• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sliding Mode Control of Fractional-Order Delayed Memristive Chaotic System with Uncertainty and Disturbance?

    2017-05-09 11:46:24DaWeiDing丁大為FangFangLiu劉芳芳HuiChen陳輝NianWang王年andDongLiang梁棟
    Communications in Theoretical Physics 2017年12期
    關(guān)鍵詞:陳輝

    Da-Wei Ding(丁大為)Fang-Fang Liu(劉芳芳)Hui Chen(陳輝)Nian Wang(王年)? and Dong Liang(梁棟)

    1Key Laboratory of Intelligent Computing and Signal Processing,Ministry of Education,Anhui University,Hefei 230601,China

    2School of Electronics and Information Engineering,Anhui University,Hefei 230601,China

    1 Introduction

    Leon Chua predicted that there should be a fourth type of electronic components,the memristor,based on the physics symmetry.[1]The memristor was not developed or researched within circuit theory until 2008,when HP’s Stan Williamset al.created a solid-state implementation of the memristor.[2]Many studies on the memristor for application development have been published now,such as the memristor-based circuits[3?4]and memristor oscillators.[5?6]

    In recent years,more and more scholars are interested in the fractional-order system.In Ref.[7],for the purpose of investigating the nonlinear dynamics of the system,a fractional-order Chua’s circuit based on the memristor,which derives from the integer-order counterparts was provided.The fractional-order system is widely applied in many aspects,such as the oscillator theory,[8]the control field,[9?11]and the energy field.[12]Some of the classic systems have been extended to their fractionalorder counterparts,for example,the Liu system,[13?14]the Chen system,[15]the Duffing system,[16]and the viscoelastic system.[17]

    Time delay exists in many engineering systems,causing system instability and bad performance.And it is unavoidable in many dynamical systems,such as biological systems,[18]neural networks,[19]system control,[20]and so on.Therefore,it is signi ficant to investigate the timedelayed effect on dynamical behaviors of complex systems theoretically and practically.

    Furthermore,the fractional-order delayed system involves non-integer order derivatives as well as time delay.These have been proved useful in financial system,[21]signal processing,[22]biology,[23]and so on.Many researchers have studied the fractional-order delayed system.[24?29]In Ref.[28],the bifurcation in Duffing-van der Pol oscillators with time delay was analyzed.In Ref.[29],the bifurcation and stability in three neurons fractional-order neural network were investigated by applying the sum of time delay as the bifurcation parameter.Additionally,chaos behaviors in the fractional-order delayed system have become the key focus.[30?31]In Ref.[30],the chaos in a delayed Bloch model was discussed and found that time delay can affect the system stability in this system.In Ref.[31],the discrete chaotic dynamics in fractional delayed logistic maps was studied,and the discrete chaotic attractor was discovered.In Ref.[32],we have analyzed the stability and Hopf bifurcation of fractional-order delayed memristor-based chaotic system by choosing the time delay and fractional-order as the bifurcation parameter.

    Chaotic control is to make the trajectories of initial chaotic system approach a steady state.Many control schemes for fractional-order chaotic systems have been proposed,including active control,[33]impulsive control,[34]adaptive control,[35]passive control[36]and generalized projective control.[37]Sliding mode control has received much attention due to its major advantages such as robustness against parameter variations,guaranteed stability,simplicity in implementation and fast dynamic response.Therefore,in recent years,sliding mode control has been investigated for linear and nonlinear systems.[38?41]Many vital results have been reported for the synchronization and control of fractional-order chaotic systems by using the sliding mode control strategy.In Ref.[42],to realize complete synchronization of a class of three-dimensional fractional-order chaotic systems,the author modi fied sliding mode control scheme,and designed a single-state sliding mode controller.In Ref.[43],Tanmoy Dasguptaet al.proposed a novel fractional-order sliding mode controller for synchronization of fractional order chaotic systems,and achieved its application in secure communication.The scholars studied the adaptive sliding mode synchronization control for a class of fractional-order chaotic systems with unknown bounded disturbances in Ref.[44].In order to achieve finite time convergence of the system states,a terminal sliding mode control method was firstly proposed by Zak in Ref.[45].In Ref.[46],the terminal sliding mode control technique that offers some superior properties such as fast response and finite time convergence was proposed,which is particularly suitable for high-precision control as it speeds up the rate of convergence near the origin.In Ref.[47],they investigated the chaotic control of a class of fractional-order chaotic systems via sliding mode control.In Ref.[48],the authors derived new results based on the sliding mode control for the anti-synchronization of four-wing chaotic systems.

    Motivated by aforementioned analysis,the main purpose of this paper is to design a fractional-order sliding mode controller,which is the combination of fractional calculus theory and the sliding mode control technique in order to control the fractional-order delayed memristive chaotic system.For this purpose,sliding mode control scheme is utilized along with Lyapunov stability theory to design the suitable control structure.Recall that slide mode controllers,which applied to the fractionalorder chaotic system may be numerous,while applied to fractional-order delayed memristor system are few.The proposed controller makes the system states asymptotically stable and robust against the system’s uncertainty in the presence of an external disturbance.Simulation results illustrate that the proposed method can eliminate chaos and stabilize the system in a finite time.

    The rest of this paper is organized as follows.In Sec.2,we discuss a fractional-order delayed memristive chaotic system.According to the sliding mode control theory,a controller is proposed to control the commensurate and non-commensurate fractional-order delayed chaotic system in Sec.3,the design procedure of fractional-order sliding mode approach is described in this section.Numerical simulations results are shown in Sec.4.Finally,some conclusions are drawn in Sec.5.

    2 System Description

    A memristor is a passive two-terminal circuital element,and it is described by a nonlinear characteristic:iM=W(φ)vM,vM=M(z)iM,whereiM,vM,φ,andzare the current,the voltage,the flux,and the charge in memristor.W(φ)=dz(φ)/dφandM(z)=dφ(z)/dzexpress as inductance and memristance respectively.

    Furthermore,the relationship ofφ(z)andz(φ)can be de fined with the charge-controlled memristor and fluxcontrolled memristor.We choose the flux-controlled memristive system:

    whereiMandvMdescribe the current and the voltage through the memristor,andf(t,x,vM)is the internal state function.

    De finition 1(Ref.[49]):In this paper,a continuous functionf:R+→Rrepresents the Caputo fractional derivative,which has a fractional-orderq:

    where Γ(q)is the gamma function,m?1<q≤m,m∈N.

    The simplest delayed memristive chaotic system includes a resistorR,a voltage followerU2,a capacitorC,a flux-controlled memristorM,a time delay unit,and an integratorU1(Fig.1 in Ref.[50]).The following equations describe the delayed memristive chaotic system in Fig.1.

    whereτis the time delay,yis the state variable of the memristor,andA,B,a,bandlare the constants.

    From the integer-order system,we derive the equations of the fractional-order memristive system,and it can be calculated as:

    whereq1andq2are the fractional-order of the capacitorCand memristorM.

    Fig.1 Model of the delayed memristive chaotic system.

    Then,we get the following equations:

    3 Designing the Sliding Mode Control

    We add the control inputu(t)to the state equations in system(6)to control the chaos behavior:

    where,f(x,y)=nxy,g(x,y)=ax+lxyis assumed.

    Our aim is to design a fractional-order sliding mode controller.The first step is constructing a fractional-order sliding surface that represents a desired system dynamics.Then,a switching control law should be developed,and any states outside the surface are driven to reach the surface in a finite time.[51]Therefore,we choose a sliding surface:

    According to the sliding mode method,the sliding surface and its derivative must satisfy the following conditions:

    The equivalent control law is calculated as:

    The switching control can keep the system within the sliding manifold.To satisfy the sliding condition,the discontinuous reaching law is chosen as follows:

    Therefore,the total control law can be de fined as:

    Theorem 1Considering the fractional-order delayed memristive chaotic system(8),and the control law(16),if the controller gainKr<0,the system is asymptotically stable.

    ProofThe Lyapunov candidate is selected as:

    WhenKr<0,˙V<0 fors(t)/=0.In other words,the controlled system satis fies the reaching condition.Therefore,a Lyapunov function has been found that it satis fies the conditions of the Lyapunov stability theorem(V>0,˙V<0).Thus,the closed-loop system in the presence of the controller(16)is globally asymptotically stable.

    Theorem 2Considering the system(8)being perturbed by uncertainties and an external disturbance,it can be modeled as follows:

    where Δg(x,y)andd(t)are assumed to be bounded,i.e.|Δg(x,y)|≤e1and|d(t)|≤e2.The closed-loop system with the sliding mode control(16)is globally asymptotically stable whenKr<?(e1+e2).

    ProofSelecting the Lyapunov candidate(17),we have

    Therefore,in view of the uncertainty and external disturbance,when the controller gainKr<?(e1+e2),the controller(16)can make the system states asymptotically stable in limited time.

    Thus,the theorem is proofed completely.

    4 Numerical Simulation

    The chaotic states and dynamical behaviors of the uncontrolled system(6)have been discussed in Ref.[50].This section of the paper presents four illustrative examples to verify and demonstrate the effectiveness of the proposed control scheme.In this paper,the modi fied Adams–Bashforth–Moulton predictor-corrector algorithm[52]is used to solve the numerical simulations in the fractionalorder differential equations with time delay.It should be noticed that the controller is applied att=15 s.Here,some parameters are given to calculate in the system:a=2.5b=?0.5,l=?5,c=1.5,m=?2,andn=?2.

    Case 1Non-commensurate order

    When assuming the different orders of derivatives in state equations(6),i.e.q1/=q2,we get a general noncommensurate order system.The fractional-order delayed memristive chaotic system is chaotic whenq1=0.88 andq2=0.98,which are shown in Fig.2.

    Fig.2 Time-domain diagram and phase diagram of the fractional-order system(6)when q1=0.88,q2=0.98,τ=1.5 without controller.

    Fig.3 Time response of controlled non-commensurate fractional-order system states(The control u(t)is activated at t=15 s).

    In order to satisfy the condition in Theorem 1,we select the gain of the controllerKr=?1 in system(8).To stabilize this system,the control law(16)is applied and the simulation results are depicted in Fig.3.It shows the obtained theoretic results are feasible and efficient for the controlling fractional-order delayed memristive system.

    Case 2Non-commensurate order with uncertainty and an external disturbance

    In this case,the fractional-order delayed memristive chaotic system is perturbed by an uncertainty term Δg(x,y)=0.45sin(πx)cos(πy)and an external disturbanced(t)=0.5sin(πt),where|Δg(x,y)|≤e1=0.45 and|d(t)|≤e2=0.5.The system state responses of the closed-loop system in the presence of the control law(16)are shown in Fig.4 when the gain of the controllerKr=?1,which conforms to the condition of Theorem 2.

    Fig.4 Time response of controlled non-commensurate fractional-order system states in the presence of uncertainty and an external disturbance(The control u(t)is activated at t=15 s).

    Case 3Commensurate order

    When assuming the same orders of derivatives in the state equations(6),i.e.,q1=q2=q,we get a commensurate order system.The system(6)without the controller exhibits a chaotic behavior as shown in Fig.5 with the commensurate orderq=0.99 of the derivatives.

    Fig.5 Time-domain diagram and phase diagram of the fractional-order system(6)when q1=q2=0.99,τ=1.5 without controller.

    To demonstrate the chaotic behaviors,the Largest Lyapunov Exponent(LLE)should be considered.In this paper,the Wolf algorithm is chosen to calculate LLE in this fractional-order delayed memristive chaotic system.It is known that the Max Lyapunov Exponent(MLE)increases from the negative number to zero when periodic cycles appear,and the chaotic dynamics occurs when MLE is positive.By fixing the parameter of the fractional-order(q=0.9)and varying the parameter of the time delay(τ∈[0.4,1.6]),the transitions from one cycle to two cycles,two cycles to four cycles,and four cycles to chaos are observed atτ=1.18,τ=1.27,andτ=1.28.In the interval 0.54<τ<1.18,one cycle is observed.Chaos is observed in the intervalτ>1.28.The bifurcation diagram and the MLE are shown in Fig.6.

    The states of the system(6)under the designed controller(16)are illustrated in Fig.7 whenKr=?1,which shows that the sliding control law guarantees the states reaching the sliding surface and finally stabilization.

    Fig.6 Bifurcation diagram and Max Lyapunov Exponent with q=0.9.

    Fig.7 Time response of controlled commensurate fractional-order system states(The control u(t)is activated at t=15 s).

    Case 4Commensurate order with uncertainty and an external disturbance

    Fig.8 Time response of controlled commensurate fractional-order system states in the presence of uncertainty and an external disturbance(The control u(t)is activated at t=15 s).

    In this case,the fractional-order delayed commensurate system(q=0.99)is perturbed by an uncertainty term Δg(x,y)=0.45sin(πx)cos(πy)and an external disturbanced(t)=0.5sin(πt),where|Δg(x,y)|≤e1=0.45 and|d(t)|≤e2=0.5.The system state responses of the closed-loop system in the presence of the control law(16)are illustrated in Fig.8 whenKr=?1,which satis fies Theorem 2.

    5 Conclusions

    In this paper,a fractional-order delayed memristive chaotic system has been introduced and a fractional-order sliding mode controller is proposed in order to control the chaotic behavior in the system. According to the Lyapunov stability theorem,the control law can asymptotically stabilize the fractional-order delayed memristive chaotic system.The proposed control method is simple,robust and theoretically rigorous,and its performance is satisfactory in the presence of uncertainty and an external disturbance within non-commensurate order system and commensurate order system.It indicates that the sliding mode control has the anti-jamming capability.Finally,numerical simulations present the effectiveness of the control scheme.

    Considering that the current system research is not perfect,these studies tend to be more numerical simulation of the system,and did not develop to realize the hardware circuits.In the future,we should focus on how to construct chaotic hardware circuits with associated delay factors.

    [1]Leon O.Chua,IEEE Trans.Circuit Theory 18(1971)507.

    [2]D.B.Strukov,G.S.Snider,D.R.Stewart,and R.S.Williams,Nature(London)453(2008)80.

    [3]B.Muthuswamy and P.P.Kokate,IETE Tech.Rev.26(2009)417.

    [4]I.Vourkas and G.C.Sirakoulis,IEEE Trans.Nanotechnol.11(2012)1151.

    [5]Makoto Itoh and Leon O.Chua,Inter.J.Bifurcat.Chaos 18(2008)3183.

    [6]Corinto,Fernando,A.Ascoli,and M.Gilli,IEEE Trans.Circuits Syst.I,Reg.Papers 58(2011)1323.

    [7]D.W.Ding,S.J.Li,and N.Wang,Dynamic Analysis of Fractional-Order Memristive Chaotic System,J.Harbin Inst.Tech.(2017);doi:10.11916/j.issn.1005-9113.16136.

    [8]Abbas,Syed,V.S.Erturk,and S.Momani,Signal Process.102(2014)171.

    [9]A.K.Golmankhaneh,R.Are fi,and D.Baleanu,J.Vib.Control.21(2002)85.

    [10]Girejko,Ewa,and E.Pawluszewicz,J.Dynam.Control Syst.(2016)1.

    [11]Kamaljeet and D.Bahuguna,J.Dyn.Control Syst.22(2015)1.

    [12]Xu Beibei,et al.,Nonlinear Dynam.81(2005)19.

    [13]J.G.Lu,Phys.Lett.A 354(2006)301.

    [14]A.K.Golmankhaneh,R.Are fi,and D.Baleanu,Adv.Math.Phys.2013(2013)84.

    [15]C.Li and G.Chen,Chaos,Solitons and Fractals 22(2004)549.

    [16]J.Cao,C.Ma,H.Xie,and Z.Jiang,J.Computat.Nonlinear Dynam.(2010);doi:10.1115/1.4002092.

    [17]Xu,Yong,Y.Li,and D.Liu,J.Comput.Nonlinear Dynam.9(2014)031015.

    [18]Gui-Quan Sun,et al.,Sci.Rep.5(2015)11246.

    [19]Chang-Jin Xu,Pei-Luan Li,and Yi-Cheng Pang,Commun.Theor.Phys.67(2017)137.

    [20]L.Liu,F.Pan,and D.Xue,Opt.Inter.J.Light Electron Opt.125(2014)7020.

    [21]J.Cao,C.Ma,H.Xie,and Z.Jiang,J.Comput.Nonlinear Dynam.4(2010)1003.

    [22]R.Li,Opt.Int.J.Light Electron Opt.127(2016)6695.

    [23]Z.Wang,X.Huang,and G.Shi,Comput.Math.Appl.62(2011)1531.

    [24]Liping Chen,et al.,J.Comput.Nonlinear Dynam.10(2015).

    [25]G.Velmurugan and R.Rakkiyappan,Nonlinear Dynam.11(2015)1.

    [26]A.Babakhani,D.Baleanu,and R.Khanbabaie,Nonlinear Dynam.69(2012)721.

    [27]M.Xiao,W.X.Zheng,and J.Cao,IEEE Trans.Neur.Net.Lear.Syst.24(2012)118.

    [28]A.Y.T.Leung,H.X.Yang,and P.Zhu,Commun.Nonlinear Sci.19(2014)1142.

    [29]Chengdai Huang,J.Cao,and Z.Ma,Inter.J.Syst.Sci.47(2015)1.

    [30]Baleanu,Dumitru,et al.,Commun.Nonlinear Sci.25(2015)41.

    [31]G.C.Wu and D.Baleanu,Nonlinear Dynam.80(2015)1697.

    [32]W.Hu,D.Ding,Y.Zhang,N.Wang,and D.Liang,Optik 130(2017)189.

    [33]S.K.Agrawal,M.Srivastava,and S.Das,Chaos,Solitons&Fractals 45(2012)628.

    [34]H.Xi,S.Yu,R.Zhang,et al.,Opt.Inter.J.Light Electron Opt.125(2014)2036.

    [35]S.Kuntanapreeda,Nonlinear Dynam.84(2016)2505.

    [36]Kocamaz,Ugur Erkin,Y.Uyaroglu,and S.Vaidyanathan,Advances and Applications in Chaotic Systems,Springer International Publishing,Berlin(2016).

    [37]A.Boulkroune,A.Bouzeriba,and T.Bouden,Neurocomputing 173(2016)606.

    [38]Jun-Jun Liu,Xin Chen,and Jun-Min Wang,J.Dynam.Control Syst.22(2016)117.

    [39]Bao-Zhu Guo,Hua-Cheng Zhou,et al.,J.Dynam.Control Syst.20(2014)539.

    [40]B.Jiang,P.Shi,and Z.Mao,Circ.Syst.Signal Process.30(2011)1.

    [41]Z.Gao,B.Jiang,P.Shi,et al.,J.Franklin Inst.349(2012)1543.

    [42]L.Gao,Z.Wang,K.Zhou,et al.,Neurocomputing 166(2015)53.

    [43]Dasgupta Tanmoy,P.Paral,and S.Bhattacharya,Int.Conference Comput.Commun.Inform.IEEE(2015)pp.1-6.

    [44]S.Shao,M.Chen,and X.Yan,Nonlinear Dynam.83(2016)1855.

    [45]M.Zak,Phys.Lett.A 133(1988)18.

    [46]S.Mobayen,Nonlinear Dynam.82(2015)599.

    [47]Di-Yi Chen,Yu-Xiao Liu,and Xiao-Yi Ma,Nonlinear Dynam.67(2011)893.

    [48]Sundarapandian Vaidyanathan and Sivaperumal Sampath,Inter.J.Automat.Comput.9(2012)274.

    [49]I.Podlubny,Math.Sci.Eng.(1999).

    [50]W.Hu,D.Ding,and N.Wang,J.Comput.Nonlinear Dynam.12(2017)0410031.

    [51]Dadras Sara and H.R.Momeni,Phys.A Stat.Mech.Appl.389(2010)2434.

    [52]S.Bhalekar and V.Daftardar-Gejji,Fract.Calc.Appl.Anal.1(2011)1.

    猜你喜歡
    陳輝
    革命烈士和詩人陳輝
    Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
    “購物式”相親不可取
    Kinetic theory of Jeans’gravitational instability in millicharged dark matter system
    Robustness of the unidirectional stripe order in the kagome superconductor CsV3Sb5
    要想腸胃功能好 按摩中脘不可少
    保健與生活(2022年8期)2022-04-08 21:48:33
    Edge-and strain-induced band bending in bilayer-monolayer Pb2Se3 heterostructures*
    Second-order interference of two independent photons with different spectra?
    真誠的道歉
    民間文學(2019年12期)2019-05-26 14:12:45
    見者發(fā)財
    免费在线观看完整版高清| 日本av免费视频播放| 国产成人系列免费观看| 国产亚洲av高清不卡| 丰满饥渴人妻一区二区三| 国产亚洲一区二区精品| 午夜激情av网站| 无限看片的www在线观看| 亚洲国产精品一区三区| 亚洲avbb在线观看| 亚洲精品日韩在线中文字幕| 久久精品人人爽人人爽视色| 久久亚洲精品不卡| 午夜免费观看性视频| 国产在线视频一区二区| 久久亚洲精品不卡| 国产精品国产av在线观看| 美女视频免费永久观看网站| 老熟妇仑乱视频hdxx| 久久精品国产综合久久久| 我的亚洲天堂| svipshipincom国产片| 欧美日韩av久久| videos熟女内射| 亚洲国产成人一精品久久久| 成人av一区二区三区在线看 | 欧美成人午夜精品| 精品国产超薄肉色丝袜足j| 老司机靠b影院| 亚洲成人免费电影在线观看| 老汉色∧v一级毛片| 欧美激情久久久久久爽电影 | 亚洲av美国av| 欧美 日韩 精品 国产| 手机成人av网站| 亚洲欧美精品综合一区二区三区| 亚洲成人手机| 女人爽到高潮嗷嗷叫在线视频| 老司机亚洲免费影院| 两个人看的免费小视频| 夜夜夜夜夜久久久久| 性少妇av在线| 亚洲成国产人片在线观看| av天堂久久9| 两个人看的免费小视频| 国产黄频视频在线观看| 三级毛片av免费| 久久99一区二区三区| av网站免费在线观看视频| 大陆偷拍与自拍| 亚洲激情五月婷婷啪啪| 久久久久久久久免费视频了| 日韩中文字幕欧美一区二区| 啦啦啦 在线观看视频| 香蕉国产在线看| 9色porny在线观看| 纯流量卡能插随身wifi吗| 一二三四社区在线视频社区8| a在线观看视频网站| 国产人伦9x9x在线观看| 蜜桃国产av成人99| 人人妻人人爽人人添夜夜欢视频| 99精品久久久久人妻精品| 一区二区三区四区激情视频| 飞空精品影院首页| 老司机影院毛片| bbb黄色大片| 黄色怎么调成土黄色| 建设人人有责人人尽责人人享有的| 久久精品aⅴ一区二区三区四区| 黄频高清免费视频| 国产激情久久老熟女| 亚洲一区中文字幕在线| 日本欧美视频一区| 最近最新免费中文字幕在线| 青春草亚洲视频在线观看| 欧美精品亚洲一区二区| 天天影视国产精品| 国产福利在线免费观看视频| 伦理电影免费视频| 狂野欧美激情性bbbbbb| 在线永久观看黄色视频| 十八禁网站免费在线| 精品视频人人做人人爽| 一二三四社区在线视频社区8| 丝袜人妻中文字幕| 精品第一国产精品| 老熟妇仑乱视频hdxx| 大香蕉久久网| 成人国语在线视频| 亚洲国产精品成人久久小说| 91麻豆精品激情在线观看国产 | 久久国产精品影院| 亚洲久久久国产精品| 青草久久国产| 国产成人a∨麻豆精品| 久久久久久久大尺度免费视频| 99精品欧美一区二区三区四区| 欧美日韩成人在线一区二区| 丰满迷人的少妇在线观看| 亚洲中文字幕日韩| 日本黄色日本黄色录像| 国产成人av教育| 美女福利国产在线| 在线观看人妻少妇| av超薄肉色丝袜交足视频| 国产成人啪精品午夜网站| 亚洲午夜精品一区,二区,三区| 少妇精品久久久久久久| 啪啪无遮挡十八禁网站| 9色porny在线观看| 91字幕亚洲| 国产免费现黄频在线看| www国产在线视频色| 欧美 亚洲 国产 日韩一| 丁香欧美五月| 免费看十八禁软件| 人妻丰满熟妇av一区二区三区| 午夜福利高清视频| 日韩三级视频一区二区三区| 99久久精品国产亚洲精品| 欧美日韩国产亚洲二区| 亚洲欧美日韩无卡精品| 久久久久久久精品吃奶| 精品久久久久久久久久免费视频| www.自偷自拍.com| 亚洲一码二码三码区别大吗| 黑人欧美特级aaaaaa片| 日韩欧美国产一区二区入口| 国产成人精品无人区| 美女扒开内裤让男人捅视频| 亚洲电影在线观看av| 变态另类丝袜制服| www国产在线视频色| 欧美 亚洲 国产 日韩一| 亚洲国产精品sss在线观看| 亚洲av成人av| 午夜精品久久久久久毛片777| 午夜精品一区二区三区免费看| 老熟妇仑乱视频hdxx| 国产精品自产拍在线观看55亚洲| 成年免费大片在线观看| 成人国产综合亚洲| 亚洲精品久久成人aⅴ小说| 这个男人来自地球电影免费观看| 窝窝影院91人妻| 嫩草影视91久久| 国产一区二区三区在线臀色熟女| 精品欧美一区二区三区在线| 在线a可以看的网站| 宅男免费午夜| 老司机午夜十八禁免费视频| 国内精品一区二区在线观看| 亚洲男人天堂网一区| 国产欧美日韩一区二区精品| 老司机深夜福利视频在线观看| 久久这里只有精品中国| 欧美色视频一区免费| 久久 成人 亚洲| 欧美又色又爽又黄视频| 麻豆av在线久日| 中文字幕久久专区| 久久国产乱子伦精品免费另类| 岛国在线免费视频观看| 淫妇啪啪啪对白视频| 欧美一区二区精品小视频在线| 一个人免费在线观看的高清视频| 国产精品久久电影中文字幕| 悠悠久久av| 一个人免费在线观看的高清视频| 久久精品国产99精品国产亚洲性色| 色综合婷婷激情| 日韩欧美精品v在线| 午夜福利在线观看吧| 久久久久久久久免费视频了| 亚洲真实伦在线观看| 母亲3免费完整高清在线观看| 国产在线精品亚洲第一网站| 丁香欧美五月| 18禁黄网站禁片午夜丰满| 日韩国内少妇激情av| 在线观看一区二区三区| 国产高清有码在线观看视频 | 久久久久久九九精品二区国产 | 久久久国产成人精品二区| 久久精品国产综合久久久| 美女免费视频网站| 夜夜爽天天搞| 一本精品99久久精品77| 91字幕亚洲| 久久中文字幕人妻熟女| 在线播放国产精品三级| 一区二区三区高清视频在线| 国产成人精品久久二区二区91| 国产精品永久免费网站| 日本 av在线| 禁无遮挡网站| 搞女人的毛片| 一二三四社区在线视频社区8| bbb黄色大片| 欧美性长视频在线观看| 99在线人妻在线中文字幕| xxxwww97欧美| 精品福利观看| 琪琪午夜伦伦电影理论片6080| av片东京热男人的天堂| 欧美三级亚洲精品| 国产伦人伦偷精品视频| 久久午夜综合久久蜜桃| 啦啦啦免费观看视频1| 男人的好看免费观看在线视频 | 最近最新中文字幕大全免费视频| 可以在线观看毛片的网站| 国产三级在线视频| 毛片女人毛片| 精品国产乱子伦一区二区三区| 人人妻人人澡欧美一区二区| 午夜精品在线福利| 日韩精品中文字幕看吧| 日韩三级视频一区二区三区| 精品久久久久久成人av| 午夜免费成人在线视频| 99在线视频只有这里精品首页| 精品国产乱子伦一区二区三区| 在线十欧美十亚洲十日本专区| 欧美丝袜亚洲另类 | 日本 av在线| 国产精品久久久久久人妻精品电影| 成年女人毛片免费观看观看9| 超碰成人久久| 国产真人三级小视频在线观看| 亚洲av熟女| 校园春色视频在线观看| 国产乱人伦免费视频| 午夜福利欧美成人| 国产伦人伦偷精品视频| 亚洲成a人片在线一区二区| 免费在线观看日本一区| 日韩欧美 国产精品| 国产精品一区二区三区四区久久| 成人手机av| 欧美久久黑人一区二区| 色在线成人网| 最近在线观看免费完整版| 国产伦在线观看视频一区| 精品国产美女av久久久久小说| bbb黄色大片| 午夜激情av网站| 黄色视频不卡| 国产片内射在线| 嫩草影视91久久| cao死你这个sao货| 中文资源天堂在线| 久久香蕉国产精品| 日韩欧美国产在线观看| 大型黄色视频在线免费观看| 国产成人影院久久av| 久久久久久久久中文| 国产蜜桃级精品一区二区三区| 午夜老司机福利片| 精品国产超薄肉色丝袜足j| 我要搜黄色片| 看免费av毛片| 久久精品国产亚洲av香蕉五月| 欧美日韩一级在线毛片| 又紧又爽又黄一区二区| 国产高清有码在线观看视频 | 国产欧美日韩一区二区三| 午夜激情福利司机影院| 国产99白浆流出| 国产黄色小视频在线观看| 国产成人av激情在线播放| 亚洲成人中文字幕在线播放| 最近在线观看免费完整版| 99国产精品一区二区三区| 麻豆国产97在线/欧美 | avwww免费| 亚洲人成电影免费在线| 夜夜看夜夜爽夜夜摸| 欧美日韩亚洲综合一区二区三区_| 精品日产1卡2卡| 女同久久另类99精品国产91| 免费高清视频大片| 久久草成人影院| 精品少妇一区二区三区视频日本电影| 国产精品久久久久久精品电影| 中文字幕精品亚洲无线码一区| 国产亚洲av高清不卡| 香蕉丝袜av| 欧美最黄视频在线播放免费| 免费电影在线观看免费观看| 国产激情久久老熟女| 亚洲真实伦在线观看| 国产精华一区二区三区| 婷婷精品国产亚洲av| 亚洲av电影在线进入| 亚洲在线自拍视频| 久久这里只有精品中国| 久久草成人影院| 国产爱豆传媒在线观看 | 一进一出抽搐gif免费好疼| 啪啪无遮挡十八禁网站| 亚洲天堂国产精品一区在线| 亚洲精品中文字幕在线视频| 最近最新免费中文字幕在线| 欧美精品啪啪一区二区三区| 国产精品爽爽va在线观看网站| e午夜精品久久久久久久| 欧美日韩国产亚洲二区| 18禁国产床啪视频网站| 香蕉国产在线看| 国产亚洲精品综合一区在线观看 | 久久性视频一级片| 观看免费一级毛片| 亚洲精品在线美女| 日韩三级视频一区二区三区| 中文字幕精品亚洲无线码一区| 国产精品亚洲美女久久久| 黄色女人牲交| 18美女黄网站色大片免费观看| 日本一本二区三区精品| 99久久久亚洲精品蜜臀av| 哪里可以看免费的av片| 久久久国产成人免费| 99精品在免费线老司机午夜| 天天躁夜夜躁狠狠躁躁| 国产成年人精品一区二区| 麻豆成人午夜福利视频| 窝窝影院91人妻| 久久久久亚洲av毛片大全| 俄罗斯特黄特色一大片| 亚洲免费av在线视频| 欧美绝顶高潮抽搐喷水| 国产不卡一卡二| 欧美黑人巨大hd| 精品久久久久久久久久久久久| 精品国产亚洲在线| 亚洲人成77777在线视频| 久久久国产成人免费| 婷婷亚洲欧美| 国产黄色小视频在线观看| 久久久久精品国产欧美久久久| 久久久久久免费高清国产稀缺| 婷婷六月久久综合丁香| 搡老岳熟女国产| 亚洲狠狠婷婷综合久久图片| 一卡2卡三卡四卡精品乱码亚洲| 国产99白浆流出| 欧美日韩亚洲综合一区二区三区_| 日韩欧美在线二视频| 亚洲精品在线美女| 国产精品爽爽va在线观看网站| 成人国语在线视频| 妹子高潮喷水视频| 欧美日韩亚洲综合一区二区三区_| 九色国产91popny在线| 村上凉子中文字幕在线| 狠狠狠狠99中文字幕| 精品久久久久久久久久免费视频| 男女午夜视频在线观看| 久久天躁狠狠躁夜夜2o2o| 成人欧美大片| 欧美一区二区精品小视频在线| 亚洲熟妇中文字幕五十中出| 午夜精品久久久久久毛片777| 香蕉久久夜色| 美女午夜性视频免费| 91国产中文字幕| 夜夜躁狠狠躁天天躁| www.自偷自拍.com| av视频在线观看入口| 男女那种视频在线观看| 精品久久久久久,| 男插女下体视频免费在线播放| 国产亚洲精品综合一区在线观看 | 欧美人与性动交α欧美精品济南到| 香蕉久久夜色| 亚洲av美国av| 国内精品久久久久久久电影| 国产精品免费视频内射| 久久久精品欧美日韩精品| 精品久久久久久久久久久久久| 一级a爱片免费观看的视频| 可以免费在线观看a视频的电影网站| 精品久久久久久,| 又爽又黄无遮挡网站| 丁香欧美五月| 日韩欧美在线二视频| 久久婷婷人人爽人人干人人爱| √禁漫天堂资源中文www| 久久精品国产亚洲av香蕉五月| 国内久久婷婷六月综合欲色啪| 日韩欧美一区二区三区在线观看| 两个人看的免费小视频| 长腿黑丝高跟| 亚洲av片天天在线观看| 日韩欧美免费精品| 国产精品国产高清国产av| 国产成人精品久久二区二区91| 欧美不卡视频在线免费观看 | 亚洲成人久久性| av福利片在线| av天堂在线播放| 亚洲免费av在线视频| 亚洲国产精品sss在线观看| 特大巨黑吊av在线直播| 黄色女人牲交| 50天的宝宝边吃奶边哭怎么回事| 欧美日韩中文字幕国产精品一区二区三区| 亚洲国产日韩欧美精品在线观看 | 久久久水蜜桃国产精品网| 欧美最黄视频在线播放免费| or卡值多少钱| 欧美性长视频在线观看| 国产精品久久视频播放| 999精品在线视频| 在线观看日韩欧美| 97碰自拍视频| 亚洲第一欧美日韩一区二区三区| 男女做爰动态图高潮gif福利片| 国产久久久一区二区三区| 亚洲激情在线av| 欧美久久黑人一区二区| 国产亚洲欧美在线一区二区| 人人妻人人看人人澡| 欧美性猛交╳xxx乱大交人| 亚洲自偷自拍图片 自拍| 嫩草影院精品99| 亚洲在线自拍视频| 最好的美女福利视频网| 久久精品91无色码中文字幕| 免费在线观看成人毛片| 亚洲国产精品sss在线观看| 色综合欧美亚洲国产小说| 国产精品影院久久| 精品欧美国产一区二区三| 天天躁夜夜躁狠狠躁躁| 久久香蕉激情| 人人妻人人澡欧美一区二区| 久久这里只有精品19| 欧美av亚洲av综合av国产av| 99热6这里只有精品| 国产精品免费视频内射| 好男人在线观看高清免费视频| 精品不卡国产一区二区三区| 欧美日韩福利视频一区二区| 国产99白浆流出| 18禁黄网站禁片午夜丰满| 久久精品91蜜桃| 精品熟女少妇八av免费久了| 亚洲中文字幕一区二区三区有码在线看 | 久久精品91无色码中文字幕| 国产精品一区二区精品视频观看| 久久久久九九精品影院| 精品不卡国产一区二区三区| 在线观看免费午夜福利视频| 亚洲成人免费电影在线观看| 我要搜黄色片| 香蕉久久夜色| 一二三四社区在线视频社区8| 色综合婷婷激情| 亚洲中文av在线| 久久精品亚洲精品国产色婷小说| 俄罗斯特黄特色一大片| 亚洲av五月六月丁香网| 国产成人精品无人区| 熟女电影av网| 在线观看午夜福利视频| 久久久久久久久中文| 国产高清有码在线观看视频 | 在线观看免费视频日本深夜| 成人av在线播放网站| 精品国产超薄肉色丝袜足j| 午夜老司机福利片| 少妇粗大呻吟视频| 久久精品国产99精品国产亚洲性色| 天天躁狠狠躁夜夜躁狠狠躁| 一卡2卡三卡四卡精品乱码亚洲| 久久久国产欧美日韩av| 首页视频小说图片口味搜索| 久久亚洲精品不卡| 久久久久国产一级毛片高清牌| 夜夜看夜夜爽夜夜摸| 无人区码免费观看不卡| 我的老师免费观看完整版| 桃色一区二区三区在线观看| 91字幕亚洲| 欧美成人免费av一区二区三区| 国产av在哪里看| 日韩欧美在线二视频| 成人三级黄色视频| 欧美黄色淫秽网站| 色综合亚洲欧美另类图片| 狂野欧美激情性xxxx| 国产私拍福利视频在线观看| 在线播放国产精品三级| videosex国产| www.熟女人妻精品国产| 一二三四社区在线视频社区8| 亚洲人成网站高清观看| 久久精品国产清高在天天线| 九色国产91popny在线| 一a级毛片在线观看| 高潮久久久久久久久久久不卡| 久久中文看片网| 欧美高清成人免费视频www| 女生性感内裤真人,穿戴方法视频| 在线观看舔阴道视频| 免费电影在线观看免费观看| 精品日产1卡2卡| 一级a爱片免费观看的视频| 美女 人体艺术 gogo| 国内揄拍国产精品人妻在线| 国产精品亚洲av一区麻豆| 国产主播在线观看一区二区| 精品午夜福利视频在线观看一区| 18禁国产床啪视频网站| 91大片在线观看| 最近视频中文字幕2019在线8| 99国产精品99久久久久| 国产精品日韩av在线免费观看| 又黄又爽又免费观看的视频| cao死你这个sao货| 99久久久亚洲精品蜜臀av| 后天国语完整版免费观看| 日韩精品青青久久久久久| 欧美色视频一区免费| 国产精品久久久av美女十八| www国产在线视频色| 成人国产一区最新在线观看| av片东京热男人的天堂| 国产爱豆传媒在线观看 | 在线观看www视频免费| 久久久久性生活片| 亚洲全国av大片| 欧美中文综合在线视频| 亚洲国产看品久久| 日日摸夜夜添夜夜添小说| 九色成人免费人妻av| 亚洲国产欧美网| 亚洲av电影在线进入| 女人被狂操c到高潮| 草草在线视频免费看| 法律面前人人平等表现在哪些方面| 久久精品影院6| 看片在线看免费视频| 大型av网站在线播放| 国产免费男女视频| 青草久久国产| 国产精品亚洲一级av第二区| 成年免费大片在线观看| 色在线成人网| 一级作爱视频免费观看| 国产高清视频在线播放一区| 欧美人与性动交α欧美精品济南到| 少妇粗大呻吟视频| 欧美日韩一级在线毛片| av欧美777| 成人亚洲精品av一区二区| 久久久水蜜桃国产精品网| 50天的宝宝边吃奶边哭怎么回事| 国产高清有码在线观看视频 | 男女下面进入的视频免费午夜| 国产精品亚洲av一区麻豆| www.999成人在线观看| 亚洲欧美日韩东京热| 国产成人精品久久二区二区91| 欧美一区二区精品小视频在线| 亚洲av电影不卡..在线观看| 1024香蕉在线观看| 亚洲一区二区三区不卡视频| 麻豆国产97在线/欧美 | 不卡一级毛片| 精品一区二区三区四区五区乱码| 国产精品,欧美在线| 久久国产精品人妻蜜桃| 精品免费久久久久久久清纯| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美日韩亚洲国产一区二区在线观看| 亚洲国产欧洲综合997久久,| 激情在线观看视频在线高清| 18禁裸乳无遮挡免费网站照片| 久久久国产欧美日韩av| 亚洲欧美日韩高清在线视频| 国产一区二区三区在线臀色熟女| 亚洲 欧美 日韩 在线 免费| 成人手机av| av在线播放免费不卡| 日日摸夜夜添夜夜添小说| 丝袜美腿诱惑在线| 国产99白浆流出| 成人亚洲精品av一区二区| 国产精品免费一区二区三区在线| 国产免费男女视频| 欧美在线一区亚洲| 99国产极品粉嫩在线观看| 在线观看免费午夜福利视频| 亚洲成人久久性| 桃红色精品国产亚洲av| 免费在线观看视频国产中文字幕亚洲| 一个人观看的视频www高清免费观看 | 岛国在线观看网站| 美女 人体艺术 gogo| 岛国视频午夜一区免费看| 日韩精品中文字幕看吧| 久久这里只有精品19| 国产成年人精品一区二区| 婷婷亚洲欧美| av片东京热男人的天堂| 天堂√8在线中文| 三级男女做爰猛烈吃奶摸视频| 又爽又黄无遮挡网站| 亚洲中文av在线| 一区二区三区激情视频| 老司机福利观看|