王 艷
(鐵電功能材料工程(技術(shù))研究中心 陜西省植物化學(xué)重點(diǎn)實(shí)驗(yàn)室寶雞文理學(xué)院化學(xué)化工學(xué)院,陜西 寶雞 721013)
?
濕化學(xué)法制備鈦酸鋇基粉體的研究進(jìn)展
王 艷
(鐵電功能材料工程(技術(shù))研究中心 陜西省植物化學(xué)重點(diǎn)實(shí)驗(yàn)室寶雞文理學(xué)院化學(xué)化工學(xué)院,陜西 寶雞 721013)
從反應(yīng)機(jī)理、制備工藝及應(yīng)用幾方面出發(fā),綜述了鈦酸鋇基粉體的濕化學(xué)制備方法,包括溶膠-凝膠法、水熱法、常壓水相法和溶膠-凝膠水熱法等,指出了這些方法的技術(shù)關(guān)鍵及優(yōu)缺點(diǎn),展望了濕化學(xué)法制備鈦酸鋇基粉體的發(fā)展前景。
濕化學(xué)法;鈦酸鋇基粉體;制備
鈦酸鋇(BaTiO3)作為一種典型的鐵電材料,是電子陶瓷中使用最廣泛的材料之一,被譽(yù)為“電子陶瓷工業(yè)的支柱”[1],因介電常數(shù)高,鐵電[2]、壓電[3]、絕緣性能[4]優(yōu)良及環(huán)境友好[5]等特點(diǎn)而被廣泛應(yīng)用于多層陶瓷電容器(MLCC)領(lǐng)域。由于電子系統(tǒng)的小型化、輕量化和集成化的發(fā)展要求,MLCC正在向大容量、超小超薄的方向快速發(fā)展,這就要求陶瓷介質(zhì)材料的晶粒尺寸達(dá)到亞微米甚至納米級,而陶瓷晶粒的大小正比于初始粉體尺寸[6],故在制備粉體時,須嚴(yán)格控制粒徑。
BaTiO3基粉體的制備方法主要包括傳統(tǒng)的固相法和濕化學(xué)法。固相法所得粉體的平均粒徑較大(>1μm),且能耗大、易混入雜質(zhì),不能滿足當(dāng)前MLCC的發(fā)展需求[7-10]。與固相法相比,濕化學(xué)法能夠在液相前驅(qū)體中將原材料在分子水平上均勻混合,可在較低的溫度下制備出納米級、亞微米級高純MLCC用BaTiO3基粉體[11-14]。作者在此對BaTiO3基粉體的濕化學(xué)制備方法進(jìn)行了綜述,包括溶膠-凝膠法[15]、水熱法[16-17]、常壓水相法[18]與溶膠-凝膠水熱法[19]等,并指出了各方法的技術(shù)關(guān)鍵、優(yōu)缺點(diǎn)以及適用范圍。
溶膠-凝膠法是一個無機(jī)聚合的過程(圖1):把適當(dāng)濃度的金屬醇鹽或無機(jī)鹽混入有機(jī)溶劑中,經(jīng)過水解和縮聚反應(yīng),得到的凝膠經(jīng)過老化后轉(zhuǎn)化為三維網(wǎng)絡(luò)結(jié)構(gòu)或線性結(jié)構(gòu)的氧化物凝膠[20]。
圖1 溶膠-凝膠法過程
Fig.1 The process of sol-gel method
溶膠-凝膠法能夠很好地控制反應(yīng)物組分的化學(xué)計量比,實(shí)現(xiàn)原材料在分子水平上的均勻混合,這對于多組分摻雜的BaTiO3基粉體的制備具有很重要的意義。Xin等[21]采用溶膠-凝膠法制備了Sc摻雜BaTiO3基納米粉體,粒徑為30~40 nm,燒結(jié)活性高,燒結(jié)溫度較低,在1 200 ℃燒結(jié)能獲得介電溫度穩(wěn)定性較好的細(xì)晶陶瓷材料。Zhan等[22]采用溶膠-凝膠法制備了Nb摻雜(Ba0.87Sr0.04Ca0.09)(Ti0.86Zr0.08Sn0.06)O3基粉體,粒徑約為50 nm,燒結(jié)所得陶瓷晶粒尺寸約為10 μm,室溫介電常數(shù)超過16 000,符合Y5V標(biāo)準(zhǔn)[當(dāng)溫度在-30~85 ℃之間變化時,容溫(ε)變化率為-82%≤(ε-ε25 ℃)/ε25 ℃≤22%]。Wang等[23]采用溶膠-凝膠法制備了粒徑約為30 nm的Dy摻雜BaTiO3-Nb-Zn基粉體,當(dāng)Dy摻雜量為0.4%(摩爾分?jǐn)?shù))時,陶瓷晶粒尺寸約為3 μm,具有較好的介電性能,室溫介電常數(shù)達(dá)到19 000以上,介電損耗為0.006,符合Y5V標(biāo)準(zhǔn)。
溶膠-凝膠法的優(yōu)點(diǎn):易實(shí)現(xiàn)多組分的均勻摻雜,無需洗滌,所制備的BaTiO3基粉體組成容易控制、純度高、粒徑小、燒結(jié)活性高,被廣泛用于制備滿足Y5V標(biāo)準(zhǔn)的介電陶瓷。溶膠-凝膠法的缺點(diǎn):需高溫煅燒,粉體易團(tuán)聚,在制備過程中無法控制粉體的形貌,燒結(jié)得到的陶瓷易發(fā)生異常長大、開裂或有殘留細(xì)孔[24-26]。
水熱法的基本原理:以水溶液為介質(zhì),在密封的反應(yīng)釜中,將常溫下不易合成或不易被氧化的物質(zhì)通過離子反應(yīng)的壓力平衡、溫度(100~400 ℃)及溶劑的聯(lián)合效應(yīng)等共同作用得到BaTiO3基粉體。尤其是微波水熱法[27-29],與傳統(tǒng)的水熱法相比更節(jié)能、省時且內(nèi)部加熱速度快。Guo等[30]將微波水熱法和傳統(tǒng)水熱法進(jìn)行了對比,發(fā)現(xiàn)2種水熱法均可以得到理想的BaTiO3基粉體,但傳統(tǒng)水熱法反應(yīng)條件為150 ℃下保溫5 h,而微波水熱法只需在80 ℃下保溫30 min即可得到理想的BaTiO3基粉體。
Velasco-Davalos等[31]利用水熱法制備了納米級BaTiO3基粉體,從而獲得性能較好的鐵電薄膜材料。與其它濕化學(xué)法相比,水熱法具有一些獨(dú)特優(yōu)點(diǎn):(1)由于反應(yīng)是在密封的反應(yīng)釜中進(jìn)行,壓力相對較高,提供的物理化學(xué)環(huán)境使前驅(qū)體能充分溶解,形成晶元,進(jìn)而直接結(jié)晶得到粉體,這在常壓下是無法完成的;(2)可直接在較低溫度下得到晶體發(fā)育完整的粉體,無需高溫煅燒晶化,避免了煅燒過程中可能引起的粉體團(tuán)聚或者混入雜質(zhì);(3)改變水熱反應(yīng)條件,可得到形貌、晶粒尺寸和結(jié)構(gòu)可控的粉體。通過水熱法[32]制備的納米級BaTiO3基粉體具有純度高、結(jié)晶好、顆粒大小分布均勻、無團(tuán)聚或少團(tuán)聚、形貌可控(如:多面體形[33]、四方塊形[34]、樹枝形[35]等)與燒結(jié)活性高等優(yōu)點(diǎn),能夠制備薄層電介質(zhì)需求的BaTiO3基介質(zhì)陶瓷材料,此外,還被廣泛用于制備鐵電薄膜材料。但是粉體組成不易控制,容易發(fā)生偏析,且水熱法對反應(yīng)設(shè)備和條件要求較高,技術(shù)難度大,安全性低,在推廣應(yīng)用時有一定的局限性。
常壓水相法是在水熱法和共沉淀法的基礎(chǔ)上發(fā)展起來的一種新型的制備BaTiO3基粉體的方法。常壓水相法制備BaTiO3基粉體的機(jī)理如下[36]:
TiCl4+H2O→TiOCl2+2HCl
(1)
TiOCl2+Ba(OAc)2+4NaOH→BaTiO3+NaOAc+2H2O
(2)
常壓水相法的原理與水熱法相同,但是常壓水相法反應(yīng)溫度較低,一般在100 ℃以下即可獲得BaTiO3基粉體。溶劑和原料不同,BaTiO3基粉體的粒徑也會不同。通常選擇有機(jī)溶劑時,粉體粒徑能夠達(dá)到納米級。Reddy等[37]采用常壓水相法在水浴溫度為75 ℃的條件下,制備了粒徑為30 nm的Ba(ZrxTi1-x)O3基粉體。劉宇等[18]采用常壓水相法在水浴溫度為80~85 ℃的條件下,制備了形貌可控的單分散Ba(ZrxTi1-x)O3基粉體,粒徑為0.47~1.24 μm。崔斌課題組[38-40]采用常壓水相法制備了多種亞微米級(平均粒徑< 280 nm)單分散球形粉體如BaTiO3、Ba0.97La0.02TiO3[38]和Ba0.991Bi0.006TiO3[39-40]等,并制備了性能優(yōu)良且體系簡單、滿足X8R標(biāo)準(zhǔn)的BaTiO3基細(xì)晶陶瓷。
與其它方法相比,常壓水相法能很好地控制粉體材料的組成、物相、粒度分布及微觀形貌,具有物料設(shè)備成本低、反應(yīng)條件易實(shí)現(xiàn)、制備工藝簡單等特點(diǎn),可得到粒度分布窄且純度高、結(jié)晶好的納米級單分散球形BaTiO3基粉體,被廣泛用于制備性能優(yōu)良且滿足X8R標(biāo)準(zhǔn)的BaTiO3基細(xì)晶陶瓷。但也存在缺點(diǎn),如:需要多次反復(fù)洗滌粉體才能將反應(yīng)過程中的雜質(zhì)除去,對技術(shù)條件要求較高,如果控制不當(dāng),就會引起產(chǎn)物的鈦鋇比出現(xiàn)較大的波動,進(jìn)而影響產(chǎn)物的質(zhì)量。
近年來,隨著陶瓷粉體制備技術(shù)的不斷改進(jìn)與發(fā)展,研究者不再局限于采用單一方法來制備陶瓷粉體,將幾種濕化學(xué)法相結(jié)合制備出成本更低、性能更優(yōu)異、結(jié)構(gòu)獨(dú)特的BaTiO3基粉體成為研究熱點(diǎn)。如:Yang等[41]將溶膠-凝膠法和水熱法相結(jié)合制備了中空的納米級(86.7 nm)BaTiO3基單晶粉體。Sun等[42]采用溶膠-凝膠法與水熱法相結(jié)合制備了納米級單分散球形BaTiO3基粉體,在1 350 ℃燒結(jié)得到介電溫度穩(wěn)定性較好的BaTiO3基細(xì)晶陶瓷。
溶膠-凝膠水熱法是當(dāng)前研究較多的一種制備BaTiO3基粉體新方法[19,43],它結(jié)合了溶膠-凝膠法和水熱法的優(yōu)點(diǎn),以水熱處理代替溶膠-凝膠法的高溫煅燒過程,使粉體在溫和條件下結(jié)晶。該方法獲得的單分散球形納米粉體具有組分易控制、結(jié)晶性好、純度高、形貌可控及粒徑分布窄等優(yōu)點(diǎn)。與溶膠-凝膠法相比,所得到的BaTiO3基粉體的分散性好、粒度分布均勻;與水熱法相比,更易實(shí)現(xiàn)多組分的均勻摻雜,組成更易控制。
Liu等[39]采用常壓水相法與沉淀法相結(jié)合制備出粒徑約為240 nm的單分散球形BaTiO3基粉體,通過1 180 ℃燒結(jié)得到滿足X8R標(biāo)準(zhǔn)的細(xì)晶陶瓷材料。Yao等[44]采用溶膠-凝膠法與沉淀法相結(jié)合得到亞微米級的BaTiO3基粉體,通過燒結(jié)得到性能滿足X9R標(biāo)準(zhǔn)的細(xì)晶陶瓷材料。Shangguan等[45]采用溶膠沉淀法制備了單分散球形亞微米級的Ba0.991Bi0.006TiO3基粉體,通過燒結(jié)得到介電溫度穩(wěn)定性較好的細(xì)晶陶瓷材料。
盡管BaTiO3基粉體的制備方法較多,但從原料、設(shè)備、生產(chǎn)工藝及粉體性能等方面綜合考慮,常壓水相法與溶膠-凝膠水熱法極具發(fā)展前景。單一濕化學(xué)法或多或少存在一些缺點(diǎn),因此將兩種或多種濕化學(xué)法相結(jié)合,進(jìn)一步研究和開發(fā)更多高效實(shí)用的濕化學(xué)法尤為迫切。目前的濕化學(xué)法研究大都側(cè)重于性能研究,對反應(yīng)機(jī)理認(rèn)識還不夠深入,某些濕化學(xué)法仍然處于實(shí)驗(yàn)室研究階段,尚未實(shí)現(xiàn)工業(yè)化。因此,今后應(yīng)對濕化學(xué)法制備粉體進(jìn)行更全面深入的研究。
[1] WANG S,HE H,SU H.Effect of synthesized BaTiO3doping on the dielectric properties of ultra temperature-stable ceramics[J].Journal of Materials Science:Materials in Electronics,2012,23(10):1875-1880.
[2] CHEN P Y,CHEN C S,TU C S,et al.Effects of texture on microstructure,Raman vibration,and ferroelectric properties in 92.5%(Bi0.5Na0.5)TiO3-7.5%BaTiO3ceramics[J].Journal of the European Ceramic Society,2016,36(7):1613-1622.
[3] ZHU L F,ZHANG B P,ZHAO L,et al.Large piezoelectric effect of(Ba,Ca)TiO3-xBa(Sn,Ti)O3lead-free ceramics[J].Journal of the European Ceramic Society,2015,36(4):1017-1024.
[4] KIMMEL V A,INIGUEZ J,CAIN G M,et al.Neutral and cha-rged oxygen vacancies induce two-dimensional electron gas near SiO2/BaTiO3interfaces[J].The Journal of Physical Chemistry Letters,2013,4(2):333-337.
[5] DATTA K,THOMAS P A.Structural investigation of a novel pe-rovskite-based lead-free ceramics:xBiScO3-(1-x)BaTiO3[J].Journal of Applied Physics,2010,107(4):043516.
[6] 姚國峰.高溫穩(wěn)定型 MLCC用介質(zhì)陶瓷材料的制備、結(jié)構(gòu)與性能研究[D].北京:清華大學(xué),2012.
[7] LIN L X,WANG M J,LIU Y R,et al.Decisive role of MgO addition in the ultra-broad temperature stability of multicomponent BaTiO3-based ceramics[J].Ceramics International,2014,40(1):1105-1110.
[8] LIU M Y,HAO H,CHEN W J,et al.Preparation and dielectric properties of X9R core-shell BaTiO3ceramics coated by BiAlO3-BaTiO3[J].Ceramics International,2016,42(1):379-387.
[9] SUN Y,LIU H X,HAO H,et al.The role of Co in the BaTiO3-Na0.5Bi0.5TiO3based X9R ceramics[J].Ceramics International,2015,41(1):931-939.
[10] LU D Y,ZHANG L,SUN X Y.Defect chemistry of a high-k‘Y5V’(Ba0.95Eu0.05)TiO3ceramic[J].Ceramics International,2013,39(6):6369-6377.
[11] LIU B B,WANG X H,ZHAO Q C,et al.Improved energy storage properties of fine-crystalline BaTiO3ceramics by coating po-wders with Al2O3and SiO2[J].Journal of the American Ceramic Society,2015,98(8):2641-2646.
[12] GONG H L,WANG X H,ZHANG S P,et al.Grain size effect on electrical and reliability characteristics of modified fine-grained BaTiO3ceramics for MLCCs[J].Journal of the European Ceramic Society,2014,34(7):1733-1739.
[13] ZHANG Y C,WANG X H,KIM J Y,et al.High performance BaTiO3-based BME-MLCC nanopowder prepared by aqueous chemical coating method[J].Journal of the American Ceramic Society,2012,95(5):1628-1633.
[14] SHEN Z B,WANG X H,GONG H L,et al.Fabrication of high-performance Ba0.95Ca0.05Ti0.85Zr0.15O3ceramics by aqueous chemical coating method[J].Ceramics International,2015,41(S1):S157-S161.
[15] ZHANG Q L,WU F,YANG H.Sol-gel synthesis of A-site-ordered and homogeneous (Nd0.55,Li0.35)TiO3ceramic and its dielectric properties[J].Scripta Materialia,2011,65(9):842-845.
[16] QI H Q,FANG L,XIE W T,et al.Study on the hydrothermal synthesis of barium titanate nano-powders and calcination parameters[J].Journal of Materials Science:Materials in Electronics,2015,26(11):8555-8562.
[17] GAO J B,SHI H Y,DONG H N,et al.Factors influencing formation of highly dispersed BaTiO3nanospheres with uniform sizes in static hydrothermal synthesis[J].Journal of Nanoparticle Research,2015,17(7):286-289.
[18] 劉宇,崔斌,湛海涯,等.單分散BaZrxTi1-xO3亞微米粉體的可控合成[J].粉未冶金技術(shù),2013,31(3):167-173.
[19] WANG W W,CAO L X,LIU W,et al.Low-temperature synthesis of BaTiO3powders by the sol-gel-hydrothermal method[J].Ceramics International,2013,39(6):7127-7134.
[20] KAVIAN R,SAIDI A.Sol-gel derived BaTiO3nanopowders[J].Journal of Alloys and Compounds,2009,468(1/2):528-532.
[21] XIN C R,ZHANG J,LIU Y,et al.Polymorphism and dielectric properties of Sc-doped BaTiO3nanopowders synthesized by solgel method[J].Materials Research Bulletin,2013,48(6):2220-2226.
[22] ZHAN X X,CUI B,XING Y L,et al.A novel process to synthesize high-k‘Y5V’ nanopowder and ceramics[J].Ceramics International,2012,38(1):389-394.
[23] WANG Y,CUI B,ZHANG L L,et al.Phase composition,microstructure,and dielectric properties of dysprosium-doped Ba(Zr0.1Ti0.9)O3-based Y5V ceramics with high permittivity[J].Ceramics International,2014,40(8):11681-11688.
[24] IANCULESCU A C,VASILESCU C A,CRISAN M,et al.Formation mechanism and characteristics of lanthanum-doped BaTiO3powders and ceramics prepared by the sol-gel process[J].Materials Characterization,2015,106:195-207.
[25] DEVI C S,KUMAR G S,PRASAD G.Spectroscopic and electrical studies on Nd3+,Zr4+ions doped nano-sized BaTiO3ferroelectrics prepared by sol-gel method[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2015,136(PartB):366-372.
[26] RAMAKANTH S,RAJU K C J.Charge transfer induced magnetism in sol-gel derived nanocrystalline BaTiO3[J].Solid State Communications,2014,187:59-63.
[27] KRZMANC M M,KLEMENT D,JANCAR B,et al.Hydrothermal conditions for the formation of tetragonal BaTiO3particles from potassium titanate and barium salt[J].Ceramics International,2015,41(10):15128-15137.
[28] ZHAO X,LIU W F,CHEN W,et al.Preparation and properties of BaTiO3ceramics from the fine ceramic powder[J].Ceramics International,2015,41(S1):S111-S116.
[29] ZHANG Y,CHEN L J,ZENG J,et al.Aligned porous barium titanate/hydroxyapatite composites with high piezoelectric coefficients for bone tissue engineering[J].Matericals Science and Engineering C,2014,39:143-149.
[30] GUO L T,LUO H J,GAO J Q,et al.Microwave hydrothermal synthesis of barium titanate powders[J].Materials Letters,2006,60(24):3011-3014.
[31] VELASCO-DAVALOS I,AMBRIZ-VARGAS F,GOMEZ-YANEI C,et al.Polarization reversal in BaTiO3nanostructures synthesized by microwave-assisted hydrothermal method[J].Journal of Alloys and Compounds,2016,667:268-274.
[32] MAGNONE E,KIM J R,PAPK J H.The effect of the hydrothermal synthesis variables on barium titanate powders[J].Ceramics International,2016,42(8):10030-10036.
[33] ZHAN H Q,YANG X F,WANG C M,et al.Multiple nucleation and crystal growth of barium titanate[J].Crystal Growth & Design,2012,12(3):1247-1253.
[34] ADIREDDY S,LIN C,CAO B,et al.Solution-based growth of monodisperse cube-like BaTiO3colloidal nanocrystals[J].Chemi-stry of Materials,2010,22(6):1946-1948.
[35] MAXIM F,VIARINHO P,FERREIRA P,et al.Kinetic study of the static hydrothermal synthesis of BaTiO3using titanate nanotubes precursors[J].Crystal Growth & Design,2011,11(8):3358-3365.
[36] OVERAMENKO N A,SHVETS L A,OVCHARENKO F D,et al.Kinetics of hydrothermal synthesis of barium metatianate[J].Izv Akad Nauk SSSR Neorgy Mater,1979,15(11):82-85.
[37] REDDY S B,RAO K P,RAO M S R.Structural and dielectric characterization of Sr substituted Ba(Zr,Ti)O3based functional materials[J].Applied Physics A,2007,89(4):1011-1015.
[38] WANG Y,CUI B,LIU Y,et al.Fabrication of submicron La2O3-coated BaTiO3particles and fine-grained ceramics with temperature-stable dielectric properties[J].Scripta Materialia,2014,90-91:49-52.
[39] LIU Y,CUI B,WANG Y,et al.A novel precipitation-based synthesis for the formation of X8R-type dielectrics composition bas-ed on monodispersed submicron Ba0.991Bi0.006TiO3@Nb2O5particles[J].Journal of the European Ceramic Society,2015,35(9):2461-2469.
[40] LIU Y,CUI B,WANG Y,et al.Core-shell structure and dielectric properties of Ba0.991Bi0.006TiO3@Nb2O5-Co3O4ceramics[J].Journal of the American Ceramic Society,2016,99(5):1664-1670.
[41] YANG X,REN Z H,XU G,et al.Monodisperse hollow perovskite BaTiO3nanostructures prepared by a sol-gel-hydrothermal method[J].Ceramics International,2014,40(7):9663-9670.
[42] SUN Q M,GU Q L,ZHU K J,et al.Stabilized temperature-dependent dielectric properties of Dy-doped BaTiO3ceramics derived from sol-hydrothermally synthesized nanopowders[J].Ceramics International,2016,42(2):3170-3176.
[43] ZANFIR A V,VOICU G,JING A S I,et al.Low-temperature synthesis of BaTiO3nanopowders[J].Ceramics International,2016,42(1):1672-1678.
[44] YAO G F,WANG X H,ZHANG Y C,et al.Nb-modified 0.9BaTiO3-0.1(Bi0.5Na0.5)TiO3ceramics for X9R high-temperature dielectrics application prepared by coating method[J].Journal of the American Ceramic Society,2012,95(11):3525-3531.
[45] SHANGGUAN M Q,CUI B,MA R,et al.Production of Ba0.991Bi0.006TiO3@ZnO-B2O3-SiO2ceramics with a high dielectric constant,a core-shell structure,and a fine-grained microstructure by means of a sol-precipitation method[J].Ceramics International,2016,42(6):7397-7405.
Research Progress on Preparation of BaTiO3-Based Particles by Liquid-State Method
WANG Yan
(EngineeringResearchCenterofAdvancedFerroelectricFunctionalMaterials,ShaanxiKeyLaboratoryofPhytochemistry,CollegeofChemistryandChemicalEngineering,BaojiUniversityofArtsandSciences,Baoji721013,China)
Startingfromreactionmechanism,preparationtechniqueandapplication,theliquid-statemethodsforpreparingBaTiO3-basedparticles,includingsol-gelmethod,hydrothermalmethod,aqueous-phasemethodatatmosphericpressure,sol-gelhydrothermalmethod,aresummarized.Theirkeytechnologiesaswellasmeritsanddemeritsarepointedout.ThedevelopmentprospectofthepreparationofBaTiO3-basedparticlesbyliquid-statemethodisforcasted.
liquid-statemethod;BaTiO3-basedparticle;preparation
陜西省教育廳專項(xiàng)科研計劃項(xiàng)目(16JK1040),寶雞市科技計劃項(xiàng)目(16RKX1-4),寶雞文理學(xué)院校級重點(diǎn)項(xiàng)目(ZK16054,ZK16128)
2016-12-06
王艷(1983-),女,陜西蒲城人,博士,講師,研究方向:功能陶瓷材料的制備與性能,E-mail:wangyan7144279@163.com。
10.3969/j.issn.1672-5425.2017.04.003
TQ028.8 TB34
A
1672-5425(2017)04-0010-04
王艷.濕化學(xué)法制備鈦酸鋇基粉體的研究進(jìn)展[J].化學(xué)與生物工程,2017,34(4):10-13,18.