4,5,6,and 7,respectively.The blowdown-suction operation pattern extends the test duration time up to 20 s.The present experiments to analyze the characteristics of particles are operated at the freestream condition of nominal Mach number 4.The velocity of the supersonic mainflow in the test cabin is 800 m/s with total pressure of 0.5 MPa and total temperature of 400 K.

    2.1.PIV system setup

    Fig.1 shows a double-frame digital PIV system composed of the laser,CCD camera,and synchronizer.The solid-state frequency-doubled Nd:YAG laser with a wavelength of 532 nm has a nominal energy of 500 mJ(stability±4%)per pulse.Lasers are available with pulse width about 5 ns,and repetition rate of 1–10 Hz.The test cabin holds three windows with 200 mm diameter,which can be optically accessible for PIV measurements.PIV pictures within the illuminated region are taken from the front view by an IPX-11M CCD camera(4000-2672 pixels,11 M resolutions,12 bits).The camera uses high-performance progressive-scan interline CCD chips,capable of acquiring two images with a minimum pulse separation of 200 ns and framing rate of 5 Hz.The time interval between pulses is a critical parameter,i.e.the particles moving timet,for matching the PIV system to the flow velocity.The particle images are recorded at 5 Hz resulting in 50 image pairs per tunnel run.A 105 mm SIGMA lens atf#=2.8 is carefully chosen to gain the particle images with sufficient collected energy and reduce the image blur due to aero-optical aberrations.The camera is fitted with a narrowband-pass 532 nm filterto minimizeambientlightinterferenceand almost tangential to the wall to alleviate the reflections.

    2.2.Particles’seeding technique

    Fig.1 Multi-Mach numbers wind tunnel(Ma1=2.5–7)and PIV system setup.

    Fine and non-agglomerated particles are required for PIV measurements under the extreme high-speed conditions.TiO2particles with nominal diameter of 30 nm are chosen as the tracers in the present flow measurement.However,the humidity and prolonged storage make these particles a strong tendency to form agglomerates several times larger than the primary sizes.A tracer particles’seeding system is newly designed to disperse the particles(Fig.2).The interactive force among the particles resulted from the charge of solid tracer particles will be negligible next to nothing in consideration of the electric conductivity of the metallic particle seeding device.In contrast,a mechanism is developed to disperse the dehydrated powders in a fluidized-bed like device in a oncemolded vessel with high tensile and compressive strength of 16 MPa,which is driven by a swirling dry air jet with both high pressure gradient and high momentum.It is expected to ensure particles fully mixing with the flow and to make the aerosol(the mixture of air flow and suspended particles)uniformity in the PIV measured region.This device also vastly simplifies the process to supply and clean the particles during the experiments.The jet flow with 2 MPa beyond the mainflow will provide a suitable flow rate of 0.01 kg/s carrying the seeding particles,yielding appropriate concentration among several preliminary runs.

    3.Characteristic analysis of tracer particles

    3.1.Tracers’motion across a shockwave

    wheretis the tracer particles’moving time and s the relaxation time to qualify the particle’s response.It is characterized in terms of the drag coefficientCDas

    The particle Reynolds numberRepis dictated with respect to the relative velocity between the particle velocity and the gas velocity far from the particle surface as:

    where l is dynamic viscosity of the flow,and qpanddpare the density and diameter of the particle,respectively.

    The experimentally inferred particle relaxation time s becomes a crucial factor for the velocity measurement in high-speed flows.When a particle with initial velocityUp(0)is seeded into the flow,the particle will accelerate with the surrounding flow at the rate of 1/s.The corresponding velocityUp(t)gradually increases close to,but never up to the flow velocityU.Similarly,the tracer particles across a shockwave,as shown in Fig.3,decelerate with an exponential decay to follow the actual flow streamlines downstream of the shockwave in a finite time instead of a theoretical discontinuity at the shockwave.Here,a dimensionless velocityU*,i.e.,the slip velocity of a particle is defined as

    where e is natural logarithm,Upn(t)is specified as the normal velocity of the particle,Un1andUn2represent the normal velocity of the flow before and after the shockwave.It is assumed that all seeded particles would be well-mixed and uniform while they travel till the vicinity of the shockwave.

    Fig.2 Tracer particles’seeding system.

    Further information regarding the response of particles across shockwaves can be found in Dring13or Tedeschi et al.14Such a procedure was adopted in the previous investigations2,15,16to obtain the velocity profile across a planar oblique shockwave,following the fact that the tracer particles decelerate gradually due to inertia.9In those supersonic flow tests are conducted over the wedge with a small deflection angle,5,10,11the induced shockwave strength i.e.normal Mach number is typically lower than 1.4.By treating the particle’s deceleration across a shock in a piecewise way,the relaxation is always given to be approximately linear11as follows:

    Fig.3 Motion of tracer particles across a shockwave in supersonic flows.

    where the particle relaxation distance

    Obviously,the dimensionless displacementx*always obeys the relationship with the dimensionless slip velocityU*in Eq.(6),which is determined by the ratio oft/s.In general,the present model of Eq.(6),which properly represents the particles relaxation process regardless of the effects of shockwave strength,has outperformed the empirical expression of Eq.(5).

    By using the normal shockwave relations,Eq.(7)can be clearly changed into

    3.2.Particles selection criteria

    By revealing the effects of time ratiot/s,i.e.,slip velocityU*of the particles on the dimensionless displacementx*,a semielasticity concept,17also as a popular economic tool,is introduced to analyze the responsiveness of a function to changes in parameters.Algebraically,the semi-elasticitySof a functionfat pointxis

    Generally,semi-elasticity indicates variables sensitive to a percentage change,which is useful to evaluate how the change in slip velocityU*affects the particle dimensionless displacementx*.From this point of view,the semi-elasticity of dimensionless displacementx*is dominated by the variable slip velocityU*as the following equation:

    It should be noted that this linear dependence of drag on the relative velocity is only available to the incompressible and continuum flow,but it represents a conservative estimate of the tracking ability of particles for small relative velocity.Eq.(9)can be therefore greatly simplified:

    Fig.4 Semi-elasticity of relaxation process for responsiveness of slip velocity.

    3.3.Compressbility and rarefaction effects

    where c is specific heat ratio of gas flow andRis gas constant.In other words,weaker relative Mach number shows better tracking performance.Considering the low density of gas flow,which usually appears under supersonic simulation conditions,the particle Knudsen numberKnpis no longer small.It is defined as the ratio of the mean free path of the surrounding molecules to the particle diameter,which can be written in terms of the particle Mach number and Reynolds number as

    This expression with correction factors of Eq.(15)has been proven quite robust in comparison with experimental and DSMC data.Fig.5 illustrates the compressibility and rarefaction effects on the drag coefficient within the concerned range of governing parameters from Table 1.Also shown in Fig.5 is the probable parameter ranges for present PIV measurements.For these conditions in the present study,the drag coefficient is dominated by the variation of particle Knudsen numberKnp.Besides,the effect of particle Mach numberMapis small but not negligible.Since the magnitude of the relaxation time is primarily dependent on the particle size,this accurate estimate of the particles relaxation is also constrained by appropriate particle tracking.It can be clearly seen that the actual drag coefficient tends to be smaller than Stokes’resistance so that Eq.(11)would conservatively estimate the desired size of the tracer particles for tracking the flow across a shockwave.According to Eqs.(2)and(15)and the probable parameters of the present study,the corresponding diameter of tracer particles is preliminarily calculated as only approximately the onefifth of the overrated value from Eq.(11)for the same relaxation time s.

    Table 1 Flow regimes for PIV measurements in supersonic flows.

    Fig.5 Rarefaction and compression effects on drag coefficient of a particle in thermal equilibrium,expressed in Eqs.(15)–(18)by Loth22for Rep<45.

    Fig.6 Relaxation process across an oblique shockwave in Mach number 4.0 flow.

    4.Results and discussions

    The calibration tests have been firstly performed in the empty wind tunnel operation at freestream Mach number 4.A pair of images is analyzed with cross-correlation algorithm using Micro Vec2 software employing 32×16 pixels with 50%overlapping.The resulting time-averaged velocity vector distributions of tracer particles are also compared to calculated values from total pressure rake.A rather homogeneous velocity field in spatial distribution is demonstrated in the core flow.The averaged PIV measured velocity field for free stream is very close to the calculated velocity with the uncertainty of less than 2%.16TiO2particles with a nominal crystal size of 30 nm showing better dispersity are finally used.

    The present work assumes ideal imaging and tracking conditions,i.e.,pixelization effects are neglected.The time intervaltbetween exposures is set as 500 ns,which is assumed small enough to neglect the time averaging effect on the velocity.Furthermore,the averaging effect of the finite interrogation window size is neglected as well.The velocity considered is that of the particle,which may differ from the actual local flow velocity due to particle relaxation.The magnitude of the velocity error is reduced in the measurement by amplitude modulation in the cross-correlation.The velocity vector field is calculated from 200 image pairs in several repetition runs to minimize the position and velocity error due to any shock movement or displacement of the field of view.

    Fig.7 PIV images and measured flow field over 2D wedge models vs Schlieren images.

    Table 2 Induced shockwave characteristics over wedge models.

    Since the storage and humidity tends to cluster the seeding particles as porous agglomerates,these particles are found to be approximately 200 nm inspected by a scanning electron microscope(SEM)imaging.SEM can only be used to the geometric features of the compact agglomerates in the seeding system before dispersing into the main flow.However,owing to the inevitable agglomeration in the seeding process,the actual aerodynamic diameter of the tracking particles accessible to the test section,which determine the relaxation process across a shockwave,is still unknown.It is noteworthy that the combination of Eqs.(2),(6),(7)and(15)–(18)can qualify the effective aerodynamic diameter of the tracer particles based on the collected velocity distributions.The particle relaxation time s across the incident shockwave can be easily analyzed according to Eq.(7).The relaxation time is mainly dependent on the size of primary particles,although there may be a distribution of particle with variable sizes.Note that the no-shielding assumption exists while the primary particles size is much smaller than the mean free path of the gas molecules.Moreover,the particles in nanoscales present much more stable illumination.As a matter of fact,the applied particles for two wedge models may be considered as the similar size due to the same kind of particles,seeding system and wind tunnel.In practice,the relation between the relaxation time and the corresponding size renders us a possibility for investigating the particles size from PIV measurements across the shockwave.

    The particles tracking performance and seeding efficiency are therefore evaluated.By performing an iteration based on Eqs.(2),(6)and(7)integrated with Eqs.(15)–(18),which is robustly fit to the rarefaction dominated regime as discussed before,the particle size can be obtained.It is noted that this value is unable to attain directly in that the particle relative parameters,Rep,Knpare highly dependent on the unknown particle diameter.Attributable to the compressibility and rarefaction effects,the actual particle size in the experiments for both models is evaluated to be almost the same,40 nm for 15°wedge and 50 nm for 30°wedge,respectively.In comparison with the other calculations,all the estimated results of the particle size rounded to the nearest 10 and the corresponding flow parameters are listed in Table 3.It can be seen in Fig.9 that a significant difference in the particle sizes for the?two wedges,which is calculated from empirical Eq.(5),also gives a clear disproof for its limited reliability.On the other hand,Eq.(11)approximately five times overrates the particle size as the actual drag coefficient tends to be lower than Stokes’drag law so that it is also proven unreasonable.

    Fig.8 PIV measurement of normal velocity across shockwave.

    Table 3 Relaxation time and diameter analysis of tracer particles.

    Interestingly,the estimated size of the tracer particles is found to be very close to their nominal diameter,even though the limitation of the PIV spatial resolution is considered.This value is greatly smaller than SEM inspection data,which only respects the storage status as a result of inevitable humidity and carriage.Therefore,the seeding system demonstrates a great capability to mitigate the agglomeration of tracer particles.On the other hand,TiO2particles with nominal 30 nm diameter are proven as the candidate with better tracking characteristics with negligible agglomeration.In general,the tracking deviation of particles may slightly influence the measurement of the shock thickness,whereas the particles can capture the actual flow field over a wedge with a relatively accurate velocity before and after the shockwave.

    Fig.9 Aerodynamic diameters of seeding particles.

    5.Conclusions

    (1)An extension of particles response model is proposed for supersonic research compared to the traditional model limited toMan<1.4 regime.The criterion of selecting appropriate particles is described to satisfy the relationship of the relaxation time:t/s=0.25–3.00.The desired particles to ensure effective capturing of the flow field under well-controlled conditions of Mach number 4 should be approximately 20–50 nm in diameter with the time intervalt=500 ns in consideration of compressibility and rarefaction effects.

    (2)Powders of TiO2particles with 30 nm diameter are used inthe presentworkfor PIV measurements.The advances in the seeding system by integrating a pressurized cyclone with a fluidized bed demonstrate a distinct improvement of seeding performance.These tracers in nanoscales for PIV measurements prove successful to capture the actual flow field over a wedge with a relatively accurate velocity before and after the shockwave.That the actual size of tracer particles is estimated to be very close to their nominal diameter shows a high dispersity efficiency of the seeding system.

    Acknowledgements

    This study was supported by the National Natural Science Foundation ofChina (Nos.11672183,91641129 and 91441205).

    1.Scarano F.Overview of PIV in supersonic flows.Top Appl Phys2008;112(1):445–63.

    2.Haertig J,Havermann M,Rey C,George A.Particle image velocimetry in Mach 3.5 and 4.5 shock-tunnel flows.AIAA J2002;40(6):1056–60.

    3.Scarano F.Overview of PIV in supersonic flows.Berlin Heidelberg:Springer;2007.p.445–63.

    4.Schrijer FFJ,Scarano F,Van Oudheusden BW,Bannink WJ.Application of PIV in a hypersonic double-ramp flow.Reston:AIAA;2005 Report No.:AIAA-2005-3331.

    5.Schrijer FFJ,Scarano F,Van Oudheusden BW.Application of PIV in a Mach 7 double-ramp flow.Exp Fluids2006;41(2):353–63.

    6.Schrijer FFJ,Walpot LMGFM.Experimental investigation of the supersonic wake of a reentry capsule.Reston:AIAA;2010 Report No.:AIAA-2010-1251.

    7.Wang D,Xia Z,Zhao Y,Wang B,Zhao Y.Imaging of the spacetime structure of a vortex generator in supersonic flow.Chin J Aeronaut2012;25(1):57–63.

    8.Urban WD,Mungal MG.Planar velocity measurements in compressible mixing layers.J Fluid Mech2001;431(486):189–222.

    9.Scarano F,Van Oudheusden BW.Planar velocity measurements of a two-dimensional compressible wake.Exp Fluids2003;34(3):430–41.

    10.Ghaemi S,Schmidt-Ott A,Scarano F.Nanostructured tracers for laser-based diagnostics in high-speed flows.Meas Sci Technol2010;21(10):105403.

    11.Ragni D,Schrijer F,Van Oudheusden BW,Scarano F.Particle tracer response across shocks measured by PIV.Exp Fluids2011;50(1):53–64.

    12.Melling A.Tracer particles and seeding for particle image velocimetry.Meas Sci Technol1997;8(12):1406–16.

    13.Dring RP.Sizing criteria for laser anemometry particles.J Fluid Eng1982;104(1):15–7.

    14.Tedeschi G,Gouin H,Elena M.Motion of tracer particles in supersonic flows.Exp Fluids1999;26(4):288–96.

    15.Amatucci VA,Dutton JC,Kuntz DW,Addy AL.Two-stream,supersonic,wake flow field behind a thick base.I-General features.AIAA J1992;30(8):2039–46.

    16.Chen F,Liu H,Rong Z.Development and application of nanoparticle tracers for PIV in supersonic and hypersonic flows.Reston:AIAA;2012 Report No.:AIAA-2012-0036.

    17.Wooldridge J.Introductoryeconometrics:Amodern approach.Mason(OH):Cengage Learning;2012.

    18.Stokes GG.On the effect of the internal friction of fluids on the motion of pendulums.Trans Cambridge Philos Soc1851;9(2):8.

    19.Koike S,Takahashi H,Tanaka K,Hirota M,Takita K,Masuya G.Correction method for particle velocimetry data based on the Stokes drag law.AIAA J2007;45(11):2770–7.

    20.Humble RA,Scarano F,Van Oudheusden BW.Particle image velocimetry measurements of a shock wave/turbulent boundary layer interaction.Exp Fluids2007;43(2–3):173–83.

    21.Mathijssen T,Bannink WJ,Scarano F.Investigation of a sharpedged delta wing in a supersonic flow using stereo PIV.Reston:AIAA;2009 Report No.:AIAA-2009-3896.

    22.Loth E.Compressibility and rarefaction effects on drag of a spherical particle.AIAA J2008;46(9):2219–28.

    6 April 2016;revised 18 September 2016;accepted 29 September 2016

    Available online 14 February 2017

    *Corresponding author.

    E-mail address:fangchen@sjtu.edu.cn(F.Chen).

    Peer review under responsibility of Editorial Committee of CJA.

    国内精品美女久久久久久| 婷婷六月久久综合丁香| 亚洲无线在线观看| 高清毛片免费观看视频网站| 亚洲天堂国产精品一区在线| 成年版毛片免费区| 日韩中字成人| 欧美zozozo另类| 日本黄色片子视频| netflix在线观看网站| 国产精品一区二区性色av| 精品一区二区免费观看| 校园人妻丝袜中文字幕| 精品午夜福利视频在线观看一区| 亚洲va日本ⅴa欧美va伊人久久| 少妇丰满av| 久久久久久国产a免费观看| 国产亚洲精品久久久com| 亚洲图色成人| 亚洲专区国产一区二区| 丰满的人妻完整版| 亚洲精华国产精华精| 成年免费大片在线观看| 看黄色毛片网站| 亚洲成人久久性| 久久婷婷人人爽人人干人人爱| 一夜夜www| 在线看三级毛片| av专区在线播放| 久久香蕉精品热| 婷婷六月久久综合丁香| 中亚洲国语对白在线视频| 欧美成人免费av一区二区三区| 日日摸夜夜添夜夜添av毛片 | av在线天堂中文字幕| 成人性生交大片免费视频hd| 成人精品一区二区免费| 嫩草影视91久久| 免费高清视频大片| 乱系列少妇在线播放| 淫妇啪啪啪对白视频| 欧美区成人在线视频| 亚洲美女视频黄频| 色精品久久人妻99蜜桃| 国产大屁股一区二区在线视频| 国产乱人伦免费视频| 美女大奶头视频| 国产精品女同一区二区软件 | 热99在线观看视频| 久久亚洲真实| 精品人妻一区二区三区麻豆 | 一区二区三区高清视频在线| 欧美性猛交黑人性爽| 简卡轻食公司| 午夜日韩欧美国产| 成人三级黄色视频| 夜夜爽天天搞| 亚洲人成网站高清观看| 99久久久亚洲精品蜜臀av| 日本精品一区二区三区蜜桃| 免费观看的影片在线观看| 乱码一卡2卡4卡精品| 亚洲中文字幕日韩| 国产精品国产三级国产av玫瑰| a在线观看视频网站| 尤物成人国产欧美一区二区三区| 网址你懂的国产日韩在线| 少妇丰满av| 99久久无色码亚洲精品果冻| 国产又黄又爽又无遮挡在线| 1000部很黄的大片| 91久久精品国产一区二区三区| 日韩 亚洲 欧美在线| 免费一级毛片在线播放高清视频| av在线观看视频网站免费| 国产精品自产拍在线观看55亚洲| 成人二区视频| 亚洲av五月六月丁香网| 热99在线观看视频| 高清毛片免费观看视频网站| 成人精品一区二区免费| av在线观看视频网站免费| 在线观看美女被高潮喷水网站| 在线看三级毛片| 欧美+日韩+精品| 99国产极品粉嫩在线观看| 久久久精品欧美日韩精品| 少妇人妻精品综合一区二区 | 国产69精品久久久久777片| 国产精品不卡视频一区二区| 少妇被粗大猛烈的视频| 一本久久中文字幕| 久久久精品大字幕| 男女啪啪激烈高潮av片| 校园人妻丝袜中文字幕| 国产aⅴ精品一区二区三区波| 不卡一级毛片| 亚洲av日韩精品久久久久久密| 欧美xxxx性猛交bbbb| 人人妻人人看人人澡| 日韩欧美国产一区二区入口| av视频在线观看入口| 亚洲人成网站在线播| 国语自产精品视频在线第100页| 久久精品国产亚洲av香蕉五月| 精品久久久久久久末码| 联通29元200g的流量卡| 日韩一本色道免费dvd| a级毛片a级免费在线| 精品无人区乱码1区二区| 欧美人与善性xxx| 婷婷色综合大香蕉| 男人的好看免费观看在线视频| 亚洲在线自拍视频| 又粗又爽又猛毛片免费看| a级毛片a级免费在线| 成人二区视频| 在线a可以看的网站| 国产精品,欧美在线| 午夜福利在线观看吧| 老女人水多毛片| 身体一侧抽搐| 偷拍熟女少妇极品色| 校园春色视频在线观看| 中文亚洲av片在线观看爽| 天堂动漫精品| 亚洲人与动物交配视频| 亚洲av五月六月丁香网| 色综合站精品国产| 久久精品国产鲁丝片午夜精品 | x7x7x7水蜜桃| 国产成人一区二区在线| 亚州av有码| 午夜爱爱视频在线播放| 国产午夜精品论理片| 久久精品夜夜夜夜夜久久蜜豆| 国产黄色小视频在线观看| 亚洲欧美精品综合久久99| 亚洲经典国产精华液单| 国产精品一区二区三区四区久久| 三级毛片av免费| 亚洲中文日韩欧美视频| 少妇人妻一区二区三区视频| 欧美zozozo另类| 久久国产精品人妻蜜桃| 国产三级在线视频| 中亚洲国语对白在线视频| 成人综合一区亚洲| 亚洲国产精品成人综合色| 九色国产91popny在线| 成人av一区二区三区在线看| 搡老妇女老女人老熟妇| 国内久久婷婷六月综合欲色啪| 国产极品精品免费视频能看的| АⅤ资源中文在线天堂| 男人狂女人下面高潮的视频| 悠悠久久av| 亚洲内射少妇av| 久久99热6这里只有精品| 国产精品人妻久久久久久| 最好的美女福利视频网| 毛片一级片免费看久久久久 | 亚洲乱码一区二区免费版| 欧美zozozo另类| 天堂网av新在线| 久久欧美精品欧美久久欧美| 欧美在线一区亚洲| 国产精品人妻久久久久久| 一a级毛片在线观看| 18禁裸乳无遮挡免费网站照片| a级一级毛片免费在线观看| 日本与韩国留学比较| 精品久久久久久久末码| 国产成人一区二区在线| 九色成人免费人妻av| 啦啦啦啦在线视频资源| 两个人的视频大全免费| 最近最新免费中文字幕在线| 中文字幕av在线有码专区| 999久久久精品免费观看国产| a级毛片免费高清观看在线播放| 精品日产1卡2卡| 欧美日韩瑟瑟在线播放| 色哟哟·www| 91精品国产九色| 99视频精品全部免费 在线| 哪里可以看免费的av片| 欧美中文日本在线观看视频| 一区二区三区高清视频在线| 久久久久国内视频| 日日摸夜夜添夜夜添小说| 少妇被粗大猛烈的视频| 亚洲人成伊人成综合网2020| 亚洲中文字幕日韩| 久久久久久久精品吃奶| 亚洲av中文字字幕乱码综合| 亚洲欧美日韩无卡精品| 俺也久久电影网| 色综合婷婷激情| 少妇被粗大猛烈的视频| 日本撒尿小便嘘嘘汇集6| 亚洲av二区三区四区| 国国产精品蜜臀av免费| 亚洲美女搞黄在线观看 | 琪琪午夜伦伦电影理论片6080| 特大巨黑吊av在线直播| 99国产极品粉嫩在线观看| 日韩欧美精品免费久久| 国产av麻豆久久久久久久| 男人舔女人下体高潮全视频| 午夜激情福利司机影院| 日本黄大片高清| 超碰av人人做人人爽久久| 久久精品国产鲁丝片午夜精品 | 精品久久久久久成人av| 波多野结衣高清无吗| 亚洲精品影视一区二区三区av| 精品国内亚洲2022精品成人| 国产精品一及| 麻豆av噜噜一区二区三区| 特级一级黄色大片| 亚洲精品一卡2卡三卡4卡5卡| 黄片wwwwww| 亚洲国产欧洲综合997久久,| 97热精品久久久久久| 精品久久久久久久久久免费视频| 在线观看av片永久免费下载| 亚洲自拍偷在线| 国产av不卡久久| 在线免费十八禁| 亚洲午夜理论影院| 久久人人精品亚洲av| 岛国在线免费视频观看| 国产在视频线在精品| 成年女人看的毛片在线观看| 亚洲国产欧美人成| x7x7x7水蜜桃| 国产精品98久久久久久宅男小说| 亚洲av.av天堂| 亚洲人与动物交配视频| 国产伦一二天堂av在线观看| 草草在线视频免费看| 精品一区二区三区视频在线| 在线观看舔阴道视频| 黄片wwwwww| 日韩高清综合在线| 联通29元200g的流量卡| 精品人妻1区二区| 制服丝袜大香蕉在线| xxxwww97欧美| 久久久久久久久久成人| 日本色播在线视频| 少妇猛男粗大的猛烈进出视频 | 精品一区二区三区视频在线观看免费| 欧美日韩综合久久久久久 | 男女下面进入的视频免费午夜| 久久精品国产亚洲av香蕉五月| 九色国产91popny在线| 国产精品电影一区二区三区| 国语自产精品视频在线第100页| 一a级毛片在线观看| 欧美zozozo另类| 淫妇啪啪啪对白视频| av.在线天堂| 欧美bdsm另类| 久久久久久久午夜电影| 国产淫片久久久久久久久| 99热精品在线国产| 12—13女人毛片做爰片一| 麻豆国产97在线/欧美| 毛片女人毛片| 亚洲性久久影院| www.色视频.com| 久久亚洲真实| 尤物成人国产欧美一区二区三区| h日本视频在线播放| 亚洲专区中文字幕在线| 制服丝袜大香蕉在线| 一夜夜www| 国产精品美女特级片免费视频播放器| 色哟哟·www| 两人在一起打扑克的视频| 亚洲国产精品合色在线| 人人妻,人人澡人人爽秒播| 丰满乱子伦码专区| 嫁个100分男人电影在线观看| 淫妇啪啪啪对白视频| 国产免费一级a男人的天堂| 国产一区二区三区在线臀色熟女| aaaaa片日本免费| 乱码一卡2卡4卡精品| 日韩人妻高清精品专区| 高清日韩中文字幕在线| 能在线免费观看的黄片| 国产精品人妻久久久久久| 2021天堂中文幕一二区在线观| 两个人视频免费观看高清| 色视频www国产| 亚洲av二区三区四区| 亚洲精品粉嫩美女一区| 精品欧美国产一区二区三| 夜夜夜夜夜久久久久| 色噜噜av男人的天堂激情| 免费电影在线观看免费观看| 欧美色欧美亚洲另类二区| 国产精品1区2区在线观看.| 99久久精品热视频| 别揉我奶头~嗯~啊~动态视频| 午夜免费男女啪啪视频观看 | 久久久久精品国产欧美久久久| av在线蜜桃| 亚洲美女视频黄频| 可以在线观看的亚洲视频| 91在线观看av| 我的老师免费观看完整版| 国产一区二区激情短视频| 啦啦啦啦在线视频资源| 黄色一级大片看看| 免费电影在线观看免费观看| 久久久国产成人免费| 免费观看精品视频网站| 国产精品综合久久久久久久免费| АⅤ资源中文在线天堂| 精品人妻熟女av久视频| 99久久九九国产精品国产免费| 精品午夜福利在线看| 国产真实乱freesex| 免费av观看视频| 亚洲乱码一区二区免费版| 国产精华一区二区三区| 可以在线观看毛片的网站| 亚洲国产精品sss在线观看| 美女cb高潮喷水在线观看| 亚洲精品一卡2卡三卡4卡5卡| 久久6这里有精品| 国产伦在线观看视频一区| 久久久久久久午夜电影| 18+在线观看网站| 亚洲熟妇熟女久久| av黄色大香蕉| 美女高潮喷水抽搐中文字幕| 日韩欧美在线二视频| 少妇丰满av| 精品日产1卡2卡| 精华霜和精华液先用哪个| 国产单亲对白刺激| 少妇人妻一区二区三区视频| 国产69精品久久久久777片| 人人妻,人人澡人人爽秒播| 狂野欧美白嫩少妇大欣赏| 久久久久久九九精品二区国产| 99在线视频只有这里精品首页| 欧美日韩黄片免| 最后的刺客免费高清国语| 国产黄片美女视频| 国产成人影院久久av| 国语自产精品视频在线第100页| 丝袜美腿在线中文| 黄色配什么色好看| 超碰av人人做人人爽久久| 成人美女网站在线观看视频| 国产极品精品免费视频能看的| 欧美最黄视频在线播放免费| 一区二区三区高清视频在线| 国产一区二区在线av高清观看| 干丝袜人妻中文字幕| 亚洲av二区三区四区| 免费看a级黄色片| 色播亚洲综合网| 在线观看舔阴道视频| 88av欧美| 麻豆成人午夜福利视频| 欧美激情久久久久久爽电影| АⅤ资源中文在线天堂| 人妻少妇偷人精品九色| 搞女人的毛片| 免费不卡的大黄色大毛片视频在线观看 | 亚洲精品色激情综合| 天堂√8在线中文| 女的被弄到高潮叫床怎么办 | 亚洲aⅴ乱码一区二区在线播放| 国产 一区 欧美 日韩| av中文乱码字幕在线| 国产精华一区二区三区| 成人永久免费在线观看视频| 国产精品国产三级国产av玫瑰| 色av中文字幕| 日韩一本色道免费dvd| 99国产精品一区二区蜜桃av| 免费av观看视频| 色综合站精品国产| 成人一区二区视频在线观看| 天堂动漫精品| 久久人妻av系列| 亚洲乱码一区二区免费版| 精品无人区乱码1区二区| 成人特级黄色片久久久久久久| 久久午夜福利片| 熟妇人妻久久中文字幕3abv| 久久久久久久久久黄片| 麻豆av噜噜一区二区三区| 日本免费一区二区三区高清不卡| 成年人黄色毛片网站| 成人国产综合亚洲| 亚洲av日韩精品久久久久久密| 又黄又爽又刺激的免费视频.| 又粗又爽又猛毛片免费看| 午夜老司机福利剧场| 国语自产精品视频在线第100页| 欧美性猛交╳xxx乱大交人| 窝窝影院91人妻| 日本精品一区二区三区蜜桃| 久久精品国产亚洲av天美| 亚洲精品日韩av片在线观看| 亚洲成人久久爱视频| 精品一区二区三区人妻视频| 亚洲精品影视一区二区三区av| 在线播放无遮挡| 国产男人的电影天堂91| 在线播放国产精品三级| 国产精品久久久久久久电影| 国产精品久久电影中文字幕| 久久精品人妻少妇| 男插女下体视频免费在线播放| 欧美日韩综合久久久久久 | 亚洲av成人精品一区久久| 亚洲精品日韩av片在线观看| 18禁黄网站禁片午夜丰满| 老熟妇仑乱视频hdxx| 男插女下体视频免费在线播放| 少妇高潮的动态图| 日本免费a在线| 91狼人影院| 深夜精品福利| 一级黄片播放器| 女同久久另类99精品国产91| 午夜老司机福利剧场| 国内精品一区二区在线观看| 亚洲精品粉嫩美女一区| 九色国产91popny在线| 久久中文看片网| 99久久成人亚洲精品观看| 亚洲成人中文字幕在线播放| 日本撒尿小便嘘嘘汇集6| 国产爱豆传媒在线观看| 高清毛片免费观看视频网站| 欧美+日韩+精品| 狂野欧美激情性xxxx在线观看| 在线国产一区二区在线| 国产精品久久久久久精品电影| 日韩欧美在线二视频| 黄色女人牲交| 干丝袜人妻中文字幕| 美女xxoo啪啪120秒动态图| 韩国av在线不卡| 日本黄大片高清| 午夜老司机福利剧场| 免费无遮挡裸体视频| 国产精品女同一区二区软件 | 国产高清视频在线观看网站| 级片在线观看| 国产一区二区在线观看日韩| 成人鲁丝片一二三区免费| av天堂在线播放| 人妻少妇偷人精品九色| 两个人的视频大全免费| 久久九九热精品免费| 99视频精品全部免费 在线| 色精品久久人妻99蜜桃| 久久精品国产亚洲av涩爱 | 精品一区二区三区视频在线观看免费| 午夜激情福利司机影院| 最新中文字幕久久久久| 啦啦啦观看免费观看视频高清| 乱人视频在线观看| av天堂中文字幕网| 别揉我奶头~嗯~啊~动态视频| 亚洲乱码一区二区免费版| 日本三级黄在线观看| 88av欧美| 成人永久免费在线观看视频| 一边摸一边抽搐一进一小说| 久久精品人妻少妇| 精品久久久久久成人av| 亚洲熟妇熟女久久| 国产精品乱码一区二三区的特点| 国产成人影院久久av| 亚洲精品亚洲一区二区| 内地一区二区视频在线| 国产一区二区在线av高清观看| 久久精品国产亚洲av涩爱 | 日韩av在线大香蕉| 午夜福利在线观看免费完整高清在 | 精品久久久久久久久av| 日韩,欧美,国产一区二区三区 | 欧美又色又爽又黄视频| 久久精品国产亚洲av天美| 变态另类丝袜制服| 欧美绝顶高潮抽搐喷水| 给我免费播放毛片高清在线观看| 亚洲精品在线观看二区| 欧美高清性xxxxhd video| 哪里可以看免费的av片| 少妇熟女aⅴ在线视频| 毛片女人毛片| 国产真实伦视频高清在线观看 | 色综合站精品国产| 国产白丝娇喘喷水9色精品| 亚洲国产色片| 亚洲精品日韩av片在线观看| 国产成人a区在线观看| 欧美一区二区亚洲| 欧美区成人在线视频| 非洲黑人性xxxx精品又粗又长| av国产免费在线观看| 亚洲在线观看片| 一个人免费在线观看电影| 日本成人三级电影网站| 亚洲人与动物交配视频| 国产精品av视频在线免费观看| 中文字幕久久专区| 亚洲av熟女| 国产高清视频在线播放一区| 一卡2卡三卡四卡精品乱码亚洲| 美女高潮喷水抽搐中文字幕| 熟妇人妻久久中文字幕3abv| 一本一本综合久久| eeuss影院久久| 真实男女啪啪啪动态图| 久久久精品欧美日韩精品| av天堂中文字幕网| 在线看三级毛片| 日日撸夜夜添| av在线亚洲专区| 美女cb高潮喷水在线观看| 2021天堂中文幕一二区在线观| 中文在线观看免费www的网站| 舔av片在线| 免费无遮挡裸体视频| 一进一出抽搐动态| 热99在线观看视频| 日韩欧美在线乱码| 国产成人影院久久av| 欧美日本亚洲视频在线播放| 又黄又爽又刺激的免费视频.| 一级毛片久久久久久久久女| 精品不卡国产一区二区三区| 精品人妻熟女av久视频| 99久久精品热视频| 中国美白少妇内射xxxbb| 桃红色精品国产亚洲av| 精品人妻视频免费看| 精品久久久噜噜| 岛国在线免费视频观看| 日韩人妻高清精品专区| 黄色丝袜av网址大全| 九九热线精品视视频播放| 女同久久另类99精品国产91| 日本黄色片子视频| 欧美精品国产亚洲| 亚洲av五月六月丁香网| 一级黄片播放器| 免费电影在线观看免费观看| 老司机深夜福利视频在线观看| 久久国内精品自在自线图片| www日本黄色视频网| 国产精品一区二区免费欧美| 日日干狠狠操夜夜爽| 国产免费一级a男人的天堂| 亚洲avbb在线观看| 露出奶头的视频| 亚洲国产高清在线一区二区三| 国产精品伦人一区二区| 有码 亚洲区| 在线观看66精品国产| 成年免费大片在线观看| 亚洲av成人av| 国语自产精品视频在线第100页| 久久精品国产亚洲网站| 亚洲精品色激情综合| 日韩精品中文字幕看吧| 国产中年淑女户外野战色| 日韩欧美一区二区三区在线观看| 国产精品人妻久久久久久| 禁无遮挡网站| 男人舔女人下体高潮全视频| 午夜日韩欧美国产| 久久九九热精品免费| 国产不卡一卡二| 国产精品电影一区二区三区| videossex国产| 免费看a级黄色片| 国内精品久久久久精免费| 毛片一级片免费看久久久久 | 精品人妻熟女av久视频| 99热网站在线观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲成人久久爱视频| 色吧在线观看| 成人国产综合亚洲| 久久久久性生活片| 亚洲av成人av| 在线a可以看的网站| 久久草成人影院| 精品久久国产蜜桃| 中文亚洲av片在线观看爽| 国产日本99.免费观看| 色吧在线观看| 日韩精品中文字幕看吧| 日本撒尿小便嘘嘘汇集6| 久久人人爽人人爽人人片va| av福利片在线观看| 成年免费大片在线观看| 国产精品三级大全| 日韩中文字幕欧美一区二区|