• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于鹵鍵的謝爾賓斯基三角分形自組裝的模擬研究

    2017-05-10 17:42:42張珍謝文俊楊奕孫耿高毅勤
    物理化學(xué)學(xué)報 2017年3期
    關(guān)鍵詞:斯基北京大學(xué)分形

    張珍 謝文俊,2 楊奕 孫耿 高毅勤,2,*

    (1北京大學(xué)化學(xué)與分子工程學(xué)院,理論與計算化學(xué)研究所,北京分子科學(xué)國家實驗室,北京100871;2北京大學(xué),生物動態(tài)成像中心,北京100871)

    基于鹵鍵的謝爾賓斯基三角分形自組裝的模擬研究

    張珍1謝文俊1,2楊奕1孫耿1高毅勤1,2,*

    (1北京大學(xué)化學(xué)與分子工程學(xué)院,理論與計算化學(xué)研究所,北京分子科學(xué)國家實驗室,北京100871;2北京大學(xué),生物動態(tài)成像中心,北京100871)

    采用粗?;母顸c模型和蒙特卡羅方法,對在三角網(wǎng)格表面通過自組裝形成了謝爾賓斯基三角分形結(jié)構(gòu)進(jìn)行了模擬研究。研究發(fā)現(xiàn),對稱和非對稱基元都可以自發(fā)形成謝爾賓斯基三角分形結(jié)構(gòu),然而對于非對稱分子的對映異構(gòu)體的混合物,由于大量的具有競爭性的三元節(jié)點的出現(xiàn),很難形成更高階的分形結(jié)構(gòu)。我們還發(fā)現(xiàn),分形結(jié)構(gòu)在表面覆蓋度低的時候才會出現(xiàn),而且對溫度較為敏感。此外,為了檢測是否可以通過分子設(shè)計來控制組裝途徑和結(jié)果,我們通過使用與組裝基元不同的模板來實現(xiàn)對自組裝過程和結(jié)果的控制。其中,模板作為“催組劑”誘導(dǎo)自組裝,但不會出現(xiàn)在最終的組裝結(jié)構(gòu)中。

    自組裝;蒙特卡羅模擬;分形;謝爾賓斯基三角形;催組裝

    1 In troduc tion

    Molecular self-assembly on 2D surfaces has gained extensive attention for its practical applications in material science and nanotechnology1-4.Myriad functionalmolecular architectures,including porous networks2,5,6,compact periodic patterns7,chiral assemblies7-9and glassy overlayers10,11,have been reported toform spontaneously on various surfaces.Within these architectures, fractals like Sierpiński triangle(ST)which exhibita self-similar pattern at different scales are of special importance in mathematics,engineering and science12.Synthesisofmolecular fractals relies mainly on the coordination between metal atoms and organic ligands.Such studies include bis-terpyridinebuilding blocks which can be co-adsorbed w ith Ru and Fe atoms toform a nanometer-scale Sierpiński hexagon gasket13.Multitopic terpyridine ligands can form hexagonw reath structuresof fractal featureswith Zn(II)ions14.Certain organicmolecules containing two carbonitrile groupswere alsofound to be coordinated with Ni atoms toform ST fractalsof high thermalstability15.Apart from the above coordinationmediated molecular fractal formation,Wu etal.16reported recently the self-assembly ofmolecular building blocks into defect-freemolecular ST fractals through halogen bonds.

    Complementary to experiments,computational studies have made important contributions to our understanding of the formationmechanism ofmolecular fractals.For example,theMonte Carlo(MC)methodwassuccessfully used to predictplausibleselfassembling STs using simplemodel systems.Using MC simulation,Niecharz and Szabelski17proposed thatmolecular fractals can be formed by coordination bonds.They alsofound thatbent molecular building blocks,equippedw ith two identicalelectron donor centers as linkers,can form ST fractalpatternswithmetal centers18.Recently,the self-assembly of hydrogen-bonded STswas reported19.In their study,symmetric linkermoleculeswere used to create STs.

    In this paper,we simulate the formation of ST fractals using both symmetric and asymmetricmolecules.The coarse-grained molecularmodelused in canonical lattice MC is inspired by the molecular design ofWu etal.16.We compare the difference between symmetric and asymmetricmolecular building blocks in this spontaneous process,which has not been analyzed from a computational aspect before.We find that the simple coarsegrained model can effectively reproduce the ST fractals observed experimentally forboth symmetricaland asymmetricalmolecules. The simulations suggest that it ismore difficult toform large fractals for them ixture of enantiomersof asymmetricmolecules than for symmetricmolecules,ofwhich theunderlyingmolecular mechanism is revealed and possible roles of themetal lattice is discussed.Them ixed system can form a large variety of nodal motifs.Specifically,themixture of enantiomers can self-organize into different formsof distorted triangular-shaped structures.The existence of the various nodal motifs reduces the formation probability of the fractal self-assembly w ith a uniform chirality. In addition,we devised a template to induce themolecular organization of asymmetric building blocks into a pre-designed pattern instead of the spontaneously formed ST fractal pattern.We used such a controlled pattern formation to show the feasibility of catassembly in which thedevised templateactsascatassembler20,21.

    2 Models and m ethods

    To simulate the self-assembly ofmolecules into ST fractals,we used a coarse-grainedmolecularmodel shown schematically in Fig.1.Themodelwas inspired by the recentexperimentswhich demonstrated the self-assembly of aromatic bromo compounds including 4,4″-dibromo-1,1′:3′,1″-terphenyl(B3BP)and 4,4′′′-dibromo-1,1′:3′,1″:4″,1′′′-quaterphenyl(B4BP)into Sierpiński triangles on Ag(111)surface16.The three-fold halogen bonding plays an important role in the formation of the defect-free hierarchical fractalstructure.For simplicity,wemodel themolecular building blockswith rigid planes.A and B shown in Fig.1 are the modelsused formolecules B3BPand B4BP,respectively.Due to the asymmetry of B4BP,molecule B forms two enantiomeric surface-bound structures,BLand BR.In the simulated systems,the molecules are confined to a2D rhombic fragmentof a triangular lattice which represents the Ag(111)surface with each vertex serving as an adsorption site,and each phenyl ring of B3BP or B4BPis coarse-grained as one segmentoccupying oneadsorption site.

    In this simplified approach,themolecules are allowed to interact through triangular halogen bonds.Once the triangular halogen bond is formed,thenucleophile positive region of one Br atom points to the equatorial electrophile region of an adjacentBr atom,with each Bratom actingasboth adonorand anacceptor22,23. Ithas been reported that this triangular halogen bond plays a key role in many self-assembled molecular networks that involve halogen atoms24,25.We should note here that different types of angular preferences for halogen-h(huán)alogen interactions havealso been observed26,27.

    Fig.1 Chem icalstructuresof the B3BPand B4BPmoleculesTheir schematic counterpartsare used in the simu lation on a triangulargrid.The red arrowson the term inalofm olecules indicate the direction of C―Br covalent bond.Twomirror-imagesofmolecule B aremarked by L and Rwhen adsorbed on thegrid.C representsan exampleofawindmill-likemoleculewith threemembered armsadsorbed on a triangular lattice.coloronline

    Fig.2 show s the coordination nodalmotifs that are allowed in the simulations.The possiblenodalmotifsofmolecules A and B which can be formed in theoverlayerhavebeen listed in Figs.S1-S5(Supporting Information(SI)).Thehalogen bond interaction between a term inal segment of onemolecule w ith another is characterized by the parameterεa=-1.Moreover,it is importantto note that steric hindering effects can strongly impact the formation of fractalpatterns.To take into accountsuch an effect,the nearest adsorption sites around onemolecule exclude the occupation of any othermolecules.When a segmentof onemolecule lies in the nextnearestadsorption site of anothermolecule,a repulsive interactionεrarises(e.g.,εr=0.5 is used in the current model).For simplicity,the interactionsbetweenmoleculesand the lattice substrate are not treated exp licitly in this currentmodel.

    The MC simulationswere performed using the conventional canonical ensemble28,which is characterized by the number of molecules,the volume(substrate area),and the temperature.The substrate ism im icked as a rhombic fragment of a triangular grid of equivalent adsorption sites.We adopted periodic boundary conditions in the plane to eliminate theboundary effect.

    The simulation procedure is as follow s.In the first step,N moleculesare random ly distributed on thegrid surface.Next,one of themolecules is random ly selected and its potential interaction energy in an initial configuration(Uold)is calculated.The associated interaction energy includes the attractive halogen bond interaction and the repulsive steric repulsion.Once Uoldis calculated,an attempt to move a selected molecule to a random ly chosen new position a cluster of adsorption sitesmatching the shape of themolecule was chosen random ly.If the selected adsorption sites are unoccupied,the potential energy of this new configuration(Unew)is then calculated.Since the sampling of molecular orientationsusing standard MC is very inefficient,we make use of the orientational bias sampling28.For the planar molecules considered here,six possible orientations can exist when they adsorb on the surface:when the coreof amolecule is pinned to the lattice,there are six different configurations rotating in the planew ith a rotation angleof 60 degrees.In the updating scheme,all these six configurationsare included in the calculation. To evaluate the acceptance probability,we calculate the Rosenbluth factor w()n for thenew configuration using

    Fig.2 Halogen-bondingm otifs com prising 2 or 3m olecules during the sim ulation(only one term inal segm ent of amolecule is shown)The dashed b lue linewasused to separate two types of halogen-bondingmotifs.The triang les and pentagons correspond to the nearestand the nex tnearestadsorption sites,respectively.coloron line

    where kBis the Boltzmann constant,T is the temperature of the system,and ujdenotes theenergy of j th trial configurations.Next, we choose one of the six trial configurations,say,x with a probability

    and for theold configuration,the Rosenbluth factor w(o)isalso calculated using Eq.(1).To decidewhether themove is successful, theacceptance probability pacciscomparedwith a random number r∈(0,1)

    If r<pacc,themolecule ismoved to the new position.Otherw ise it remains at its originalposition.During oneMC step theabove procedure is repeated N times.

    To explore catassembly,we additionally used conventional grand canonical MC(GCMC)28simulationmethod on a L×L triangular lattice at a tem perature of T.More specifically,the simulation procedure is described as follows.At the firststageof simulation,the substrate is solely occupied by w indm ill-shaped molecules(Fig.1C)which comprisea2Dmolecular network.The system is then equilibrated by successiveof three typesof trials includingmovement,deletion,and creation ofmolecules on the surface.Onceamolecule is randomly selected,an attempt ismade tomoveor to delete.We calculate theenergy for a configuration x by

    where n takes a valueof 1 or3,depending the typeofmolecule, m is 2 or3,depending on interaction sitesofmolecule,εris the repulsive interaction,ariseswhen the next nearest adsorption site of onemolecule isoccupied by anothermolecule.εklisεa,εaw,or εwwdepending on whether thehalogen bond is formed by two BL, a BLand aw indm ill-likemolecule,or two windm ill-likemolecules,respectively.εsubis the interaction between themoleculeand the substrate.Tomove amolecule,w e adopt the same procedure as in the biased MC.To create amolecule,4n adsorption sites matching the shapeof themolecule are random ly chosen.If none of the selected sites areoccupied theadsorption of amolecule is attempted with a probabilityminu(Ni)]}],where Piis the partialpressure of the two components and Niis the number(density)of them.When the selected molecule attempts to desorb,it is attempted with a probability miSince the system is a multi-com ponent one,adsorption and desorption attem pts are performed for each kind ofmolecule under a specified partial pressure.With the increase of the pressure,the coverage of adsorbedmoleculeson the surface increases.So the pressuresof BLand windm ill-like molecules used here are P1=10-10and P2=10-8,respectively.The interaction strengths areεa=-1.6 andεww=-1.0,supplemented by the Lorentz-Berthelotm ixing rules as geometric average for the interaction between BLand windmill-likemolecules,andεr=0.5.Since the overall interaction ofw indmill-likemoleculeswith the substrate is stronger than theBLmolecules,the interacting strengthsof BLandwindmilllikemolecules w ith the substrate are taken as 0 and-1.4,respectively.

    In the simulations,typically up to 108MC stepswere taken.The simulationswere performed on a L×L(L=300)triangulargrid and the totalnumber ofmolecules is N=800.For simp licity,kBand T areassumed to be dimensionlessparameters,kB=1 and T= 0.2 if nototherw ise stated.

    In addition,density functional theory(DFT)calculationswere used to provide an estimate of the interaction energies in the coarse-grained MC modeling.The effect of substrate was not considered here.All the DFT calculationswere carried outby CP2K program29,30w ith a hybrid Gaussian and p lane waves approaches.During all the calculations,the energy cutoff for the planew aves is setas320 Ry and the convergence criteriaof selfconsistent field(SCF)method during the wavefunction optimization is set as 5.0×10-7.The exchange-correlation energy of electrons is calculated by generalized gradient approximation (GGA)function of Perdew-Burke-Ernzerh31.Themolecularly optimized double zeta-polarization(DZP)basis functionsareused for allatoms32.During the structureoptimizations,themolecules arecentered in avery largeboxwith dimensionsof 50 nm×50 nm× 20 nm and no constraints are applied.The optim izations are stopped until themax componentof forces is smaller than 0.03 eV·nm-1.

    3 Resu lts and discussion

    3.1 Sim u lations usingm o lecu les A or BL

    We firstperformedMC simulations foraone-componentsystem composed of 800molecule A,ofwhich the simulated results can be directly compared with the experimental observations in Ref.16.Fig.3 depicts a typical snapshot of the self-assembled system.ST fractalstructuresofdifferentorders canbe clearly seen from this figure.The self-assembled fractal structure shown in Fig.3b agrees w ith that observed in experiment for B3BP on Ag(111)16showing thatour simple coarse-grainedmodel can serve asa reasonable representation of the experimental system.In this structure,each node comprisesof threemolecularbuilding blocks that form either a clockwise(CW)or counterclockw ise(CCW) pattern asshown in themagnified fragment(Fig.3b,Fig.3b′).The nodes in one fractal havea unique rotationalmode and they are motifs of a uniform chirality.The twofractal patternswhich are mirror-images to each otherare formedwith an equalprobability.

    The ST fractals formed bymolecule A can beof differentorders.Such a high dispersity in formation order does notdecrease with the further increaseof the simulation time,showing that it is difficult formolecule A toform big ST fractals.This phenomenon can be readily explained as follows.The fractals grow through the attachmentofmolecule A to oneof the threeaccessible vertices of the ST fractals,the number of which remains constantas the perimeterof theassembled structure increases.Such an effectwas also seen in the ST fractals formed by simulated annealing of the symmetric linker andmetalatoms18.These results highlight the interesting difference between fractal formation and crystal grow th.In the latter,the Ostwald ripeningmechanism leads to the formation of a large crystal and the disappearanceof smallerones. One can thus conclude that the shapeof thebuilding block and the triangulararrangementofmolecularbonding areessential for the ST fractal formation.

    Fig.3 A typicalpattern of thesystem consisting 800moleculeATheblue arrowsdenote the two typesof rotation of the three-fold bonding:CCW(left)and CW(right).Magnified fragments(a-c)respectively represent the first, thesecond and the third order of the ST.Themagnified fragment(b′)is theenantiomerof(b).color online

    Next,we investigated the self-assembly of asymmetric building blocks BL(Fig.1).A typical snapshotof the adsorbed overlayercomprising 800moleculesof BLand containing two typesof nonenantiomorphous STs is shown in Fig.4.This simulation outcome is different from molecule A.The primary reason for their difference lies in theasymmetric featureof thebuilding block BL.For convenience,the pore of the ST formed through threemolecules in Fig.4eand Fig.4e′arenamed typeαandβ,respectively.Type βbutnot typeαappears to be a regular hexagon.The formation of the ordered fractalpatterns ismainly a resultof the entropic stabilization of nodesof type a(heterotactic nodes)which have a formation probability three times higher than nodes of type b (w indm ill nodes).On the other hand,the grow th of imperfect fractal patterns ismainly resulted from the formation of the windm illnode.

    We nextexplored the effectof surface coverage and tem peratureon themorphology of theadsorption layer.In Fig.S6(Supporting Information),we show thatatahigh surface coverage the molecules of BLtend toform large triangular aggregatesw ith a diversifiedmorphology.Athigh temperatures,clusters only form transiently and remain small in size(Fig.S7,Supporting Information).In contrast,at low temperatures the system is easily trapped to configurations consisting of a large variety of irregular structures.Only at proper temperatures can themolecules BLaggregate toform stable fractalpatterns.We further analyzed the effectof temperature on the nodes of differentpatterns,including two-fold,heterotactic,andwindmill-likehalogen-bonding nodes. The number of thesenodes atdifferent temperatureswere shown in Fig.S8.Itwas found that thenumber of heterotactic node increasesw ith the decreasing of temperature.When the overlayer is sufficiently cooled,say,T<~0.25,the system prefers heterotactic nodes and the number of w indmill-like nodes is much smaller.A sim ilar temperature dependence was previously observed for theself-assembly of STs inmetal-organic and hydrogenbonded systems18,19.Configurationswith typeαandβpores are both observed in the simulation.Tofurther illustrate their differences,we used DFT to calculate the energy of themolecular configurations consisting of the two typesof pores(Fig.S9(a)and Fig.S9(b),Supporting Information).Themolecular configuration containing typeαpore is lower in energy than thatof a typeβpore by~2.5 kJ·mol-1(see Fig.S9).This difference between these molecular configurations is taken into account in terms of an additionalenergy penalty(an energy of 1.5 energy unit)for the typeβpore.Asshown in Fig.5,when such an effect is considered, only one typeof stable fractal pattern is formed in the simulation.

    3.2 Sim u lations using them ixture ofm o lecu les BLand BR

    In experiments,when prochiralmolecules adsorb on a solid surface,a racemic overlayer composed of equalamountsof both surface enantiomers is expected.Fig.6 demonstrates the results obtained for the simulationwith 800moleculesof BLand BR(with a ratio of 3:1)at the temperature T=0.125.The reason for choosing this ratio of BLand BRis that the smallestcycleobserved in experiments is consisted of the same typeof 3molecules BLor BR:if BLforms the cycle,the linker is then BRand vice versa.As observed in the experiment16,the firstgeneration of ST is composed of 9moleculesof BLand 3moleculesof BR.We should note that the realsystem should contain racemicmixtures,namely,with equal populations of BLand BRon the solid surface.The observation of the 3:1 structure in the presence of racem icm ixtures indicates the possible roleof thematching between the latticeand adsorbates in determining the fractal structures.Such an effect should be considered by including explicitly the solid lattice but isnot included in the simplemodelsused in thisstudy.

    Tofurther distinguish between the different structural units observed in the simulations,weagain used DFT to calculate theenergy of the configuration in Fig.S9c,which includes onemolecule BLand twomolecules BR.Itwas found that this configuration hasa higher energy than the configuration of typeαby~1.3 kJ·mol-1(see Fig.S9).This configuration was in factonly observed for the simulation,but not in the experiment.To incorporate such information,in the following simulationwe added an energy penalty(again,a valueof 1.5wasused)for configurations composed of both BLand BR.

    Fig.5 A typical pattern of the system com posing 800molecu les BLinwhich the interaction ofbond w ith CW chirality isweaker

    Fig.6a showsa fractalstructure inwhich every node consistsof mixed enantiomersof B.Theoverall fractalpattern is formed of nodeswith aunique chirality(theenantiomorph isnotshown here, a structure representing the oneobserved in the experimentusing B4BP16.Such an agreement show s that the simplemodelused in this study is capable of reproducing fractal structures observed experimentally for both symmetric and asymmetric building blocks.The formation of a variety of triangular-shaped structures are also shown in Fig.6.The structural diversity of theseaggregates is a result of the variance in the coordination nodes.In addition,we also examined the self-assembly of overlayers containing both conformersofmolecule B with racemic composition. The first-order of the ST is observed as can be seen in Fig.S10 (Supporting Information).The magnified fragment shows the fractal structurew ith one type of handednessw ith the ratio of BLand BRas 1:3.We failed to observe large and regular fractal structures in racem icmixture.

    3.3 Designing se lf-assem b ly patterns

    Fig.6 A typicalpattern of the system com posing of 800moleculesof BLand BR(3:1)Themagnified fragmentshows thestructurew ith different molecular typesbetween bridgeand ring.

    The simulations discussed above showed that the building blocksBLdesigned here can spontaneously form ST through selfassembly,but not the porous network shown in Fig.S11(Supporting Information).This preference of structure formation is expected from a thermodynam ic point of view.Let′s take the porous network(Fig.7a)and the second generation of ST fractal (Fig.7b)formed by 12moleculesas examples,which are denoted by state A and state B,respectively.The free energy differenceof the two states can be estimated throughΔF=EA-kBT ln(m)-(EB-kBT ln(n)),w here EAis the interaction energy of state A,EBis the interaction energy of state B,T is the temperature,m and n are the total number of configurations that is accessible to the system atenergies EAand EB,respectively.The freeenergy of the porousnetwork(Fig.7a)isabout-18.62,while thisvalue for the fractal structure(Fig.7b)is-21.14,show ing that the building blocksof the fractalstructureare indeed thermodynamicallymore stable.Wegave detailed information on the calculation in SI.On theother hand,one should note thatheterotatic andwindmill-like nodes are energetically equivalent.This preference of structure formation originatesmainly from the entropic stabilization of the heterotactic nodeswith the ratio of heterotactic andwindmill-like nodesas3:1.Asmentioned above,thenumberof thewindm illlike nodes increases with T,ismuch smaller compared to heterotactic nodes.While thewindmill-likenodesare responsible for the formation of the porous network as shown in Fig.S11.The porous network is impossible to be observed in this system although the temperature is low.

    Fig.7 Schematic diagram sof two typesof self-assembly structures com posed of 12moleculesBL

    Therefore,the preference of fractal structures over the porousones leads toan interestingquestion:isitpossible toguide theselfassembly into theporousnetwork structurebymaking use the idea of catassembly20,21?In catassembly,catassemblerareadded into the system to alter the kineticsof an assembly process.Catasemblers do notappear in the final structure and thus do not change the overall thermodynam ics but can either change the rate of selfassembling or lead to varied kinetically controlled products. Following this concept,we propose the following strategy.Firstly, catassemblers that can form the desired target structure are introduced into the system.Theadsorption of catassembler initiates biased self-assembly.Next,the assemblers displace the catassembler through adsorption to the surface,e.g.,asa resultof the favored interaction among them selves.The success of such a design requires the critical nuclear size to be small for the catassembler and at the same time the assemblers form a thermodynamically more stable structure which excludes the catassembler.To achieve such agoal,we designed catassemblers that have a largermolecular size butaweaker interacting strength than theassemblers.Once theassemblers adsorb,catassemblers are to be gradually excluded from the surface.Asa result,assemblers aggregate and self-organize into a structureguided by the catassemblers instead of the spontaneously formed one.It should be pointed out that the template used here is different from those used in template-assisted self-assembly.In template-assisted self-assembly,templates remain in the finalstructureasbuilding blocks. In contrast,the catassemblers do notappear in the finalself-assembled structure.

    Fig.8 Four typicalsnapshotsof the structureof the adsorbed phase corresponding to differentMC stepsduring oneMC simulationThemolecules represented in red and blue corresponding to BLmolecule,w indmill-likemolecule,respectively.color online

    On the basisof the above idea,we proposed a MCmodelusing windmill-shaped catassemblers(Fig.1C)and BL(Fig.1B).These catassemblershave the same adsorption sitesas thew indm ill node formed by three BLmoleculeswhich can further self-organize into highly ordered porousnetworks(Fig.8).

    We performed calculations using the GCMC simulation method.Fig.8 shows four snapshotswithin oneMC simulation. Asseen from Fig.8(t=0),theordered porousnetwork is initially a template composed ofwindm ill-like catassemblermolecules. Compared to catassemblers,BLmolecules interactwith each other more strongly on the surface and thusonce a nucleus is formed by the catassemblers,it iseasy for BLto adsorb to and remain in the structure.Fig.8(t=9.5×105MC steps and t=2.05×107MC steps)shows thata process inwhich the self-assembled structure propagates through adsorption,desorption andmovementof BL, dictated by the initial structure formed by the catassemblers.In this process,the windm ill nodes formed by threemolecules BLinsert into thegap formed by self-assembled catassemblers,followed by the detachmentof a catassembler nearest to thew indmill nodes from the surface.Theadsorption of a BLto the vacated sites deprives the catassembler from re-adsorbing.The insertion of two othermolecules BLinto the unoccupied space leads to the formation of a new w indmillnode.In thismanner,the porous network com posed of molecules BLcontinuously grow s.Furthermore,due to the steric hindrance of windm ill-likemolecules, molecules BLare prevented from the spontaneous formation into ST structures and the assemblers assemble into a large ordered porous network.In the simulations,wealso observed that faulted connections between BLmolecules exist in the porous network which are subsequently amended.

    4 Conc lusions

    In summary,we have demonstrated the formation of highlyordered fractal structuresw ith a specific chirality when simple latticemodels are used in simulations.Density functional theory calculationswereused to evaluate the relative stability of various unit structures formed in the self-assembly of asymmetric molecule.We observed that both symmetric and asymmetric building blocks can self-assemble into ST.Itwas found that the ST tends toform at low surface coverage,and only in a lim ited temperature range.The simulations on themixtures of the enantiomers of asymmetric molecules showed that the increased number of possible coordination nodes can lead to the formation of the perturbed triangular-shaped structure.It is more difficult for asymmetricmolecules to self-organize into ST with a uniform chirality than the symmetric ones.In addition,we reported a conceptual strategy for changing the self-assembly processof BLfrom ST fractal structure to a disfavored structure.Important factorssuch as specific surface structures,latticematching,and interactionspotentially support the formation of thehigherorder of ST fractal structure.However,the current simulation uses highly simplifiedmodelswhich do not take into account the detailed interactions betw een the solid lattice and the adsorbates. Atom ic detailedmodelsareneeded to include such effects.

    Acknow ledgm ents:We thank Peking University for providing the computational resources.

    Supporting In formation:Possible nodalmotifs ofmolecule A andmolecule Bwhich can be formed in the overlayer have been listed.The snapshots of the adsorbed overlayer under different temperature and high surface coveragewere shown.Thenumber of two-fold,heterotatic,andwindmill-likehalogen-bonding nodes at different temperature were descripted.The energy of themolecular configuration consisting of the three types of poresw as calculated by density functional theory.Estimation of the free energies of the porous network and the fractal structure were given.This information isavailable free of charge via the internet athttp://www.whxb.pku.edu.cn.

    (1)Stepanow,S.;Lingenfelder,M.;Dmitriev,A.;Spillmann,H.; Delvigne,E.;Lin,N.;Deng,X.;Cai,C.;Barth,J.V.;Kern,K. Nat.Mater.2004,3,229.doi:10.1038/nmat1088

    (2)Zhang,R.;Wang,L.C.;Li,M.;Zhang,X.M.;Li,Y.B.;Shen, Y.T.;Zheng,Q.Y.;Zeng,Q.D.;Wang,C.Nanoscale 2001,3, 3755.doi:10.1039/c1nr10387c.

    (3)Ivasenko,O.;MacLeod,J.M.;Chernichenko,K.Y.;Balenkova, E.S.;Shpanchenko,R.V.;Nenajdenko,V.G.;Rosei,F.; Perepichka,D.F.Chem.Commun.2009,1192.doi:10.1039/ B819532C

    (4)Theobald,J.A.;Oxtoby,N.S.;Phillips,M.A.;Champness,N. R.;Beton,P.H.Nature 2003,424,1029.doi:10.1038/ nature01915

    (5)Kudernac,T.;Lei,S.;Elemans,J.A.A.W.;De Feyter,S.Chem. Soc.Rev.2009,38,402.doi:10.1039/B708902N

    (6)Furukawa,S.;U ji-i,H.;Tahara,K.;Ichikawa,T.;Sonoda,M.; De Schryver,F.C.;Tobe,Y.;De Feyter,S.J.Am.Chem.Soc. 2006,128,3502.doi:10.1021/ja0583362

    (7)De Feyter,S.;De Schryver,F.C.Chem.Soc.Rev.2003,32,139. doi:10.1039/B206566P

    (8)Lei,S.;Tahara,K.;Müllen,K.;Szabelski,P.;Tobe,Y.;De Feyter,S.ACSNano 2011,5,4145.doi:10.1021/nn200874k

    (10)Blunt,M.O.;Russell,J.C.;Giménez-López,M.D.C.; Garrahan,J.P.;Lin,X.;Schr?der,M.;Champness,N.R.;Beton, P.H.Science2008,322,1077.doi:10.1126/science.1163338

    (11)Tahara,K.;Furukawa,S.;U ji-i,H.;Uchino,T.;Ichikawa,T.; Zhang,J.;Mamdouh,W.;Sonoda,M.;De Schryver,F.C.;De Feyter,S.;Tobe,Y.J.Am.Chem.Soc.2006,128,16613. doi:10.1021/ja0655441

    (12)Mandelbrot,B.B.The FractalGrometry ofNature;W.H. Freeman and Company:San Francisco,1982.

    (13)Newkome,G.R.;Wang,P.;Moorefield,C.N.;Cho,T.J.; M ohapatra,P.P.;Li,S.;Hwang,S.H.;Lukoyanova,O.; Echegoyen,L.;Palagallo,J.A.;Iancu,V.;Hla,S.W.Science 2006,312,1782.doi:10.1126/science.1125894

    (14)Wang,M.;Wang,C.;Hao,X.Q.;Liu,J.;Li,X.;Xu,C.;Lopez, A.;Sun,L.;Song,M.P.;Yang,H.B.;Li,X.J.Am.Chem.Soc. 2014,136,6664.doi:10.1021/ja501417g

    (15)Sun,Q.;Cai,L.;Ma,H.;Yuan,C.;Xu,W.Chem.Commun. 2015,51,14164.doi:10.1039/C5CC05554G

    (16)Shang,J.;Wang,Y.;Chen,M.;Dai,J.;Zhou,X.;Kuttner,J.; Hilt,G.;Shao,X.;Gottfried,J.M.;Wu,K.Nat.Chem.2015,7, 389.doi:10.1038/nchem.2211

    (17)Nieckarz,D.;Szabelski,P.J.Phys.Chem.C 2013,117,11229. doi:10.1021/jp4022486

    (18)Nieckarz,D.;Szabelski,P.Chem.Commun.2014,50,6843. doi:10.1039/C4CC01344A

    (19)Zhang,X.;Li,N.;Gu,G.C.;Wang,H.;Nieckarz,D.;Szabelski, P.;He,Y.;Wang,Y.;Xie,C.;Shen,Z.Y.;Lü,J.T.;Tang,H.; Peng,L.M.;Hou,S.M.;Wu,K.;Wang,Y.F.ACSNano 2015, 9,11909.doi:10.1021/acsnano.5b04427

    (20)Wang,Y.;Lin,H.X.;Chen,L.;Ding,S.Y.;Lei,Z.C.;Liu,D. Y.;Cao,X.Y.;Liang,H.J.;Jiang,Y.B.;Tian,Z.Q.Chem.Soc. Rev.2014,43,399.doi:10.1039/C3CS60212E

    (21)Wang,Y.;Lin,H.X.;Ding,S.Y.;Liu,D.Y.;Chen,L.;Lei,Z. C.;Fan,F.R.;Tian,Z.Q.Sci.Sin.Chim.2012,42,525.[王宇,林海昕,丁松園,劉德宇,陳亮,雷志超,范鳳茹,田中群.中國科學(xué):化學(xué),2012,42,525.]doi:10.1360/032011-828

    (22)Lu,Y.;Zou,J.;Wang,H.;Yu,Q.;Zhang,H.;Jiang,Y.J.Phys. Chem.A 2005,109,11956.doi:10.1021/jp0547360

    (23)Cavallo,G.;Metrangolo,P.;M ilani,R.;Pilati,T.;Priimagi,A.; Resnati,G.;Terraneo,G.Chem.Rev.2016,116,2478. doi:10.1021/acs.chem rev.5b00484

    (24)Walch,H.;Gutzler,R.;Sirtl,T.;Eder,G.;Lackinger,M.T. J.Phys.Chem.C 2010,114,12604.doi:10.1021/jp102704q

    (25)Chung,K.H.;Park,J.;Kim,K.Y.;Yoon,J.K.;Kim,H.;Han, S.;Kahng,S.J.Chem.Commun.2011,47,11492.doi:10.1039/ C1CC14679C

    (26)Desiraju,G.R.;Parthasarathy,R.J.Am.Chem.Soc.1989,111, 8725.doi:10.1021/ja00205a027

    (27)Pedireddi,V.R.;Reddy,D.S.;Goud,B.S.;Craig,D.C.;Rae, A.D.;Desiraju,G.R.J.Chem.Soc.Perkin Trans.1994,2, 2353.doi:10.1039/P29940002353

    (28)Frenkel,D.;Sm it,B.Understanding Molecular Simulation From Algorithm to Applications;Academic Press:London,2002.

    (29)VandeVondele,J.;K rack,M.;Mohamed,F.;Parrinello,M.; Chassaing,T.;Hutter,J.Comp.Phys.Comm.2005,167,103. doi:10.1016/j.cpc.2004.12.014

    (30)Ferrario,M.;Ciccotti,G.;Binder,K.ComputerSimulationsin Condensed Matter Systems:From Materials to Chemical Biology;Springer:Berlin Heidelberg,2006;Vol.1,pp 287-314.

    (31)Perdew,J.P.;Burke,K.;Ernzerhof,M.Phys.Rev.Lett.1996, 77,3865.doi:10.1103/PhysRevLett.77.3865

    (32)VandeVondele,J.;Hutter,J.J.Chem.Phys.2007,127,114105. doi:10.1063/1.2770708

    Simulation Studies of the Self-Assembly of Halogen-Bonded Sierpiński Triangle Fractals

    ZHANG Zhen1XIEWen-Jun1,2YANG Yi Isaac1SUNGeng1GAO Yi-Qin1,2,*
    (1Institute ofTheoreticaland ComputationalChemistry,College ofChemistry and Molecular Engineering, Beijing National Laboratory ofMolecular Sciences,Peking University,Beijing 100871,P.R.China;2Biodynamic Optical Center,Peking University,Beijing 100871,P.R.China)

    In this study,a coarse-grained lattice Monte Carlo mode lwas used to investigate the formation of Sierpińskitriangle(ST)fracta ls through self-assembly on a triangu lar lattice surface.In the simulations,both symmetric and asymmetricmo lecularbuilding blocks can spontaneously form ST fractalpatterns,although the m ixture ofenantiomers ofasymmetricmolecule ismore difficult to self-organize into ST ofa high orderowing to the p resence of a large variety of competing three-membered nodes.The formation of ST fractals is favored at low surface cove rage and is sensitive to tem pe ratu re.Furtherm ore,to testw he ther the assembly pa thw ay and outcome could be controlled bymolecular design,we guided the self-assembly process form ing ST fractal into the otherwise disfavored self-assembled structures using templates different from the assemblingmolecules. The temp lates are designed to actas“catassemblers”that initiate the self-assemb ling butare excluded from the finalassembled structure.

    Self-assembly;Monte carlo simulation;Fractal;Sierpińskitriangle;Catassembly

    O647

    rnst,K.H.Top.Curr.Chem.2006,265,209.

    10.1007/128_ 036

    doi:10.3866/PKU.WHXB201611252

    www.whxb.pku.edu.cn

    Received:September 7,2016;Revised:November25,2016;Published online:November25,2016.

    *Corresponding author.Email:gaoyq@pku.edu.cn;Tel:+86-10-62752431.

    Theprojectwas supported by theNationalNatural Science Foundation of China(91427304,21573006,U1430237,21233002,21125311)and National Key Basic Research Program of China(973)(2012CB917304).

    國家自然科學(xué)基金(91427304,21573006,U1430237,21233002,21125311)和國家重點基礎(chǔ)研究發(fā)展規(guī)劃項目(973)(2012CB917304)資助?Editorialofficeof Acta Physico-Chim ica Sinica

    doi:10.3866/PKU.WHXB201612081

    www.whxb.pku.edu.cn

    猜你喜歡
    斯基北京大學(xué)分形
    建筑史話
    北京大學(xué)首都發(fā)展新年論壇(2021)舉行
    感受分形
    就任北京大學(xué)校長之演說
    分形之美
    分形空間上廣義凸函數(shù)的新Simpson型不等式及應(yīng)用
    名導(dǎo)波蘭斯基再遇性侵指認(rèn)
    世界知識(2017年17期)2017-12-28 21:15:36
    Le r?le de la lecture dans la formation desétudiants de langues vivantes
    La solitude
    穆索爾斯基藝術(shù)歌曲的創(chuàng)作思想淺論
    樂府新聲(2016年4期)2016-06-22 13:03:00
    天天影视国产精品| 日本五十路高清| 亚洲精品久久成人aⅴ小说| 成人免费观看视频高清| 99在线视频只有这里精品首页| 在线播放国产精品三级| 女性被躁到高潮视频| 好男人电影高清在线观看| 99国产精品免费福利视频| 少妇裸体淫交视频免费看高清 | 两个人看的免费小视频| 麻豆成人av在线观看| 久久人人精品亚洲av| 国产三级黄色录像| 女警被强在线播放| 亚洲av成人一区二区三| av天堂在线播放| 长腿黑丝高跟| 99香蕉大伊视频| 精品久久久久久久久久免费视频 | 国内毛片毛片毛片毛片毛片| 国产成人一区二区三区免费视频网站| 亚洲欧美一区二区三区久久| 纯流量卡能插随身wifi吗| 深夜精品福利| av福利片在线| 亚洲午夜理论影院| 亚洲成人免费av在线播放| 成人免费观看视频高清| 夜夜夜夜夜久久久久| 色综合婷婷激情| 亚洲专区中文字幕在线| 亚洲性夜色夜夜综合| 国产精品秋霞免费鲁丝片| 脱女人内裤的视频| 波多野结衣高清无吗| 欧美黄色淫秽网站| 欧美日韩瑟瑟在线播放| 午夜福利一区二区在线看| 欧美在线一区亚洲| 国内久久婷婷六月综合欲色啪| 手机成人av网站| 日韩成人在线观看一区二区三区| 欧美激情高清一区二区三区| 久久久国产成人精品二区 | 一级,二级,三级黄色视频| 成人三级做爰电影| 两性午夜刺激爽爽歪歪视频在线观看 | 91精品三级在线观看| 两性夫妻黄色片| 成人国语在线视频| 国产97色在线日韩免费| 大码成人一级视频| 精品一区二区三区四区五区乱码| 国产精品永久免费网站| 国内久久婷婷六月综合欲色啪| 亚洲情色 制服丝袜| 夜夜躁狠狠躁天天躁| 在线播放国产精品三级| 精品国产国语对白av| 国产精品国产高清国产av| 老司机亚洲免费影院| 国产精品98久久久久久宅男小说| 欧美日韩亚洲高清精品| 天天影视国产精品| 免费高清视频大片| 亚洲欧美一区二区三区黑人| 欧美成狂野欧美在线观看| 国产成人欧美在线观看| 亚洲情色 制服丝袜| 亚洲自偷自拍图片 自拍| 亚洲熟女毛片儿| 久久久久亚洲av毛片大全| 在线免费观看的www视频| 亚洲av第一区精品v没综合| 香蕉国产在线看| 色综合欧美亚洲国产小说| 日日摸夜夜添夜夜添小说| 久久精品国产综合久久久| 久久久久久久精品吃奶| 国产精品久久视频播放| e午夜精品久久久久久久| 久久青草综合色| 午夜日韩欧美国产| 色婷婷久久久亚洲欧美| 国产亚洲av高清不卡| 天天影视国产精品| 免费高清在线观看日韩| 欧美日韩福利视频一区二区| 91大片在线观看| 欧美国产精品va在线观看不卡| 欧美日韩亚洲高清精品| 两个人免费观看高清视频| 日本a在线网址| 女人被狂操c到高潮| 国产亚洲精品综合一区在线观看 | www.自偷自拍.com| 午夜福利一区二区在线看| 婷婷六月久久综合丁香| 91成年电影在线观看| 精品国产乱码久久久久久男人| 视频区图区小说| 亚洲精品国产色婷婷电影| 国产精品1区2区在线观看.| 丁香欧美五月| videosex国产| 亚洲色图 男人天堂 中文字幕| 法律面前人人平等表现在哪些方面| 色播在线永久视频| 久久国产精品影院| 亚洲视频免费观看视频| 最近最新免费中文字幕在线| 操美女的视频在线观看| 久久影院123| 变态另类成人亚洲欧美熟女 | 精品国产一区二区三区四区第35| 亚洲狠狠婷婷综合久久图片| 久9热在线精品视频| 欧美日韩亚洲国产一区二区在线观看| av电影中文网址| 99国产极品粉嫩在线观看| 国产亚洲欧美在线一区二区| av超薄肉色丝袜交足视频| 国产精品亚洲av一区麻豆| 亚洲情色 制服丝袜| 国产乱人伦免费视频| 最好的美女福利视频网| 天天影视国产精品| 深夜精品福利| 高清黄色对白视频在线免费看| av片东京热男人的天堂| 黑人操中国人逼视频| 国产亚洲精品第一综合不卡| 久久久精品欧美日韩精品| 桃色一区二区三区在线观看| 中文字幕高清在线视频| 动漫黄色视频在线观看| 亚洲熟妇熟女久久| 亚洲国产欧美一区二区综合| 婷婷丁香在线五月| 精品福利观看| 久久久久亚洲av毛片大全| 一个人免费在线观看的高清视频| x7x7x7水蜜桃| 色综合婷婷激情| 精品久久久久久,| 一级黄色大片毛片| 亚洲 欧美 日韩 在线 免费| 精品人妻在线不人妻| 麻豆av在线久日| 日韩欧美在线二视频| 亚洲自偷自拍图片 自拍| 涩涩av久久男人的天堂| 香蕉丝袜av| 亚洲欧美精品综合久久99| 成人永久免费在线观看视频| 欧美av亚洲av综合av国产av| 女性生殖器流出的白浆| 黄片大片在线免费观看| 免费av中文字幕在线| 777久久人妻少妇嫩草av网站| 美女午夜性视频免费| 俄罗斯特黄特色一大片| 国产一卡二卡三卡精品| 久久人人97超碰香蕉20202| 国产精品香港三级国产av潘金莲| 国产一区二区在线av高清观看| 这个男人来自地球电影免费观看| 国产97色在线日韩免费| 日日爽夜夜爽网站| 日韩精品中文字幕看吧| 午夜免费成人在线视频| 免费在线观看完整版高清| 亚洲精品中文字幕一二三四区| 久久这里只有精品19| www.熟女人妻精品国产| 超碰成人久久| 女人被躁到高潮嗷嗷叫费观| 成人三级黄色视频| 亚洲男人天堂网一区| 视频区欧美日本亚洲| 在线观看免费日韩欧美大片| 成熟少妇高潮喷水视频| 在线国产一区二区在线| 在线观看免费视频日本深夜| 男女下面进入的视频免费午夜 | 亚洲欧美激情综合另类| 麻豆一二三区av精品| 丝袜在线中文字幕| 99国产精品免费福利视频| 久久九九热精品免费| 亚洲欧洲精品一区二区精品久久久| 国产精品国产高清国产av| 天天躁狠狠躁夜夜躁狠狠躁| 51午夜福利影视在线观看| 99久久精品国产亚洲精品| av免费在线观看网站| 日韩欧美三级三区| 国产成人影院久久av| 中文字幕最新亚洲高清| 一级a爱视频在线免费观看| 80岁老熟妇乱子伦牲交| 久久天躁狠狠躁夜夜2o2o| 久久伊人香网站| 在线十欧美十亚洲十日本专区| 久久欧美精品欧美久久欧美| 亚洲熟妇熟女久久| 电影成人av| 欧美一级毛片孕妇| 9191精品国产免费久久| 99国产极品粉嫩在线观看| 99国产综合亚洲精品| 国产精品秋霞免费鲁丝片| 99国产精品99久久久久| 日韩精品青青久久久久久| 美女高潮到喷水免费观看| 国产成人av教育| 看片在线看免费视频| 亚洲专区中文字幕在线| 琪琪午夜伦伦电影理论片6080| 99久久国产精品久久久| 久久精品91蜜桃| 中文字幕另类日韩欧美亚洲嫩草| 久久人人爽av亚洲精品天堂| 韩国精品一区二区三区| 麻豆国产av国片精品| 女性被躁到高潮视频| 亚洲精品国产精品久久久不卡| 国产97色在线日韩免费| 国产精品乱码一区二三区的特点 | 久久人人97超碰香蕉20202| 国产一区二区激情短视频| 99久久国产精品久久久| 欧美日韩国产mv在线观看视频| 久久国产乱子伦精品免费另类| 欧美日韩乱码在线| 91麻豆av在线| 欧美不卡视频在线免费观看 | 精品福利永久在线观看| 午夜成年电影在线免费观看| 国产亚洲精品久久久久久毛片| 岛国视频午夜一区免费看| a在线观看视频网站| 久久久久久久久免费视频了| 日本免费一区二区三区高清不卡 | 亚洲精品美女久久久久99蜜臀| 大型av网站在线播放| 欧美中文综合在线视频| 一级黄色大片毛片| 在线免费观看的www视频| 国产熟女午夜一区二区三区| 欧美激情久久久久久爽电影 | 久久久精品国产亚洲av高清涩受| 精品一区二区三区视频在线观看免费 | 黄频高清免费视频| 久久久国产成人精品二区 | 欧美午夜高清在线| 久久人妻熟女aⅴ| 成人三级做爰电影| 精品少妇一区二区三区视频日本电影| 亚洲少妇的诱惑av| 俄罗斯特黄特色一大片| 国产精品久久电影中文字幕| 69av精品久久久久久| 黑人猛操日本美女一级片| 12—13女人毛片做爰片一| 中文字幕另类日韩欧美亚洲嫩草| 国产单亲对白刺激| 国产精品免费视频内射| 老汉色av国产亚洲站长工具| 久99久视频精品免费| 久久精品亚洲精品国产色婷小说| av在线播放免费不卡| 久久久久九九精品影院| 脱女人内裤的视频| 99国产极品粉嫩在线观看| 日本a在线网址| www.熟女人妻精品国产| 国产亚洲av高清不卡| 免费高清视频大片| 99精品久久久久人妻精品| 50天的宝宝边吃奶边哭怎么回事| 成人影院久久| 美女国产高潮福利片在线看| 欧美日本亚洲视频在线播放| 欧美黑人欧美精品刺激| 波多野结衣一区麻豆| 男男h啪啪无遮挡| 日韩欧美国产一区二区入口| 久久久久久久午夜电影 | 欧美日韩亚洲高清精品| 大陆偷拍与自拍| 久久久国产一区二区| 在线观看www视频免费| 欧美日本中文国产一区发布| 欧美成人免费av一区二区三区| 热re99久久精品国产66热6| 国产一区二区三区在线臀色熟女 | 丁香欧美五月| a级毛片在线看网站| 日日夜夜操网爽| 亚洲国产精品sss在线观看 | 国产成人啪精品午夜网站| 一边摸一边抽搐一进一出视频| 国产主播在线观看一区二区| 亚洲精华国产精华精| 最新美女视频免费是黄的| 女人被躁到高潮嗷嗷叫费观| 精品久久久久久久毛片微露脸| 欧美黄色淫秽网站| a级毛片黄视频| 丰满的人妻完整版| 十八禁人妻一区二区| 怎么达到女性高潮| 国产精品影院久久| 免费人成视频x8x8入口观看| 久久人人爽av亚洲精品天堂| 韩国精品一区二区三区| 人成视频在线观看免费观看| 精品一区二区三区av网在线观看| 动漫黄色视频在线观看| www.999成人在线观看| 麻豆国产av国片精品| 99精品在免费线老司机午夜| 久久久久亚洲av毛片大全| 精品免费久久久久久久清纯| 男女高潮啪啪啪动态图| 精品国产超薄肉色丝袜足j| 日韩三级视频一区二区三区| 欧美日韩一级在线毛片| 热re99久久国产66热| 久久人人精品亚洲av| 日韩人妻精品一区2区三区| 50天的宝宝边吃奶边哭怎么回事| 久久久久亚洲av毛片大全| 欧美日韩中文字幕国产精品一区二区三区 | 一级毛片高清免费大全| 免费在线观看影片大全网站| 免费观看人在逋| 正在播放国产对白刺激| 18禁观看日本| 免费人成视频x8x8入口观看| 成人永久免费在线观看视频| 俄罗斯特黄特色一大片| 又黄又粗又硬又大视频| 性色av乱码一区二区三区2| 91九色精品人成在线观看| videosex国产| 韩国av一区二区三区四区| 久久精品人人爽人人爽视色| 亚洲午夜理论影院| 天天添夜夜摸| 国产免费男女视频| 高清黄色对白视频在线免费看| 日韩国内少妇激情av| 黄频高清免费视频| 亚洲午夜精品一区,二区,三区| 亚洲欧美一区二区三区黑人| 在线国产一区二区在线| 少妇被粗大的猛进出69影院| 亚洲一卡2卡3卡4卡5卡精品中文| 看黄色毛片网站| 搡老岳熟女国产| 亚洲五月婷婷丁香| 黑人操中国人逼视频| 国产av一区二区精品久久| 欧美精品一区二区免费开放| 中文字幕精品免费在线观看视频| 精品一品国产午夜福利视频| 18禁黄网站禁片午夜丰满| 久久香蕉精品热| 欧美日韩亚洲综合一区二区三区_| 精品久久久久久成人av| 三上悠亚av全集在线观看| 中文字幕另类日韩欧美亚洲嫩草| 高清在线国产一区| 日本免费一区二区三区高清不卡 | 亚洲精品国产精品久久久不卡| 久久草成人影院| 免费在线观看影片大全网站| 免费观看人在逋| 国产成人av激情在线播放| 国产一区在线观看成人免费| 国产欧美日韩一区二区精品| 岛国在线观看网站| 国产精品一区二区三区四区久久 | 在线观看www视频免费| 国产av精品麻豆| 成人18禁高潮啪啪吃奶动态图| 涩涩av久久男人的天堂| 香蕉国产在线看| 国产精品亚洲一级av第二区| 久久久久久久久久久久大奶| 热99国产精品久久久久久7| 日韩视频一区二区在线观看| 日韩大尺度精品在线看网址 | 欧美日本中文国产一区发布| 成人18禁在线播放| 精品人妻1区二区| 久9热在线精品视频| 色老头精品视频在线观看| 国产精品av久久久久免费| 高潮久久久久久久久久久不卡| 日韩欧美一区二区三区在线观看| 国产精品秋霞免费鲁丝片| 国产成人av教育| www日本在线高清视频| 成年人免费黄色播放视频| 高清在线国产一区| 国产亚洲精品第一综合不卡| 欧美日韩福利视频一区二区| 久久国产精品影院| 国产有黄有色有爽视频| 亚洲精品av麻豆狂野| 国产高清激情床上av| 很黄的视频免费| 99久久久亚洲精品蜜臀av| 久久99一区二区三区| 一本大道久久a久久精品| 亚洲av美国av| 夫妻午夜视频| 色在线成人网| 午夜精品久久久久久毛片777| 欧美精品啪啪一区二区三区| 成年人免费黄色播放视频| 美女扒开内裤让男人捅视频| 三上悠亚av全集在线观看| 一边摸一边抽搐一进一小说| 国产成+人综合+亚洲专区| 午夜影院日韩av| 国产欧美日韩一区二区三| 首页视频小说图片口味搜索| 妹子高潮喷水视频| 国产精品久久久久久人妻精品电影| 男男h啪啪无遮挡| 国产一卡二卡三卡精品| 女人被狂操c到高潮| 久久香蕉精品热| 交换朋友夫妻互换小说| 看黄色毛片网站| 免费在线观看完整版高清| 久久草成人影院| 自线自在国产av| 久久九九热精品免费| 日韩国内少妇激情av| 淫秽高清视频在线观看| xxx96com| 搡老岳熟女国产| 久久香蕉激情| 老司机在亚洲福利影院| 99国产综合亚洲精品| 亚洲在线自拍视频| 久久亚洲精品不卡| 99久久精品国产亚洲精品| 悠悠久久av| 超色免费av| 亚洲一区中文字幕在线| 日本免费a在线| 一区二区三区国产精品乱码| 十八禁网站免费在线| 制服人妻中文乱码| 久久狼人影院| 国产人伦9x9x在线观看| 久久香蕉国产精品| 亚洲va日本ⅴa欧美va伊人久久| 麻豆av在线久日| 老司机靠b影院| 老司机午夜十八禁免费视频| 国产又色又爽无遮挡免费看| 淫妇啪啪啪对白视频| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲国产欧美一区二区综合| 色哟哟哟哟哟哟| 99久久精品国产亚洲精品| avwww免费| 久久人人爽av亚洲精品天堂| 俄罗斯特黄特色一大片| 国产精品免费视频内射| 欧美日韩一级在线毛片| 久久国产精品男人的天堂亚洲| 制服人妻中文乱码| 免费高清在线观看日韩| 国产乱人伦免费视频| 欧美色视频一区免费| 男女午夜视频在线观看| 级片在线观看| 国产精品爽爽va在线观看网站 | 国产区一区二久久| 99久久人妻综合| 欧美日韩福利视频一区二区| 亚洲精品国产区一区二| 午夜免费激情av| 一区二区三区激情视频| 大香蕉久久成人网| 日本黄色视频三级网站网址| 久久久久九九精品影院| 老司机在亚洲福利影院| cao死你这个sao货| 亚洲欧美精品综合一区二区三区| 色精品久久人妻99蜜桃| 成年版毛片免费区| 18禁美女被吸乳视频| 午夜日韩欧美国产| 国产黄a三级三级三级人| 亚洲情色 制服丝袜| 欧美激情 高清一区二区三区| 搡老乐熟女国产| 亚洲视频免费观看视频| 中文字幕最新亚洲高清| 亚洲第一青青草原| 久久热在线av| 日韩欧美三级三区| 久久热在线av| 国产精品爽爽va在线观看网站 | 国产精品永久免费网站| 久久精品人人爽人人爽视色| 水蜜桃什么品种好| 女警被强在线播放| 久热这里只有精品99| 亚洲色图综合在线观看| 久久99一区二区三区| 黄色 视频免费看| 大码成人一级视频| 天堂√8在线中文| 欧美国产精品va在线观看不卡| 欧美成狂野欧美在线观看| 波多野结衣av一区二区av| 9色porny在线观看| 国产伦人伦偷精品视频| 久久婷婷成人综合色麻豆| 欧美一级毛片孕妇| 亚洲熟妇熟女久久| 激情在线观看视频在线高清| 国产精品美女特级片免费视频播放器 | 亚洲视频免费观看视频| 午夜91福利影院| 国产黄色免费在线视频| 国产三级在线视频| 精品第一国产精品| 国产伦人伦偷精品视频| 丝袜在线中文字幕| 亚洲avbb在线观看| 亚洲av日韩精品久久久久久密| 97人妻天天添夜夜摸| 日韩有码中文字幕| 99久久人妻综合| 狂野欧美激情性xxxx| 久久狼人影院| 国产高清国产精品国产三级| 在线永久观看黄色视频| 男女高潮啪啪啪动态图| 国产精品免费一区二区三区在线| 精品一区二区三区av网在线观看| 19禁男女啪啪无遮挡网站| 亚洲av片天天在线观看| 日本免费a在线| 欧美日韩av久久| 黄片大片在线免费观看| 女人被躁到高潮嗷嗷叫费观| 免费久久久久久久精品成人欧美视频| 色综合站精品国产| 亚洲精品成人av观看孕妇| 色婷婷av一区二区三区视频| 亚洲,欧美精品.| 高清欧美精品videossex| 国产av又大| 一a级毛片在线观看| 免费在线观看日本一区| 久久久久久久久久久久大奶| 亚洲精品在线观看二区| 国产精品一区二区免费欧美| 最近最新中文字幕大全免费视频| ponron亚洲| 在线播放国产精品三级| 久久人妻福利社区极品人妻图片| 9热在线视频观看99| 嫁个100分男人电影在线观看| 成人av一区二区三区在线看| 女警被强在线播放| 男女午夜视频在线观看| 水蜜桃什么品种好| 久久精品亚洲av国产电影网| 纯流量卡能插随身wifi吗| 国产麻豆69| 日本欧美视频一区| 成人影院久久| 少妇裸体淫交视频免费看高清 | 一边摸一边抽搐一进一小说| 午夜影院日韩av| 一级毛片女人18水好多| 色精品久久人妻99蜜桃| 无遮挡黄片免费观看| 精品国内亚洲2022精品成人| 久久精品91无色码中文字幕| 午夜免费成人在线视频| 91老司机精品| 久久久久久久久久久久大奶| 国产三级在线视频| 精品国内亚洲2022精品成人| 1024视频免费在线观看| 欧美av亚洲av综合av国产av| 日日爽夜夜爽网站| 久久精品成人免费网站| 亚洲国产精品999在线| 看片在线看免费视频| 黄片大片在线免费观看| 久久狼人影院| 亚洲欧美一区二区三区久久| 欧美色视频一区免费| 少妇被粗大的猛进出69影院| 国产免费男女视频| 黄色片一级片一级黄色片| 国产成年人精品一区二区 | 欧美日韩一级在线毛片| 1024香蕉在线观看|