• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    2-甲基呋喃分子激發(fā)態(tài)超快非絕熱動(dòng)力學(xué)

    2017-05-10 17:42:42龍金友劉志明邱學(xué)軍張冰
    物理化學(xué)學(xué)報(bào) 2017年3期
    關(guān)鍵詞:激發(fā)態(tài)里德呋喃

    龍金友 劉志明 邱學(xué)軍,2 張冰,*

    (1中國科學(xué)院武漢物理與數(shù)學(xué)研究所,波譜與原子分子物理國家重點(diǎn)實(shí)驗(yàn)室,武漢430071;2中南民族大學(xué)電子信息工程學(xué)院,武漢430074)

    2-甲基呋喃分子激發(fā)態(tài)超快非絕熱動(dòng)力學(xué)

    龍金友1劉志明1邱學(xué)軍1,2張冰1,*

    (1中國科學(xué)院武漢物理與數(shù)學(xué)研究所,波譜與原子分子物理國家重點(diǎn)實(shí)驗(yàn)室,武漢430071;2中南民族大學(xué)電子信息工程學(xué)院,武漢430074)

    利用飛秒時(shí)間分辨的光電子影像技術(shù)研究了2-甲基呋喃分子激發(fā)態(tài)超快非絕熱動(dòng)力學(xué)。2-甲基呋喃分子吸收兩個(gè)400 nm的光子后同時(shí)被激發(fā)到n=3的里德堡態(tài)S1[1A′′(π3s)]、1A′(π3px)、1A″(π3py)、1A″(π3pz)和價(jià)電子態(tài)1A′(ππ*),之后被兩個(gè)800 nm的光子電離。通過母體離子產(chǎn)率隨泵浦-探測延遲時(shí)間的變化曲線測得這些里德堡態(tài)與價(jià)電子態(tài)的平均壽命為50 fs。通過解析光電子能譜中n=3的里德堡態(tài)與價(jià)電子態(tài)所對(duì)應(yīng)的組分峰的相對(duì)演化特征,觀測到了這些激發(fā)態(tài)之間的內(nèi)轉(zhuǎn)換過程,并且揭示了價(jià)電子態(tài)1A′(ππ*)在內(nèi)轉(zhuǎn)換過程中扮演的重要“紐帶”作用。里德堡態(tài)與價(jià)電子態(tài)之間的混合,形成勢能面間的錐形交叉,導(dǎo)致了如此超快的內(nèi)轉(zhuǎn)換過程。

    超快;光電子影像;非絕熱動(dòng)力學(xué);2-甲基呋喃

    1 In troduc tion

    Nonadiabatic interactions thatoccurbetween adiabatic potential energy surfaces(PESs)of differentelectronic statesare notonly ubiquitous,but also essential inmany photochemical and pho-tobiologicalprocesses such as photosynthesis,photoisomerization in vision and the photostability of deoxyribonucleic acid(DNA)1. The PEScrossing between valenceand Rydberg states is one of these most fundamental nonadiabatic interactions.From the physical viewpoint,such a strong nonadiabatic coupling represents an interesting exampleof a situation inwhich the Born-Oppenheimer approximation is no more valid for the description of coupling between electronic and nuclearmotions.

    In amolecule,larger principal quantum number(n)and orbital angularmomentum(l)reduce the probability of penetrating a Rydberg electron into themolecular ion core,resulting in a longer lifetime of the Rydberg state.The lifetimes of low(n=3-5) Rydberg statesof aromaticmoleculesare roughly recognized to be slower(i.e.,by 1-2 orders ofmagnitude)than those of the valence electronic excitations in the same energy domain2.The fact thatmolecular valence and Rydberg states aremuchmore likely tomix in the vacuum-ultraviolet(VUV)than they are in the ultraviolet immediately implies that the lifetimesof low-lying 3s and 3p Rydberg statesare remarkably shortened asa resultof a larger probability of coup ling of a Rydberg electron w ith valence electrons3,4.The complicated spectral features and extremely short lifetimes of thesem ixed valence and Rydberg states pose great challenges in the direct real time observation and characterization of such nonadiabatic couplings between low-lying Rydberg and valence states in polyatomicmolecules.

    Fem tosecond time-resolved photoelectron imaging(TR-PEI) isuseful in probing thesenonadiabatic interactionson real time in polyatom ic molecules.TR-PEI could measure both the kinetic energy and angular distribution of the photoelectrons simultaneously aswell as their correlation asa function of timeand have been successfully applied in recentyears to a variety ofmolecular systems5,suggestiveof an ideal fingerprintsensor for investigating ultrafastnonadiabatic interactions involving changes in electronic characterswith nuclearmotions in complexmolecules.

    2-Methyl furan,has served asexcellentprototype system for studying nonadiabatic dynamics involving thenatureof Rydbergvalence interactions.Compared with thewell-documented furan molecule6-9,the prom inent differences are that the substitution effectof an H by amethylgroup on the neighboring position of oxygen in the furan ring leads to notonly a small redshiftof the first VUV absorption spectrum but also the presence of several extra Rydberg transitions that are forbidden in furan.The first broad and diffuse VUV absorption band of 2-methyl furan in the energy range5.00-9.91 eV arises from themixing of electronic transitions from the ground state S0to the Rydberg S1[1A′′(π3s)],1A′(π3px),1A′′(π3py)and1A′′(π3pz)statesand valence1A′(ππ*)state. These Rydberg transitions that appear together with valence transitionsparticularly complicate the vibronic structures in the firstVUV absorption spectrum of 2-methyl furan,suggesting that muchmore complex nonadiabatic interactionsmightexist in 2-methy l furan.A lthough extensive experimental10-20and theoretical12,14,20-22studies have been performed on assignments and characterizations of the firstVUV absorption spectrum of 2-methyl furan,ultrafastobservables have not yet been explored experimentally.

    In the presentwork,we investigate thenonadiabatic dynamics of 2-methyl furan asan exampleof a system with strong Rydbergvalence interactionsby fem tosecond time-resolved photoelectron imaging and femtosecond time-resolvedmass spectroscopy.The Rydberg and valence statesof 2-methy l furan in the red edge of its firstVUV band areoptically excited by two-photon absorption at400 nm,their dynamicalevolution is then interrogated by twophoton ionization at 800 nm.The electronic relaxation processes havebeen directly observed in real-timeby the time-dependences of the photoelectron spectra.And thecoupled Rydbergand valence componentsarealso successfully extracted and discussed.

    2 Experim en talm ethods

    Theexperimentalsetup employed in the presentwork hasbeen described elsew here23.The liquid samp le of 2-methyl furan (A laddin,98%),seeded in helium buffer gas at a background pressure of 2×1.01325×105Pa,is expanded through a pulsed valve to generatea pulsedmolecular beam.Thebeam isskimmed and introduced into the ionization chamberwhere it is intersected perpendicularly w ith the linear polarized pump and probe laser beams.The generated photoelectrons were extracted and accelerated by the electrostatic immersion lensand then projected onto a two-dimensional(2D)detector.Each image is accumulated over 40000 laser shots.Three-dimensional(3D)distribution reconstructions are performed by the basis-set expansion(BASEX) forward convolutionmethod24.The details of our femtosencond laser system have been described elsewhere25.Briefly,the femtosecond laser seed pulse is generated by a self-mode-lock Ti: sapphire oscillator pumped by a CW second harmonic of an Nd: YVO4laser,and then amplified by an Nd:YLF pumped regenerative amplifier to generatea1 kHz pulse train centered at~800 nm of 45 fspulsewidthw ithmaximum energy of~1m J·pulse-1. The second harmonic pulsewasgenerated in a 0.5mm thick BBO (BaB2O4)crystal and the centralwavelengthwasspectroscopically measured tobe400nm with abandwidth of~6 nm.Inourpumpprobeexperiments,the pump pulse(400 nm)energy isattenuated to be less than 1μJ·pulse-1and theoptimalprobe pulse(800 nm) energy is controlled to be around 30μJ·pulse-1.The pump and probebeams are recombined collinearly ata dichroicmirror prior to being softly focused on themolecular beam with a spherical plano-convex lens(focal length(f)=250mm).

    3 Resu lts and discussion

    As shown in Fig.1(a),a typical time of flight(TOF)mass spectrum of 2-methyl furanwas recordedw ith the two-photon 400 nm pump and two-photon 800 nm probe at zero delay time.2-methyl furan parent ion peak of C5H6O+is clearly observed,and aminor fragment ion peak of C4H3O+becomes visible.Normally, the time-resolved photoelectron imaging experimentsare required to be conducted w ith background signals low enough to ensure minimum ionization from either beam operating independently.Wherenoted,asmentioned above,soft focus isadopted in order to avoid space charge effectand strong field effects.Consequently, nearly no background signals are generated from either beam independently.The area ratio of C5H6O+to C4H3O+is241:1 and hence the contribution to the total photoelectron signal from the fragment ion of C4H3O+could be safely neglected.

    Fig.1(a)Typical Time of flight(TOF)m ass spectrum of 2-methyl fu ran recorded w ith the two-photon excitation at 400 nm and two-photon ionization at 800 nm at the zero delay tim e;(b)tim e-resolved total ion signalsof C5H6O+as a function of delay tim ebetween the pum p pulse and thep robe pulseThe circles represent theexperimentalresults,and thesolid lineshows the fitting result.

    In our fem tosecond pum p-probe scheme,all electronic transitions from the ground electronic state of 2-methyl furan are optically one-photon or two-photon dipole allowed as a result of the reduction of themolecular symetry from C2vin the case of furan6,7to Csin 2-methyl furan.The origins of the singlet S1[1A″(π3s)]and1A′(ππ*)states have been documented to be at 5.47 and 5.95 eV,respectively19.The low-lyingπ-3p Rydberg seriesof1A′(π3px),1A″(π3py)and1A″(π3pz)havebeen recognised at5.73,6.02,6.06 eV,respectively19.As indicated by the notation, the1A′(ππ*)state isπ-π*valence-typeexcitation,whereas the S1stateandπ-3p Rydberg seriesareof Rydberg-type characters.For the two-photon excitation schemeused in thepresentwork,the2-methyl furanmolecule issimultaneously pumped into the S1[1A″(π3s)],1A′(ππ*)statesand the low-lyingπ-3p Rydberg series from itsground state S0(1A′)by two-photon absorption at400 nm when taking the broad excitation bandwidth(~6 nm)into account.The virtual states involved in the two-photon transition could be A′or A″states according to the symmetry of the prepared electronic state.As an exam ple,the possible two-photon transitionmatrix elements for the S1[1A″(π3s)]state could be orw ith the definition of yz in the planeof the 2-methyl furanmolecule if a A′state actsasa virtual state.In this case,the two-photon transition is induced by two-consecutive dipole transitions w ith crossed x and z directions or y and z directions.In addition,it isnoteworthy that there is no absorbance in the visible region near 400 nm.Thus the one-photon 400 nm excitation process doesnotoccur.

    The photoion yieldsare recorded asa function of the delay time between the pump and probe pulses,and these provide ameasure of the lifetime of theexcited states.The time-dependent ion signal of C5H6O+is represented in Fig.1(b).The signal rapidly decays within the first200 fs.The decay profile is found to bewell reproduced only by a single exponential function convoluted w ith aGaussian thatdescribes the instrument response function.In this case,a lifetime of 50 fs is obtained and the fitting error is reasonably w ithin±2 fs.The unsatisfactory fittingsw ith two or even moreexponential functions to discern the lifetimesof the prepared excited states are likely due to the extremely short lifetimes of the prepared excited states which are largely restricted by our instrument response function of 160 fs.Thus the lifetime of 50 fsobtained in our experiment is the average lifetime of the S1[1A″(π3s)],1A′(ππ*)statesand the low-lyingπ-3p Rydberg series.

    Fig.2(a)shows typical photoelectron images measured at variousdelay timewith the two-photon 400 nm pump and twophoton 800 nm probe.Each image corresponds to a slice through the 3D photoelectron scattering distributions observed at the quoted time delay.The linear polarizationsof the pump and probe lasersareboth vertical in the planeof the figure.Therings(bands) with different radii in the image stand for photoelectronswith differentkineticenergy components.In Fig.2(b),we show the timedependent photoelectron kinetic energy(PKE)distributions (PKEDs)extracted from thecorresponding imagesshown in Fig.2 (a).The photoelectron spectrahave each been normalized to the totalphotoelectron counts.Each PKED is characterized by several identifiable peakswhich are congested in the continuousenergy region of 0.05-1.00 eV.Four featured peaks w ith the central energies of 0.13,0.49,0.68 and 0.88 eV are identified in the PKEDs.Theadiabatic ionization potential(AIP)of 2-methyl furan is8.38 eV19,therefore two photonsof800 nm[(AIP-2×E400)/E800= ((8.38-2×3.1)/1.55)-2]are required to ionize the excited states.Consequently,the available energy[=hνpump+hνprobe-AIP] in thecontinuum state canbedetermined to be0.92eV for the twophoton 800 nm ionization to the zero vibrational level of the cationic ground state,and this isalso indicated by the arrow as D0in Fig.2(a).

    According to the previous spectroscopic studies10-22,the four featured peakswith the central energies of 0.13,0.49,0.68 and 0.88 eV are respectively assigned to be ionized from theS1[1A″(π3s)],1A′(π3px),1A″(π3py)and1A″(π3pz)Rydberg states. More interestingly,ionization from the1A′(ππ*)state isalso expected to yield a photoelectron bandwith theenergy around 0.67 eV,which overlapswith the above featured peaks.Asan added support for our assignments,the energies and quantum defectsof Rydberg states can be obtained by26

    Fig.2(a)Tim e-resolved photoelectron im agesm easu red as a function of thepum p-p robe delay timeThe linearpolarizationsof thepump and probe lasersarealigned verticalin the planeof the figure(b).Time-resolved photoelectron kinetic energy distributions extracted from the corresponding images shown in Fig.2(a)asa function of the pum p-probe delay time.Asguided by the vertical dashed dot lines,four featured peakswith the centralenergiesof 0.13,0.49,0.68 and 0.88 eV are respectively assigned to be ionized from the S1[1A″(π3s)],1A′(π3px),1A″(π3py)and1A″(π3pz) Rydberg states,which are respectively labeledby 3s,3px,3pyand 3pzfor sim plicity.Additionally,ionization from the1A′(ππ*)state is also identified to yield aphotoelectron bandw ith theenergy around 0.67eV,which overlapsw ith theabove featured peaks.Theavailableenergy for the two-photon 800 nm ionization is indicated by thearrow as D0.

    where T(Rydberg)and hνpris theenergy of the Rydberg statesand the probe photon,respectively,IP is the ionization potential,n is the principalquantum number,δis thequantum defect,and R is the Rydberg constant,13.606 eV.Hence,the quantum defect values for the delay timesof 0 fsare respectively calculated to be 0.86,0.72,0.63 and 0.52 for the four featured peaks w ith the central energies of 0.13,0.49,0.68 and 0.88 eV with the assumption of principal quantum numbers n=3.The quantum defect isa constant thatdependson the symmetry and typesof the Rydberg orbital.Formolecules composed of second-row atoms, typicalδvaluesare0.9-1.2 for s orbital,while theδvalues of p orbitalare about0.3-0.5,andδvalues of d orbital are about027. Giuliani etal.19obtained the quantum defectvaluesof 0.84,0.73, 0.60 and 0.58 for the S1[1A″(π3s)],1A′(π3px),1A″(π3py)and1A″(π3pz)Rydberg states,respectively,and found that thequantum defectvalues for 3p Rydberg orbitals seemed to be a little bithigh and explained this could be due to the Rydberg-valence interaction.This interaction could bemore important in thismolecule than in furan since the 3p state isnow much closer in energy w ith the valence1A′(ππ*).Therefore,quantum defect values further suggest that the assignments of the four featured peaks seem consistentwith the previouswork.19

    Inspection of the PKEDs of 2-methyl furan in Fig.2(b),the intensities of the PKEDs rapidly decreasew ith increasing delay time,which is coincidentwith the short lifetimeof 50 fs for the parent ions.Upon amore detailed inspection of the time-dependent behavior between 0 and 39 fs,the intensitiesof the featured peaksin each PKEDmonotonously decay ina similarmanner.The energy positions of these featured peaks do not change with the delay time,however,the relative changes in the peak intensities among these featured peaks are not apparent.By analogy to the case of furan,similar decay channels could be correlated to these featured states in 2-methyl furan.As discussed above,the S1[1A″(π3s)],1A′(ππ*)statesand the low-lyingπ-3p Rydberg series of1A′(π3px),1A″(π3py)and1A″(π3pz)statescould besimultaneously excited from itsground state S0(1A′)by two-photon absorption at 400 nm.Hence,internal conversionsamong these featured states are likely to occur.

    For a further analysis of the PKEDs associated with the correlated relaxation dynamicsof the S1[1A″(π3s)],1A′(ππ*)states and the low-lyingπ-3p Rydberg series,we expect to extract the spectral components that independently arise from the ionization of the corresponding S1[1A″(π3s)],1A′(ππ*)statesand the low-lyingπ-3p Rydberg series.Generally the Levenberg-M arquardtmethod28is mostly used to perform non-linear least squares fitting of the PKEDs.Themeasured PKED ateach delay time is fitted by the sum of five Voigt functions and a polynomial.The Voigt function profile(i.e.,a convolution of Gaussian and Lorentzian functions) is p referentially selected to rep roduce the S1[1A″(π3s)],1A′(ππ*),1A′(π3px),1A″(π3py)and1A″(π3pz)component spectraby assum ing the component peak centers to be fixed at0.13,0.67, 0.49,0.68 and 0.88 eV,corresponding to the ionization channels from the S1[1A″(π3s)],1A′(ππ*),1A′(π3px),1A″(π3py)and1A″(π3pz) states.Inaddition,a polynomial isunavoidably added tomatch the residual background.As an exam ple,Fig.3 shows the fitting of PKED at the delay timeof 0 fs,and the fitting residue isalso given in the bottom panel of Fig.3.The open circles represent the experimental PKED,and the blue solid line shows the sum of the fitting components which nearly reproduce the experimental PKED.Thus the time-dependentintensitiesof the five components are easily obtained by integrating theareaof each componentat differentdelay time and are show n in Fig.4.Note that the timedependent intensities of the 3s,3pyand 3pzcomponents are respectivelymultiplied by a factor of 3,5 and 2.5 tomake them more visibly comparable with those of the1A′(ππ*)and 3pxcomponents in the same p lotting.

    Fig.3(a)Non-linear least squares fitting of the photoelectron kinetic energy distribution at the delay tim eof0 fs by the Levenberg-Marquardtmethod28;(b)the residue for the fitting in(a)The PKED is fitted by asum of five Voigt functionsand apolynom ial.The five Voigt functions reproduce the 3s,3px,3py,3pzand1A′(ππ*)com ponent spectra by assum ing the 3s,3px,3py,3pzand1A′(ππ*)componentpeak centers to be respectively fixed at0.13,0.49,0.68,0.88 and 0.67 eV,corresponding to the ionization from the 3s,3px,3py,3pzand1A′(ππ*)states.Thepolynomialis unavoidably added tomatch the residualbackground.See text fordetails.

    As seen in Fig.3 and Fig.4,the five components appear simultaneously at the delay time of 0 fs,and the1A′(ππ*)and 3pxcomponents carrymuchmore intensities than those of the other three components,suggesting that theoptical transition strengths for the1A′(ππ*)and1A′(π3px)states are much larger than those for the S1[1A″(π3s)],1A″(π3py)and1A″(π3pz)states. The intensity profiles for the five components indicate that the S1[1A″(π3s)],1A′(ππ*),1A′(π3px),1A″(π3py)and1A″(π3pz)states decay rapidlywithin 50 fsupon theirexcitations,in fairagreement with the lifetimeof 50 fsmeasured for the parent ions.However, each of the intensity profiles could notbewell reproduced by only a single exponential decay function.The 3s component seems to decay with two different rates,i.e.,a slower rate before10 fsand a faster rateafter10 fs.This implies thatpopulation transfers from other initially excited states to the S1[1A″(π3s)]statemightoccur w ithin the first 10 fs.A sim ilar situation accounts for the 3pxcomponent,decaying with a faster ratebefore25 fsand a slower rate after 25 fs.In the case of 3pyand 3pzcomponents,it is interesting that the intensity profilesseem to behave inversely.The population transfer betw een the1A″(π3py)and1A″(π3pz)states is likely to occur due to theiroverlap in energy.More interestingly, the intensity profile for the1A′(ππ*)component exhibitsmore complex decay features.The1A′(ππ*)component carries themost intensity than thoseof theother components,and exhibitsmultiple decay rates.Thuswe speculate that the1A′(ππ*)statem ightplaya key role during the deactivation dynamicsand actas thebridge to connectwith the neighboring excited statesalthough it could not be clearly visualized as a sharp peak in the PKED.In addition, the1A′(ππ*)componentexhibitsa broad distribution,in support of the nature of a valence state.In consideration of the complex decay dynam icsamong the five components and the insufficient data points,we could not furtherextract the decay time constants for the five components by fitting each of the intensity profiles w ithmultiple exponential decay and rise functions.Thus,note that discussionsof decay time constants in Fig.4 arequalitative rather than quantitative.

    Fig.4 Photoelectron com ponent peak intensitiesasa function of the pump-probe delay tim eThe tim e-dependent intensitiesof the 3s,3pyand 3pzcomponentsare respectively multiplied by a factor of3,5 and 2.5 tomake them more comparablewith thoseof the1A′(ππ*)and 3pxcomponents in thesameplotting.

    Quantum chemical calculationsof theexcited states in2-methyl furan,especially concerningw ith the conical intersectionsamong the excited states,or dynam ics simulations of the excited states, havenotbeen performed yet.By analogy to the case of furan7-9, similar internal conversionsamong the S1[1A″(π3s)],1A′(ππ*)states and the low-lyingπ-3p Rydberg series of1A′(π3px),1A″(π3py) and1A″(π3pz)statesare likely to dominate in 2-methyl furan.Upon the two-photon excitation at 400 nm,2-methyl furan molecules are simultaneously pumped from its ground state S0(1A′)to the S1[1A″(π3s)],1A′(ππ*)statesand the low-lyingπ-3p Rydberg series of1A′(π3px),1A″(π3py)and1A″(π3pz)states.The vibrational energies deposited for the S1[1A″(π3s)],1A′(ππ*),1A′(π3px),1A″(π3py) and1A″(π3pz)states are 0.73,0.25,0.47,0.18 and 0.14 eV,respectively.The fact that the valence state(1A′(ππ*))and the Rydberg states(S1[1A″(π3s)],1A′(π3px),1A″(π3py)and1A″(π3pz))are very close in energy and overlapwith each other issupportiveof the speculation for the high com plexity of the potential energy surfaces.Therefore,numerouspotentialenergy surface crossings, i.e.,conical intersections,probably exist among these excited states.Furthermore,theultrashortdecay time(less than 50 fs)for these excited states im plies that conical intersections aremore likely to locate in the Franck-Condon region and actas the driving force to accomplish such ultrafast deactivations of these excted states.Asdiscussed above,the1A′(ππ*)statemightplay a key role during the deactivation dynamics and intersect with the neighboring excited states.Thus,as shown in Fig.5,the deactivationsof the five excited statesmight initially continue on their own potentialenergy surface,and then rapidly internally converts to the neighboring excited states through conical intersections,and finally return to thehotground state.

    A comparison w ith the nonadiabatic dynam ics of furan7-9and 2-methyl furan showsmany similarities.In both molecules,internalconversion takes place on an ultrafast timescale as themain deactivationmechanism.Theappearance of conical intersections among the potential energy surfaces effectuates such ultrafast internal conversion processes.On the other hand,due to the strong coupling of the Rydberg stateswith valence states,the lifetimes of n=3Rydberg statesare considerably shortened to be on the order of tens of femtoseconds.Of particular interest is the differencew ith regard to the nonadiabatic interactions in furan and 2-methyl furan.In the case of 2-methyl furan,the coup lings of the n=3 Rydberg states with the1A′(ππ*)valence state are much stronger than thatof the S1[1A2(π3s)]Rydberg state with the S2[1B2(ππ*)]valence state in the furan case.The n=3Rydberg transitions thatappear togetherwith valence transition in 2-methyl furan particularly complicate and dom inate the nonradiative relaxation pathways from the Franck-Condon region along the multidimensional reaction coordinateback to theground state.It isnoted thatno intersystem crossing processwith tripletstatesare observed in the currentmeasurements.Inmostcases,the triplet states also play significant contributions to photochem istry processes29,especiallywhen theenergy levelof the involved singlet and triplet states are very close30,31.However,the triplet states differ in energy as the prepared singlet state in 2-methyl furan. Moreover,there are nomolecular featureswhichwould drive an ultrafast intersystem crossing in theobserved timewindow,neither by an El Sayedmechanism asw ellasby a heavy-atom effect.

    Fig.5 Schematic energy diagram of the ground,excited and ion ic states of 2-methyl fu ranThe valence state1A′(ππ*)and Rydberg seriesof S1[1A″(π3s)],1A′(π3px),1A″(π3py) and1A″(π3pz)statesaresimultaneously excitedby two-photonsof400 nm, as indicated by thebluew indowed area.Thesestatesare then projected to the ground ionic state by two-photons of 800 nm,resulting in the1A′(ππ*),3s, 3px,3pyand 3pzcomponentbands,respectively.Internal conversions(ICs)are likely todominateas themain deactivationmechanism for thesestates. Themagenta fence-likeband across thesestates is roughly indicativeof thepossibility of couplingsof potentialenergy surfacesamong these states,i.e.,conical intersections(CIs).

    4 Conc lusions

    We have used femtosecond time-resolved photoelectron imaging coupled w ith time-resolved mass spectroscopy to observe the nonadiabatic dynam ics in electronically excited 2-methyl furan.The n=3 Rydberg states(i.e.,S1[1A″(π3s)],1A′(π3px),1A″(π3py)and1A″(π3pz))and thevalence state(1A′(ππ*)) are simultaneously excited from theground state and the average lifetimeof these states ismeasured to beon the time scaleof 50 fs.Ultrafast internal conversionsamong these statesare observed and dom inated as thenonradiative relaxationmechanism.

    (2)Jortner,J.;Bixon,M.J.Chem.Phys.1995,102,5636. doi:10.1063/1.469295

    (3)Softley,T.P.;Hudson,A.J.;Watson,R.J.Chem.Phys.1997, 106,1041.doi:10.1063/1.474095

    (4)Song,J.K.;Tsubouchi,M.;Suzuki,T.J.Chem.Phys.2001, 115,8810.doi:10.1063/1.1410974

    (5)Suzuki,T.Annu.Rev.Phys.Chem.2006,57,555.doi:10.1146/ annurev.physchem.57.032905.104601

    (6)Palmer,M.H.;Walker,I.C.;Ballard,C.C.;Guest,M.F.Chem. Phys.1995,192,111,and references therein.doi:10.1016/0301-0104(94)00386-O

    (7)Spesyvtsev,R.;Horio,T.;Suzuki,Y.;Suzuki,T.J.Chem.Phys. 2015,143,014302,and references therein.doi:10.1063/ 1.4922904

    (8)Fuji,T.;Suzuki,Y.;Horio,T.;Suzuki,T.;M itric,R.;Werner,U.; Bonacic-Koutecky,V.J.Chem.Phys.2010,133,234303. doi:10.1063/1.4922904

    (9)Liu,Y.;Knopp,G.;Qin,C.;Gerber,T.Chem.Phys.2015,446, 142.doi:10.1016/j.chemphys.2014.11.016

    (10)Fringuelli,F.;M arino,G.;Taticchi,A.;Distefano,G.;Colonna, F.P.;Pignatarro,S.J.Chem.Soc.Perkin Trans.1976,22,276. doi:10.1039/P29760000276

    (11)Kobayashi,T.;Kubota,T.;Ezum i,K.;Utsunom iya,C.Bull. Chem.Soc.Jpn.1982,55,3915.doi:10.1246/bcsj.55.3915

    (12)Zykov,B.G.;Erchak,N.P.;Khvostenko,V.I.;Matorykina,V. F.;Asfandiarov,N.L.J.Organomet.Chem.1983,253,301. doi:10.1016/S0022-328X(00)99225-8

    (13)Modelli,A.J.Electron.Spectrosc.Relat.Phenom.1983,31,63. doi:10.1016/0368-2048(83)85014-2

    (14)Veszpremi,T.;Nyulaszi,L.;Nagy,J.J.Organomet.Chem. 1987,331,175.doi:10.1016/0022-328X(87)80019-0

    (15)Nyulaszi,L.;Reffy,J.;Veszpremi,T.;Kovac,B.;Cvitas,T.; K lasinc,L.;M cGlynn,S.P.Int.J.Quantum Chem.Symp.1991, 25,479.doi:10.1002/qua.560400844

    (16)Nyulaszi,L.J.Mol.Struct.1992,273,133.doi:10.1016/0022-2860(92)87080-F

    (17)Modelli,A.Trends Chem.Phys.1997,6,57.

    (18)Giuliani,A.;Hubin-Franskin,M.J.Chem.Phys.Lett.2001, 348,34.doi:10.1016/S0009-2614(01)01082-X

    (19)Giuliani,A.;Delw iche,J.;Hoffmann,S.V.;Limao-Vieira,P.; Mason,N.J.;Hubin-Franskin,M.J.J.Chem.Phys.2003,119, 3670.doi:10.1063/1.1590960

    (20)Philis,J.G.;Melissas,V.S.Chem.Phys.2007,336,136. doi:10.1016/j.chemphys.2007.05.030

    (21)Buss,S.;Jug,K.J.Am.Chem.Soc.1987,109,1044. doi:10.1021/ja00238a010

    (22)Su,M.J.Phys.Chem.A 2008,112,194.doi:10.1021/jp710522n

    (23)Ghazal,A.Y.;Qiu,X.J.;Qin,C.C.;Long,J.Y.;Abulimiti,B.; Zhang,B.Acta Phys.-Chim.Sin.2012,28,2543.[Ghazal, Ahmed-Yousif,邱學(xué)軍,秦朝朝,龍金友,布瑪麗亞·阿布力米提,張冰.物理化學(xué)學(xué)報(bào),2012,28,2543.]doi:10.3866/PKU. WHXB201208135

    (24)Dribinski,V.;Ossadtchi,A.;M andelshtam,V.A.;Reisler,H. Rev.Sci.Instrum.2002,73,2634.doi:10.1063/1.1482156

    (25)Liu,Y.Z.;Qin,C.C.;Zhang,S.;Wang,Y.M.;Zhang,B.Acta Phys.-Chim.Sin.2011,27,965.[劉玉柱,秦朝朝,張嵩,王艷梅,張冰.物理化學(xué)學(xué)報(bào),2011,27,965.]doi:10.3866/PKU. WHXB20110404

    (26)Suzuki,T.;Wang,L.;Tsubouchi,M.J.Phys.Chem.A 2004, 108,5764.doi:10.1021/jp0486043

    (27)Gosselin,J.L.;Weber,P.M.J.Phys.Chem.A 2005,109,4899. doi:10.1021/jp0503866

    (28)Wojdyr,M.J.Appl.Cryst.2010,43,1126.doi:0.1107/ S0021889810030499

    (29)Han,K.L.;He,G.Z.J.Photochem.Photobio l.C 2007,8,55. doi:10.1016/j.jphotochemrev.2007.03.002

    (30)Liu,Y.;Knopp,G.;Xiao,S.;Gerber,T.Chin.Phys.Lett.2014, 31,127802.doi:10.1088/0256-307X/31/12/127802

    (31)Liu,Y.;Gerber,T.;Qin,C.;Jin,F.;Knopp,G.J.Chem.Phys. 2016,144,084201.doi:10.1063/1.4942124

    Ultrafast Nonadiabatic Dynamics of Electronically Excited 2-Methyl Furan

    LONG Jin-You1LIU Zhi-Ming1QIU Xue-Jun1,2ZHANG Bing1,*
    (1State Key Laboratory ofMagnetic Resonance and Atomic and Molecular Physics,Wuhan Institute ofPhysicsand Mathematics, Chinese Academy ofSciences,Wuhan 430071,P.R.China;2College ofElectronicsand Information, South-CentralUniversity forNationalities,Wuhan 430074,P.R.China)

    Excited-state dynam ics of 2-methyl furan has been studied by fem tosecond time-reso lved pho toelectron im aging.The m olecu le 2-m ethyl furan w as simu ltaneously excited to the n=3 Rydberg series of S1[1A″(π3s)],1A′(π3px),1A″(π3py)and1A″(π3pz)and the valence state of1A′(ππ*)by two 400 nm photons and subsequently probed by two 800 nm photons.The average lifetime of the Rydberg series and the valence state wasmeasured to be on the time sca le of 50 fs by the time-dependent ion yie ld of the parent ion.Ultrafast internal conversions among these excited stateswere observed and extracted from the time-dependences of the photoelectron kinetic energy components of these excited states in the photoelectron kinetic energy spectra. Furthermore,it is identified that the1A′(ππ*)statem ight play an important role in internal conversions among these excited states.The Rydberg-valencem ixings,which result in numerous conical intersections,actas the driving force to accom p lish such ultrafast internal conve rsions.

    U ltra fast;Photoelectron im aging;Nonadiaba tic dynam ics;2-Me thy l furan

    O644

    tolow,A.Annu.Rev.Phys.Chem.2003,54,89.

    10.1146/ annurev.physchem.54.011002.103809

    doi:10.3866/PKU.WHXB201612061

    www.whxb.pku.edu.cn

    Received:September14,2016;Revised:December6,2016;Published online:December6,2016.

    *Corresponding author.Email:bzhang@w ipm.ac.cn;Tel:+86-27-87197441.

    The projectwas supported by the National Natural Science Foundation of China(21273274,21303255,11404411).

    國家自然科學(xué)基金(21273274,21303255,11404411)資助項(xiàng)目?Editorialofficeof Acta Physico-Chim ica Sinica

    猜你喜歡
    激發(fā)態(tài)里德呋喃
    激發(fā)態(tài)和瞬態(tài)中間體的光譜探測與調(diào)控
    “港樂”第三只“指環(huán)”《齊格弗里德》再攀高峰
    歌劇(2017年3期)2017-05-17 04:06:13
    收藏球鞋的當(dāng)鋪
    1-O-[3-(2-呋喃基)丙烯?;鵠-β-D-吡喃果糖的合成及應(yīng)用
    煙草科技(2015年8期)2015-12-20 08:27:14
    莧菜紅分子基態(tài)和激發(fā)態(tài)結(jié)構(gòu)與光譜性質(zhì)的量子化學(xué)研究
    單鏡面附近激發(fā)態(tài)極化原子的自發(fā)輻射
    UF6振動(dòng)激發(fā)態(tài)分子的振動(dòng)-振動(dòng)馳豫
    一個(gè)含呋喃環(huán)順磁性碳硼烷衍生物的合成及其生成機(jī)理
    呋喃酮和醬油酮的填充柱超臨界流體色譜對(duì)映體拆分
    呋喃類違禁獸藥與人血清白蛋白作用機(jī)制的分子模擬
    久久 成人 亚洲| 国产白丝娇喘喷水9色精品| 亚洲精品一区蜜桃| 香蕉精品网在线| 人妻系列 视频| 简卡轻食公司| 中文乱码字字幕精品一区二区三区| 一二三四中文在线观看免费高清| 亚洲精品乱久久久久久| 日韩不卡一区二区三区视频在线| 2022亚洲国产成人精品| 如日韩欧美国产精品一区二区三区 | 噜噜噜噜噜久久久久久91| 久久久久久伊人网av| 午夜久久久在线观看| 人妻人人澡人人爽人人| 丝袜喷水一区| 夜夜看夜夜爽夜夜摸| 亚洲美女视频黄频| 国模一区二区三区四区视频| 亚洲精品一区蜜桃| 欧美xxⅹ黑人| 国产男女内射视频| 亚洲人与动物交配视频| 免费人成在线观看视频色| 国产av精品麻豆| 亚洲欧洲国产日韩| 欧美日韩国产mv在线观看视频| 纯流量卡能插随身wifi吗| 日日摸夜夜添夜夜添av毛片| 久久99蜜桃精品久久| 多毛熟女@视频| 日韩亚洲欧美综合| 国产高清三级在线| 亚洲成人av在线免费| 国产 一区精品| 在线观看美女被高潮喷水网站| 久久99热6这里只有精品| 80岁老熟妇乱子伦牲交| 两个人的视频大全免费| 精品久久国产蜜桃| 亚洲va在线va天堂va国产| 中文字幕亚洲精品专区| 看免费成人av毛片| 亚洲国产av新网站| 六月丁香七月| 三上悠亚av全集在线观看 | 久久99蜜桃精品久久| av福利片在线| 日本午夜av视频| 久久99蜜桃精品久久| 国产黄色免费在线视频| 久久免费观看电影| 91aial.com中文字幕在线观看| 国内少妇人妻偷人精品xxx网站| 国产熟女欧美一区二区| 日本黄大片高清| 中文天堂在线官网| 免费人妻精品一区二区三区视频| 一级,二级,三级黄色视频| 午夜av观看不卡| 国产免费一级a男人的天堂| 欧美日韩一区二区视频在线观看视频在线| 欧美三级亚洲精品| 日本vs欧美在线观看视频 | 极品少妇高潮喷水抽搐| 丁香六月天网| 国产成人freesex在线| 日本黄大片高清| 国产一区二区三区av在线| 极品人妻少妇av视频| av一本久久久久| 啦啦啦视频在线资源免费观看| 国产在视频线精品| 久久99热6这里只有精品| 免费看日本二区| 一级毛片aaaaaa免费看小| 成人毛片60女人毛片免费| 国产成人精品婷婷| 熟女人妻精品中文字幕| 蜜桃在线观看..| 久久久午夜欧美精品| 黑人猛操日本美女一级片| 51国产日韩欧美| 91精品一卡2卡3卡4卡| 男女边摸边吃奶| 精品久久久久久久久av| 麻豆精品久久久久久蜜桃| 亚洲精华国产精华液的使用体验| 看非洲黑人一级黄片| 日日摸夜夜添夜夜爱| 免费看av在线观看网站| 99精国产麻豆久久婷婷| 桃花免费在线播放| 熟女人妻精品中文字幕| 蜜桃在线观看..| 欧美亚洲 丝袜 人妻 在线| 中国国产av一级| 99九九在线精品视频 | 九九久久精品国产亚洲av麻豆| 亚洲国产欧美在线一区| 性色avwww在线观看| 91成人精品电影| 久久久久久久久久人人人人人人| 日韩制服骚丝袜av| 99久久综合免费| 又爽又黄a免费视频| 国产高清不卡午夜福利| 国产男人的电影天堂91| 亚洲国产精品成人久久小说| a级一级毛片免费在线观看| 男女边摸边吃奶| 久久综合国产亚洲精品| 男人狂女人下面高潮的视频| 国产色爽女视频免费观看| 久热这里只有精品99| 亚洲性久久影院| 制服丝袜香蕉在线| 欧美精品人与动牲交sv欧美| 久久女婷五月综合色啪小说| 寂寞人妻少妇视频99o| 2022亚洲国产成人精品| 搡女人真爽免费视频火全软件| 丰满人妻一区二区三区视频av| 激情五月婷婷亚洲| 毛片一级片免费看久久久久| 国产精品久久久久成人av| 亚洲欧美日韩另类电影网站| 高清毛片免费看| 国产淫语在线视频| 欧美日本中文国产一区发布| 高清黄色对白视频在线免费看 | 国产片特级美女逼逼视频| 热re99久久精品国产66热6| 老熟女久久久| a级一级毛片免费在线观看| 五月开心婷婷网| 亚洲国产精品一区二区三区在线| 国产亚洲5aaaaa淫片| 一区二区av电影网| 久久人人爽人人爽人人片va| 亚洲婷婷狠狠爱综合网| 久久久久国产精品人妻一区二区| 三上悠亚av全集在线观看 | 各种免费的搞黄视频| 丰满乱子伦码专区| 一本久久精品| 亚洲精品中文字幕在线视频 | 久久99一区二区三区| 黑人猛操日本美女一级片| 成人二区视频| 欧美日韩综合久久久久久| 亚洲自偷自拍三级| 亚洲人与动物交配视频| 午夜福利,免费看| 精品国产一区二区久久| 99久久精品国产国产毛片| 久久这里有精品视频免费| 蜜臀久久99精品久久宅男| 日日摸夜夜添夜夜爱| 国产精品麻豆人妻色哟哟久久| 日韩欧美 国产精品| 色哟哟·www| 国产日韩欧美视频二区| h日本视频在线播放| 亚洲精品色激情综合| 三级国产精品片| 岛国毛片在线播放| 国产精品三级大全| 91精品国产九色| 波野结衣二区三区在线| 日本猛色少妇xxxxx猛交久久| 最近的中文字幕免费完整| 国产精品99久久久久久久久| 午夜av观看不卡| 一本色道久久久久久精品综合| 亚洲第一区二区三区不卡| 亚洲熟女精品中文字幕| 亚洲欧洲日产国产| 91在线精品国自产拍蜜月| 中国三级夫妇交换| 亚洲婷婷狠狠爱综合网| 国产一级毛片在线| 国产免费又黄又爽又色| 人体艺术视频欧美日本| 日韩伦理黄色片| 免费大片18禁| 国产淫片久久久久久久久| 精品99又大又爽又粗少妇毛片| 久久久欧美国产精品| 成年美女黄网站色视频大全免费 | 黄色日韩在线| 国产黄色免费在线视频| 国产亚洲午夜精品一区二区久久| 亚洲色图综合在线观看| 亚洲成人一二三区av| 亚洲经典国产精华液单| 少妇丰满av| 丰满少妇做爰视频| 久久久久久人妻| 女性生殖器流出的白浆| 精品国产一区二区久久| 能在线免费看毛片的网站| 国产深夜福利视频在线观看| 波野结衣二区三区在线| 久久久久久伊人网av| 午夜91福利影院| 欧美精品高潮呻吟av久久| 两个人的视频大全免费| 国产男女内射视频| 一本一本综合久久| 欧美丝袜亚洲另类| 精品一区二区三卡| 国产高清不卡午夜福利| av在线观看视频网站免费| av免费在线看不卡| 亚洲欧美清纯卡通| 少妇的逼水好多| 日韩中字成人| 国产精品久久久久久精品电影小说| 97超碰精品成人国产| 久久精品国产自在天天线| 色婷婷久久久亚洲欧美| 久久久久久久久久成人| 精品午夜福利在线看| 51国产日韩欧美| 成年人免费黄色播放视频 | 在线免费观看不下载黄p国产| 大香蕉久久网| 99九九线精品视频在线观看视频| 国产色爽女视频免费观看| 一区二区三区精品91| 国产免费视频播放在线视频| 免费人成在线观看视频色| 99热国产这里只有精品6| 国产成人aa在线观看| 精品酒店卫生间| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品秋霞免费鲁丝片| 麻豆成人午夜福利视频| 伊人久久精品亚洲午夜| 精品一区在线观看国产| 亚洲av成人精品一区久久| 日本av免费视频播放| 男人和女人高潮做爰伦理| 十八禁网站网址无遮挡 | 赤兔流量卡办理| 国产欧美日韩综合在线一区二区 | 国产男女超爽视频在线观看| 国产精品一区二区在线不卡| 国产日韩欧美在线精品| 亚洲av男天堂| 在线观看www视频免费| 人体艺术视频欧美日本| 久久6这里有精品| 精品视频人人做人人爽| 菩萨蛮人人尽说江南好唐韦庄| 少妇人妻精品综合一区二区| 纵有疾风起免费观看全集完整版| 亚洲高清免费不卡视频| 麻豆成人av视频| 爱豆传媒免费全集在线观看| 久久精品国产鲁丝片午夜精品| 最新的欧美精品一区二区| 日韩欧美精品免费久久| 亚洲,欧美,日韩| 亚洲精品色激情综合| 在线亚洲精品国产二区图片欧美 | 2018国产大陆天天弄谢| 国产一级毛片在线| 中文欧美无线码| 国产精品熟女久久久久浪| 99国产精品免费福利视频| 2018国产大陆天天弄谢| 国产日韩欧美在线精品| 日本vs欧美在线观看视频 | 国内揄拍国产精品人妻在线| 性色av一级| 久久久久久久久久人人人人人人| 丰满迷人的少妇在线观看| 精品亚洲成a人片在线观看| 国产一区二区三区av在线| 国产精品嫩草影院av在线观看| 伊人久久精品亚洲午夜| 国产视频首页在线观看| 精品视频人人做人人爽| 久久久久视频综合| 观看免费一级毛片| 又大又黄又爽视频免费| 亚洲精品456在线播放app| 久久免费观看电影| 99久久精品国产国产毛片| 久久久久国产网址| 免费大片18禁| 久久精品熟女亚洲av麻豆精品| 日本vs欧美在线观看视频 | 26uuu在线亚洲综合色| 国产 精品1| 最近中文字幕2019免费版| 9色porny在线观看| 中文字幕久久专区| 亚洲av.av天堂| 91精品国产九色| 国产极品天堂在线| 最近的中文字幕免费完整| 亚洲欧美一区二区三区黑人 | 成年人免费黄色播放视频 | 亚洲精品一区蜜桃| 国内揄拍国产精品人妻在线| 三上悠亚av全集在线观看 | 国产91av在线免费观看| 亚洲欧美精品专区久久| 97精品久久久久久久久久精品| 国产免费福利视频在线观看| 亚洲国产最新在线播放| 成人亚洲欧美一区二区av| 欧美日韩视频高清一区二区三区二| 夜夜爽夜夜爽视频| 99热网站在线观看| 三上悠亚av全集在线观看 | 亚洲av在线观看美女高潮| 亚洲精品视频女| 春色校园在线视频观看| 成人亚洲精品一区在线观看| av卡一久久| 国产欧美亚洲国产| 日本av手机在线免费观看| 日韩在线高清观看一区二区三区| 一级毛片电影观看| h视频一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 少妇精品久久久久久久| 日韩中字成人| 欧美日韩亚洲高清精品| 国产精品无大码| 乱人伦中国视频| 亚洲一区二区三区欧美精品| 狂野欧美白嫩少妇大欣赏| 熟女电影av网| 一级毛片我不卡| 人人妻人人澡人人爽人人夜夜| 午夜免费鲁丝| 在线播放无遮挡| 国产国拍精品亚洲av在线观看| 中文字幕制服av| 久久久久久久久久久免费av| 免费播放大片免费观看视频在线观看| 一区二区三区乱码不卡18| 两个人免费观看高清视频 | 亚洲av免费高清在线观看| av专区在线播放| 国产一区二区三区av在线| 黄色毛片三级朝国网站 | 婷婷色麻豆天堂久久| 日本av手机在线免费观看| 国产一区有黄有色的免费视频| 黄片无遮挡物在线观看| 国产成人aa在线观看| 伊人亚洲综合成人网| 国产在视频线精品| 夫妻性生交免费视频一级片| 免费观看性生交大片5| 亚洲在久久综合| 欧美少妇被猛烈插入视频| 国产乱人偷精品视频| 日本av免费视频播放| 日本欧美国产在线视频| 亚洲欧美日韩东京热| 一本色道久久久久久精品综合| 亚洲欧美日韩另类电影网站| 国产永久视频网站| 黄色视频在线播放观看不卡| 永久免费av网站大全| 五月天丁香电影| 全区人妻精品视频| 亚洲欧美清纯卡通| 一级毛片黄色毛片免费观看视频| 中文字幕av电影在线播放| 亚洲久久久国产精品| av天堂久久9| 97超碰精品成人国产| 高清av免费在线| 国产免费又黄又爽又色| 国产精品三级大全| 赤兔流量卡办理| 日韩强制内射视频| 国产毛片在线视频| 精品少妇久久久久久888优播| 不卡视频在线观看欧美| 日本av手机在线免费观看| 伊人久久精品亚洲午夜| 久久精品久久精品一区二区三区| 国产探花极品一区二区| 久久久久久久精品精品| 欧美激情极品国产一区二区三区 | 日韩av免费高清视频| 久久国产精品男人的天堂亚洲 | 久久久久久久久久成人| 亚洲一级一片aⅴ在线观看| 纯流量卡能插随身wifi吗| 久久国产乱子免费精品| 91精品国产九色| 99热国产这里只有精品6| 免费黄网站久久成人精品| 国产极品粉嫩免费观看在线 | 成人美女网站在线观看视频| 亚洲国产欧美在线一区| 两个人免费观看高清视频 | 一个人看视频在线观看www免费| 成人特级av手机在线观看| 国产日韩欧美在线精品| 一本色道久久久久久精品综合| 亚洲av成人精品一区久久| 大码成人一级视频| h视频一区二区三区| 日韩强制内射视频| 国产一区二区三区综合在线观看 | 国产男人的电影天堂91| 国产伦精品一区二区三区四那| 男女边吃奶边做爰视频| 亚洲精品一二三| 18禁在线播放成人免费| 伦精品一区二区三区| 国产黄片视频在线免费观看| 三级经典国产精品| 2021少妇久久久久久久久久久| 少妇的逼水好多| 亚洲国产av新网站| 国产精品国产三级国产专区5o| 国产男女超爽视频在线观看| a级毛片免费高清观看在线播放| 在线观看www视频免费| 久久久久久久久久人人人人人人| 欧美国产精品一级二级三级 | 亚洲精品日韩在线中文字幕| 一区二区三区免费毛片| 久久这里有精品视频免费| 国产成人91sexporn| 久久久a久久爽久久v久久| 日韩大片免费观看网站| 精品久久久噜噜| 日韩制服骚丝袜av| av线在线观看网站| 亚州av有码| 久久狼人影院| 国产男人的电影天堂91| 精品99又大又爽又粗少妇毛片| 亚洲精品自拍成人| 国语对白做爰xxxⅹ性视频网站| 日日摸夜夜添夜夜添av毛片| 各种免费的搞黄视频| 三上悠亚av全集在线观看 | av国产久精品久网站免费入址| 午夜免费观看性视频| 亚洲欧美成人综合另类久久久| 欧美丝袜亚洲另类| 超碰97精品在线观看| 日本av免费视频播放| 蜜桃久久精品国产亚洲av| 97超视频在线观看视频| 少妇的逼水好多| 日本爱情动作片www.在线观看| 成人免费观看视频高清| 国产老妇伦熟女老妇高清| 日韩一本色道免费dvd| 亚洲av综合色区一区| 一区二区av电影网| 国产色婷婷99| 一级二级三级毛片免费看| 日本黄色日本黄色录像| 一本大道久久a久久精品| 久久热精品热| 亚洲av不卡在线观看| 极品人妻少妇av视频| 久久狼人影院| 人人妻人人添人人爽欧美一区卜| 美女脱内裤让男人舔精品视频| 亚洲欧美中文字幕日韩二区| 亚洲精品日韩av片在线观看| 丁香六月天网| 久久ye,这里只有精品| 黄色配什么色好看| 男人和女人高潮做爰伦理| 亚洲精品日韩在线中文字幕| 中文字幕制服av| 国产精品国产三级国产av玫瑰| av视频免费观看在线观看| 91在线精品国自产拍蜜月| 夜夜看夜夜爽夜夜摸| 97精品久久久久久久久久精品| 日本午夜av视频| 国产色爽女视频免费观看| 日韩强制内射视频| h日本视频在线播放| 国产片特级美女逼逼视频| 国产精品成人在线| 精品亚洲成国产av| av天堂久久9| 久久久国产精品麻豆| 成年人午夜在线观看视频| 国产午夜精品久久久久久一区二区三区| 高清毛片免费看| 久久久久视频综合| 亚洲精华国产精华液的使用体验| 国产精品久久久久久av不卡| 制服丝袜香蕉在线| 韩国av在线不卡| 一区在线观看完整版| 在线观看人妻少妇| 欧美性感艳星| 插逼视频在线观看| 99热这里只有是精品在线观看| 九九久久精品国产亚洲av麻豆| 美女中出高潮动态图| 天美传媒精品一区二区| 欧美三级亚洲精品| 超碰97精品在线观看| av免费在线看不卡| 亚洲精品一二三| 美女内射精品一级片tv| 男女啪啪激烈高潮av片| 老熟女久久久| 免费av中文字幕在线| 伦理电影大哥的女人| 老司机亚洲免费影院| 国产精品无大码| 久久久国产欧美日韩av| 国产日韩一区二区三区精品不卡 | 成年人免费黄色播放视频 | 免费大片黄手机在线观看| 国产精品嫩草影院av在线观看| 黄片无遮挡物在线观看| 欧美精品高潮呻吟av久久| 免费大片18禁| 久久精品国产亚洲av涩爱| 免费观看性生交大片5| 欧美老熟妇乱子伦牲交| 97在线视频观看| 国产在线男女| 激情五月婷婷亚洲| 亚洲精华国产精华液的使用体验| 久久影院123| 亚洲久久久国产精品| 黄色怎么调成土黄色| 亚洲国产精品999| 偷拍熟女少妇极品色| 日韩在线高清观看一区二区三区| 国产视频首页在线观看| 国产又色又爽无遮挡免| 一级二级三级毛片免费看| 精品少妇黑人巨大在线播放| 国产高清有码在线观看视频| 高清视频免费观看一区二区| 亚洲av电影在线观看一区二区三区| 日日摸夜夜添夜夜添av毛片| 视频中文字幕在线观看| av有码第一页| 久久午夜福利片| 高清午夜精品一区二区三区| 色婷婷久久久亚洲欧美| 交换朋友夫妻互换小说| 香蕉精品网在线| 日韩av免费高清视频| 国产精品.久久久| 最近2019中文字幕mv第一页| 国产欧美日韩综合在线一区二区 | 99久久精品热视频| 在线播放无遮挡| 亚洲精品国产av成人精品| 国产黄频视频在线观看| 欧美一级a爱片免费观看看| 亚洲欧美日韩卡通动漫| 永久免费av网站大全| 欧美成人午夜免费资源| 狂野欧美激情性xxxx在线观看| 九九在线视频观看精品| 国产精品国产三级国产专区5o| 18禁裸乳无遮挡动漫免费视频| 精品少妇黑人巨大在线播放| 下体分泌物呈黄色| 99久久精品热视频| 午夜福利,免费看| 老司机亚洲免费影院| 久久精品久久久久久噜噜老黄| 久热这里只有精品99| 亚洲国产最新在线播放| 91aial.com中文字幕在线观看| 亚洲第一av免费看| 国产免费视频播放在线视频| 亚洲精品乱码久久久久久按摩| 丁香六月天网| 嫩草影院新地址| 日韩一本色道免费dvd| 久久精品国产鲁丝片午夜精品| 一级二级三级毛片免费看| 在线看a的网站| 欧美成人午夜免费资源| 美女xxoo啪啪120秒动态图| 寂寞人妻少妇视频99o| 九九爱精品视频在线观看| 中国国产av一级| 国产精品一区二区性色av| 内地一区二区视频在线| 欧美性感艳星| 寂寞人妻少妇视频99o| 亚洲美女搞黄在线观看| 亚洲国产精品一区三区| 国产精品一区二区性色av| 老熟女久久久| 免费大片18禁| 伊人亚洲综合成人网| 中文字幕人妻熟人妻熟丝袜美| 久久精品久久精品一区二区三区| 男女边摸边吃奶| 国产精品麻豆人妻色哟哟久久|