• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of Carrier Distribution on The Frequency Behavior for GaN-based LEDs

    2017-04-15 01:49:58WUChunhuiZHUShichaoFUBingleiLIULeiZHAOLixiaWANGJunxiCHENHongda
    發(fā)光學(xué)報(bào) 2017年3期
    關(guān)鍵詞:頻率特性春暉大功率

    WU Chun-hui, ZHU Shi-chao, FU Bing-lei, LIU Lei, ZHAO Li-xia, WANG Jun-xi, CHEN Hong-da

    (1. Semiconductor Lighting Research and Development Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;2. State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;3. Science & Technology Department, CETC Electronics Equipment Group Co., Ltd., Beijing 100083, China)

    Influence of Carrier Distribution on The Frequency Behavior for GaN-based LEDs

    WU Chun-hui1,2, ZHU Shi-chao1*, FU Bing-lei1,3, LIU Lei1, ZHAO Li-xia1, WANG Jun-xi1, CHEN Hong-da2

    (1.SemiconductorLightingResearchandDevelopmentCenter,InstituteofSemiconductors,ChineseAcademyofSciences,Beijing100083,China;2.StateKeyLaboratoryonIntegratedOptoelectronics,InstituteofSemiconductors,ChineseAcademyofSciences,Beijing100083,China;3.Science&TechnologyDepartment,CETCElectronicsEquipmentGroupCo.,Ltd.,Beijing100083,China)

    The electrical and optical properties of GaN-based high power LEDs were investigated under both DC and AC bias. The results show that the carrier distribution of the active region can be modified by changing the indium concentration of the last quantum barrier. The accumulated electrons in the active region can lead to the negative capacitance effect. The improved carrier transport property for LEDs with lower quantum barrier also helps to increase the recombination rate and modulation bandwidth by 20%. This work will help to understand the influence of carrier distribution on the frequency behavior of GaN-based LEDs.

    GaN-based; light emitting diodes; visible light communication; modulation bandwidth; carrier distribution

    1 Introduction

    High-power LEDs offer many advantages over incandescent, fluorescent, and discharge light sources, including longer lifetime, smaller size and higher energy efficiency. With the increase of the luminous efficacy, LEDs are fast replacing traditional light sources in numerous applications, such as illumination and displays. Besides, LEDs can also be modulated as sources for data transmission, which is the so-called visible light communication (VLC) technology[1-3].However, the optical modulation bandwidth of conventional commercial LEDs is still quite low[2-4],which restricts the development and application of VLC. Investigation of carrier transport characteristics and frequency behavior is important to the design of high speed LEDs for VLC.

    Because of the large mobility of electrons and the existence of the electron blocking layer (EBL)[5],the carrier distribution is always asymmetry, and both electrons and holes will be mainly confined in the upmost InGaN quantum well (QW)[6-7]. Special design at the barrier close to p-type layer (namely the last barrier) is an effective method to change the carrier distribution in the active region of LEDs. The influence of the carrier distribution in the active region on the optical properties of LEDs has been studied under DC bias[8]. But how the carrier distribution will influence the modulation bandwidth under AC bias is still not clear, which is actually more important for VLC application. In this study, we designed and fabricated two kinds of LEDs with different indium concentration in the last quantum barrier. The optical properties have been investigated under both DC and AC bias. The carrier distributions have also been simulated. The results show that the carrier distribution of the active region can be effectively modified by changing the indium concentration in the last quantum barrier, and the accumulated electrons in the active region will lead to the negative capacitance effect and influence the frequency behavior. This work will benefit the design of high speed LEDs for VLC application.

    2 Experiments

    The LEDs were grown using metal-organic chemical vapor deposition (MOCVD), followed by a standard chip processing and encapsulation procedure. The chip active area is roughly about 1.17 mm2. The LED structure consists of a 2.0 μm thick undoped GaN layer (not shown in the figure), a 2.0 μm thick Si-doped n-GaN layer, a multiple quantum well (MQW) active region with five pairs of 6 nm GaN quantum barrier (QB) and 3 nm In0.15Ga0.85N quantum well (QW). As for the last quantum barrier, a normal GaN layer was deposited for LED-Ⅰ as usual, while for LED-Ⅱ, an In0.05Ga0.95N layer was used instead in order to change the barrier offset. Afterwards, a 3 nm p-In0.05Ga0.95N, a 40 nm thick p-Al0.15Ga0.85N EBL and a 250 nm thick main Mg-doped p-GaN layer were grown. The schematic LED structures are illustrated in Fig.1.

    Fig.1 Schematic structure of two LEDs. The last quantum barrier of LED-Ⅰ and LED-Ⅱ is different, which is GaN and InGaN, respectively.

    TheI-Vcurves were measured by Keithley 2400. The EL of the encapsulated chips was measured in an integrating sphere in the continuous-wave current mode. The device capacitances were measured by an Agilent 4294A impedance analyzer with the frequency range from 40 Hz to 110 MHz. During the impedance measurements, LEDs were fastened in an Agilent 16047E test fixture with a bandwidth of 110 MHz. The frequency sweep type was set as logarithmic and the voltage oscillation level was 100 mV. Optical responses from 500 kHz to 30 MHz were measured using a network analyzer (Agilent E5061B). All the measurements were carried out at room temperature.

    The LED structures in the APSYS simulations were set the same as the epitaxial wafer in the experiments. As obtained from the Hall effect measurement, the hole concentration in the p-InGaN and p-GaN layer of both LEDs were set to be 4×1018cm-3and 5×1017cm-3, respectively. The energy band offset ratio between the conduction band and the valence band was assumed to be 0.7/0.3. Considering the crystal relaxation caused by the generation of misfit dislocations, 50% of the theoretical polarization charge density was assumed[9]. The Auger recombination coefficient and the SRH lifetime for electrons and holes were chosen as 5×1030cm6/s and 10 ns, respectively[10]. Most of the parameters used in this paper are the same as in Ref.[11]. Other material parameters of the semiconductors used in the simulation can be found in Ref.[12].

    3 Results and Discussion

    Fig.2 shows the output optical power as a function of the current (L-I) for both LEDs. It shows that the optical power of both LEDs increases with the injected current increasing. At 500 mA, the optical power of LED-Ⅰ and LED-Ⅱ is 201 and 156 mW, respectively. Compared with LED-Ⅰ, the optical power of LED-Ⅱ is decreased by 22%. The reason is mainly due to the decreased last quantum barrier in LED-Ⅱ, which led to a weaker confinement of electrons in the last several quantum wells. The inset of Fig.2 shows theI-Vcharacteristics of two LEDs. The threshold currents of both LEDs are similar, and the series resistances are roughly about 0.3 and 0.6 Ω for LED-Ⅰ and LED-Ⅱ, respectively. In addition, at reverse bias of -10 V, the current of both LEDs is roughly about 3 μA, indicating the crystal quality for the MQW active region of the two LEDs are similar as well.

    Fig.2 Output optical power as a function of current for LED-Ⅰ and LED-Ⅱ. The inset shows theI-Vcurves of two LEDs.

    The differential capacitances of these two different LEDs under reverse bias were compared as well. In Fig.3, the differential capacitance of LED-Ⅱ is smaller than that of LED-Ⅰ, which indicates less carriers depleted in LED-Ⅱ. The frequency dependence of the differential capacitance for the two LEDs at forward current of 10 and 90 mA were also measured. As shown in the inset of Fig.3, the capacitance is negative at low frequency or large bias current[13-16].This negative capacitance (NC) effect has been reported to be related to the carrier accumulation in the active region[16].Here, the accumulated carriers are mainly determined by the electrons in the last quantum well. The accumulated electrons under DC bias will delay or prevent the further injection of the electrons with the increase of the small signal voltage, which results in the NC effect. Since the NC effect is more obvious for LED-Ⅰ, this indicates that there are more electrons accumulated in LED-Ⅰ than that in LED-Ⅱ. With the frequency increasing, the NC effects decreased for both LEDs. This is because that, with increasing the frequency, the carrier recombination becomes more difficult to catch up with the small signal modulation voltage and herein the NC effect is only obvious at low frequency region.

    Fig.3 Differential capacitances as a function of reverse voltage for two LEDs at 100 kHz. The inset shows frequency responses of the differential capacitance for these two LEDs measured at forward current of 10 and 90 mA.

    In order to clarify the carrier distribution in the different LED structures, we calculated the energy band diagrams and the electron distribution using APSYS simulation. The energy band diagrams of LED-Ⅰ and Ⅱ are shown in Fig. 4(a) and (b), respectively. For both structures, the barrier heights of the EBL layer for electrons are almost the same. However, the GaN last quantum barrier of LED-Ⅱ has a lower potential than LED-Ⅰ. Thus, it can be seen from Fig.4(c) that under the same injection current, LED-Ⅱ have less confined carriers than LED-Ⅰ, which is consistent with the measured optical power. Meanwhile, less accumulated electrons will reduce the screened coulomb repulsion on the injection of electrons and accordingly a smaller negative capacitance compared with LED-Ⅰ.

    Fig.4 Calculated energy band diagrams of (a) LED-Ⅰ and (b) LED-Ⅱ. Black lines are the energy bands, red lines present the Fermi level. Green dashed lines indicate the last quantum barriers and the p-InGaN layers of the two LEDs. (c) Calculated electron distribution of the two LEDs at 90 mA.

    The normalized optical responses of two LEDs were also measured, as shown in the inset of Fig.5. It can be seen that, at low frequency, the optical response decreases slowly with the frequency increasing but abovef3dBthe optical response decreases rapidly. It is because that, with increasing the frequency, the carrier recombination becomes more difficult to catch up with the small signal modulation voltage. The modulation bandwidth of the two LEDs as a function of the current was also measured. The bandwidth for both devices increases with increasing the injected current.

    Fig.5 Modulation bandwidth of the two LEDs as a function of bias current. The inset shows the normalized optical response of the two LEDs at bias current of 300 mA.

    Based on the measuredI-VandC-Vcharacteristics in Fig.2 and Fig.3, both the RC limited bandwidths were calculated to be more than 680 MHz, which are far beyond the measured bandwidths. Therefore, the modulation bandwidths of both LEDs are mainly limited by the carrier recombination lifetime[17-18]. With the increasing of the carrier concentration, the carrier lifetime will be reduced and result in the increase of the modulation bandwidth for LEDs. In addition, as the case for LED-Ⅱ, the lower quantum barrier will improve the carrier transport probability and enhance the carrier recombination rate. Therefore, the modulation bandwidth of LED-Ⅱ increased by 20% compared with LED-Ⅰ with GaN quantum barriers. If increasing the hole injection efficiency by modulating the EBL or p-InGaN layer, it will help to improve the tradeoff between the optical power and modulation bandwidth[19], which will be further studied in future.

    4 Conclusion

    The influence of the carrier distribution on the frequency behavior for GaN-based high power LEDs has been investigated. The results show that the carrier distribution of the active region can be modified by changing the indium concentration in the last quantum barrier. The accumulated electrons in the active region will lead to the negative capacitance effect. Furthermore, because of the lower last quantum barrier, the improved carrier transport properties also help to increase the modulation bandwidth. Our findings will help to understand the dependence of the modulation bandwidth on the carrier distribution and design the high speed GaN-based LEDs for visible light communication.

    [1] HAAS H, YIN L, WANG Y L,etal.. What is LiFi? [J].J.LightwaveTechnol., 2016, 34(6):1533-1544.

    [2] LI H L, CHEN X B, GUO J Q,etal.. An analog modulator for 460 MB/S visible light data transmission based on OOK-NRS modulation [J].IEEEWirelessCommun., 2015, 22(2):68-73.

    [3] ZHU S C, YU Z G, ZHAO L X,etal.. Enhancement of the modulation bandwidth for GaN-based light-emitting diode by surface plasmons [J].Opt.Express, 2015, 23(11):13752-13760.

    [4] MINH H L, O’BRIEN D, FAULKNER G,etal.. 100-Mb/s NRZ visible light communications using a postequalized white LED [J].IEEEPhoton.Technol.Lett., 2009, 21(15):1063-1065.

    [5] DAVID A, GRUNDMANN M J, KAEDING J F,etal.. Carrier distribution in (0001) InGaN/GaN multiple quantum well light-emitting diodes [J].Appl.Phys.Lett., 2008, 92(5):053502-1-3.

    [6] LIU Z Q, MA J, YI X Y,etal.. p-InGaN/AlGaN electron blocking layer for InGaN/GaN blue light-emitting diodes [J].Appl.Phys.Lett., 2012, 101(26):261106-1-4.

    [7] CHOI S, KIM H J, KIM S S,etal.. Improvement of peak quantum efficiency and efficiency droop in Ⅲ-nitride visible light-emitting diodes with an InAlN electron-blocking layer [J].Appl.Phys.Lett., 2010, 96(22):221105-1-3.

    [8] FU J J, ZHAO L X, ZHANG N,etal.. Influence of electron distribution on efficiency droop for GaN-based light emitting diodes [J].J.SolidStateLight., 2015, 2(1):5.

    [9] WANG T H, KUO Y K. Efficiency enhancement of blue ingan light-emitting diodes with shallow first well [J].IEEEPhoton.Technol.Lett., 2012, 24(22):2084-2086.

    [10] RYU H Y, LEE J M. Effects of two-step Mg doping in p-GaN on efficiency characteristics of InGaN blue light-emitting diodes without AlGaN electron-blocking layers [J].Appl.Phys.Lett., 2013, 102(18):181115-1-4.

    [11] KUO Y K, CHANG J Y, TSAI M C,etal.. Advantages of blue InGaN multiple-quantum well light-emitting diodes with InGaN barriers [J].Appl.Phys.Lett., 2009, 95(1):011116-1-3.

    [12] VURGAFTMAN I, MEYER J R. Band parameters for nitrogen-containing semiconductors [J].J.Appl.Phys., 2003, 94(6):3675-3696.

    [13] LI X, SHI Z, ZHU G Y,etal.. High efficiency membrane light emitting diode fabricated by back wafer thinning technique [J].Appl.Phys.Lett., 2014, 105(3):031109-1-4.

    [14] YANG W, ZHANG S L, MCKENDRY J J D,etal.. Size-dependent capacitance study on InGaN-based micro-light-emitting diodes [J].J.Appl.Phys., 2014, 116(4):044512-1-6.

    [15] FENG L F, LI Y, LI D,etal.. Precise relationship between voltage and frequency at the appearance of negative capacitance in InGaN diodes [J].Appl.Phys.Lett., 2012, 101(23):233506-1-4.

    [16] PINGREE L S C, SCOTT B J, RUSSELL M T,etal.. Negative capacitance in organic light-emitting diodes [J].Appl.Phys.Lett., 2005, 86(7):073509-1-3.

    [17] SHI J W, SHEU J K, WANG C K,etal.. Linear cascade arrays of GaN-based green light-emitting diodes for high-speed and high-power performance [J].IEEEPhotonicsTechnol.Lett., 2007, 19(18):1368-1370.

    [18] LIAO C L, CHANG Y F, HO C L,etal.. High-speed gan-based blue light-emitting diodes with gallium-doped ZnO current spreading layer [J].IEEEElectronDev.Lett., 2013, 34(5):611-613.

    [19] ZHU S X, WANG J X, YAN J C,etal.. Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes [J].ECSSolidStateLett., 2014, 3(3):R11-R13.

    吳春暉(1982-),男,河北保定人,博士研究生,2006年于清華大學(xué)獲得碩士學(xué)位,主要從事可見光通信方面的研究。

    E-mail: wuch@semi.ac.cn

    朱石超(1990-),男,湖北武漢人,博士研究生,2012年于華中科技大學(xué)獲得學(xué)士學(xué)位,主要從事可見光通信光電器件的研究。

    E-mail: sczhu@semi.ac.cn

    2016-09-03;

    2016-09-29

    國家自然科學(xué)基金(11574306); 中國國際科技合作計(jì)劃(2015AA03A101,2014BAK02B08,2015AA033303)資助項(xiàng)目 Supported by National Natural Science Foundation of China(11574306); China International Science and Technology Cooperation Program(2015AA03A101,2014BAK02B08,2015AA033303)

    載流子分布對(duì)GaN基LED頻率特性的影響

    吳春暉1,2, 朱石超1*, 付丙磊1,3, 劉 磊1, 趙麗霞1, 王軍喜1, 陳宏達(dá)2

    (1. 中國科學(xué)院半導(dǎo)體研究所 半導(dǎo)體照明研發(fā)中心, 北京 100083;2. 中國科學(xué)院半導(dǎo)體研究所 集成光電子學(xué)國家重點(diǎn)實(shí)驗(yàn)室, 北京 100083;3. 中電科電子裝備集團(tuán)有限公司, 北京 100070)

    分別在直流偏置和交流偏置下,對(duì)大功率GaN基LED的電學(xué)和光學(xué)特性進(jìn)行了研究。結(jié)果顯示,通過改變靠近p型層的量子壘(也就是最后一個(gè)量子壘)中的In組分可以調(diào)控有源區(qū)中的載流子分布。有源區(qū)內(nèi)積累的電子會(huì)引起負(fù)電容效應(yīng)。而通過降低有源區(qū)量子壘的勢壘高度,可以改善LED中載流子傳輸特性,并實(shí)現(xiàn)載流子復(fù)合速率及通信調(diào)制帶寬20%的提高。這個(gè)工作將有助于理解GaN基LED中載流子分布對(duì)頻率特性的影響,并為設(shè)計(jì)適用于可見光通信的大功率高速LED奠定基礎(chǔ)。

    氮化鎵; 發(fā)光二極管; 可見光通信; 調(diào)制帶寬; 載流子分布

    1000-7032(2017)03-0347-06

    TN383+.1 Document code: A

    10.3788/fgxb20173803.0347

    *CorrespondingAuthor,E-mail:sczhu@semi.ac.cn

    猜你喜歡
    頻率特性春暉大功率
    水木榮春暉
    中老年保健(2022年2期)2022-08-24 03:20:24
    春暉
    鴨綠江(2021年17期)2021-11-11 13:03:41
    誰言寸草心,報(bào)得三春暉——唱給父母的贊歌
    采用驅(qū)動(dòng)IC PT4115的大功率LED電路應(yīng)用
    電子制作(2019年16期)2019-09-27 09:34:46
    吳春暉藏石欣賞
    寶藏(2017年11期)2018-01-03 06:45:52
    考慮頻率特性的變頻負(fù)荷模型研究
    一種新型大功率升降壓變換器及控制方法
    一種新穎的寬帶大功率分配器
    DAM中波發(fā)射機(jī)電聲指標(biāo)頻率特性初探
    大功率發(fā)射機(jī)房冷卻送風(fēng)改造
    毛片女人毛片| 久久久久久久久中文| 国产精品电影一区二区三区| 又黄又爽又刺激的免费视频.| 中文字幕av在线有码专区| 国产伦在线观看视频一区| 人妻制服诱惑在线中文字幕| 久久99蜜桃精品久久| 国产精品,欧美在线| 两个人视频免费观看高清| 午夜激情福利司机影院| 夜夜爽夜夜爽视频| 国产白丝娇喘喷水9色精品| av播播在线观看一区| 久久久久久国产a免费观看| 久久国内精品自在自线图片| 99热这里只有是精品50| 欧美日韩综合久久久久久| 欧美成人精品欧美一级黄| 成人一区二区视频在线观看| 国产高潮美女av| 亚洲美女视频黄频| 看非洲黑人一级黄片| 国产午夜精品久久久久久一区二区三区| 国产成人精品久久久久久| 欧美三级亚洲精品| 两个人的视频大全免费| 国产三级中文精品| 最新中文字幕久久久久| 97超视频在线观看视频| 菩萨蛮人人尽说江南好唐韦庄 | 99久久精品国产国产毛片| 女人十人毛片免费观看3o分钟| 丰满少妇做爰视频| 欧美xxxx黑人xx丫x性爽| 美女内射精品一级片tv| 色综合站精品国产| 免费大片18禁| 亚洲熟妇中文字幕五十中出| 在线观看一区二区三区| 国产精品精品国产色婷婷| 一边摸一边抽搐一进一小说| 国产精品久久久久久av不卡| 国产成人a∨麻豆精品| 69av精品久久久久久| 中国国产av一级| 国产精品,欧美在线| 国产一区二区亚洲精品在线观看| 欧美性猛交╳xxx乱大交人| 免费观看性生交大片5| 天天躁日日操中文字幕| 插阴视频在线观看视频| 中文乱码字字幕精品一区二区三区 | 少妇高潮的动态图| 中文字幕av成人在线电影| 99久久中文字幕三级久久日本| 日韩欧美精品免费久久| videos熟女内射| 老司机影院毛片| 欧美日韩精品成人综合77777| 国产高清有码在线观看视频| 99久久人妻综合| 亚洲成色77777| 搡女人真爽免费视频火全软件| 色播亚洲综合网| 久久久久久久国产电影| 亚洲色图av天堂| 久久精品久久久久久噜噜老黄 | 插逼视频在线观看| 亚洲一级一片aⅴ在线观看| 国产精华一区二区三区| 男女那种视频在线观看| 国产极品精品免费视频能看的| 亚洲精品乱久久久久久| 亚洲四区av| 亚洲av成人精品一区久久| 国产午夜福利久久久久久| 亚洲av成人av| 麻豆乱淫一区二区| 日韩成人伦理影院| 亚洲精品,欧美精品| 成人漫画全彩无遮挡| 麻豆精品久久久久久蜜桃| 欧美日本视频| 免费播放大片免费观看视频在线观看 | 午夜激情欧美在线| 午夜免费男女啪啪视频观看| 日本午夜av视频| 久久6这里有精品| 精品99又大又爽又粗少妇毛片| 看免费成人av毛片| 色噜噜av男人的天堂激情| 毛片一级片免费看久久久久| 黄色欧美视频在线观看| 天天躁夜夜躁狠狠久久av| 久久久精品欧美日韩精品| 久久99热6这里只有精品| av在线亚洲专区| 免费观看a级毛片全部| 一区二区三区四区激情视频| 久久久a久久爽久久v久久| 人妻夜夜爽99麻豆av| 国产黄a三级三级三级人| 亚洲欧美一区二区三区国产| 久久鲁丝午夜福利片| 亚洲欧洲国产日韩| 午夜福利在线观看吧| 99久久成人亚洲精品观看| 欧美区成人在线视频| 国产成人免费观看mmmm| 国产精华一区二区三区| 秋霞伦理黄片| av播播在线观看一区| 99国产精品一区二区蜜桃av| 一级爰片在线观看| 91久久精品电影网| 久久久久久久午夜电影| 国产视频内射| 亚洲成色77777| 亚洲精品色激情综合| 国产淫片久久久久久久久| 成人午夜精彩视频在线观看| 婷婷色综合大香蕉| 成人午夜高清在线视频| 高清毛片免费看| 熟女电影av网| 一边亲一边摸免费视频| 国产视频内射| 成年版毛片免费区| 亚州av有码| 日韩亚洲欧美综合| 国产又色又爽无遮挡免| 村上凉子中文字幕在线| 日日干狠狠操夜夜爽| 日本三级黄在线观看| 永久网站在线| 免费观看性生交大片5| 国产在线一区二区三区精 | 亚洲成人中文字幕在线播放| 日韩欧美精品免费久久| 亚洲三级黄色毛片| 国产精品综合久久久久久久免费| 美女大奶头视频| 永久免费av网站大全| 丝袜喷水一区| 亚洲丝袜综合中文字幕| 色综合色国产| 国产乱人视频| av免费在线看不卡| 天美传媒精品一区二区| 午夜爱爱视频在线播放| 又黄又爽又刺激的免费视频.| 亚洲经典国产精华液单| 亚洲成人精品中文字幕电影| 国产精品人妻久久久影院| 一夜夜www| 99热全是精品| 国产色婷婷99| 最近中文字幕2019免费版| 日韩中字成人| 少妇裸体淫交视频免费看高清| 日本黄色片子视频| 欧美日韩综合久久久久久| 麻豆国产97在线/欧美| 桃色一区二区三区在线观看| 国产精品1区2区在线观看.| 精品午夜福利在线看| 精品无人区乱码1区二区| 日韩,欧美,国产一区二区三区 | 久久草成人影院| 中文亚洲av片在线观看爽| 色哟哟·www| 欧美丝袜亚洲另类| 精品酒店卫生间| 我的女老师完整版在线观看| 人妻系列 视频| 国产白丝娇喘喷水9色精品| 久久精品影院6| 国产69精品久久久久777片| 国产精品1区2区在线观看.| 有码 亚洲区| 成人鲁丝片一二三区免费| 国产老妇女一区| 国产亚洲最大av| 午夜福利成人在线免费观看| 波多野结衣高清无吗| 69av精品久久久久久| 成人综合一区亚洲| 黄片无遮挡物在线观看| 一边摸一边抽搐一进一小说| 一个人看视频在线观看www免费| 免费不卡的大黄色大毛片视频在线观看 | 国产视频内射| 国产老妇女一区| 激情 狠狠 欧美| 天堂影院成人在线观看| 国产极品天堂在线| 久久午夜福利片| 国产精品野战在线观看| 日韩中字成人| 精品无人区乱码1区二区| 波野结衣二区三区在线| 亚洲内射少妇av| 男人狂女人下面高潮的视频| 午夜福利网站1000一区二区三区| 久久午夜福利片| 免费av观看视频| 99久久精品热视频| 国产成人aa在线观看| 欧美激情久久久久久爽电影| 国产精品精品国产色婷婷| videos熟女内射| 2021天堂中文幕一二区在线观| av国产久精品久网站免费入址| 免费av观看视频| 国产成人免费观看mmmm| 桃色一区二区三区在线观看| 欧美日韩一区二区视频在线观看视频在线 | 99久久九九国产精品国产免费| 床上黄色一级片| 亚洲国产成人一精品久久久| 免费看a级黄色片| 一区二区三区乱码不卡18| 欧美日本视频| 久久久久久国产a免费观看| 亚洲国产精品久久男人天堂| 日本色播在线视频| 久久久久网色| 小说图片视频综合网站| 噜噜噜噜噜久久久久久91| 久久精品国产鲁丝片午夜精品| 男人舔奶头视频| videossex国产| 欧美高清成人免费视频www| 久久久成人免费电影| 精品一区二区三区视频在线| 波野结衣二区三区在线| 美女xxoo啪啪120秒动态图| 日本一本二区三区精品| 少妇人妻一区二区三区视频| 国产中年淑女户外野战色| 欧美最新免费一区二区三区| 国产视频首页在线观看| 又黄又爽又刺激的免费视频.| 哪个播放器可以免费观看大片| 麻豆成人午夜福利视频| 看十八女毛片水多多多| 国产精品爽爽va在线观看网站| 精品人妻一区二区三区麻豆| 日韩中字成人| 国产精品伦人一区二区| av在线蜜桃| 丝袜美腿在线中文| 少妇的逼水好多| 99久久中文字幕三级久久日本| 婷婷色av中文字幕| 国产女主播在线喷水免费视频网站 | 美女国产视频在线观看| 欧美xxxx性猛交bbbb| 久久久欧美国产精品| 久久精品夜夜夜夜夜久久蜜豆| 国产麻豆成人av免费视频| av天堂中文字幕网| 久久综合国产亚洲精品| 精品国内亚洲2022精品成人| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 女人十人毛片免费观看3o分钟| 小蜜桃在线观看免费完整版高清| 变态另类丝袜制服| 尤物成人国产欧美一区二区三区| 看非洲黑人一级黄片| 99热全是精品| 91午夜精品亚洲一区二区三区| 亚洲国产最新在线播放| 欧美激情国产日韩精品一区| 一级二级三级毛片免费看| 99热这里只有是精品50| 日韩制服骚丝袜av| 欧美丝袜亚洲另类| 一区二区三区高清视频在线| 99久久精品国产国产毛片| 免费无遮挡裸体视频| 我要看日韩黄色一级片| 日产精品乱码卡一卡2卡三| 久久国内精品自在自线图片| 你懂的网址亚洲精品在线观看 | 国产免费福利视频在线观看| 午夜福利视频1000在线观看| 91狼人影院| 黄片wwwwww| 青青草视频在线视频观看| 一区二区三区免费毛片| 国产精品永久免费网站| 国产精品1区2区在线观看.| 最近最新中文字幕免费大全7| 国内精品宾馆在线| kizo精华| 欧美bdsm另类| 男人的好看免费观看在线视频| 国产激情偷乱视频一区二区| 欧美日本亚洲视频在线播放| 色播亚洲综合网| 国产成人a区在线观看| 日韩人妻高清精品专区| 一夜夜www| 午夜久久久久精精品| 欧美一区二区精品小视频在线| 日本爱情动作片www.在线观看| 国产亚洲av片在线观看秒播厂 | 一个人看视频在线观看www免费| 欧美一区二区国产精品久久精品| 亚洲av中文字字幕乱码综合| 精品久久国产蜜桃| 日本一本二区三区精品| 美女国产视频在线观看| 内地一区二区视频在线| 国产一区二区三区av在线| 国产美女午夜福利| 午夜福利网站1000一区二区三区| 国产片特级美女逼逼视频| 一级黄色大片毛片| 丝袜美腿在线中文| 亚洲最大成人中文| 青青草视频在线视频观看| 欧美高清成人免费视频www| 国产亚洲91精品色在线| 中文在线观看免费www的网站| 男女下面进入的视频免费午夜| 嘟嘟电影网在线观看| 亚洲精品日韩在线中文字幕| 人妻系列 视频| 亚洲精品亚洲一区二区| 精品人妻熟女av久视频| 1000部很黄的大片| 日韩亚洲欧美综合| 国产一级毛片七仙女欲春2| 午夜老司机福利剧场| 亚洲色图av天堂| 欧美激情在线99| 久久久久久久久久成人| 激情 狠狠 欧美| 人人妻人人看人人澡| 日本猛色少妇xxxxx猛交久久| av在线老鸭窝| 日韩三级伦理在线观看| 亚洲人成网站高清观看| 亚洲精品乱久久久久久| 又黄又爽又刺激的免费视频.| av免费在线看不卡| 亚洲天堂国产精品一区在线| 免费电影在线观看免费观看| 真实男女啪啪啪动态图| 在线免费观看的www视频| 中文在线观看免费www的网站| 色综合亚洲欧美另类图片| 久久精品国产亚洲av天美| 久久精品国产自在天天线| 国产v大片淫在线免费观看| 久久国产乱子免费精品| 免费看av在线观看网站| 国产真实伦视频高清在线观看| 干丝袜人妻中文字幕| 亚洲成人精品中文字幕电影| 老司机福利观看| 美女大奶头视频| 久热久热在线精品观看| 亚洲精品亚洲一区二区| 国产男人的电影天堂91| 免费电影在线观看免费观看| 干丝袜人妻中文字幕| 国产一级毛片七仙女欲春2| 在线观看美女被高潮喷水网站| 成年免费大片在线观看| 成人综合一区亚洲| 亚洲av中文av极速乱| 国产成人a∨麻豆精品| 国产淫语在线视频| 国产 一区精品| 在现免费观看毛片| 日韩视频在线欧美| 国产精品电影一区二区三区| 又粗又爽又猛毛片免费看| 激情 狠狠 欧美| 内地一区二区视频在线| 日韩精品青青久久久久久| 欧美zozozo另类| 日韩视频在线欧美| 亚洲欧洲国产日韩| 麻豆精品久久久久久蜜桃| 欧美三级亚洲精品| av在线播放精品| 国产午夜精品一二区理论片| 国产黄a三级三级三级人| 国产日韩欧美在线精品| 精品一区二区免费观看| 麻豆av噜噜一区二区三区| 1000部很黄的大片| 免费搜索国产男女视频| 亚洲国产日韩欧美精品在线观看| 亚洲精品乱久久久久久| 欧美高清性xxxxhd video| 亚洲精品,欧美精品| 国产片特级美女逼逼视频| 在线观看66精品国产| 99九九线精品视频在线观看视频| 联通29元200g的流量卡| www.色视频.com| 国产v大片淫在线免费观看| 午夜日本视频在线| 大香蕉97超碰在线| 亚洲色图av天堂| 日韩成人av中文字幕在线观看| 夜夜爽夜夜爽视频| 久久久久久久午夜电影| 亚洲无线观看免费| 欧美zozozo另类| 在线a可以看的网站| 国产亚洲精品久久久com| 午夜福利在线观看免费完整高清在| 一本一本综合久久| 精品人妻偷拍中文字幕| 国产视频内射| 少妇被粗大猛烈的视频| videos熟女内射| 亚洲av成人av| 久久久久免费精品人妻一区二区| 成人午夜高清在线视频| 99视频精品全部免费 在线| 亚洲四区av| 天天躁夜夜躁狠狠久久av| 国产视频内射| 热99在线观看视频| 国产成人a区在线观看| 国产亚洲午夜精品一区二区久久 | 99热这里只有是精品在线观看| 日本免费一区二区三区高清不卡| 国产在视频线精品| 建设人人有责人人尽责人人享有的 | 午夜激情欧美在线| 亚洲乱码一区二区免费版| 91精品国产九色| 久久婷婷人人爽人人干人人爱| 日韩欧美国产在线观看| 国产黄a三级三级三级人| 亚洲国产日韩欧美精品在线观看| 一个人观看的视频www高清免费观看| www.av在线官网国产| 色综合亚洲欧美另类图片| 日日撸夜夜添| 热99re8久久精品国产| 欧美三级亚洲精品| 久久韩国三级中文字幕| 国产又色又爽无遮挡免| 男女边吃奶边做爰视频| 欧美97在线视频| 亚洲一级一片aⅴ在线观看| 亚洲不卡免费看| 国产一区二区在线观看日韩| 又爽又黄无遮挡网站| 欧美日本亚洲视频在线播放| 国产黄色视频一区二区在线观看 | 日韩欧美三级三区| 22中文网久久字幕| 亚洲va在线va天堂va国产| 美女脱内裤让男人舔精品视频| 69人妻影院| 看免费成人av毛片| av在线播放精品| 精品酒店卫生间| 一个人观看的视频www高清免费观看| 色5月婷婷丁香| 久久久久久大精品| av在线老鸭窝| 精品一区二区免费观看| 欧美另类亚洲清纯唯美| 亚洲精品日韩av片在线观看| 精品无人区乱码1区二区| 1000部很黄的大片| 亚洲av熟女| 亚洲av中文字字幕乱码综合| 中文精品一卡2卡3卡4更新| 黄色欧美视频在线观看| 日本猛色少妇xxxxx猛交久久| 国产伦精品一区二区三区四那| a级毛片免费高清观看在线播放| 亚洲精华国产精华液的使用体验| 国产国拍精品亚洲av在线观看| 国产精品电影一区二区三区| av免费在线看不卡| 国产91av在线免费观看| 黄片wwwwww| 直男gayav资源| 国产精品av视频在线免费观看| 精品久久久久久久久久久久久| 26uuu在线亚洲综合色| 国产精品久久久久久久久免| 天天躁夜夜躁狠狠久久av| 久久国内精品自在自线图片| 国产熟女欧美一区二区| av国产久精品久网站免费入址| 免费无遮挡裸体视频| 日韩av在线大香蕉| 国产毛片a区久久久久| 国产高清有码在线观看视频| 人妻制服诱惑在线中文字幕| 校园人妻丝袜中文字幕| 久久久久久久久久成人| 亚洲av一区综合| av在线亚洲专区| 校园人妻丝袜中文字幕| 亚洲最大成人中文| 色播亚洲综合网| 黄色日韩在线| 午夜福利在线观看吧| 在线a可以看的网站| 国语对白做爰xxxⅹ性视频网站| 99视频精品全部免费 在线| 99久久精品国产国产毛片| 国产午夜福利久久久久久| 久久久色成人| 国产高潮美女av| 最近的中文字幕免费完整| 久久久亚洲精品成人影院| 女的被弄到高潮叫床怎么办| 99在线人妻在线中文字幕| 日本熟妇午夜| 国产精品久久久久久精品电影小说 | 国产视频首页在线观看| 老司机影院毛片| 一级黄片播放器| 免费av毛片视频| 亚洲欧美成人精品一区二区| 性色avwww在线观看| 国产av在哪里看| 午夜久久久久精精品| 听说在线观看完整版免费高清| 美女脱内裤让男人舔精品视频| 国产乱来视频区| 99久久中文字幕三级久久日本| 日韩成人伦理影院| 亚洲精品影视一区二区三区av| 高清午夜精品一区二区三区| 日韩欧美精品免费久久| 亚洲欧美日韩高清专用| 精品国产露脸久久av麻豆 | 少妇被粗大猛烈的视频| 欧美成人免费av一区二区三区| eeuss影院久久| 中文字幕免费在线视频6| 99久久精品热视频| 国产色爽女视频免费观看| 又粗又硬又长又爽又黄的视频| a级一级毛片免费在线观看| 嫩草影院精品99| 特级一级黄色大片| 久久韩国三级中文字幕| 国产老妇女一区| 一本一本综合久久| 男女啪啪激烈高潮av片| 啦啦啦啦在线视频资源| 少妇被粗大猛烈的视频| 尤物成人国产欧美一区二区三区| 国产成年人精品一区二区| 麻豆一二三区av精品| 乱人视频在线观看| 免费看光身美女| 免费搜索国产男女视频| 九九在线视频观看精品| av女优亚洲男人天堂| 久久99精品国语久久久| 男人狂女人下面高潮的视频| 亚洲av成人精品一二三区| 国产精品麻豆人妻色哟哟久久 | 欧美一区二区亚洲| 三级男女做爰猛烈吃奶摸视频| 国产精品国产三级国产专区5o | 伦精品一区二区三区| 中文乱码字字幕精品一区二区三区 | 天天躁夜夜躁狠狠久久av| 建设人人有责人人尽责人人享有的 | 少妇人妻一区二区三区视频| 国产v大片淫在线免费观看| 国产精品av视频在线免费观看| 男女那种视频在线观看| 久久久久久久午夜电影| 亚洲在久久综合| 国产精品久久视频播放| 国产精品一区二区性色av| 青春草国产在线视频| 亚洲欧美精品专区久久| 国产中年淑女户外野战色| 久久久久久九九精品二区国产| 中文字幕精品亚洲无线码一区| 精华霜和精华液先用哪个| 国产亚洲av片在线观看秒播厂 | 色网站视频免费| 男人的好看免费观看在线视频| 中文字幕av成人在线电影| 国产真实乱freesex| 国产一级毛片七仙女欲春2| 人妻少妇偷人精品九色| 美女大奶头视频| 国产精品永久免费网站| 国产亚洲最大av| 永久网站在线| 高清毛片免费看| 免费观看人在逋| 精品人妻偷拍中文字幕| 国产 一区 欧美 日韩| 观看美女的网站| 天天躁夜夜躁狠狠久久av| 观看免费一级毛片| 日韩av在线大香蕉| 日产精品乱码卡一卡2卡三| 亚洲三级黄色毛片|