• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Non-Cooperative Differential Game-Based Security Model in Fog Computing

    2017-05-08 11:32:34ZhiLiXianweiZhouYanzhuLiuHaitaoXuLiMiao
    China Communications 2017年1期
    關(guān)鍵詞:外液病理性數(shù)量

    Zhi Li, Xianwei Zhou, Yanzhu Liu, Haitao Xu*, Li Miao

    1 School of Computer and Communication Engineering, University of Science and Technology Beijing (USTB), Beijing, 100083, China

    2 Great Wall Computer Software and Systems Inc., Beijing, 100190, China

    * The corresponding author, email: alex_xuht@hotmail.com

    I.INTRODUCTION

    Cloud computing is not an independent phenomenon in the IT industry, but it has impacted the software and hardware industry.According to IDC’s latest report, public IT cloud services spending will grow to more than $141 billion in 2019, representing a compound annual growth rate (CAGR) of 19.4%[1].However, as more and more devices are connected to the network, this bliss becomes a problem for latency-sensitive and high overhead applications.Some requirements, such as mobility support, location awareness and low latency, can hardly be satisfied by cloud computing paradigm.To solve aforementioned problem, a new platform called fog computing was proposed by Cisco in 2012 [2].

    Based on the perspective of Cisco, cloud computing paradigm is extended, but not exclusively, by fog computing to the edge of the network [3].Fog computing is a highly virtualized platform providing network services such as computing, storage between the end devices and cloud [4].If cloud computing is considered as a new generation of centralized computing, the fog computing is a new generation of distributed computing which targets the applications and services with widely distributed deployments.There are a number of characteristics that make the fog computing a non-trivial extension of the cloud computing,such as edge location, location awareness, low latency, geographical distribution, very large number of nodes, supporting for mobility, real-time interactions, heterogeneity, interoperability and federation [5].

    The authors proposed a non-cooperative differential game theoretic framework for security of fog computing, in which the dynamics of malicious fog nodes propagation – recovery are modeled.

    While fog computing makes these advantages more appealing than ever, it also brings new and challenging security threats towards its users.Since smart devices are deployed in the places where is out of strict monitoring and protection, fog nodes, as a platform close to the end users, might encounter a variety of system security challenges.On the other hand,fog computing supports distributed virtual environment, multi-user and multi-domain platform, from a security perspective, it is more prone to security threats and vulnerabilities,which attract malicious users to attack it.Some traditional attacks such as eavesdropping, data hijacking etc., may successfully threat to the fog devices for its malicious purpose.Unfortunately, it is hard to lay out the security strategy and constitute all the dynamic behavior in design and execution time, which causes a loss of security control over fog service resource.

    Differential game derives from optimal control theory and game theory, which belongs to one most practical and complex branch of game theory, proposed by Isaacs [6].In fact, differential game has already been used to study the relationship between resource and energy consumption in different network environments, such as the Internet of Things[7], deep space [8].According to the profit functions and the relationships (cooperative or non-cooperative) between the players, it can solve those dynamic strategies which evolves over time [9].In this case, differential game theory can provide a mathematical framework for modeling and analyzing fog computing network security issues.

    In this paper, by introducing the differential game theory, a fog security model based on non-cooperative differential game was proposed.The behavior of malicious fog nodes propagation - recovery was evaluated.The interactions and the optimal strategy of energy consumption with QoS guarantee were also analyzed.Our main contributions in this paper can be summarized as follows: (1).Based on the traditional epidemic theory, we model the dynamics of malicious nodes propagation -recovery in fog computing, in which dynamics of each state is attained.(2).We model the fog security strategy based on non-cooperative differential game.In this model, we analyze the dynamic interactions between rational players (vulnerable fog nodes and malicious fog nodes) with conflicting interests during the malicious nodes propagation- recovery process, which takes place in continuous time.(3).By solving the feedback Nash equilibrium solution, we quantify costs corresponding security risks, which provide a basis for future analysis of the process of malicious fog nodes propagation- recovery.(4).We analyze the optimal strategy of energy consumption with QoS guarantee.Through simulations, we show the change of optimal strategy which is impacted by the malicious nodes propagating or recovery.

    The rest of this paper is organized as follows.The related work is explained in Section II.The differential game is constructed and its solution to the proposed game is derived in Section III and Section IV.Simulation results are presented in Section V.Conclusions of the work are brought in Section VI.

    II.RELATED WORKS

    The concept of fog computing was firstly proposed by Cisco in 2012 [10].The research on fog computing still remains at a very early stage.However, similar system known as edge computing such as Cyber Foraging [11] and Cloudlet [12] can data back to 2000.Cisco introduced this new term to make the data transfer easy in distributed environment [13].Bonomi et al.[14] identify that fog is nothing but cloud that is closer to the ground.Hence this kind cloud computing which is closer to the end users’ networks is thus named as fog computing.Fog computing can provide better QoS (Quality of Service) in term of delay, energy consumption etc.

    In recent years, several research works that propose concept and application for fog computing have been proposed.K.Hong et al.proposed mobile fog in [15].This high level programming model is for large–scale, latency–sensitive applications in the Internet of Things.It allowed applications to scale based on their workload using on-demand resources.According to the logical structure of this paper, low-latency processing occurs near the edge, while latency tolerant large-scope aggregation is performed on powerful resources in the cloud.In this way, it has reduced the delay and network traffic in the networks.Stantchev V et al.[16] presented a three-level architecture for a healthcare infrastructure which was based on a service-oriented architecture.The proposed architecture can be used as a basic design for future high quality smart healthcare services.J.Zhu et al.[17] used web page optimization methods in fog computing architectures.These methods can have the information of the fog nodes to optimize the network performance.With network edge specific knowledge, users’ webpage rendering performance is improved.Ottenw?lder B et al.[18] presented a placement and migration method for fog and cloud resource.This method ensures application-defined end-to-end latency restrictions.By planning the migration ahead of time, it also reduces the network utilization.In paper[19], a Steiner tree based caching scheme was proposed to analyze the resources sharing or caching in the Fog cluster.By producing a Steiner tree to minimize the total path weight,the cost of resource caching using this tree could be minimized.

    More and more attention has been paid to the importance of the fog computing security.Several potential security and privacy problems in fog computing, such as Man-in-the-middle Attack and Intrusion Detection, are presented in [20].Stojmenovic I et al.[21] discussed the system security in fog computing by studying man-in-the-middle attack.In their research, the stealthy features of the attacks were investigated by monitoring CPU and memory consumption on Fog devices.In addition, the authentication and authorization techniques that can be used in fog computing were also discussed.Lee K et al.[22] explored the components and the several unique security threats of IoT fog.As one of the potential threats, malicious fog node problem was proposed.In their research,the heavy workloads in fog computing will be divided into several jobs and processed by fog nodes.If some of these fog nodes were compounded by malicious users, it is hard to ensure the security of the data.However, the paper does not give a detailed solution to solve these security problems.In this paper, we will focus on the propagation of malicious nodes in fog computing.A non-cooperative differential game-based security model in fog computing and its optimal strategy will be introduced in the following sections.

    II.SYSTEM MODEL AND PROBLEM STATEMENT

    Firstly, a three-level hierarchy of fog computing is given in Fig.1.In this framework, there are three main elements in the fog computing:(a) smart devices, (b) fog nodes and (c) cloud.Each smart device is attached to one of the fog nodes.Each of fog nodes is linked to the cloud,and fog nodes could be interconnected.Smart devices have a large variety of sensors and local data.However, it is very expensive and time-consuming to send all of data from terminal smart devices to the cloud through the high latency network.In fog computing, smart devices will connect to fog nodes through a shortrange communication, such as WiFi, Bluetooth.Compared with the smart devices, the fog nodes have more memory or storage ability for computing, which make it be possible to process a significant amount of data from smart devices.On the other hand, those processes which need more computing power will be sent to the cloud from fog nodes through high-speed wireless or wire communication.

    We assume that the number of fog nodes in fog computing at time isThe states of fog nodes, due to their own characteristics, can be classified into the following two classes:

    Vulnerable nodes (V): Fog nodes in Class V are those nodes which are working and vulnerable to be attacked by malicious nodes.

    Malicious nodes (M): Fog nodes in Class M are those nodes which have been contaminated by malicious attacks and may infect Class V nodes nearby.

    Fig.1 The fog computing architecture

    Fig.2 Dynamics of two states

    Now we consider the change of fog computing network while transmitting the security patches.The total number of security patches isThe number of security patches for Class V and Class M fog nodes is respectively denoted byandwhereLet the nodes fetch security patches at an overall ratewhere parameterdepends on fog node density, transmission rates etc.is a control parameter which is used to regulate the network resource consumption,andIt is also a function ofThe higher value ofthe higher is theLetwhereis the represents a linear relationship between the energy consumption with QoS and

    If a fog node in Class V gets the security patch, this node will be safe for some specific malicious attacks.However, since the patch can only define certain kinds of malicious attacks, this fog node is still vulnerable.If a fog node in Class M gets the security patch, this node will be healed or not, since the malicious attack may prevent it.The above possible could be captured by introducing a coefficientwhereWhenthe security patch is unable to heal the malicious nodes by removing the malicious process.Whereasmeans that patch is able to fully heal the malicious nodes.

    Fig.2 illustrates the transitions between vulnerable and malicious states of fog node.According to the above discussion, the rates of changes of Class V and Class M fog nodes can be written as following:

    The rate of changes of Class V nodes after get security patches is

    β, ε are positive parameters.βis the amount cost parameter created by energy consumption with QoS guarantee.The undesired cost is decreased in a rateεwith the change of system.

    From the security perspective, the overall revenue of fog computing network is the sum of profits from the increase of Class V nodes and the enhancement of the security level of the original Class V nodes.And the cost is the sum of the consumption from security patches and the energy of transferring these security patches.Since the energy consumption with QoS are different, the instantaneous price of each fog node is also different.In general, the unit price function is a linear function ofand can be defined as

    The differential game model of the profit function for Class V fog nodes is governed by the following equation

    where

    Using the method proposed in [6], according to the discussion above, the dynamic optimization and the differential equation are shown as

    引致手足搐搦癥患者發(fā)病的主要原因,在于患者細(xì)胞外液環(huán)境中以離子形式存在的鈣元素?cái)?shù)量顯著減少,且在此基礎(chǔ)上誘導(dǎo)患者的神經(jīng)系統(tǒng)興奮程度顯著加劇,血液環(huán)境中的鎂元素?cái)?shù)量顯著降低,繼而出現(xiàn)病理性癥狀[5-6]。

    IV.FEEDBACK NASH EQUILIBRIUM SOLUTION

    In this section, the feedback Nash equilibrium solution to the differential game is discussed.The game was solved by dynamic optimization program technique which has been developed by Bellman [6] and is given in Theorem 1.

    Theorem 1A set of strategiesprovides a Nash equilibrium solution to the differential game (10) if there exist continuously differentiable functionsdefined onand satisfying the following Bellman equation (11)

    In this case,xandtdenote the state and time respectively.is the value function of fog nodeiin time intervalThe value functionis represented as follows.

    According to Theorem 1, we have

    Calculate the partial derivative forin the formula (11) and make it equal to 0, then we can obtain

    In order to solve the equation of the feedback Nash equilibrium solution, we assumecould be expressed as

    By taking the derivative ofwith respect to t, we obtain

    Then, by taking the derivative ofwith respect to x, we obtain

    We substitute (18) into (12),

    Then we substitute (19) to (13) to get

    Table 1.a The setting of simulation parameter

    Table 1.b The setting of simulation parameter

    According to (17), we obtain

    Solving (21), we have that

    Where

    V.NUMERICAL SIMULATION AND ANALYSIS

    In this section, a numerical analysis is presented to help understand the concepts of proposed differential game security model.We consider a scenario with 100 fog nodes.The number of Class V nodes and Class M nodes are 90 and 10, respectively.We choose 5 Class V nodes to simulate the security game model with different values of parameter, which are shown in Table 1.The parameters set are shown in Table 2.

    In the first example, we simulate the parameterwhich will impact the optimal strategydirectly.Fig 3 displays the variation ofvarying with timeof five fog nodes with different states.It can be found thatis increased with time varying from 0 to 5.The different parameters, such asand so on, have significant effect on the variation of

    Fig.5 shows the relationship between optimal strategyand the time t.Fig.6 depicts the relationship between optimal strategyand the different discount rate.It can be seen that the optimal QoS guarantee resources for security of fog computing network cloud decrease with time varying and be less affected by discount rate.

    In fog computing network, with the transmission of security patches, the malicious fog nodes are constantly healed.The potential risk of vulnerable fog nodes will be reduced, the corresponding QoS resources can also be appropriately reduced.

    VI.CONCLUSION

    Fog computing extends cloud computing and services to the edge of the network.With the rich potential applications in both wireless network and Internet-of-things, the fog computing also opens broad research issues on network security, resource management, big data and novel service delivery.It gives new opportunities and challenges to network operators and users.The purpose of this article is to investigate on the design goals and main motivation of fog computing from the security perspective.By depicting three-level hierarchy, the architectureand the main components of fog computing are introduced.We have proposed a non-cooperative differential game theoretic framework for security of fog computing, in which the dynamics of malicious fog nodes propagation –recovery are modeled.By solving the feedback Nash equilibrium solution, we quantify costs corresponding security risks, and analyze the optimal strategy of energy consumption with QoS guarantee in fog computing.Experimental results have shown the effects of various parameters on the optimal strategy, which can help the fog make the optimal dynamic strategies when different types of nodes dynamically change their strategies.

    Table 2 Parameters table

    Fig.3 The variation of A(t) with t when γ=0.06

    Fig.4 The variation of withwhen

    Fig.5vary trends with time when

    Fig.6vary trends with when

    ACKNOWLEDGEMENTS

    The authors would like to thank the reviewers for their detailed reviews and constructive comments, which have helped improve the quality of this paper.This paper is supported by the National Science Foundation Project of P.R.China (No.61501026,61572072), and Fundamental Research Funds for the Central Universities (No.FRF-TP-15-032A1).

    [1] IDC Analyze the Future, “Worldwide Public Cloud Services Spending Forecast to Double by 2019, According to IDC”, January, 2016,https://www.idc.com/getdoc.jsp?container-Id=prUS40960516

    [2] Luan T H, Gao L, Li Z, et al.Fog computing: Focusing on mobile users at the edge, arXiv preprint arXiv:1502.01815, February, 2015.

    [3] Firdhous M, Ghazali O, Hassan S.“Fog Computing: Will it be the Future of Cloud Computing?”//Third International Conference on Informatics& Applications, Kuala Terengganu, Malaysia, pp 8-15, October, 2014.

    [4] Song F, Huang D, Zhou H, et al.An optimization-based scheme for effi cient virtual machine placement, International Journal of Parallel Programming, vol.42, no.5, pp 853-872, 2014.

    [5] Kumar V A, Prasad E.“Fog Computing: Characteristics, Advantages and Security-Privacy”,International Journal of Computer Science and Management Research, vol.3, no.11, 2014.

    [6] Isaacs R.“Differential Games I: Introduction”,RAND CORP SANTA MONICA CA, 1954.

    [7] Lin F.H., Liu Q., Chen Y.Y., Zhou X.W., Huang D.C., “Cooperative Diff erential Game for Model Energy-Bandwidth Efficiency Tradeoff in the Internet of Things”, China Communications, vol.11, no.1, pp.92-102, 2014.

    [8] Lin F.H., Liu Q., Zhou X.W., Xiong K., “Towards Green for Relay in InterPlaNetary Internet Based on Differential Game Model”, SCIENCE CHINA Information Sciences, vol.57, no.4, pp 1-9,2014.

    [9] Yeung D W K.“Dynamically consistent cooperative solution in a differential game of transboundary industrial pollution”, Journal of optimization theory and applications, vol.134,pp 143-160, July, 2007.

    [10] Saharan K P, Kumar A.“Fog in Comparison to Cloud: A Survey”, International Journal of Computer Applications, vol.122, no.3, pp 10-12,July, 2015.

    [11] Balan R, Flinn J, Satyanarayanan M, et al.“The case for cyber foraging”//Proceedings of the 10th workshop on ACM SIGOPS European workshop, ACM, pp 87-92, July, 2002.

    [12] Satyanarayanan M, Bahl P, Caceres R, et al.“The case for vm-based cloudlets in mobile computing”, Pervasive Computing, IEEE, vol.8, no.4,pp14-23, October, 2009.

    [13] Zao J K, Gan T T, You C K, et al.“Pervasive brain monitoring and data sharing based on multi-tier distributed computing and linked data technology”, Frontiers in human neuroscience, vol.8, June, 2014.

    [14] Bonomi F, Milito R, Zhu J, et al.“Fog computing and its role in the internet of things”//Proceedings of the first edition of the MCC workshop on Mobile cloud computing, ACM, pp.13-16, August, 2012.

    [15] Hong K, Lillethun D, Ramachandran U, et al.“Mobile fog: A programming model for largescale applications on the internet of things”//Proceedings of the second ACM SIGCOMM workshop on Mobile cloud computing, ACM, pp 15-20, August, 2013.

    [16] Stantchev V, Barnawi A, Ghulam S, et al.“Smart Items, Fog and Cloud Computing as Enablers of Servitization in Healthcare”, Sensors & Transducers, vol.185, no.2, pp 121-128, February,2015.

    [17] Zhu J, Chan D S, Prabhu M S, et al.“Improving web sites performance using edge servers in fog computing architecture”//Service Oriented System Engineering (SOSE), 2013 IEEE 7th International Symposium on.IEEE, pp 320-323,March, 2013.

    [18] Ottenw?lder B, Koldehofe B, Rothermel K, et al.“MigCEP: operator migration for mobility driven distributed complex event processing”//Proceedings of the 7th ACM international conference on Distributed event-based systems, ACM,pp 183-194, June, 2013.

    [19] Su J, Lin F, Zhou X, et al.“Steiner tree based optimal resource caching scheme in fog computing”, Communications, China, vol.12, no.8,pp161-168, August, 2015.

    [20] Mandlekar V G, Mahale V K, Sancheti S S, et al.“Survey on Fog Computing Mitigating Data Theft Attacks in Cloud”, International Journal of Innovative Research in Computer Science &Technology (IJIRCST), vol.2, no.6, November,2014.

    [21] Stojmenovic I, Wen S, Huang X, et al.“An overview of Fog computing and its security issues”,Concurrency and Computation: Practice and Experience, vol.28, issue 10, April, 2015.

    [22] Lee K, Kim D, Ha D, et al.“On security and privacy issues of fog computing supported Internet of Things environment”//Network of the Future(NOF), 2015 6th International Conference on the,IEEE, pp1-3, 2015.

    猜你喜歡
    外液病理性數(shù)量
    股骨中上段慢性骨髓炎合并病理性骨折患者術(shù)中頑固性低血壓1例
    小針刀療法在病理性疼痛中的研究進(jìn)展
    磷脂酶Cε1在1型糖尿病大鼠病理性神經(jīng)痛中的作用初探
    細(xì)胞內(nèi)Ca2+對(duì)可釋放囊泡庫(kù)的影響
    統(tǒng)一數(shù)量再比較
    “人體的內(nèi)環(huán)境與穩(wěn)態(tài)”考點(diǎn)聚焦
    牛貝諾孢子蟲(chóng)病的發(fā)生、病理性診斷及防治
    頭發(fā)的數(shù)量
    我國(guó)博物館數(shù)量達(dá)4510家
    喝水會(huì)喝死嗎
    男女边吃奶边做爰视频| 99热6这里只有精品| 一级片'在线观看视频| 久久久久久久久久久久大奶| 欧美丝袜亚洲另类| xxx大片免费视频| 久久99一区二区三区| 日韩在线高清观看一区二区三区| 18禁动态无遮挡网站| 日韩免费高清中文字幕av| 日本av手机在线免费观看| 亚洲内射少妇av| 一区在线观看完整版| 插逼视频在线观看| 伦精品一区二区三区| 国产精品麻豆人妻色哟哟久久| 青春草国产在线视频| 老司机影院成人| 91久久精品国产一区二区成人| 丰满迷人的少妇在线观看| 我的女老师完整版在线观看| 国产黄色免费在线视频| 亚洲性久久影院| 中文字幕久久专区| 欧美丝袜亚洲另类| 欧美日韩av久久| 一区二区三区免费毛片| 色哟哟·www| 免费播放大片免费观看视频在线观看| 2022亚洲国产成人精品| 亚洲人成77777在线视频| tube8黄色片| 久久人人爽人人片av| 男男h啪啪无遮挡| 免费av中文字幕在线| 爱豆传媒免费全集在线观看| 日本午夜av视频| 亚洲一区二区三区欧美精品| 波野结衣二区三区在线| 97超碰精品成人国产| 在线观看人妻少妇| 久久久久久久久久久丰满| 丰满少妇做爰视频| 视频区图区小说| 伊人亚洲综合成人网| 日本免费在线观看一区| 国产男女超爽视频在线观看| 欧美变态另类bdsm刘玥| 成年女人在线观看亚洲视频| 国产在线一区二区三区精| 中文字幕制服av| 国产 精品1| 2021少妇久久久久久久久久久| 国产成人a∨麻豆精品| 中文精品一卡2卡3卡4更新| 欧美日韩综合久久久久久| 黄色一级大片看看| 成人午夜精彩视频在线观看| 日韩视频在线欧美| 精品人妻一区二区三区麻豆| 久热久热在线精品观看| 丝袜在线中文字幕| 啦啦啦啦在线视频资源| 99热6这里只有精品| 建设人人有责人人尽责人人享有的| a级毛片黄视频| 日本欧美国产在线视频| 在现免费观看毛片| 2021少妇久久久久久久久久久| 99九九在线精品视频| 亚洲,一卡二卡三卡| 丰满迷人的少妇在线观看| 亚洲精品av麻豆狂野| 一级二级三级毛片免费看| 成人影院久久| 国产欧美另类精品又又久久亚洲欧美| 九九久久精品国产亚洲av麻豆| 91国产中文字幕| 99国产综合亚洲精品| av.在线天堂| 日本免费在线观看一区| 日韩熟女老妇一区二区性免费视频| 黄色配什么色好看| 欧美激情国产日韩精品一区| 国产精品99久久久久久久久| 美女中出高潮动态图| 91成人精品电影| 亚洲第一av免费看| 亚洲国产精品国产精品| 乱人伦中国视频| 欧美精品高潮呻吟av久久| 老女人水多毛片| 免费少妇av软件| 欧美变态另类bdsm刘玥| 欧美老熟妇乱子伦牲交| 国产一区二区三区综合在线观看 | 夜夜骑夜夜射夜夜干| 日韩免费高清中文字幕av| a级毛片黄视频| 熟女人妻精品中文字幕| 建设人人有责人人尽责人人享有的| 国产精品久久久久久久久免| 热re99久久精品国产66热6| 婷婷成人精品国产| 婷婷成人精品国产| 国产成人免费观看mmmm| 母亲3免费完整高清在线观看 | 高清av免费在线| 丰满乱子伦码专区| 国产精品女同一区二区软件| 综合色丁香网| 最近中文字幕高清免费大全6| av卡一久久| 亚洲精品国产av成人精品| 亚洲精品日本国产第一区| 少妇人妻精品综合一区二区| 建设人人有责人人尽责人人享有的| 香蕉精品网在线| 在线观看人妻少妇| 黄色欧美视频在线观看| 久久国产精品男人的天堂亚洲 | 欧美3d第一页| 韩国高清视频一区二区三区| 国产精品久久久久久久久免| 国产深夜福利视频在线观看| 亚洲第一av免费看| 欧美激情国产日韩精品一区| 最近中文字幕2019免费版| 亚洲精品自拍成人| 久久女婷五月综合色啪小说| 伊人久久精品亚洲午夜| .国产精品久久| 男女边摸边吃奶| 精品一区二区免费观看| 国产欧美另类精品又又久久亚洲欧美| 伦理电影免费视频| 亚洲av.av天堂| 久久久久久久久大av| 一本色道久久久久久精品综合| 九色成人免费人妻av| 美女xxoo啪啪120秒动态图| 国产av国产精品国产| 日日摸夜夜添夜夜爱| 最近手机中文字幕大全| 久久人人爽人人片av| 免费黄网站久久成人精品| 亚洲少妇的诱惑av| 精品视频人人做人人爽| 久久精品国产亚洲av天美| 欧美精品高潮呻吟av久久| 欧美激情国产日韩精品一区| 人体艺术视频欧美日本| 超色免费av| 色吧在线观看| 久久久精品94久久精品| 99九九线精品视频在线观看视频| 在线 av 中文字幕| 亚洲国产欧美日韩在线播放| 久热这里只有精品99| 女性生殖器流出的白浆| 黄片无遮挡物在线观看| 女人精品久久久久毛片| av天堂久久9| av电影中文网址| 天堂俺去俺来也www色官网| 欧美97在线视频| 人体艺术视频欧美日本| 亚洲色图 男人天堂 中文字幕 | 制服丝袜香蕉在线| 国产午夜精品久久久久久一区二区三区| 又大又黄又爽视频免费| 久久久国产一区二区| 热re99久久国产66热| 亚洲国产精品成人久久小说| 在线亚洲精品国产二区图片欧美 | 搡女人真爽免费视频火全软件| 亚洲欧洲日产国产| 精品卡一卡二卡四卡免费| 国产精品国产三级国产专区5o| 一个人免费看片子| 女人久久www免费人成看片| 成人毛片a级毛片在线播放| 最新中文字幕久久久久| 亚洲精品乱久久久久久| 亚洲av成人精品一区久久| 熟女电影av网| 爱豆传媒免费全集在线观看| 国产老妇伦熟女老妇高清| 亚洲少妇的诱惑av| 寂寞人妻少妇视频99o| 亚洲精品aⅴ在线观看| 国产伦精品一区二区三区视频9| 校园人妻丝袜中文字幕| 我要看黄色一级片免费的| 久久久久久久久久久丰满| 天堂中文最新版在线下载| 2018国产大陆天天弄谢| 少妇人妻精品综合一区二区| 国产午夜精品一二区理论片| 免费高清在线观看日韩| 国产极品粉嫩免费观看在线 | 久久人人爽av亚洲精品天堂| 老司机影院成人| 午夜精品国产一区二区电影| 欧美变态另类bdsm刘玥| 亚洲欧美成人精品一区二区| 永久网站在线| 成人国语在线视频| 18禁在线无遮挡免费观看视频| 人妻系列 视频| 少妇人妻久久综合中文| 激情五月婷婷亚洲| 高清欧美精品videossex| 欧美成人午夜免费资源| 99国产精品免费福利视频| 婷婷色麻豆天堂久久| 亚洲内射少妇av| 99久国产av精品国产电影| 国产日韩欧美亚洲二区| 国产精品.久久久| 国产精品成人在线| √禁漫天堂资源中文www| 精品国产国语对白av| 妹子高潮喷水视频| 亚洲欧美成人精品一区二区| 三级国产精品欧美在线观看| av又黄又爽大尺度在线免费看| 欧美日韩国产mv在线观看视频| 久久精品国产a三级三级三级| 精品少妇黑人巨大在线播放| 日本-黄色视频高清免费观看| 日日撸夜夜添| 日日摸夜夜添夜夜爱| 天堂俺去俺来也www色官网| 亚洲三级黄色毛片| 插逼视频在线观看| 久久久久久伊人网av| 美女内射精品一级片tv| 纯流量卡能插随身wifi吗| 欧美激情 高清一区二区三区| 大码成人一级视频| 我的女老师完整版在线观看| 亚洲国产欧美在线一区| 欧美日韩视频高清一区二区三区二| 亚洲精品第二区| 欧美精品高潮呻吟av久久| 国产熟女欧美一区二区| 3wmmmm亚洲av在线观看| √禁漫天堂资源中文www| 亚洲四区av| 亚洲第一av免费看| 亚洲欧美精品自产自拍| 草草在线视频免费看| 国产成人免费无遮挡视频| 婷婷成人精品国产| 不卡视频在线观看欧美| 成人手机av| 丰满迷人的少妇在线观看| 日本黄色片子视频| 80岁老熟妇乱子伦牲交| 满18在线观看网站| 日韩大片免费观看网站| 精品久久久精品久久久| 久久精品国产亚洲av天美| 看十八女毛片水多多多| 3wmmmm亚洲av在线观看| 天美传媒精品一区二区| 三级国产精品片| 亚洲欧美成人精品一区二区| 亚洲精品亚洲一区二区| 男女高潮啪啪啪动态图| 亚洲欧美中文字幕日韩二区| 国产高清三级在线| 色网站视频免费| 亚洲国产av新网站| 高清不卡的av网站| 久久久久久久大尺度免费视频| 欧美激情国产日韩精品一区| 欧美日韩视频精品一区| 久久97久久精品| 国产欧美日韩一区二区三区在线 | 日本色播在线视频| 黄色怎么调成土黄色| 亚洲精品成人av观看孕妇| 国产精品国产av在线观看| 日韩av不卡免费在线播放| 色哟哟·www| 国产亚洲一区二区精品| 亚洲精华国产精华液的使用体验| 亚洲激情五月婷婷啪啪| 国产视频首页在线观看| 亚洲精品456在线播放app| 在线精品无人区一区二区三| 欧美日韩在线观看h| 美女福利国产在线| 又黄又爽又刺激的免费视频.| 纵有疾风起免费观看全集完整版| 啦啦啦在线观看免费高清www| 水蜜桃什么品种好| 亚洲第一av免费看| 成人毛片60女人毛片免费| 有码 亚洲区| 午夜激情av网站| 久久精品熟女亚洲av麻豆精品| 最新的欧美精品一区二区| 成人18禁高潮啪啪吃奶动态图 | 午夜福利,免费看| 国产精品偷伦视频观看了| av天堂久久9| 国产乱来视频区| 91精品三级在线观看| 美女主播在线视频| 好男人视频免费观看在线| 国产亚洲精品第一综合不卡 | 色网站视频免费| www.色视频.com| 日本欧美国产在线视频| kizo精华| 久久精品久久久久久噜噜老黄| 最后的刺客免费高清国语| 久久久国产欧美日韩av| 母亲3免费完整高清在线观看 | 国产乱来视频区| 国产一区二区三区综合在线观看 | 免费播放大片免费观看视频在线观看| 大片免费播放器 马上看| 国产日韩欧美在线精品| 日韩av在线免费看完整版不卡| 久久综合国产亚洲精品| 自线自在国产av| 永久网站在线| 国产日韩一区二区三区精品不卡 | 九草在线视频观看| 搡女人真爽免费视频火全软件| 婷婷色综合www| 大又大粗又爽又黄少妇毛片口| 人妻夜夜爽99麻豆av| 中国国产av一级| 国产深夜福利视频在线观看| 亚洲第一区二区三区不卡| 97在线视频观看| 国产精品久久久久久久久免| 99视频精品全部免费 在线| 亚洲欧洲日产国产| 亚洲精品456在线播放app| 欧美最新免费一区二区三区| 亚洲av福利一区| 熟女人妻精品中文字幕| 欧美日本中文国产一区发布| 日韩大片免费观看网站| 国产精品嫩草影院av在线观看| 91精品三级在线观看| 高清av免费在线| 国产欧美日韩一区二区三区在线 | 丰满少妇做爰视频| 亚洲精品久久成人aⅴ小说 | av在线播放精品| 亚洲美女搞黄在线观看| 精品国产一区二区三区久久久樱花| 日韩中字成人| av一本久久久久| 18禁观看日本| 婷婷色麻豆天堂久久| 日韩欧美精品免费久久| 久久久欧美国产精品| 国产伦精品一区二区三区视频9| 国产精品一区www在线观看| 91精品三级在线观看| 亚洲av福利一区| 欧美3d第一页| 91精品一卡2卡3卡4卡| 99热国产这里只有精品6| 曰老女人黄片| 亚洲中文av在线| 精品久久国产蜜桃| 熟妇人妻不卡中文字幕| 纵有疾风起免费观看全集完整版| 人人澡人人妻人| tube8黄色片| 国产精品一国产av| 老司机亚洲免费影院| a级片在线免费高清观看视频| 一级毛片 在线播放| 曰老女人黄片| 五月开心婷婷网| 欧美少妇被猛烈插入视频| 蜜桃久久精品国产亚洲av| 午夜日本视频在线| 国产免费一区二区三区四区乱码| 欧美变态另类bdsm刘玥| 成人国产麻豆网| 水蜜桃什么品种好| 日韩熟女老妇一区二区性免费视频| 成人国语在线视频| 一级黄片播放器| 欧美最新免费一区二区三区| 91久久精品国产一区二区三区| 久久精品国产a三级三级三级| 亚洲一区二区三区欧美精品| 亚洲国产最新在线播放| 国产精品人妻久久久久久| 久久久久视频综合| 欧美日韩亚洲高清精品| 婷婷色麻豆天堂久久| 亚洲欧美清纯卡通| 亚洲性久久影院| 又粗又硬又长又爽又黄的视频| 丝袜在线中文字幕| 狠狠婷婷综合久久久久久88av| 青春草亚洲视频在线观看| videos熟女内射| 制服诱惑二区| 国产老妇伦熟女老妇高清| 亚洲国产日韩一区二区| 97在线视频观看| videos熟女内射| 亚洲色图 男人天堂 中文字幕 | 亚洲内射少妇av| 亚洲av不卡在线观看| 亚洲av欧美aⅴ国产| 黄色毛片三级朝国网站| 午夜免费男女啪啪视频观看| 亚洲精品亚洲一区二区| 日韩大片免费观看网站| 97超视频在线观看视频| 午夜激情久久久久久久| 桃花免费在线播放| 国产男人的电影天堂91| 自拍欧美九色日韩亚洲蝌蚪91| av播播在线观看一区| 亚洲精品日韩在线中文字幕| 人人澡人人妻人| 极品少妇高潮喷水抽搐| 国产精品国产三级专区第一集| 啦啦啦中文免费视频观看日本| 久久久国产一区二区| 欧美成人午夜免费资源| 又大又黄又爽视频免费| 99久久综合免费| 国产毛片在线视频| 日韩中文字幕视频在线看片| 精品人妻一区二区三区麻豆| 观看av在线不卡| 国产日韩欧美视频二区| 中国美白少妇内射xxxbb| 欧美国产精品一级二级三级| 久久这里有精品视频免费| 国产黄频视频在线观看| 亚洲欧美日韩另类电影网站| 免费观看av网站的网址| 免费观看无遮挡的男女| 人人妻人人爽人人添夜夜欢视频| 日本猛色少妇xxxxx猛交久久| 国产亚洲av片在线观看秒播厂| 3wmmmm亚洲av在线观看| 久久久精品区二区三区| 一级,二级,三级黄色视频| 免费日韩欧美在线观看| 99国产综合亚洲精品| 少妇猛男粗大的猛烈进出视频| 少妇精品久久久久久久| 少妇被粗大猛烈的视频| 国产乱来视频区| 日韩一本色道免费dvd| 在现免费观看毛片| 高清午夜精品一区二区三区| 午夜福利视频精品| 亚洲国产日韩一区二区| 亚洲情色 制服丝袜| kizo精华| a级毛片免费高清观看在线播放| 亚洲欧美色中文字幕在线| 国产一区二区在线观看av| 中文字幕亚洲精品专区| 亚洲色图 男人天堂 中文字幕 | 国产片内射在线| 亚洲丝袜综合中文字幕| 色吧在线观看| 亚洲少妇的诱惑av| 日本wwww免费看| 亚洲国产成人一精品久久久| 亚洲色图 男人天堂 中文字幕 | 天堂中文最新版在线下载| 在线观看三级黄色| 伊人久久国产一区二区| 少妇人妻 视频| 亚洲少妇的诱惑av| 成人国产av品久久久| 97在线视频观看| 99久国产av精品国产电影| 国产免费现黄频在线看| 国产黄片视频在线免费观看| 久久亚洲国产成人精品v| 亚洲欧洲精品一区二区精品久久久 | 久久国产精品大桥未久av| 亚洲,一卡二卡三卡| 日日摸夜夜添夜夜添av毛片| 日韩强制内射视频| 国产精品国产av在线观看| 色哟哟·www| 久久这里有精品视频免费| 2018国产大陆天天弄谢| 成人综合一区亚洲| 中文精品一卡2卡3卡4更新| 国产色爽女视频免费观看| 国产成人免费观看mmmm| 涩涩av久久男人的天堂| 国产一区二区在线观看av| 99久久人妻综合| 菩萨蛮人人尽说江南好唐韦庄| 欧美成人午夜免费资源| 亚洲av成人精品一二三区| 纯流量卡能插随身wifi吗| 3wmmmm亚洲av在线观看| 亚洲精品国产av蜜桃| 美女主播在线视频| 中文字幕制服av| 国产国语露脸激情在线看| 狠狠精品人妻久久久久久综合| 少妇丰满av| 丝瓜视频免费看黄片| 极品人妻少妇av视频| 97在线人人人人妻| 草草在线视频免费看| 日韩视频在线欧美| 久久久久久伊人网av| 乱码一卡2卡4卡精品| 97超视频在线观看视频| 精品久久久噜噜| 少妇的逼好多水| 久热这里只有精品99| 欧美另类一区| 熟女av电影| 日本av手机在线免费观看| 成年人免费黄色播放视频| 久久 成人 亚洲| .国产精品久久| 精品国产国语对白av| 在线天堂最新版资源| 在现免费观看毛片| 欧美精品人与动牲交sv欧美| 日韩 亚洲 欧美在线| 22中文网久久字幕| 欧美激情 高清一区二区三区| 国产精品免费大片| 午夜视频国产福利| 一级二级三级毛片免费看| 精品少妇黑人巨大在线播放| 啦啦啦视频在线资源免费观看| 精品酒店卫生间| 成人无遮挡网站| 久久人妻熟女aⅴ| 久久久久精品性色| 久久热精品热| 建设人人有责人人尽责人人享有的| 如日韩欧美国产精品一区二区三区 | 亚洲精品456在线播放app| 日韩伦理黄色片| 丝瓜视频免费看黄片| 中国三级夫妇交换| 免费少妇av软件| 久久久精品94久久精品| 国产成人午夜福利电影在线观看| 在线观看国产h片| 国产在线视频一区二区| 毛片一级片免费看久久久久| 精品国产露脸久久av麻豆| 国产亚洲精品久久久com| 交换朋友夫妻互换小说| 99热全是精品| 欧美人与性动交α欧美精品济南到 | kizo精华| 久久久久网色| 国产精品一区二区在线观看99| 大片免费播放器 马上看| 欧美三级亚洲精品| 亚洲欧美一区二区三区国产| 成人手机av| 免费黄网站久久成人精品| 成人国产av品久久久| 亚洲不卡免费看| 亚州av有码| 成年女人在线观看亚洲视频| 搡老乐熟女国产| 久久精品国产亚洲av涩爱| 精品卡一卡二卡四卡免费| 亚洲精品乱久久久久久| 精品亚洲成国产av| 精品久久久久久久久av| 欧美老熟妇乱子伦牲交| 黄色毛片三级朝国网站| 中文字幕人妻丝袜制服| 欧美xxxx性猛交bbbb| 黄片无遮挡物在线观看| 18禁观看日本| 国产欧美另类精品又又久久亚洲欧美| 国产av一区二区精品久久| 亚洲av电影在线观看一区二区三区| 欧美激情极品国产一区二区三区 | 国产黄色视频一区二区在线观看| 在线观看免费日韩欧美大片 | 国产一区二区在线观看av| 黄色欧美视频在线观看| 久久影院123| 少妇高潮的动态图| 99久久精品国产国产毛片| 亚洲精品乱码久久久久久按摩| 香蕉精品网在线| 中国三级夫妇交换| 久久毛片免费看一区二区三区| 久久精品久久精品一区二区三区| 久久女婷五月综合色啪小说| 中文乱码字字幕精品一区二区三区| 免费高清在线观看视频在线观看| 特大巨黑吊av在线直播|