• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    氧化鈀作為電位型傳感器中敏感電極的工作機理

    2017-05-10 17:42:42鄭雁公朱麗娜李晗宇簡家文杜海英
    物理化學學報 2017年3期
    關(guān)鍵詞:寧波大學工程學院電解質(zhì)

    鄭雁公 朱麗娜 李晗宇 簡家文 杜海英

    (1寧波大學信息科學與工程學院,浙江寧波315000;2大連民族大學機電工程學院,遼寧大連116600)

    氧化鈀作為電位型傳感器中敏感電極的工作機理

    鄭雁公1,*朱麗娜1李晗宇1簡家文1,*杜海英2

    (1寧波大學信息科學與工程學院,浙江寧波315000;2大連民族大學機電工程學院,遼寧大連116600)

    研究了基于氧化鈀(PdO)電極的電位型傳感器的敏感特性,并探討了其敏感機理。首先,利用Mg、Ni和La元素對PdO電極進行摻雜,將摻雜后的PdO電極印刷在氧化鋯電解質(zhì)上,制備成電位型傳感器,并對一氧化碳(CO)的敏感特性進行了測試。由于摻雜后的PdO電極表面缺陷增加,這有利于對CO的吸附,有效地提高了傳感器的靈敏度。其次,為了探究敏感信號的來源,PdO電極分別印刷在氧化鋁和沸石基片上,同樣測試了對CO的敏感特性。其中PdO電極與沸石所組成的電位型傳感器對CO濃度可以產(chǎn)生階梯型響應。最后,對傳感器分別進行了電阻和阻抗譜的測量,測量結(jié)果表明:傳感器的響應可以歸因于電極和電解質(zhì)之間界面電位的變化。綜合上述研究結(jié)果,建立了電偶層模型來解釋基于PdO電極的電位型傳感器的工作機理。

    氧化鈀;電位型傳感器;摻雜作用;一氧化碳;電解質(zhì)

    1 Introduc tion

    For nearly a century,solid-state potentiometric sensors that employ oxide electrodes have been extensively studied and applied for sensing toxic gases1.Transitionmetal oxide has been widely used asa sensing electrode for various reasons,including its flexibility of production,simplicity ofuse,itsability to catalyze a large number of gases,and its thermaland chem ical stability2-5. Noblemetaloxidesarewidely used as additivesor sensitizers to improve the sensing performance of functionalmaterials6.Few reports consider the unique propertiesof palladium oxide(PdO) and itsperformance in gassensing asa functionalelement7,8.

    In our previousw ork8,PdO′s performance as a sensing electrodewasexplored based on aYSZ(8%(x,molar fraction)Yttriastabilized Zirconia)electrolyte,which wasmeasured via a potentiometrymethod to detectcarbonmonoxide(CO).Attractive phenomenawereobserved.Changes in theelectric potentialof the sensor in a CO environmentare independentof themobile oxygen in the electrolyte and the thickness of the PdO electrode.A hypothesis isproposed thata potentiometric sensorbased on a PdO electrodew orks in capacitivemode during a sensing process.

    Theworkingmechanism of a potentiometric sensorwith aPdO-based electrode isour focus in this paper.In order to verify the hypothesis,several aspects of theworking principlewere studied by experimentalmethods.First,PdO was doped by Ni,La,and M g.The doping is capable of shrinking the particle size of PdO and creating defects in PdO.The influence on the sensing performance of the sensorwasdiscussed.Second,zirconiawas replaced by othermaterials to test the impactof the electrolyte on the sensing performance.Third,the source of the sensing signal was located by measuring the impedance and resistance.The workingmodelof the sensorswith PdO-based electrodes isdiscussed.

    2 Materia ls and m ethods

    2.1 Materials p reparation

    Pd(C2H3O2)2,Ni(NO3)2·6H2O,La(NO3)3·6H2O and Mg(NO3)2· 6H2O were obtained from Sinopharm Chem ical ReagentCo.Ltd., China.Y-type zeolite(Na-Y,Si/Almolar ratio=2.5)was pruchased from A lfa Aesar,China.The above chem ical reagentswere of analyticalgradeand usedwithout further purification.

    Three typesof dopantsare fabricated based on PdO.Elements used for doping are transitionmetal(Ni2+),alkaline earthmetal (Mg2+),and rare earthmetal(La3+).Themolar ratios of the palladium and doped elements are 100:5,100:10,and 100:15, which are denoted by M-PdO-5,M-PdO-10,and M-PdO-15, respectively(whereM represents the doped elements,i.e.,Ni,Mg, La).The preparation is described in Ref.8:a certain quality of Pd(C2H3O2)2is dissolved in alcohol by energetic stirring.A corresponding quality of doped element in nitrate isweighed and added to the palladium acetate solution.Hydrolysis is achieved by adding deionizedwaterat90°C for2 h.Theobtained solution is centrifuged to precipitate the resultingmaterial,and then dried in abox oven at130°C for12 h.The resulting sample is calcined at 700°C for2 h in air.

    2.2 Ma terial cha rac teriza tion

    X-ray diffraction(XRD,Bruker D8 Focus,Germany)patterns are obtained w ith Cu Kαradiation(0.1541 nm).Scanning electron microscopy(SEM,HitachiS-4800,Japan)is performed to obtain images of the samples.The stoichiometric ratio,aswell as the quality percentageof the doping element in the samples,isanalyzed with an energy dispersive spectrometer(EDS,QUANTAX 400,Germany).The impedance spectroscopy ismeasuredwith an Agilent4284A(USA)at100mV in the rangeof 25Hz-1MHz. The electrical resistance of the sensorsw asmeasured by a computer-controlled Agilentmultimeter(Agilent34405A,USA).

    2.3 Fab rication of the senso r

    YSZ and alum ina chips(8%(molar fraction)Y2O3doped zirconia),fabricated by the Shanghai Instituteof Ceramics(Chinese Academy of Sciences,China),areused as the electrolyte in the sensor.The YSZ and alum ina discsmeasure7mm×7mm×0.5 mm and 7mm×7mm×0.8mm,respectively.For the reference electrode,commercial Ptpaste(TR27905,Japan Tanaka Precious Metal Industries Ltd.)isapplied to one side of the YSZ by screen printing,and then dried at130°C for 20m in.The Pt reference electrode,w hich is considered an ideal reversible electrode9,is sintered ata temperatureof 1200°C for2 h.The prepared PdO-based samples andα-terpineol aremixed to obtain the sensing electrode paste,which is screen printed on the other side of the YSZ and sintered at 700°C for 2 h.Finally,both electrodes are attached w ith Pt lead w ires.Sensing electrodes w ith areas of 3mm×3mm(9mm2),5mm×5mm(25mm2),and 7mm×7 mm(49mm2)are created by screen printing.If there areno special instructions,the sizeof the sensingelectrode is5mm×5mm.The structureand imageof the sensorsare shown in Fig.1.

    Y-type zeolite isamicroporous,crystalline aluminosilicate that hasmobile sodium cations inside the framework10.The zeolite pelletsare prepared by pressing 200mg of zeolite powderunder 5 tof uniaxial force,and then sintered at 700°C for 2 h.The processes involved in the preparation of the sensorw ith zeoliteare the sameas those previously described,with theexception of the sintering tem perature for the Pt reference electrode,w hich is 700°C.The framework of zeolitew ill collapseata temperature higher than 800°C10.

    2.4 Sensing apparatus

    The sensor isplaced in ahermetic quartz tubeand heated under different temperatures,which are controlled by a temperature controller and heater in a tubular furnace.The flow rate of different gases is controlled independently by using com putercontrolled electronicmass flow controllers(D07-19B,Seven Star Electronics,China).During the test,the total flow rate ismaintained at100mL·min-1,and the sensing and referenceelectrodes are exposed to the same atmosphere.The electric potential(V) between the sensing and reference electrodes is recorded by using amultifunction data acquisition card(USB-6221,National Instruments,USA).The response of the potentiometric sensor is measured as the difference in potential(ΔV)between the sensorsin the background gas(N2and 5%(φ,volume fraction)O2are usually used)and in the targeted gas.The positive term inal is always connected to the PdO-based electrode,and the negative terminal is connected to the Ptelectrode.

    Fig.1(a)Basic schematic of the sensor and(b)photo of thesensorsw ith differentareasof sensing electrode

    3 Resu lts

    3.1 Doping effec ts on PdO electrode

    Since PdO will decompose tometallic Pd at approximately 800°C11,PdO-based dopantsare prepared at700°C.XRD patternsof pure and doped PdO are shown in Fig.2 and Fig.S1(see Supporting Information).A ll diffraction peaks coincidew ith the corresponding peaks of PdO given in the standard data file (JCPDSFile No.43-1024).No peaks corresponding to theoxidic dopantare observed,even for the 15%(x,molar fraction)doped samples.Thismay occurbecauseof the smallmasspercentageof dopant in the samples.The peaks become broader and weaker when Niisdoped.Peak positionsand fullwidth athalfmaximum (FWHM)areused to determine the cell parametersand crystallite sizes for all palladium oxide12.The lattice parameters for all samples are calculated from the XRD peak positions in Fig.2 and are listed in Table1.The cellvolumehasan initial increase during the incorporation of Ni,and then decreasesw ith the increasing doping concentration.

    Typical SEM imagesof pure and Ni-doped PdO are shown in Fig.3(a-d).The grain becomes smaller as the level of doping increases.Theaverage particle sizesareestimated to be~90,~72,~59,and~50 nm for PdO and the dopantsNi-PdO-5,Ni-PdO-10, and Ni-PdO-15,respectively.Agglomerates are clearly observable,and they causea random spatial distribution.The images of the surfaces of the YSZ disc and the Na-Y pellet are shown in Fig.3(e,f).

    Fig.2 XRD patternsofpureand Ni-doped PdO

    To investigate the relationship between the defectsof PdO and the sensing performance of the sensors,an EDSanalysis of pure and Ni-doped PdO is carried out to study the impactof thedoping. The results in Table 2 indicate that the samples are non-stoichiometric,and the atom ic ratio of Pd/Ni increases with the doping level.Moreover,the largestoxygen vacancy is observed on the surface of Ni-PdO-10.

    The role of a dopant is to disrupt the chem ical bonds on the surfaceof the hostoxide to ready the doped oxide for chemical interaction13,14.In the case of Ni-doped PdO,according to XRD patterns and SEM images,the crystals become smaller as the doping content increases.Comparing the relative ionic radius of Pd2+(0.064 nm)and Ni2+(0.069 nm),substituting Ni into the Pd positionswould increase the unitcellvolume.Theexperimental trend showsan initial increase in unit cell volume,w ith a decrease that follows the doping content,as shown in Table 1.It is also noticeable that theunitcell volumesof allNi-doped samples are larger than theundoped volumes.Combining theatomic ratioson the surfaceobtained by EDS in Table2,the ratio of Ni increases w ith the doping level.When the host oxide suffers heavy doping, the dopant tends to be segregated and forms a layer of oxide clusters thatheal the oxygen vacancieson the surface13.By contrast,a lower concentration of dopantwillsolid-dissolve into the crystalof PdO and expand its unitcell volume14-16.At the same time,a solid solution w ill createmore defects by crystal distortion17,18.

    Varioussensing electrodesmadeby PdO-based dopantson YSZ are tested in CO environments.The sensing responses for 100×10-6(volume fraction)CO are given in Fig.4.A general improvement isobserved for the sensorswith Ni-and La-doped PdO electrodes in the range of 400-550°C.The bestworking temperature is in the range of 450 to 500°C.At temperaturesabove 500°C,the sensors′responses decay.The doped electrodes,in which Pd and foreignelementsare presentin amolar ratioof 100: 5,have the best performance.In particular,the best CO sensor uses Ni-doped PdO at450°C.Hereafter,the sensormadeof a Ni-PdO-5 sensing electrode isused to conductthestudy in thispaper.

    Table 1 M easu red lattice param eters of Ni-doped PdO

    Fig.3 SEM imagesof(a)PdO and dopantsw ith different levelsofdoping(b)Ni-PdO-5,(c)Ni-PdO-10,and (d)Ni-PdO-15;(e)sur face of YSZ disc,and(f)Na-Y pellet

    For the sensing testin Fig.4,the Ni-and La-doped PdO behaves better than the undoped version.Despite an increasing response observed for the sensorswith Ni-and La-doped PdO electrodes, differentactive sites arebrought into the samplesby La,Ni,and Mg.According to the classification of dopant-oxide pairs13,La is ahigh-valence dopant(HVD),whileMg and Niare same-valance dopants(SVD).HVD intends to adsorb O2from a gas phase at the vacantsites,and activates it.Thus,a reducing gas can reactw ith this oxygen and undergo oxidation.In the case of SVD,since MgO is irreducible and the valenceof Ni is flexible,it could be predicted that the flexible-valance dopant is favorable for promoting themobility of oxygen vacancies.The sensing signal of conventionalpotentiometric sensors can beeffectively improved by decreasing the surface areaof thegrainsof the sensing electrode and increasing the contact area of triple phase boundary (TPB)19.However,the responsewasenhanced by creating oxygen vancancies in the PdO electrode in our study.The oxygen vacanciesare the sites for the catalytic oxidation between CO and adsorbed ionic oxygen6.

    Table2 Elem ent con tents of pu reand Ni-doped PdO sam p les

    An O2-dependent experiment is conducted on the sensor at 450°C,as shown in Fig.5.As can be seen,the increasing percentage of O2in theenvironment leads to a rise in thebaselineof the sensor.The average increase is 12mV when the O2concentration doubles.In themeantime,the response of the sensor toward 100×10-6(volume fraction)of CO decreasesby approximately 4 mV because of the increase in the O2concentration.O2does interfere significantly with the sensing performance.

    Sensing electrodeswith differentareas are tested,and the results for CO detection at450°C are given in Fig.6.When the responsesare plotted versus CO concentrations on a logarithmic scale,the relationship is linear.The responses for allsensors increase as the CO concentration increases.Moreover,the sensitivities of the sensors,which are the slopesof the plots in Fig.6, are-30.36,-38.21,and-38.77mV·decade-1for sensorsw ith sensing electrodeshaving areasof 9,25,and 49mm2,respectively. The increasing sensing area leads to ahigher response.

    Moreover,a potentiometric sensor based on coupling a solid electrolytewith semiconducting oxides is explained by themixed potential theory20,which assumes a thermodynamic potential independentof the size of the electrode21.However,the potential is typically proportional to the area of the sensing electrode,as shown in Fig.6.These results lead us to think that the sensing reactions in the sensor w ith a PdO-based electrode are of the capacitance type.

    3.2 Ro le of e lec tro ly te in gas sensing

    Fig.4 Sensing responseof potentiometric sensor w ith doped PdO electrode to CO at (a)400°C,(b)450°C,(c)500°C,and(d)550°C,balanced by N2and 5%O

    Fig.5 Electric potential change for sensor w ith Ni-PdO-5electrode to 100×10-6(volume fraction)CO balanced by 5%, 10%,and 20%(volume fraction)O2and N2at450°C

    Fig.6 Dependence ofΔV for sensorsw ith different areas of sensing electrodeon CO concentrationsbalanced by 5%O2and N2at450°C

    In order to address the roleof electrolyte in gassensing,a Ni-PdO-5 electrodewasprinted on an alumina disc and zeolite pellet, and tested in a CO environmentat450°C.The potentiometric resultsof the sensorbased on thealumina disc are shown in Fig. S2(see Supporting Information).No potentiometric response is observed for the sensor printed on the alumina disc.Potentiometric responses for the sensor based on zeolite are obtained for 100×10-6,200×10-6,and 400×10-6(volume fraction)of CO, as shown in Fig.7(a).Next,an O2dependence experiment is conducted.Thesensor is tested in 100×10-6(volume fraction)CO under5%,10%,and 15%O2,asshown in Fig.7(b).A depressive response to CO and a rising baselinewith increasing O2arenoticed.M oreover,Ni-PdO-5 electrodes on YSZ and Na-Y have sensing profiles similar to those from the oxygen-dependent measurement.Ionicmaterial is essential to generate a potentiometric response to CO.In other words,the changing of the chemicalpotentialgradient in theelectrolyte is the sourceof the sensing signal.

    3.3 Source of the sensing signa l

    A solid-state potentiometric sensor for gas sensing is commonly explained by themixed potential theory20.When the sensor is exposed to a targeted species,more than one cathodic oranodicreaction between the targeted species and components of the electrolyte occurs at the interface of the electrode/electrolyte, which is the so-called TPB.The resulting electrode potential becomesamixed potential22.The following pairof reactions(1) and(2)occurat the interfaceof the sensing electrode/zirconia for gas sensing:

    Fig.7 Potentiometric responseof sensor combined w ith Ni-PdO-5 sensing electrode and Na-Y electrolyte to(a)100×10-6,200×10-6,and 400×10-6(volum e fraction)CO balanced w ith 5%O2and N2and(b)100×10-6(volum e fraction)CO in 5%,10%,and 15%O2at 450°C

    where Re(g)and Ox(g)representa targeted gas in its reduced and oxidized forms,respectively.

    To investigate the ionicmotion of the potentiometric sensor during sensing process,impedance is carried out tomeasure the ionic conductivity of the sensors under variational CO or O2environmentas shown in Fig.8.Since palladium oxide is a good electrical conductor,the measured impedance belongs to the electrolyte.For themeasurementson thesensorw ith YSZ in Fig.8 (a,b),the shiftof the impedance in differentCO concentrations, w ithin experimentalerror,isnegligible.

    If theoxygen ions from theelectrolyte participate in theelectrochemical reactions,the impedance change in theelectrolyte can be observed.How ever,the ionic conductivity decreases when oxygen is enriched in theenvironment.Thisoccurs becausemoreenters theelectrolyte23.This resultagreeswellwith theelectric potential increaseof the potentiometric sensor,asshown in Fig.5. No shiftof impedance is observed in the CO environment;thus, the number of oxygen ions in the electrolyte and their respectivemobility are notdisturbed during the electrochem ical reactions. For the sensor w ith zeolite,the im pedance is constant under differentgaseousenvironments,asshown in Fig.8(c,d).The results indicate thatsodium ions in zeolitewillnotbe influenced by the gaseous species in the environment.

    Fig.8 Com plex im pedance spectra of sensor on YSZ in different(a)CO and(b)oxygen concentrations,and sensorw ith Na-Y in d ifferen t(c)CO and(d)oxygen concentrationsw ithin frequency range from 1MHz to 25 Hz at450°C

    Themobile ions inside the electrolyte are essential for the generation of a potentiometric response.Since ionic flows from the chemicalpotentialgradientare balanced by the electric field gradient24,the changing resistance across the sensors reflects the change in the chem ical potential gradient under CO sensing processes.The electrical resistivity across the sensors decreases forboth sensorswhen CO is introduced(Fig.9).The resistanceof the sensors isa seriesof Pt referenceelectrode,electrolyte,PdO-based electrode,and their interfacialbarrier.To address the source of the change in resistancesof the sensors,a resistance of Ni-PdO-5 ismeasured for100×10-6(volume fraction)CO at450°C in Fig. S3(see Supporting Information).The result indicates thatno net electrons transferbetween CO and PdO in the equilibrium state. Accordingly,the interfacialbarrierbetween the sensing electrode and electrolyte decreases ow ing to CO adsorption.Therefore,the interfacial potential increase between the sensing electrode and electrolyte is the sourceof the potentiometric response.

    4 Discussion

    Based on the previous results and discussion,capacitive behaviorswereobserved for the potentiometric sensorw ith a PdO-based electrode.When PdO is brought into contactw ith a ionic conductor,an electrochemical double layer appears25.The potential drop across theelectrochemicaldouble layer can be interpreted as

    Fig.9 Resistance change across sensors to 100×10-6, 200×10-6,and 300×10-6(volume fraction)CO balanced by 5%O2and N2at450°C(a)sensorwith YSZelectrolyte,(b)sensorwith Na-Y electrolyte

    where kBis the Boltzmann constant,T is the temperature,q is elementary charge,andρelectrolyteandρPdOare the charge densitieson the surfaceof PdO and theelectrolyte,respectively.

    The capacitance of the electrochem ical double-layer is described by

    where A is the area of the electrochem ical double layer,d is the distance between them,L is the perimeterof the PdO electrode,δ is theedgeeffect in the capacitor,εis the permittivity.

    The catalytic oxidation of CO over PdO isexpressed in equations(5)-(7)26,27.The reactions could be described as follows27,28: oxygen and carbonmonoxide from the gas phase co-adsorbed at the vacantsiteson the surface of the PdO,and interacted toform intermediates(e.g.,“carbonate”),whichwilldecompose toform CO2and healoxygen vacancies.

    Fig.10 Schematic ofmechanism to explain the response of potentiometric sensor constructed by Na-Y and PdO-based electrodeunder different conditions(a)sensor in background gas,(b)sensorexposed to CO

    During the catalytic oxidation,the ionic species are redistributed on the surfaceof PdO,theelectronsshiftbetween PdO and CO and O2,and mobile positive ions from the volume of electrolytemove toward the PdO-based electrode.If themobile ionsare negative,theyw illmove from the surface into the volumeof the electrolyte.During the sensing process,the charge density at the interfaceand the distribution of potential inside the electrolyte are altered.The degree of the alteration is related to the concentration of CO.Therefore,the potential change at the interface is linearly dependent on the logarithmic concentration of CO according to the equation(3).Moreover,a higher sensitivity of the sensorwith largerareaof PdO electrode is observed in the Fig.6. According to theequation(4),the capacitancew ill increasewith the increasing area of PdO electrode because of the edge effect in thecapacitance.Ahigher capacitance is capable to holdmore ionic species,which are favorable for the reactions at the interficialof PdO electrode and theelectrolyte.Therefore,the charge density (ρPdO)is increased due to the edge effect,then itw ill lead to a higher sensitivity.A simplisticmodeluses the sensorw ith Na-Y asan example,and isshown in Fig.10.

    5 Conc lusions

    Potentiometric sensorsbased on noblemetaloxide electrodes are an emerging field that is still awaiting consolidation and rationalization.A PdO sensing electrode,printed on YSZ and Na-Y, show sa potentiometric response to changes in CO partial pressure.Doping on PdO could result in a fair improvement in the sensing performance owing to the creation of defects,which would aid in the improvement of the oxidation reaction.The potentiometric response of sensors is ascribed to the interfacial potential between the PdO-based electrode and the electrolyte, e.g.,zirconia and zeolite.Themost important question is this: Whatqualitiesmake PdO different from othermetal oxidesasa sensing electrode?The crystalof PdO hasa sub-micro size,thus the PdO electrode has a larger surface area than the oxide electrode used in other literature29,30.Furthermore,PdO hasexcellent catalytic activity;thus,gasmoleculeswill be consumed before they reach the TPB.Finally,the relatively weak metal oxygen bonding in PdO could facilitate the transportof oxygen vacancies and theadsorptionof charged species.Itisadvisable to study PdO-based electrodes with other electrolytes to exploremore applicationsof solid-stateelectrochemicalsensors.

    Supporting In formation:available free of charge via the internetathttp://www.whxb.pku.edu.cn.

    (1)Park,C.O.;Fergus,J.W.;M iura,N.;Park,J.;Choi,A.Ionics 2009,15,261.doi:10.1007/s11581-008-0300-6

    (2)DiBartolomeo,E.;Grilli,M.L.;Traversa,E.J.Electrochem. Soc.2004,151,H133.doi:10.1149/1.1695387

    (3)DiBartolomeo,E.;Grilli,M.L.;Yoon,J.W.;Traversa,E. J.Am.Chem.Soc.2004,87,1883.doi:10.1111/j.1151-2916.2004.tb06335.x

    (4)Tang,W.;Wang,J.;Yao,P.J.;Du,H.Y.;Sun,Y.H.Acta Phys.-Chim.Sin.2014,30(4),781.[唐偉,王兢,姚朋軍,杜海英,孫炎輝.物理化學學報,2014,30(4),781.] doi:10.3866/PKU.WHXB201402191

    (5)Feng,Q.X.;Yu,P.;Wang,J.;Li,X.G.Acta Phys.-Chim.Sin. 2015,31(12),2405.[馮秋霞,于鵬,王兢,李曉干.物理化學學報,2015,31(12),2405.]doi:10.3866/PKU. WHXB201510261

    (6)Korotcenkov,G.Mat.Sci.Eng.B-Solid 2007,139,1. doi:10.1016/j.mseb.2007.01.044

    (7)Chiang,Y.J.;Pan,F.M.J.Phys.Chem.C 2013,117,15593. doi:10.1021/jp402074w

    (9)Zhang,W.F.;Schm idt-Zhang,P.;Guth,U.Solid State Ionics 2004,169,121.doi:10.1016/j.ssi.2003.10.004

    (10)Auerbach,S.M.;Carrado,K.A.;Dutta,P.K.Handbook of Zeolite Science and Technology;MarcelDekker Inc.:New York, 2003.

    (11)Zheng,Y.;Qiao,Q.;Wang,J.;Li,X.;Jian,J.Sens.Actuator BChem.2015,212,256.doi:10.1016/j.snb.2015.02.035

    (12)Bukhari,S.M.;Giorgi,J.B.Solid State Ionics2010,181,392. doi:10.1016/j.ssi.2010.01.017

    (13)M cFarland,E.W.;M etiu,H.Chem.Rev.2013,113,4391. doi:10.1021/cr300323w

    (14)Zheng,Y.;Wang,J.;Yao,P.Sens.Actuator B-Chem.2011,156, 723.doi:10.1016/j.snb.2011.02.026

    (15)Gurlo,A.Nanoscale 2011,3,154.doi:10.1039/c0nr00560f

    (16)Burbano,M.;Norberg,S.T.;Hull,S.;Eriksson,S.G.; Marrocchelli,D.;Madden,P.A.;Watson,G.W.Chem.Mater. 2011,24,222.doi:10.1021/cm2031152

    (17)Zhang,J.;Xie,K.;Wei,H.;Qin,Q.;Qi,W.;Yang,L.;Ruan,C.; Wu,Y.Sci.Rep.2014,4,7082.doi:10.1038/srep07082

    (18)Kim,Y.M.;He,J.;Biegalski,M.D.;Ambaye,H.;Lauter,V.; Christen,H.M.;Pantelides,S.T.;Pennycook,S.J.;Kalinin,S. V.;Borisevich,A.Y.Nat.Mater.2012,11,888.doi:10.1038/ NMAT3393

    (19)Elumalai,P.;Wang,J.;Zhuiykov,S.;Terada,D.;Hasei,M.; M iura,N.J.Electrochem.Soc.2005,152,H95.doi:10.1149/ 1.1923707

    (20)Mukundan,R.;Brosha,E.L.;Brown,D.R.;Garzon,F.H. J.Electrochem.Soc.2000,147,1583.doi:10.1149/1.1393398

    (21)Stetter,J.R.;Li,J.Chem.Rev.2008,108,352.doi:10.1021/ cr0681039

    (22)Garzon,F.H.;M ukundan,R.;Brosha,E.L.Solid-StateM ixed PotentialGasSensors:Theory,Experimentsand Challenges; Elsevier:K idlington,Royaume-Uni,2000.

    (23)Sridhar,S.;Stancovski,V.;Pal,U.B.Solid State Ionics1997, 100,17.doi:10.1016/S0167-2738(97)00322-6

    (24)Lim,D.K.;Im,H.N.;Song,S.J.Sci.Rep.2016,6,18804. doi:10.1038/srep18804

    (25)Simon,P.;Gogotsi,Y.Nat.Mater.2008,7,845.doi:10.1038/ nmat2297

    (26)Gong,X.Q.;Hu,P.;Raval,R.J.Chem.Phys.2003,119,6324. doi:10.1063/1.1602053

    (27)Gabasch,H.;Knop-Gericke,A.;Schlogl,R.;Borasio,M.; Weilach,C.;Rupprechter,G.;Penner,S.;Jenewein,B.;Hayek, K.;Klotzer,B.Phys.Chem.Chem.Phys.2007,9,533. doi:10.1039/b610719b

    (28)Weaver,J.F.Chem.Rev.2013,113,4164.doi:10.1021/ cr300323w l

    (29)M acam,E.R.;Blackburn,B.M.;Wachsman,E.D.Sens. Actuator B-Chem.2011,157,353.doi:10.1016/j. snb.2011.05.014

    (30)M iura,N.;Raisen,T.;Lu,G.;Yamazoe,N.J.Electrochem.Soc. 1997,144,L198.doi:10.1149/1.1344558

    Operating Mechanism of Palladium Oxide as a Potentiometric Sensing Electrode

    ZHENG Yan-Gong1,*ZHU Li-Na1LIHan-Yu1JIAN Jia-Wen1,*DU Hai-Ying2
    (1Faculty ofElectrical Engineering and Computer Science,Ningbo University,Ningbo 315000,Zhejiang Province,P.R.China;
    2College ofMechanicaland Electronic Engineering,Dalian M inzu University,Dalian 116600,Liaoning Province,P.R.China)

    This paper describes the sensing properties ofa poten tiometric sensor based on a palladium oxide (PdO)elec trode.Our investiga tion of the sensingm echanism is also discussed.We studied carbon monoxide (CO)sensing perform ance of a PdO e lec trode doped w ith Mg,Ni,and La,printed on zirconia.The results indicated that defects on the surface of PdO,which allow adsorp tion of CO,can effectively enhance the sensitivity of the sensors.To explore the source of the signal,a PdO-based electrode was printed on an alum ina disc and a zeolite pe llet for CO detection at450°C.Notably the zeolite coupled with the PdO-based electrode to generate potentiometric responses to changes in CO concentration.According to the resistance and impedancemeasurements,the response to CO was ascribed to the changing interfacia lpotentialbetween the PdO e lectrode and e lectro lyte.Amodel based on an e lectrochem ical double layer between the PdO and electrolyte was determ ined to explain the behavior of the potentiometric sensor.Itmay be possible to harness these effects atPdO electrodes for the deve lopmentofelectrochem ica lsensors.

    Palladium oxide;Potentiometric sensor;Doping effect;Carbonmonoxide;Electrolyte

    O646

    hu,L.;Zheng,Y.;Jian,J.Ionics 2015,21,2919.

    10.1007/ s11581-015-1487-y

    Received:October 24,2016;Revised:December 12,2016;Published online:December12,2016.

    *Corresponding authors.ZHENGYan-Gong,Email:zhengyangong@nbu.edu.cn;Tel:+86-13216681910.

    JIAN Jia-Wen,Email:jianjiawen@nbu.edu.cn;Tel:+86-13780047417.

    The projectwas supported by the National Natural Science Foundation of China(61471210,61501271,51472126),Natural Science Foundation of NingboMunicipality,China(2015A610108),and K.C.Wong Magna Fund in Ningbo University,China.

    國家自然科學基金(61471210,61501271,51472126),寧波市自然科學基金(2015A610108)及寧波大學王寬誠幸?;鹳Y助項目?Editorialoffice of Acta Physico-Chim ica Sinica

    猜你喜歡
    寧波大學工程學院電解質(zhì)
    《寧波大學學報(理工版)》征稿簡則
    福建工程學院
    福建工程學院
    《寧波大學學報(教育科學版)》稿約
    Sn摻雜石榴石型Li7La3Zr2O12固態(tài)電解質(zhì)的制備
    陶瓷學報(2021年1期)2021-04-13 01:33:40
    福建工程學院
    A Personal Tragedy The professionalism of Stevens
    長江叢刊(2018年13期)2018-05-16 06:42:58
    福建工程學院
    Research on College Education Based on VR Technology
    電解質(zhì)溶液高考熱點直擊
    亚洲一区二区三区欧美精品| 中文字幕精品免费在线观看视频 | 少妇猛男粗大的猛烈进出视频| 日日摸夜夜添夜夜爱| 欧美少妇被猛烈插入视频| 国产亚洲欧美精品永久| 日韩强制内射视频| 久久久精品94久久精品| 一二三四中文在线观看免费高清| 国产黄色视频一区二区在线观看| 久久毛片免费看一区二区三区| 大话2 男鬼变身卡| av免费在线看不卡| 国产精品久久久久成人av| 国产v大片淫在线免费观看| 蜜桃在线观看..| 久久人妻熟女aⅴ| 亚洲怡红院男人天堂| av国产精品久久久久影院| 人妻系列 视频| 久久这里有精品视频免费| 1000部很黄的大片| 精品久久久久久久久av| av女优亚洲男人天堂| 丝袜喷水一区| 永久网站在线| 一边亲一边摸免费视频| 最近2019中文字幕mv第一页| 欧美高清成人免费视频www| 中文天堂在线官网| 欧美少妇被猛烈插入视频| 久久久久精品性色| 久久久久久久亚洲中文字幕| av在线蜜桃| 免费不卡的大黄色大毛片视频在线观看| 大片免费播放器 马上看| 晚上一个人看的免费电影| 人妻一区二区av| 午夜日本视频在线| 欧美另类一区| 成年免费大片在线观看| 国产在线视频一区二区| 国产极品天堂在线| 久久久久久九九精品二区国产| 激情五月婷婷亚洲| 国产 一区精品| 亚洲av中文av极速乱| 91aial.com中文字幕在线观看| 国产 一区精品| 3wmmmm亚洲av在线观看| 26uuu在线亚洲综合色| 最黄视频免费看| 日韩三级伦理在线观看| 91久久精品国产一区二区三区| 在线观看美女被高潮喷水网站| av国产久精品久网站免费入址| 男人爽女人下面视频在线观看| 国产亚洲一区二区精品| 丝瓜视频免费看黄片| 久久久欧美国产精品| 国产精品.久久久| 日韩欧美 国产精品| 日韩伦理黄色片| 成人黄色视频免费在线看| 丰满迷人的少妇在线观看| 久久久久性生活片| 日日摸夜夜添夜夜添av毛片| 日韩中字成人| 欧美成人a在线观看| 亚洲精品一区蜜桃| 寂寞人妻少妇视频99o| 日韩三级伦理在线观看| 午夜激情福利司机影院| 亚洲人成网站在线观看播放| 日韩一本色道免费dvd| 一级a做视频免费观看| 下体分泌物呈黄色| 欧美日本视频| 3wmmmm亚洲av在线观看| 亚洲综合精品二区| 日韩一区二区视频免费看| 22中文网久久字幕| 丰满迷人的少妇在线观看| 国产无遮挡羞羞视频在线观看| 久久亚洲国产成人精品v| 亚洲精品,欧美精品| 超碰av人人做人人爽久久| 免费看av在线观看网站| 亚洲经典国产精华液单| 啦啦啦在线观看免费高清www| 国产精品嫩草影院av在线观看| 国产免费又黄又爽又色| 男的添女的下面高潮视频| 国产男女内射视频| 一本一本综合久久| 大片免费播放器 马上看| av.在线天堂| 街头女战士在线观看网站| 国产精品成人在线| 亚洲国产精品专区欧美| 欧美国产精品一级二级三级 | 久久久色成人| 欧美日本视频| 精品久久久久久电影网| 简卡轻食公司| 99久久精品一区二区三区| 中文字幕av成人在线电影| 亚洲av电影在线观看一区二区三区| 日本黄色片子视频| .国产精品久久| 99久久中文字幕三级久久日本| 婷婷色综合www| 日韩视频在线欧美| 国产一区二区三区av在线| 国产黄片视频在线免费观看| 国产成人精品一,二区| 欧美精品一区二区大全| 亚洲av电影在线观看一区二区三区| 嘟嘟电影网在线观看| 国产精品一区二区在线观看99| 七月丁香在线播放| 六月丁香七月| 18禁裸乳无遮挡免费网站照片| 九色成人免费人妻av| 亚洲精品一区蜜桃| 国产 一区 欧美 日韩| 久久这里有精品视频免费| 国产伦在线观看视频一区| 国产精品一区二区三区四区免费观看| 爱豆传媒免费全集在线观看| 免费在线观看成人毛片| 美女脱内裤让男人舔精品视频| 国产欧美另类精品又又久久亚洲欧美| 建设人人有责人人尽责人人享有的 | 一级黄片播放器| 欧美人与善性xxx| 亚洲成人中文字幕在线播放| 国产亚洲91精品色在线| 亚洲国产欧美人成| 亚洲av日韩在线播放| 日韩一本色道免费dvd| 美女主播在线视频| 精品一区在线观看国产| 高清欧美精品videossex| 九九爱精品视频在线观看| 亚洲av成人精品一区久久| 亚洲在久久综合| 免费观看在线日韩| 欧美精品一区二区免费开放| 九色成人免费人妻av| 欧美zozozo另类| 免费在线观看成人毛片| 国产成人a区在线观看| 黄色一级大片看看| 日韩av在线免费看完整版不卡| 亚洲av福利一区| 王馨瑶露胸无遮挡在线观看| 91精品国产九色| 久久久欧美国产精品| 免费观看在线日韩| 成人漫画全彩无遮挡| 亚洲av不卡在线观看| 99精国产麻豆久久婷婷| 性高湖久久久久久久久免费观看| 欧美日韩国产mv在线观看视频 | a级一级毛片免费在线观看| 熟女电影av网| 国产乱来视频区| 亚洲精品,欧美精品| 一本色道久久久久久精品综合| 国产黄片视频在线免费观看| 久久久久久久国产电影| 22中文网久久字幕| 成人无遮挡网站| av专区在线播放| 国产午夜精品久久久久久一区二区三区| 一二三四中文在线观看免费高清| 欧美变态另类bdsm刘玥| 高清日韩中文字幕在线| 免费在线观看成人毛片| 亚洲欧美一区二区三区黑人 | 国产淫片久久久久久久久| 熟女av电影| 亚洲欧洲国产日韩| 久久人人爽人人片av| 三级经典国产精品| 国产精品精品国产色婷婷| 九九爱精品视频在线观看| 中文天堂在线官网| 丰满少妇做爰视频| 欧美激情国产日韩精品一区| xxx大片免费视频| 亚洲精品中文字幕在线视频 | 亚洲真实伦在线观看| 国产免费视频播放在线视频| 成人午夜精彩视频在线观看| 国产精品av视频在线免费观看| 国产淫片久久久久久久久| 人妻制服诱惑在线中文字幕| 91久久精品国产一区二区三区| 成年av动漫网址| 三级国产精品欧美在线观看| 一二三四中文在线观看免费高清| 中国美白少妇内射xxxbb| 草草在线视频免费看| 国产精品嫩草影院av在线观看| 精品少妇黑人巨大在线播放| 麻豆国产97在线/欧美| 香蕉精品网在线| 人体艺术视频欧美日本| 搡老乐熟女国产| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品视频女| 久久6这里有精品| 亚洲国产成人一精品久久久| 亚洲人成网站高清观看| 国产午夜精品一二区理论片| www.av在线官网国产| 成人毛片60女人毛片免费| 欧美日韩视频精品一区| 又粗又硬又长又爽又黄的视频| 精品少妇久久久久久888优播| 麻豆乱淫一区二区| 在线观看一区二区三区激情| 高清午夜精品一区二区三区| 99热网站在线观看| 男男h啪啪无遮挡| 欧美高清性xxxxhd video| 亚洲成色77777| 亚洲国产av新网站| 久久韩国三级中文字幕| 国产欧美日韩一区二区三区在线 | videossex国产| 九九爱精品视频在线观看| 久久精品人妻少妇| 日本一二三区视频观看| 伦理电影大哥的女人| 黑人猛操日本美女一级片| 高清在线视频一区二区三区| 久久国产乱子免费精品| 麻豆精品久久久久久蜜桃| 亚洲电影在线观看av| 免费大片18禁| 成人午夜精彩视频在线观看| 色吧在线观看| 蜜桃久久精品国产亚洲av| 亚洲精品日韩在线中文字幕| 男人爽女人下面视频在线观看| 亚洲色图av天堂| 国产精品精品国产色婷婷| 精品人妻一区二区三区麻豆| 精品国产一区二区三区久久久樱花 | 亚洲精品久久午夜乱码| 国产精品久久久久久久久免| 免费大片黄手机在线观看| 美女主播在线视频| 国产成人免费无遮挡视频| 蜜桃亚洲精品一区二区三区| 国产精品99久久久久久久久| 欧美日韩在线观看h| 久久久久久久精品精品| 欧美日韩亚洲高清精品| 免费大片黄手机在线观看| 亚洲av成人精品一二三区| 91在线精品国自产拍蜜月| 精品99又大又爽又粗少妇毛片| h日本视频在线播放| 99久久精品热视频| 国产精品久久久久成人av| 亚洲第一av免费看| 午夜福利在线在线| 久久青草综合色| 尤物成人国产欧美一区二区三区| 插逼视频在线观看| 亚洲,一卡二卡三卡| 80岁老熟妇乱子伦牲交| 97在线视频观看| 中文字幕制服av| 中文字幕av成人在线电影| 亚洲va在线va天堂va国产| 日韩国内少妇激情av| 激情五月婷婷亚洲| a级一级毛片免费在线观看| 高清日韩中文字幕在线| 免费黄网站久久成人精品| 成年美女黄网站色视频大全免费 | 日韩不卡一区二区三区视频在线| 免费观看无遮挡的男女| 纯流量卡能插随身wifi吗| 久久精品国产亚洲av涩爱| 99久久精品热视频| 九九爱精品视频在线观看| 亚洲美女黄色视频免费看| 男人爽女人下面视频在线观看| 国产av精品麻豆| 精品少妇久久久久久888优播| 另类亚洲欧美激情| 一级a做视频免费观看| 精品亚洲成国产av| 日本vs欧美在线观看视频 | 人妻制服诱惑在线中文字幕| 校园人妻丝袜中文字幕| 亚洲欧美成人精品一区二区| 激情 狠狠 欧美| 日韩视频在线欧美| 国产一区亚洲一区在线观看| 一级爰片在线观看| 一本色道久久久久久精品综合| 内地一区二区视频在线| 亚洲欧美成人综合另类久久久| 亚洲av综合色区一区| 亚洲av国产av综合av卡| 99热全是精品| 日韩一本色道免费dvd| 在线 av 中文字幕| 纵有疾风起免费观看全集完整版| 亚洲国产精品成人久久小说| 免费观看av网站的网址| 啦啦啦视频在线资源免费观看| 赤兔流量卡办理| 97超视频在线观看视频| 亚洲av在线观看美女高潮| 在线观看免费日韩欧美大片 | 亚洲av免费高清在线观看| 成人亚洲精品一区在线观看 | 赤兔流量卡办理| 亚洲内射少妇av| 丝袜喷水一区| 99热网站在线观看| 亚洲不卡免费看| 国产真实伦视频高清在线观看| 毛片女人毛片| 欧美老熟妇乱子伦牲交| 中文字幕av成人在线电影| 国产精品精品国产色婷婷| 特大巨黑吊av在线直播| 久久久久久久久久成人| 日本色播在线视频| 亚洲精品中文字幕在线视频 | 三级经典国产精品| 少妇人妻 视频| 欧美日韩一区二区视频在线观看视频在线| 国产成人免费观看mmmm| 国产成人a∨麻豆精品| 久久精品国产鲁丝片午夜精品| 老司机影院毛片| 亚洲精品国产色婷婷电影| 99热这里只有精品一区| 精品国产露脸久久av麻豆| 欧美一区二区亚洲| 亚洲国产毛片av蜜桃av| 深夜a级毛片| 久久 成人 亚洲| 亚洲第一av免费看| 大话2 男鬼变身卡| av一本久久久久| 如何舔出高潮| 亚洲欧美精品自产自拍| 欧美国产精品一级二级三级 | 一本一本综合久久| 男女免费视频国产| 欧美精品亚洲一区二区| 中文天堂在线官网| 水蜜桃什么品种好| 精品人妻偷拍中文字幕| 最近的中文字幕免费完整| 免费观看av网站的网址| 插阴视频在线观看视频| h日本视频在线播放| 啦啦啦视频在线资源免费观看| 久久久久国产网址| 啦啦啦中文免费视频观看日本| 麻豆成人av视频| 伦理电影免费视频| 欧美+日韩+精品| 成人特级av手机在线观看| tube8黄色片| av免费在线看不卡| 在线观看人妻少妇| 一本色道久久久久久精品综合| 极品少妇高潮喷水抽搐| 中国三级夫妇交换| 国产色爽女视频免费观看| 亚洲伊人久久精品综合| 亚洲av成人精品一区久久| 97超视频在线观看视频| videos熟女内射| 久久久久久久久大av| 最近最新中文字幕大全电影3| 18禁裸乳无遮挡动漫免费视频| 老师上课跳d突然被开到最大视频| 亚洲av.av天堂| 久久久a久久爽久久v久久| 国产精品国产三级国产av玫瑰| 亚洲国产毛片av蜜桃av| 国产精品免费大片| 熟女av电影| 少妇裸体淫交视频免费看高清| 伊人久久精品亚洲午夜| 91久久精品国产一区二区成人| h日本视频在线播放| 日韩欧美精品免费久久| 成年美女黄网站色视频大全免费 | 王馨瑶露胸无遮挡在线观看| 肉色欧美久久久久久久蜜桃| 国产精品嫩草影院av在线观看| 91久久精品电影网| 少妇熟女欧美另类| 国产真实伦视频高清在线观看| 妹子高潮喷水视频| 少妇被粗大猛烈的视频| 国产日韩欧美亚洲二区| 九色成人免费人妻av| 少妇的逼水好多| 国产视频首页在线观看| 99国产精品免费福利视频| av国产精品久久久久影院| 久久久久久久久久久免费av| 我要看黄色一级片免费的| 制服丝袜香蕉在线| 亚洲精品成人av观看孕妇| 街头女战士在线观看网站| 国产精品蜜桃在线观看| 26uuu在线亚洲综合色| 精品亚洲乱码少妇综合久久| 国产成人精品婷婷| 中文资源天堂在线| 国精品久久久久久国模美| 国产男女超爽视频在线观看| 亚洲四区av| 1000部很黄的大片| 日本黄色片子视频| 亚洲欧美成人综合另类久久久| 老女人水多毛片| 2018国产大陆天天弄谢| 人人妻人人爽人人添夜夜欢视频 | 婷婷色综合www| 日韩欧美 国产精品| 韩国av在线不卡| 国产一区二区三区av在线| 国产爽快片一区二区三区| 色吧在线观看| 久久精品熟女亚洲av麻豆精品| 熟妇人妻不卡中文字幕| 一级毛片 在线播放| 男人添女人高潮全过程视频| 日韩强制内射视频| 欧美激情极品国产一区二区三区 | 成人毛片a级毛片在线播放| 国产黄色视频一区二区在线观看| 国产一区二区三区av在线| 欧美成人午夜免费资源| 97超视频在线观看视频| 午夜免费男女啪啪视频观看| 欧美zozozo另类| 在线天堂最新版资源| 人妻少妇偷人精品九色| 国产精品偷伦视频观看了| 国产精品久久久久久久久免| 我的女老师完整版在线观看| 午夜视频国产福利| 国产av国产精品国产| 久久久久久久久久人人人人人人| 国产老妇伦熟女老妇高清| 蜜臀久久99精品久久宅男| 国产v大片淫在线免费观看| 日本vs欧美在线观看视频 | 久久热精品热| 欧美成人精品欧美一级黄| 亚洲国产av新网站| 秋霞伦理黄片| 久久97久久精品| 欧美日韩综合久久久久久| a 毛片基地| 精品人妻视频免费看| 又爽又黄a免费视频| xxx大片免费视频| 国产伦精品一区二区三区四那| 天堂8中文在线网| 女人久久www免费人成看片| 高清欧美精品videossex| 亚洲一区二区三区欧美精品| 成年av动漫网址| 十分钟在线观看高清视频www | 十八禁网站网址无遮挡 | 99热这里只有是精品50| 国产精品精品国产色婷婷| 亚洲成色77777| 亚洲国产精品成人久久小说| 哪个播放器可以免费观看大片| 乱码一卡2卡4卡精品| 日本猛色少妇xxxxx猛交久久| 亚洲久久久国产精品| 午夜老司机福利剧场| 在线观看av片永久免费下载| 亚洲av不卡在线观看| 国产一区亚洲一区在线观看| 国产伦在线观看视频一区| 97热精品久久久久久| 日韩一本色道免费dvd| 纯流量卡能插随身wifi吗| 精品午夜福利在线看| 人人妻人人爽人人添夜夜欢视频 | 久久久久国产精品人妻一区二区| 日韩精品有码人妻一区| 久久婷婷青草| 啦啦啦视频在线资源免费观看| 男女免费视频国产| 国产精品久久久久久久久免| av又黄又爽大尺度在线免费看| 人人妻人人看人人澡| 国产精品久久久久久av不卡| 久久久亚洲精品成人影院| 久久久久久久国产电影| 久久久国产一区二区| 国产成人freesex在线| 亚洲va在线va天堂va国产| freevideosex欧美| 97在线人人人人妻| 激情五月婷婷亚洲| 夫妻性生交免费视频一级片| 一区二区三区免费毛片| 久久久久久久久久人人人人人人| 国产精品一及| 亚洲高清免费不卡视频| 人妻制服诱惑在线中文字幕| 免费观看性生交大片5| 久久久久久久久久成人| 国产精品一区二区在线不卡| 成人一区二区视频在线观看| 各种免费的搞黄视频| 国产在线一区二区三区精| 亚洲综合色惰| 丝袜喷水一区| 国产成人91sexporn| 精品亚洲乱码少妇综合久久| 久久久久久伊人网av| 高清在线视频一区二区三区| 日韩大片免费观看网站| 国产免费又黄又爽又色| 日本猛色少妇xxxxx猛交久久| a级一级毛片免费在线观看| 一级a做视频免费观看| 免费看不卡的av| 丰满迷人的少妇在线观看| 一个人看视频在线观看www免费| 久久97久久精品| 亚洲经典国产精华液单| 最后的刺客免费高清国语| 肉色欧美久久久久久久蜜桃| 女性被躁到高潮视频| 男女啪啪激烈高潮av片| 免费黄色在线免费观看| 日日啪夜夜撸| 干丝袜人妻中文字幕| 在线观看一区二区三区| 新久久久久国产一级毛片| 一本—道久久a久久精品蜜桃钙片| 少妇精品久久久久久久| 国产亚洲91精品色在线| 国产伦在线观看视频一区| 日本欧美国产在线视频| 久久精品国产自在天天线| 免费人成在线观看视频色| 毛片一级片免费看久久久久| 一级毛片黄色毛片免费观看视频| 国产精品熟女久久久久浪| 欧美精品人与动牲交sv欧美| 2021少妇久久久久久久久久久| 夜夜看夜夜爽夜夜摸| 色婷婷久久久亚洲欧美| 国产乱人视频| 啦啦啦啦在线视频资源| 国产精品无大码| 三级国产精品片| 少妇人妻一区二区三区视频| 亚洲精品中文字幕在线视频 | 伊人久久精品亚洲午夜| 欧美成人a在线观看| 精品熟女少妇av免费看| 国产淫片久久久久久久久| 一区二区三区精品91| 欧美 日韩 精品 国产| 亚洲美女视频黄频| 精品久久久噜噜| 国国产精品蜜臀av免费| 国产伦理片在线播放av一区| 最近中文字幕高清免费大全6| .国产精品久久| 国产片特级美女逼逼视频| av在线观看视频网站免费| 香蕉精品网在线| 久久久久久久久大av| 成年女人在线观看亚洲视频| 青春草亚洲视频在线观看| 大香蕉久久网| 热99国产精品久久久久久7| 国产乱人视频| 久热久热在线精品观看| 99热网站在线观看| 成人美女网站在线观看视频| 中文精品一卡2卡3卡4更新| 久久婷婷青草| 一级a做视频免费观看| 日日摸夜夜添夜夜添av毛片| 亚洲高清免费不卡视频| 久久久久久九九精品二区国产| 精品人妻熟女av久视频| 亚洲精品久久久久久婷婷小说| a级毛色黄片| 精品国产三级普通话版| 亚洲第一av免费看| 黄色怎么调成土黄色| 在线天堂最新版资源| 国产视频内射|