• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    2-甲基呋喃分子激發(fā)態(tài)超快非絕熱動(dòng)力學(xué)

    2017-05-10 17:42:42龍金友劉志明邱學(xué)軍張冰
    物理化學(xué)學(xué)報(bào) 2017年3期
    關(guān)鍵詞:激發(fā)態(tài)里德呋喃

    龍金友 劉志明 邱學(xué)軍,2 張冰,*

    (1中國科學(xué)院武漢物理與數(shù)學(xué)研究所,波譜與原子分子物理國家重點(diǎn)實(shí)驗(yàn)室,武漢430071;2中南民族大學(xué)電子信息工程學(xué)院,武漢430074)

    2-甲基呋喃分子激發(fā)態(tài)超快非絕熱動(dòng)力學(xué)

    龍金友1劉志明1邱學(xué)軍1,2張冰1,*

    (1中國科學(xué)院武漢物理與數(shù)學(xué)研究所,波譜與原子分子物理國家重點(diǎn)實(shí)驗(yàn)室,武漢430071;2中南民族大學(xué)電子信息工程學(xué)院,武漢430074)

    利用飛秒時(shí)間分辨的光電子影像技術(shù)研究了2-甲基呋喃分子激發(fā)態(tài)超快非絕熱動(dòng)力學(xué)。2-甲基呋喃分子吸收兩個(gè)400 nm的光子后同時(shí)被激發(fā)到n=3的里德堡態(tài)S1[1A′′(π3s)]、1A′(π3px)、1A″(π3py)、1A″(π3pz)和價(jià)電子態(tài)1A′(ππ*),之后被兩個(gè)800 nm的光子電離。通過母體離子產(chǎn)率隨泵浦-探測延遲時(shí)間的變化曲線測得這些里德堡態(tài)與價(jià)電子態(tài)的平均壽命為50 fs。通過解析光電子能譜中n=3的里德堡態(tài)與價(jià)電子態(tài)所對(duì)應(yīng)的組分峰的相對(duì)演化特征,觀測到了這些激發(fā)態(tài)之間的內(nèi)轉(zhuǎn)換過程,并且揭示了價(jià)電子態(tài)1A′(ππ*)在內(nèi)轉(zhuǎn)換過程中扮演的重要“紐帶”作用。里德堡態(tài)與價(jià)電子態(tài)之間的混合,形成勢能面間的錐形交叉,導(dǎo)致了如此超快的內(nèi)轉(zhuǎn)換過程。

    超快;光電子影像;非絕熱動(dòng)力學(xué);2-甲基呋喃

    1 In troduc tion

    Nonadiabatic interactions thatoccurbetween adiabatic potential energy surfaces(PESs)of differentelectronic statesare notonly ubiquitous,but also essential inmany photochemical and pho-tobiologicalprocesses such as photosynthesis,photoisomerization in vision and the photostability of deoxyribonucleic acid(DNA)1. The PEScrossing between valenceand Rydberg states is one of these most fundamental nonadiabatic interactions.From the physical viewpoint,such a strong nonadiabatic coupling represents an interesting exampleof a situation inwhich the Born-Oppenheimer approximation is no more valid for the description of coupling between electronic and nuclearmotions.

    In amolecule,larger principal quantum number(n)and orbital angularmomentum(l)reduce the probability of penetrating a Rydberg electron into themolecular ion core,resulting in a longer lifetime of the Rydberg state.The lifetimes of low(n=3-5) Rydberg statesof aromaticmoleculesare roughly recognized to be slower(i.e.,by 1-2 orders ofmagnitude)than those of the valence electronic excitations in the same energy domain2.The fact thatmolecular valence and Rydberg states aremuchmore likely tomix in the vacuum-ultraviolet(VUV)than they are in the ultraviolet immediately implies that the lifetimesof low-lying 3s and 3p Rydberg statesare remarkably shortened asa resultof a larger probability of coup ling of a Rydberg electron w ith valence electrons3,4.The complicated spectral features and extremely short lifetimes of thesem ixed valence and Rydberg states pose great challenges in the direct real time observation and characterization of such nonadiabatic couplings between low-lying Rydberg and valence states in polyatomicmolecules.

    Fem tosecond time-resolved photoelectron imaging(TR-PEI) isuseful in probing thesenonadiabatic interactionson real time in polyatom ic molecules.TR-PEI could measure both the kinetic energy and angular distribution of the photoelectrons simultaneously aswell as their correlation asa function of timeand have been successfully applied in recentyears to a variety ofmolecular systems5,suggestiveof an ideal fingerprintsensor for investigating ultrafastnonadiabatic interactions involving changes in electronic characterswith nuclearmotions in complexmolecules.

    2-Methyl furan,has served asexcellentprototype system for studying nonadiabatic dynamics involving thenatureof Rydbergvalence interactions.Compared with thewell-documented furan molecule6-9,the prom inent differences are that the substitution effectof an H by amethylgroup on the neighboring position of oxygen in the furan ring leads to notonly a small redshiftof the first VUV absorption spectrum but also the presence of several extra Rydberg transitions that are forbidden in furan.The first broad and diffuse VUV absorption band of 2-methyl furan in the energy range5.00-9.91 eV arises from themixing of electronic transitions from the ground state S0to the Rydberg S1[1A′′(π3s)],1A′(π3px),1A′′(π3py)and1A′′(π3pz)statesand valence1A′(ππ*)state. These Rydberg transitions that appear together with valence transitionsparticularly complicate the vibronic structures in the firstVUV absorption spectrum of 2-methyl furan,suggesting that muchmore complex nonadiabatic interactionsmightexist in 2-methy l furan.A lthough extensive experimental10-20and theoretical12,14,20-22studies have been performed on assignments and characterizations of the firstVUV absorption spectrum of 2-methyl furan,ultrafastobservables have not yet been explored experimentally.

    In the presentwork,we investigate thenonadiabatic dynamics of 2-methyl furan asan exampleof a system with strong Rydbergvalence interactionsby fem tosecond time-resolved photoelectron imaging and femtosecond time-resolvedmass spectroscopy.The Rydberg and valence statesof 2-methy l furan in the red edge of its firstVUV band areoptically excited by two-photon absorption at400 nm,their dynamicalevolution is then interrogated by twophoton ionization at 800 nm.The electronic relaxation processes havebeen directly observed in real-timeby the time-dependences of the photoelectron spectra.And thecoupled Rydbergand valence componentsarealso successfully extracted and discussed.

    2 Experim en talm ethods

    Theexperimentalsetup employed in the presentwork hasbeen described elsew here23.The liquid samp le of 2-methyl furan (A laddin,98%),seeded in helium buffer gas at a background pressure of 2×1.01325×105Pa,is expanded through a pulsed valve to generatea pulsedmolecular beam.Thebeam isskimmed and introduced into the ionization chamberwhere it is intersected perpendicularly w ith the linear polarized pump and probe laser beams.The generated photoelectrons were extracted and accelerated by the electrostatic immersion lensand then projected onto a two-dimensional(2D)detector.Each image is accumulated over 40000 laser shots.Three-dimensional(3D)distribution reconstructions are performed by the basis-set expansion(BASEX) forward convolutionmethod24.The details of our femtosencond laser system have been described elsewhere25.Briefly,the femtosecond laser seed pulse is generated by a self-mode-lock Ti: sapphire oscillator pumped by a CW second harmonic of an Nd: YVO4laser,and then amplified by an Nd:YLF pumped regenerative amplifier to generatea1 kHz pulse train centered at~800 nm of 45 fspulsewidthw ithmaximum energy of~1m J·pulse-1. The second harmonic pulsewasgenerated in a 0.5mm thick BBO (BaB2O4)crystal and the centralwavelengthwasspectroscopically measured tobe400nm with abandwidth of~6 nm.Inourpumpprobeexperiments,the pump pulse(400 nm)energy isattenuated to be less than 1μJ·pulse-1and theoptimalprobe pulse(800 nm) energy is controlled to be around 30μJ·pulse-1.The pump and probebeams are recombined collinearly ata dichroicmirror prior to being softly focused on themolecular beam with a spherical plano-convex lens(focal length(f)=250mm).

    3 Resu lts and discussion

    As shown in Fig.1(a),a typical time of flight(TOF)mass spectrum of 2-methyl furanwas recordedw ith the two-photon 400 nm pump and two-photon 800 nm probe at zero delay time.2-methyl furan parent ion peak of C5H6O+is clearly observed,and aminor fragment ion peak of C4H3O+becomes visible.Normally, the time-resolved photoelectron imaging experimentsare required to be conducted w ith background signals low enough to ensure minimum ionization from either beam operating independently.Wherenoted,asmentioned above,soft focus isadopted in order to avoid space charge effectand strong field effects.Consequently, nearly no background signals are generated from either beam independently.The area ratio of C5H6O+to C4H3O+is241:1 and hence the contribution to the total photoelectron signal from the fragment ion of C4H3O+could be safely neglected.

    Fig.1(a)Typical Time of flight(TOF)m ass spectrum of 2-methyl fu ran recorded w ith the two-photon excitation at 400 nm and two-photon ionization at 800 nm at the zero delay tim e;(b)tim e-resolved total ion signalsof C5H6O+as a function of delay tim ebetween the pum p pulse and thep robe pulseThe circles represent theexperimentalresults,and thesolid lineshows the fitting result.

    In our fem tosecond pum p-probe scheme,all electronic transitions from the ground electronic state of 2-methyl furan are optically one-photon or two-photon dipole allowed as a result of the reduction of themolecular symetry from C2vin the case of furan6,7to Csin 2-methyl furan.The origins of the singlet S1[1A″(π3s)]and1A′(ππ*)states have been documented to be at 5.47 and 5.95 eV,respectively19.The low-lyingπ-3p Rydberg seriesof1A′(π3px),1A″(π3py)and1A″(π3pz)havebeen recognised at5.73,6.02,6.06 eV,respectively19.As indicated by the notation, the1A′(ππ*)state isπ-π*valence-typeexcitation,whereas the S1stateandπ-3p Rydberg seriesareof Rydberg-type characters.For the two-photon excitation schemeused in thepresentwork,the2-methyl furanmolecule issimultaneously pumped into the S1[1A″(π3s)],1A′(ππ*)statesand the low-lyingπ-3p Rydberg series from itsground state S0(1A′)by two-photon absorption at400 nm when taking the broad excitation bandwidth(~6 nm)into account.The virtual states involved in the two-photon transition could be A′or A″states according to the symmetry of the prepared electronic state.As an exam ple,the possible two-photon transitionmatrix elements for the S1[1A″(π3s)]state could be orw ith the definition of yz in the planeof the 2-methyl furanmolecule if a A′state actsasa virtual state.In this case,the two-photon transition is induced by two-consecutive dipole transitions w ith crossed x and z directions or y and z directions.In addition,it isnoteworthy that there is no absorbance in the visible region near 400 nm.Thus the one-photon 400 nm excitation process doesnotoccur.

    The photoion yieldsare recorded asa function of the delay time between the pump and probe pulses,and these provide ameasure of the lifetime of theexcited states.The time-dependent ion signal of C5H6O+is represented in Fig.1(b).The signal rapidly decays within the first200 fs.The decay profile is found to bewell reproduced only by a single exponential function convoluted w ith aGaussian thatdescribes the instrument response function.In this case,a lifetime of 50 fs is obtained and the fitting error is reasonably w ithin±2 fs.The unsatisfactory fittingsw ith two or even moreexponential functions to discern the lifetimesof the prepared excited states are likely due to the extremely short lifetimes of the prepared excited states which are largely restricted by our instrument response function of 160 fs.Thus the lifetime of 50 fsobtained in our experiment is the average lifetime of the S1[1A″(π3s)],1A′(ππ*)statesand the low-lyingπ-3p Rydberg series.

    Fig.2(a)shows typical photoelectron images measured at variousdelay timewith the two-photon 400 nm pump and twophoton 800 nm probe.Each image corresponds to a slice through the 3D photoelectron scattering distributions observed at the quoted time delay.The linear polarizationsof the pump and probe lasersareboth vertical in the planeof the figure.Therings(bands) with different radii in the image stand for photoelectronswith differentkineticenergy components.In Fig.2(b),we show the timedependent photoelectron kinetic energy(PKE)distributions (PKEDs)extracted from thecorresponding imagesshown in Fig.2 (a).The photoelectron spectrahave each been normalized to the totalphotoelectron counts.Each PKED is characterized by several identifiable peakswhich are congested in the continuousenergy region of 0.05-1.00 eV.Four featured peaks w ith the central energies of 0.13,0.49,0.68 and 0.88 eV are identified in the PKEDs.Theadiabatic ionization potential(AIP)of 2-methyl furan is8.38 eV19,therefore two photonsof800 nm[(AIP-2×E400)/E800= ((8.38-2×3.1)/1.55)-2]are required to ionize the excited states.Consequently,the available energy[=hνpump+hνprobe-AIP] in thecontinuum state canbedetermined to be0.92eV for the twophoton 800 nm ionization to the zero vibrational level of the cationic ground state,and this isalso indicated by the arrow as D0in Fig.2(a).

    According to the previous spectroscopic studies10-22,the four featured peakswith the central energies of 0.13,0.49,0.68 and 0.88 eV are respectively assigned to be ionized from theS1[1A″(π3s)],1A′(π3px),1A″(π3py)and1A″(π3pz)Rydberg states. More interestingly,ionization from the1A′(ππ*)state isalso expected to yield a photoelectron bandwith theenergy around 0.67 eV,which overlapswith the above featured peaks.Asan added support for our assignments,the energies and quantum defectsof Rydberg states can be obtained by26

    Fig.2(a)Tim e-resolved photoelectron im agesm easu red as a function of thepum p-p robe delay timeThe linearpolarizationsof thepump and probe lasersarealigned verticalin the planeof the figure(b).Time-resolved photoelectron kinetic energy distributions extracted from the corresponding images shown in Fig.2(a)asa function of the pum p-probe delay time.Asguided by the vertical dashed dot lines,four featured peakswith the centralenergiesof 0.13,0.49,0.68 and 0.88 eV are respectively assigned to be ionized from the S1[1A″(π3s)],1A′(π3px),1A″(π3py)and1A″(π3pz) Rydberg states,which are respectively labeledby 3s,3px,3pyand 3pzfor sim plicity.Additionally,ionization from the1A′(ππ*)state is also identified to yield aphotoelectron bandw ith theenergy around 0.67eV,which overlapsw ith theabove featured peaks.Theavailableenergy for the two-photon 800 nm ionization is indicated by thearrow as D0.

    where T(Rydberg)and hνpris theenergy of the Rydberg statesand the probe photon,respectively,IP is the ionization potential,n is the principalquantum number,δis thequantum defect,and R is the Rydberg constant,13.606 eV.Hence,the quantum defect values for the delay timesof 0 fsare respectively calculated to be 0.86,0.72,0.63 and 0.52 for the four featured peaks w ith the central energies of 0.13,0.49,0.68 and 0.88 eV with the assumption of principal quantum numbers n=3.The quantum defect isa constant thatdependson the symmetry and typesof the Rydberg orbital.Formolecules composed of second-row atoms, typicalδvaluesare0.9-1.2 for s orbital,while theδvalues of p orbitalare about0.3-0.5,andδvalues of d orbital are about027. Giuliani etal.19obtained the quantum defectvaluesof 0.84,0.73, 0.60 and 0.58 for the S1[1A″(π3s)],1A′(π3px),1A″(π3py)and1A″(π3pz)Rydberg states,respectively,and found that thequantum defectvalues for 3p Rydberg orbitals seemed to be a little bithigh and explained this could be due to the Rydberg-valence interaction.This interaction could bemore important in thismolecule than in furan since the 3p state isnow much closer in energy w ith the valence1A′(ππ*).Therefore,quantum defect values further suggest that the assignments of the four featured peaks seem consistentwith the previouswork.19

    Inspection of the PKEDs of 2-methyl furan in Fig.2(b),the intensities of the PKEDs rapidly decreasew ith increasing delay time,which is coincidentwith the short lifetimeof 50 fs for the parent ions.Upon amore detailed inspection of the time-dependent behavior between 0 and 39 fs,the intensitiesof the featured peaksin each PKEDmonotonously decay ina similarmanner.The energy positions of these featured peaks do not change with the delay time,however,the relative changes in the peak intensities among these featured peaks are not apparent.By analogy to the case of furan,similar decay channels could be correlated to these featured states in 2-methyl furan.As discussed above,the S1[1A″(π3s)],1A′(ππ*)statesand the low-lyingπ-3p Rydberg series of1A′(π3px),1A″(π3py)and1A″(π3pz)statescould besimultaneously excited from itsground state S0(1A′)by two-photon absorption at 400 nm.Hence,internal conversionsamong these featured states are likely to occur.

    For a further analysis of the PKEDs associated with the correlated relaxation dynamicsof the S1[1A″(π3s)],1A′(ππ*)states and the low-lyingπ-3p Rydberg series,we expect to extract the spectral components that independently arise from the ionization of the corresponding S1[1A″(π3s)],1A′(ππ*)statesand the low-lyingπ-3p Rydberg series.Generally the Levenberg-M arquardtmethod28is mostly used to perform non-linear least squares fitting of the PKEDs.Themeasured PKED ateach delay time is fitted by the sum of five Voigt functions and a polynomial.The Voigt function profile(i.e.,a convolution of Gaussian and Lorentzian functions) is p referentially selected to rep roduce the S1[1A″(π3s)],1A′(ππ*),1A′(π3px),1A″(π3py)and1A″(π3pz)component spectraby assum ing the component peak centers to be fixed at0.13,0.67, 0.49,0.68 and 0.88 eV,corresponding to the ionization channels from the S1[1A″(π3s)],1A′(ππ*),1A′(π3px),1A″(π3py)and1A″(π3pz) states.Inaddition,a polynomial isunavoidably added tomatch the residual background.As an exam ple,Fig.3 shows the fitting of PKED at the delay timeof 0 fs,and the fitting residue isalso given in the bottom panel of Fig.3.The open circles represent the experimental PKED,and the blue solid line shows the sum of the fitting components which nearly reproduce the experimental PKED.Thus the time-dependentintensitiesof the five components are easily obtained by integrating theareaof each componentat differentdelay time and are show n in Fig.4.Note that the timedependent intensities of the 3s,3pyand 3pzcomponents are respectivelymultiplied by a factor of 3,5 and 2.5 tomake them more visibly comparable with those of the1A′(ππ*)and 3pxcomponents in the same p lotting.

    Fig.3(a)Non-linear least squares fitting of the photoelectron kinetic energy distribution at the delay tim eof0 fs by the Levenberg-Marquardtmethod28;(b)the residue for the fitting in(a)The PKED is fitted by asum of five Voigt functionsand apolynom ial.The five Voigt functions reproduce the 3s,3px,3py,3pzand1A′(ππ*)com ponent spectra by assum ing the 3s,3px,3py,3pzand1A′(ππ*)componentpeak centers to be respectively fixed at0.13,0.49,0.68,0.88 and 0.67 eV,corresponding to the ionization from the 3s,3px,3py,3pzand1A′(ππ*)states.Thepolynomialis unavoidably added tomatch the residualbackground.See text fordetails.

    As seen in Fig.3 and Fig.4,the five components appear simultaneously at the delay time of 0 fs,and the1A′(ππ*)and 3pxcomponents carrymuchmore intensities than those of the other three components,suggesting that theoptical transition strengths for the1A′(ππ*)and1A′(π3px)states are much larger than those for the S1[1A″(π3s)],1A″(π3py)and1A″(π3pz)states. The intensity profiles for the five components indicate that the S1[1A″(π3s)],1A′(ππ*),1A′(π3px),1A″(π3py)and1A″(π3pz)states decay rapidlywithin 50 fsupon theirexcitations,in fairagreement with the lifetimeof 50 fsmeasured for the parent ions.However, each of the intensity profiles could notbewell reproduced by only a single exponential decay function.The 3s component seems to decay with two different rates,i.e.,a slower rate before10 fsand a faster rateafter10 fs.This implies thatpopulation transfers from other initially excited states to the S1[1A″(π3s)]statemightoccur w ithin the first 10 fs.A sim ilar situation accounts for the 3pxcomponent,decaying with a faster ratebefore25 fsand a slower rate after 25 fs.In the case of 3pyand 3pzcomponents,it is interesting that the intensity profilesseem to behave inversely.The population transfer betw een the1A″(π3py)and1A″(π3pz)states is likely to occur due to theiroverlap in energy.More interestingly, the intensity profile for the1A′(ππ*)component exhibitsmore complex decay features.The1A′(ππ*)component carries themost intensity than thoseof theother components,and exhibitsmultiple decay rates.Thuswe speculate that the1A′(ππ*)statem ightplaya key role during the deactivation dynamicsand actas thebridge to connectwith the neighboring excited statesalthough it could not be clearly visualized as a sharp peak in the PKED.In addition, the1A′(ππ*)componentexhibitsa broad distribution,in support of the nature of a valence state.In consideration of the complex decay dynam icsamong the five components and the insufficient data points,we could not furtherextract the decay time constants for the five components by fitting each of the intensity profiles w ithmultiple exponential decay and rise functions.Thus,note that discussionsof decay time constants in Fig.4 arequalitative rather than quantitative.

    Fig.4 Photoelectron com ponent peak intensitiesasa function of the pump-probe delay tim eThe tim e-dependent intensitiesof the 3s,3pyand 3pzcomponentsare respectively multiplied by a factor of3,5 and 2.5 tomake them more comparablewith thoseof the1A′(ππ*)and 3pxcomponents in thesameplotting.

    Quantum chemical calculationsof theexcited states in2-methyl furan,especially concerningw ith the conical intersectionsamong the excited states,or dynam ics simulations of the excited states, havenotbeen performed yet.By analogy to the case of furan7-9, similar internal conversionsamong the S1[1A″(π3s)],1A′(ππ*)states and the low-lyingπ-3p Rydberg series of1A′(π3px),1A″(π3py) and1A″(π3pz)statesare likely to dominate in 2-methyl furan.Upon the two-photon excitation at 400 nm,2-methyl furan molecules are simultaneously pumped from its ground state S0(1A′)to the S1[1A″(π3s)],1A′(ππ*)statesand the low-lyingπ-3p Rydberg series of1A′(π3px),1A″(π3py)and1A″(π3pz)states.The vibrational energies deposited for the S1[1A″(π3s)],1A′(ππ*),1A′(π3px),1A″(π3py) and1A″(π3pz)states are 0.73,0.25,0.47,0.18 and 0.14 eV,respectively.The fact that the valence state(1A′(ππ*))and the Rydberg states(S1[1A″(π3s)],1A′(π3px),1A″(π3py)and1A″(π3pz))are very close in energy and overlapwith each other issupportiveof the speculation for the high com plexity of the potential energy surfaces.Therefore,numerouspotentialenergy surface crossings, i.e.,conical intersections,probably exist among these excited states.Furthermore,theultrashortdecay time(less than 50 fs)for these excited states im plies that conical intersections aremore likely to locate in the Franck-Condon region and actas the driving force to accomplish such ultrafast deactivations of these excted states.Asdiscussed above,the1A′(ππ*)statemightplay a key role during the deactivation dynamics and intersect with the neighboring excited states.Thus,as shown in Fig.5,the deactivationsof the five excited statesmight initially continue on their own potentialenergy surface,and then rapidly internally converts to the neighboring excited states through conical intersections,and finally return to thehotground state.

    A comparison w ith the nonadiabatic dynam ics of furan7-9and 2-methyl furan showsmany similarities.In both molecules,internalconversion takes place on an ultrafast timescale as themain deactivationmechanism.Theappearance of conical intersections among the potential energy surfaces effectuates such ultrafast internal conversion processes.On the other hand,due to the strong coupling of the Rydberg stateswith valence states,the lifetimes of n=3Rydberg statesare considerably shortened to be on the order of tens of femtoseconds.Of particular interest is the differencew ith regard to the nonadiabatic interactions in furan and 2-methyl furan.In the case of 2-methyl furan,the coup lings of the n=3 Rydberg states with the1A′(ππ*)valence state are much stronger than thatof the S1[1A2(π3s)]Rydberg state with the S2[1B2(ππ*)]valence state in the furan case.The n=3Rydberg transitions thatappear togetherwith valence transition in 2-methyl furan particularly complicate and dom inate the nonradiative relaxation pathways from the Franck-Condon region along the multidimensional reaction coordinateback to theground state.It isnoted thatno intersystem crossing processwith tripletstatesare observed in the currentmeasurements.Inmostcases,the triplet states also play significant contributions to photochem istry processes29,especiallywhen theenergy levelof the involved singlet and triplet states are very close30,31.However,the triplet states differ in energy as the prepared singlet state in 2-methyl furan. Moreover,there are nomolecular featureswhichwould drive an ultrafast intersystem crossing in theobserved timewindow,neither by an El Sayedmechanism asw ellasby a heavy-atom effect.

    Fig.5 Schematic energy diagram of the ground,excited and ion ic states of 2-methyl fu ranThe valence state1A′(ππ*)and Rydberg seriesof S1[1A″(π3s)],1A′(π3px),1A″(π3py) and1A″(π3pz)statesaresimultaneously excitedby two-photonsof400 nm, as indicated by thebluew indowed area.Thesestatesare then projected to the ground ionic state by two-photons of 800 nm,resulting in the1A′(ππ*),3s, 3px,3pyand 3pzcomponentbands,respectively.Internal conversions(ICs)are likely todominateas themain deactivationmechanism for thesestates. Themagenta fence-likeband across thesestates is roughly indicativeof thepossibility of couplingsof potentialenergy surfacesamong these states,i.e.,conical intersections(CIs).

    4 Conc lusions

    We have used femtosecond time-resolved photoelectron imaging coupled w ith time-resolved mass spectroscopy to observe the nonadiabatic dynam ics in electronically excited 2-methyl furan.The n=3 Rydberg states(i.e.,S1[1A″(π3s)],1A′(π3px),1A″(π3py)and1A″(π3pz))and thevalence state(1A′(ππ*)) are simultaneously excited from theground state and the average lifetimeof these states ismeasured to beon the time scaleof 50 fs.Ultrafast internal conversionsamong these statesare observed and dom inated as thenonradiative relaxationmechanism.

    (2)Jortner,J.;Bixon,M.J.Chem.Phys.1995,102,5636. doi:10.1063/1.469295

    (3)Softley,T.P.;Hudson,A.J.;Watson,R.J.Chem.Phys.1997, 106,1041.doi:10.1063/1.474095

    (4)Song,J.K.;Tsubouchi,M.;Suzuki,T.J.Chem.Phys.2001, 115,8810.doi:10.1063/1.1410974

    (5)Suzuki,T.Annu.Rev.Phys.Chem.2006,57,555.doi:10.1146/ annurev.physchem.57.032905.104601

    (6)Palmer,M.H.;Walker,I.C.;Ballard,C.C.;Guest,M.F.Chem. Phys.1995,192,111,and references therein.doi:10.1016/0301-0104(94)00386-O

    (7)Spesyvtsev,R.;Horio,T.;Suzuki,Y.;Suzuki,T.J.Chem.Phys. 2015,143,014302,and references therein.doi:10.1063/ 1.4922904

    (8)Fuji,T.;Suzuki,Y.;Horio,T.;Suzuki,T.;M itric,R.;Werner,U.; Bonacic-Koutecky,V.J.Chem.Phys.2010,133,234303. doi:10.1063/1.4922904

    (9)Liu,Y.;Knopp,G.;Qin,C.;Gerber,T.Chem.Phys.2015,446, 142.doi:10.1016/j.chemphys.2014.11.016

    (10)Fringuelli,F.;M arino,G.;Taticchi,A.;Distefano,G.;Colonna, F.P.;Pignatarro,S.J.Chem.Soc.Perkin Trans.1976,22,276. doi:10.1039/P29760000276

    (11)Kobayashi,T.;Kubota,T.;Ezum i,K.;Utsunom iya,C.Bull. Chem.Soc.Jpn.1982,55,3915.doi:10.1246/bcsj.55.3915

    (12)Zykov,B.G.;Erchak,N.P.;Khvostenko,V.I.;Matorykina,V. F.;Asfandiarov,N.L.J.Organomet.Chem.1983,253,301. doi:10.1016/S0022-328X(00)99225-8

    (13)Modelli,A.J.Electron.Spectrosc.Relat.Phenom.1983,31,63. doi:10.1016/0368-2048(83)85014-2

    (14)Veszpremi,T.;Nyulaszi,L.;Nagy,J.J.Organomet.Chem. 1987,331,175.doi:10.1016/0022-328X(87)80019-0

    (15)Nyulaszi,L.;Reffy,J.;Veszpremi,T.;Kovac,B.;Cvitas,T.; K lasinc,L.;M cGlynn,S.P.Int.J.Quantum Chem.Symp.1991, 25,479.doi:10.1002/qua.560400844

    (16)Nyulaszi,L.J.Mol.Struct.1992,273,133.doi:10.1016/0022-2860(92)87080-F

    (17)Modelli,A.Trends Chem.Phys.1997,6,57.

    (18)Giuliani,A.;Hubin-Franskin,M.J.Chem.Phys.Lett.2001, 348,34.doi:10.1016/S0009-2614(01)01082-X

    (19)Giuliani,A.;Delw iche,J.;Hoffmann,S.V.;Limao-Vieira,P.; Mason,N.J.;Hubin-Franskin,M.J.J.Chem.Phys.2003,119, 3670.doi:10.1063/1.1590960

    (20)Philis,J.G.;Melissas,V.S.Chem.Phys.2007,336,136. doi:10.1016/j.chemphys.2007.05.030

    (21)Buss,S.;Jug,K.J.Am.Chem.Soc.1987,109,1044. doi:10.1021/ja00238a010

    (22)Su,M.J.Phys.Chem.A 2008,112,194.doi:10.1021/jp710522n

    (23)Ghazal,A.Y.;Qiu,X.J.;Qin,C.C.;Long,J.Y.;Abulimiti,B.; Zhang,B.Acta Phys.-Chim.Sin.2012,28,2543.[Ghazal, Ahmed-Yousif,邱學(xué)軍,秦朝朝,龍金友,布瑪麗亞·阿布力米提,張冰.物理化學(xué)學(xué)報(bào),2012,28,2543.]doi:10.3866/PKU. WHXB201208135

    (24)Dribinski,V.;Ossadtchi,A.;M andelshtam,V.A.;Reisler,H. Rev.Sci.Instrum.2002,73,2634.doi:10.1063/1.1482156

    (25)Liu,Y.Z.;Qin,C.C.;Zhang,S.;Wang,Y.M.;Zhang,B.Acta Phys.-Chim.Sin.2011,27,965.[劉玉柱,秦朝朝,張嵩,王艷梅,張冰.物理化學(xué)學(xué)報(bào),2011,27,965.]doi:10.3866/PKU. WHXB20110404

    (26)Suzuki,T.;Wang,L.;Tsubouchi,M.J.Phys.Chem.A 2004, 108,5764.doi:10.1021/jp0486043

    (27)Gosselin,J.L.;Weber,P.M.J.Phys.Chem.A 2005,109,4899. doi:10.1021/jp0503866

    (28)Wojdyr,M.J.Appl.Cryst.2010,43,1126.doi:0.1107/ S0021889810030499

    (29)Han,K.L.;He,G.Z.J.Photochem.Photobio l.C 2007,8,55. doi:10.1016/j.jphotochemrev.2007.03.002

    (30)Liu,Y.;Knopp,G.;Xiao,S.;Gerber,T.Chin.Phys.Lett.2014, 31,127802.doi:10.1088/0256-307X/31/12/127802

    (31)Liu,Y.;Gerber,T.;Qin,C.;Jin,F.;Knopp,G.J.Chem.Phys. 2016,144,084201.doi:10.1063/1.4942124

    Ultrafast Nonadiabatic Dynamics of Electronically Excited 2-Methyl Furan

    LONG Jin-You1LIU Zhi-Ming1QIU Xue-Jun1,2ZHANG Bing1,*
    (1State Key Laboratory ofMagnetic Resonance and Atomic and Molecular Physics,Wuhan Institute ofPhysicsand Mathematics, Chinese Academy ofSciences,Wuhan 430071,P.R.China;2College ofElectronicsand Information, South-CentralUniversity forNationalities,Wuhan 430074,P.R.China)

    Excited-state dynam ics of 2-methyl furan has been studied by fem tosecond time-reso lved pho toelectron im aging.The m olecu le 2-m ethyl furan w as simu ltaneously excited to the n=3 Rydberg series of S1[1A″(π3s)],1A′(π3px),1A″(π3py)and1A″(π3pz)and the valence state of1A′(ππ*)by two 400 nm photons and subsequently probed by two 800 nm photons.The average lifetime of the Rydberg series and the valence state wasmeasured to be on the time sca le of 50 fs by the time-dependent ion yie ld of the parent ion.Ultrafast internal conversions among these excited stateswere observed and extracted from the time-dependences of the photoelectron kinetic energy components of these excited states in the photoelectron kinetic energy spectra. Furthermore,it is identified that the1A′(ππ*)statem ight play an important role in internal conversions among these excited states.The Rydberg-valencem ixings,which result in numerous conical intersections,actas the driving force to accom p lish such ultrafast internal conve rsions.

    U ltra fast;Photoelectron im aging;Nonadiaba tic dynam ics;2-Me thy l furan

    O644

    tolow,A.Annu.Rev.Phys.Chem.2003,54,89.

    10.1146/ annurev.physchem.54.011002.103809

    doi:10.3866/PKU.WHXB201612061

    www.whxb.pku.edu.cn

    Received:September14,2016;Revised:December6,2016;Published online:December6,2016.

    *Corresponding author.Email:bzhang@w ipm.ac.cn;Tel:+86-27-87197441.

    The projectwas supported by the National Natural Science Foundation of China(21273274,21303255,11404411).

    國家自然科學(xué)基金(21273274,21303255,11404411)資助項(xiàng)目?Editorialofficeof Acta Physico-Chim ica Sinica

    猜你喜歡
    激發(fā)態(tài)里德呋喃
    激發(fā)態(tài)和瞬態(tài)中間體的光譜探測與調(diào)控
    “港樂”第三只“指環(huán)”《齊格弗里德》再攀高峰
    歌劇(2017年3期)2017-05-17 04:06:13
    收藏球鞋的當(dāng)鋪
    1-O-[3-(2-呋喃基)丙烯?;鵠-β-D-吡喃果糖的合成及應(yīng)用
    煙草科技(2015年8期)2015-12-20 08:27:14
    莧菜紅分子基態(tài)和激發(fā)態(tài)結(jié)構(gòu)與光譜性質(zhì)的量子化學(xué)研究
    單鏡面附近激發(fā)態(tài)極化原子的自發(fā)輻射
    UF6振動(dòng)激發(fā)態(tài)分子的振動(dòng)-振動(dòng)馳豫
    一個(gè)含呋喃環(huán)順磁性碳硼烷衍生物的合成及其生成機(jī)理
    呋喃酮和醬油酮的填充柱超臨界流體色譜對(duì)映體拆分
    呋喃類違禁獸藥與人血清白蛋白作用機(jī)制的分子模擬
    国产熟女午夜一区二区三区| 99久国产av精品国产电影| av在线观看视频网站免费| 伦精品一区二区三区| 天天影视国产精品| 亚洲国产色片| 久久综合国产亚洲精品| 国产一区二区在线观看av| 亚洲欧美精品自产自拍| 免费在线观看完整版高清| 久久精品国产鲁丝片午夜精品| 久久久久网色| 人妻人人澡人人爽人人| 熟女少妇亚洲综合色aaa.| 少妇人妻 视频| 亚洲一码二码三码区别大吗| 男女边摸边吃奶| 高清黄色对白视频在线免费看| 巨乳人妻的诱惑在线观看| av卡一久久| 日韩大片免费观看网站| 久久久久国产网址| 国产成人欧美| 97在线视频观看| 日韩av免费高清视频| 日韩一本色道免费dvd| 男女免费视频国产| 午夜福利乱码中文字幕| 9热在线视频观看99| 亚洲欧美清纯卡通| 日本猛色少妇xxxxx猛交久久| 在线观看免费日韩欧美大片| 女人久久www免费人成看片| 国产xxxxx性猛交| 国产一级毛片在线| 国语对白做爰xxxⅹ性视频网站| av卡一久久| 国产高清国产精品国产三级| 日韩大片免费观看网站| 日韩av在线免费看完整版不卡| 亚洲精品美女久久av网站| 久热这里只有精品99| 日韩制服丝袜自拍偷拍| 777久久人妻少妇嫩草av网站| 一区二区三区乱码不卡18| 亚洲,一卡二卡三卡| 2018国产大陆天天弄谢| 日本wwww免费看| 精品人妻偷拍中文字幕| 国产av码专区亚洲av| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国语对白做爰xxxⅹ性视频网站| 国产老妇伦熟女老妇高清| 亚洲精品日本国产第一区| 亚洲,一卡二卡三卡| 国产男人的电影天堂91| 久久精品国产自在天天线| 国产成人精品久久二区二区91 | 欧美日韩精品网址| 咕卡用的链子| av在线播放精品| 精品少妇久久久久久888优播| 欧美另类一区| 日韩av免费高清视频| 大码成人一级视频| 国产国语露脸激情在线看| 一区在线观看完整版| 亚洲国产av影院在线观看| 免费观看a级毛片全部| 只有这里有精品99| 国产在线免费精品| 欧美变态另类bdsm刘玥| 日韩制服丝袜自拍偷拍| 久久久久久久亚洲中文字幕| av在线app专区| 国产成人欧美| 亚洲美女搞黄在线观看| 老熟女久久久| 国产成人精品一,二区| 亚洲精品久久成人aⅴ小说| 十八禁高潮呻吟视频| 飞空精品影院首页| 黄色视频在线播放观看不卡| 亚洲成人手机| 黑人欧美特级aaaaaa片| 大码成人一级视频| 久久久精品国产亚洲av高清涩受| 成人手机av| 亚洲成色77777| 伦精品一区二区三区| 国产免费又黄又爽又色| 免费日韩欧美在线观看| 人人澡人人妻人| 国产激情久久老熟女| www.精华液| 一本—道久久a久久精品蜜桃钙片| 亚洲av中文av极速乱| 日本免费在线观看一区| 国产在线免费精品| 国产av一区二区精品久久| 久久婷婷青草| 午夜福利一区二区在线看| 老女人水多毛片| 成年av动漫网址| 韩国av在线不卡| 激情视频va一区二区三区| 国产日韩欧美视频二区| av女优亚洲男人天堂| 在现免费观看毛片| 久久午夜福利片| 久久国内精品自在自线图片| 啦啦啦中文免费视频观看日本| 多毛熟女@视频| 2018国产大陆天天弄谢| √禁漫天堂资源中文www| 久久精品久久精品一区二区三区| 综合色丁香网| 青青草视频在线视频观看| 免费在线观看黄色视频的| 有码 亚洲区| 午夜免费鲁丝| a 毛片基地| 999久久久国产精品视频| 人妻一区二区av| 永久网站在线| 国产精品成人在线| 99久久中文字幕三级久久日本| 久久综合国产亚洲精品| 午夜久久久在线观看| 丝袜美足系列| 女的被弄到高潮叫床怎么办| 亚洲精华国产精华液的使用体验| 大香蕉久久网| 在线天堂最新版资源| 在线观看免费日韩欧美大片| 一级毛片 在线播放| 久久久国产一区二区| 嫩草影院入口| 在线 av 中文字幕| 日韩一区二区三区影片| 一个人免费看片子| 成人午夜精彩视频在线观看| 国产在线视频一区二区| 亚洲av欧美aⅴ国产| 中文欧美无线码| 久久99精品国语久久久| 一区二区av电影网| 亚洲国产欧美在线一区| 国产亚洲欧美精品永久| 国产亚洲最大av| 日本爱情动作片www.在线观看| 国产精品久久久久久av不卡| 亚洲欧美中文字幕日韩二区| 一级a爱视频在线免费观看| 少妇人妻精品综合一区二区| 国产日韩欧美视频二区| 成年av动漫网址| 一个人免费看片子| 亚洲欧美成人精品一区二区| 狠狠婷婷综合久久久久久88av| 欧美精品人与动牲交sv欧美| 欧美精品一区二区免费开放| 欧美日韩一级在线毛片| 日本wwww免费看| 精品午夜福利在线看| 丰满迷人的少妇在线观看| 国产高清国产精品国产三级| 人人妻人人添人人爽欧美一区卜| 国产成人免费无遮挡视频| 一本久久精品| 天堂俺去俺来也www色官网| 午夜福利一区二区在线看| 久久精品国产亚洲av高清一级| 成人国产麻豆网| 国产精品女同一区二区软件| 另类精品久久| 精品酒店卫生间| 免费播放大片免费观看视频在线观看| 日韩大片免费观看网站| √禁漫天堂资源中文www| 日日摸夜夜添夜夜爱| 丰满少妇做爰视频| 国产老妇伦熟女老妇高清| 国产无遮挡羞羞视频在线观看| 欧美精品高潮呻吟av久久| 精品视频人人做人人爽| 十八禁网站网址无遮挡| 在线看a的网站| 精品一区二区三区四区五区乱码 | 黄片播放在线免费| 欧美人与性动交α欧美软件| 狠狠精品人妻久久久久久综合| kizo精华| av.在线天堂| 国产精品成人在线| 中国国产av一级| 五月天丁香电影| 涩涩av久久男人的天堂| 成年动漫av网址| 91精品三级在线观看| 国产精品一区二区在线观看99| 成人毛片60女人毛片免费| 少妇被粗大猛烈的视频| www.精华液| 2021少妇久久久久久久久久久| 欧美成人精品欧美一级黄| 国产日韩欧美在线精品| 不卡视频在线观看欧美| 成年美女黄网站色视频大全免费| 哪个播放器可以免费观看大片| 亚洲av福利一区| 欧美日韩视频高清一区二区三区二| 国语对白做爰xxxⅹ性视频网站| 久热久热在线精品观看| 日韩在线高清观看一区二区三区| freevideosex欧美| 一级毛片 在线播放| 制服人妻中文乱码| 亚洲精品国产av成人精品| 男人舔女人的私密视频| 美女中出高潮动态图| 深夜精品福利| 香蕉丝袜av| 久久精品久久久久久噜噜老黄| www.精华液| 大片免费播放器 马上看| 婷婷色av中文字幕| 考比视频在线观看| 欧美最新免费一区二区三区| 国产精品偷伦视频观看了| 爱豆传媒免费全集在线观看| 午夜福利影视在线免费观看| 久久国产精品男人的天堂亚洲| 国产免费福利视频在线观看| 亚洲成国产人片在线观看| 欧美日韩国产mv在线观看视频| 国产日韩欧美视频二区| a级片在线免费高清观看视频| 亚洲一码二码三码区别大吗| 在线观看三级黄色| 国产老妇伦熟女老妇高清| 亚洲情色 制服丝袜| 久久国内精品自在自线图片| 国产精品麻豆人妻色哟哟久久| 欧美激情高清一区二区三区 | 两性夫妻黄色片| 久久综合国产亚洲精品| 9热在线视频观看99| 免费少妇av软件| 美女脱内裤让男人舔精品视频| 哪个播放器可以免费观看大片| 成人影院久久| 韩国高清视频一区二区三区| 日本黄色日本黄色录像| 欧美精品一区二区免费开放| 久久久精品94久久精品| 五月天丁香电影| 青春草视频在线免费观看| 亚洲一码二码三码区别大吗| 一本色道久久久久久精品综合| 日韩欧美精品免费久久| 久久久a久久爽久久v久久| 亚洲av日韩在线播放| 国产成人精品婷婷| 春色校园在线视频观看| 精品一区二区三卡| 日韩av在线免费看完整版不卡| 一级毛片电影观看| 日韩中文字幕欧美一区二区 | 最近中文字幕高清免费大全6| 香蕉精品网在线| 成人亚洲精品一区在线观看| 菩萨蛮人人尽说江南好唐韦庄| 一区二区三区乱码不卡18| 欧美在线黄色| 久久99一区二区三区| 又粗又硬又长又爽又黄的视频| 国产 精品1| 亚洲,欧美精品.| 欧美精品一区二区免费开放| av国产精品久久久久影院| 免费少妇av软件| av福利片在线| 亚洲欧美中文字幕日韩二区| 精品酒店卫生间| 男女国产视频网站| 精品亚洲成国产av| 国产黄频视频在线观看| 性色avwww在线观看| 亚洲成av片中文字幕在线观看 | 日韩一区二区三区影片| 免费观看av网站的网址| 我的亚洲天堂| 欧美97在线视频| av福利片在线| 国产精品免费视频内射| 亚洲人成77777在线视频| 久久热在线av| 天天影视国产精品| 久久久久精品久久久久真实原创| 777久久人妻少妇嫩草av网站| 亚洲av电影在线进入| av天堂久久9| 亚洲av在线观看美女高潮| 中文字幕人妻丝袜制服| 色哟哟·www| 国产成人aa在线观看| 国产精品二区激情视频| 一区二区av电影网| 五月天丁香电影| 日韩在线高清观看一区二区三区| 国产 一区精品| 国产av国产精品国产| 欧美成人精品欧美一级黄| 你懂的网址亚洲精品在线观看| av一本久久久久| 日韩一区二区三区影片| 十八禁网站网址无遮挡| 亚洲一级一片aⅴ在线观看| 亚洲国产欧美日韩在线播放| 满18在线观看网站| 在线观看美女被高潮喷水网站| 老熟女久久久| 久久99一区二区三区| 黑人欧美特级aaaaaa片| 亚洲图色成人| 成年美女黄网站色视频大全免费| 精品一区在线观看国产| 久久久久久久大尺度免费视频| 肉色欧美久久久久久久蜜桃| 中文字幕av电影在线播放| 成人午夜精彩视频在线观看| 女人精品久久久久毛片| 飞空精品影院首页| 午夜福利在线观看免费完整高清在| 丰满乱子伦码专区| 午夜精品国产一区二区电影| 男女免费视频国产| 久久韩国三级中文字幕| 亚洲男人天堂网一区| 多毛熟女@视频| 丁香六月天网| 人人妻人人澡人人看| 欧美成人午夜精品| 欧美精品一区二区大全| 一区二区三区乱码不卡18| 欧美激情极品国产一区二区三区| 久久午夜综合久久蜜桃| 日韩精品免费视频一区二区三区| 桃花免费在线播放| 久久久久久人人人人人| 最新的欧美精品一区二区| 国产老妇伦熟女老妇高清| 精品国产一区二区三区久久久樱花| 国产av国产精品国产| 尾随美女入室| 国产精品 欧美亚洲| 波多野结衣av一区二区av| 精品国产一区二区久久| 韩国高清视频一区二区三区| 成人毛片a级毛片在线播放| av卡一久久| 80岁老熟妇乱子伦牲交| 日韩伦理黄色片| 好男人视频免费观看在线| 欧美在线黄色| 亚洲精品久久久久久婷婷小说| 久久精品国产综合久久久| 美女午夜性视频免费| 国产黄色免费在线视频| 国产在视频线精品| 久久av网站| 精品国产一区二区久久| 在线免费观看不下载黄p国产| 老汉色av国产亚洲站长工具| 亚洲欧美成人综合另类久久久| 国精品久久久久久国模美| 国产日韩欧美在线精品| 纵有疾风起免费观看全集完整版| 美女主播在线视频| 国产成人a∨麻豆精品| 成年动漫av网址| 如日韩欧美国产精品一区二区三区| 亚洲国产欧美网| 高清在线视频一区二区三区| 成人免费观看视频高清| 最新中文字幕久久久久| 在线观看www视频免费| 亚洲第一青青草原| 最新的欧美精品一区二区| 久久97久久精品| 精品人妻一区二区三区麻豆| 欧美精品一区二区大全| 人人澡人人妻人| 国产日韩欧美亚洲二区| 亚洲av欧美aⅴ国产| 国产精品女同一区二区软件| 国产精品三级大全| 人妻人人澡人人爽人人| 午夜福利乱码中文字幕| 国产精品无大码| 一区二区三区四区激情视频| 久久精品国产鲁丝片午夜精品| 国产精品av久久久久免费| 一本色道久久久久久精品综合| 亚洲国产色片| 中文字幕人妻丝袜一区二区 | 中文字幕人妻丝袜制服| 一边亲一边摸免费视频| 国产日韩欧美视频二区| 久久久久国产网址| 亚洲国产av影院在线观看| 五月天丁香电影| 国产成人午夜福利电影在线观看| 91国产中文字幕| 亚洲成人手机| 日韩电影二区| 青草久久国产| 精品卡一卡二卡四卡免费| 成年女人在线观看亚洲视频| 2022亚洲国产成人精品| 国产1区2区3区精品| 天天躁狠狠躁夜夜躁狠狠躁| 男女边摸边吃奶| 久久99热这里只频精品6学生| 乱人伦中国视频| 男的添女的下面高潮视频| 成人漫画全彩无遮挡| www.自偷自拍.com| 久久99一区二区三区| 久久人人爽av亚洲精品天堂| 亚洲国产精品国产精品| 亚洲精品视频女| 亚洲精品av麻豆狂野| 国产日韩欧美在线精品| 免费播放大片免费观看视频在线观看| 在线 av 中文字幕| 高清视频免费观看一区二区| 少妇人妻久久综合中文| 国产成人aa在线观看| 国产一区二区激情短视频 | 国产综合精华液| 亚洲伊人色综图| 亚洲精品日韩在线中文字幕| 91精品国产国语对白视频| 日本欧美视频一区| av在线观看视频网站免费| 热99国产精品久久久久久7| 国产精品一区二区在线观看99| 一级片'在线观看视频| 成年人午夜在线观看视频| 深夜精品福利| 色吧在线观看| 99热全是精品| 亚洲精品aⅴ在线观看| 国产av国产精品国产| 免费少妇av软件| 日本午夜av视频| 99久久精品国产国产毛片| 日韩在线高清观看一区二区三区| 日本wwww免费看| 丝袜在线中文字幕| 永久免费av网站大全| 啦啦啦在线免费观看视频4| 美女主播在线视频| 中国三级夫妇交换| 亚洲国产色片| 国产精品香港三级国产av潘金莲 | 麻豆精品久久久久久蜜桃| 夫妻性生交免费视频一级片| 黑人猛操日本美女一级片| 男人舔女人的私密视频| 一级片免费观看大全| 毛片一级片免费看久久久久| 午夜免费男女啪啪视频观看| 国产成人91sexporn| 老汉色∧v一级毛片| 满18在线观看网站| 黑人猛操日本美女一级片| av在线app专区| 欧美日韩视频精品一区| 国产成人aa在线观看| 久久女婷五月综合色啪小说| 黄片播放在线免费| 日本欧美视频一区| 日韩制服骚丝袜av| 三上悠亚av全集在线观看| 日产精品乱码卡一卡2卡三| 免费在线观看视频国产中文字幕亚洲 | 99热网站在线观看| 久久久久久人人人人人| 亚洲av中文av极速乱| 国产精品99久久99久久久不卡 | 久久久久久久久久人人人人人人| 久久ye,这里只有精品| 久久精品熟女亚洲av麻豆精品| 99热国产这里只有精品6| a级毛片黄视频| 少妇的逼水好多| 搡女人真爽免费视频火全软件| 丝袜在线中文字幕| 精品人妻偷拍中文字幕| av卡一久久| 欧美老熟妇乱子伦牲交| 国产97色在线日韩免费| 亚洲国产成人一精品久久久| 国产 一区精品| 成人二区视频| 观看av在线不卡| 男女国产视频网站| 秋霞伦理黄片| 国产男人的电影天堂91| 久久久久久人人人人人| 一级,二级,三级黄色视频| 9191精品国产免费久久| 亚洲,欧美,日韩| 97在线视频观看| 成年动漫av网址| 欧美国产精品一级二级三级| 国产精品香港三级国产av潘金莲 | 国产无遮挡羞羞视频在线观看| 欧美精品人与动牲交sv欧美| 婷婷色综合www| 看十八女毛片水多多多| 久久精品久久精品一区二区三区| 亚洲成av片中文字幕在线观看 | 欧美成人精品欧美一级黄| 亚洲精品,欧美精品| 女性被躁到高潮视频| 成人免费观看视频高清| 青青草视频在线视频观看| 日韩欧美一区视频在线观看| 亚洲成国产人片在线观看| 精品亚洲成a人片在线观看| 亚洲av.av天堂| 欧美成人午夜免费资源| 欧美日韩成人在线一区二区| 精品少妇一区二区三区视频日本电影 | 美女福利国产在线| 在线天堂中文资源库| av天堂久久9| 国产毛片在线视频| 我的亚洲天堂| 人人妻人人爽人人添夜夜欢视频| √禁漫天堂资源中文www| 欧美在线黄色| 一级毛片 在线播放| 亚洲精品国产av蜜桃| 香蕉国产在线看| 国产精品国产三级国产专区5o| 亚洲精品日韩在线中文字幕| 黄网站色视频无遮挡免费观看| 纵有疾风起免费观看全集完整版| 99久久精品国产国产毛片| 国产精品av久久久久免费| 大片免费播放器 马上看| 久久精品人人爽人人爽视色| 久久精品久久精品一区二区三区| 亚洲欧美成人精品一区二区| 男女国产视频网站| 考比视频在线观看| 两个人看的免费小视频| 亚洲欧美成人精品一区二区| 男女国产视频网站| 亚洲人成网站在线观看播放| 国产激情久久老熟女| 国产色婷婷99| 女人精品久久久久毛片| 涩涩av久久男人的天堂| 十分钟在线观看高清视频www| 一级爰片在线观看| 99久久中文字幕三级久久日本| av在线app专区| 少妇人妻久久综合中文| 国产精品蜜桃在线观看| 只有这里有精品99| 一区二区三区激情视频| 超色免费av| 人妻系列 视频| 婷婷色麻豆天堂久久| 99热全是精品| av在线观看视频网站免费| 人妻系列 视频| 亚洲精品自拍成人| 一级黄片播放器| 亚洲精品视频女| 99热全是精品| 国产黄频视频在线观看| 韩国高清视频一区二区三区| 成人手机av| 日韩制服丝袜自拍偷拍| 久久久精品国产亚洲av高清涩受| 狠狠精品人妻久久久久久综合| 婷婷色综合大香蕉| 久热久热在线精品观看| 中文字幕人妻熟女乱码| 纯流量卡能插随身wifi吗| 哪个播放器可以免费观看大片| 欧美成人精品欧美一级黄| 少妇人妻 视频| 日日啪夜夜爽| 亚洲伊人久久精品综合| 九九爱精品视频在线观看| 26uuu在线亚洲综合色| 伊人久久大香线蕉亚洲五| 久久久久精品久久久久真实原创| 免费黄网站久久成人精品| 亚洲国产av影院在线观看| 精品亚洲成a人片在线观看| 亚洲综合色惰| 久久狼人影院| 日本猛色少妇xxxxx猛交久久| 国产精品二区激情视频| 国语对白做爰xxxⅹ性视频网站| 大话2 男鬼变身卡|