• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Definition and application of easily measurable aspheric surfaces

    2017-04-10 03:34:07YOUSSEFAlKhatibMOHAMEDFawazMoussellyMAMOUNNaim
    中國光學(xué) 2017年2期
    關(guān)鍵詞:非球面液晶文摘

    YOUSSEF Al-Khatib, MOHAMED Fawaz Mousselly, MAMOUN Naim

    (HigherInstituteforAppliedSciencesandTechnologyDamascus,Damascus,Syria)

    Definition and application of easily measurable aspheric surfaces

    YOUSSEF Al-Khatib, MOHAMED Fawaz Mousselly*, MAMOUN Naim

    (HigherInstituteforAppliedSciencesandTechnologyDamascus,Damascus,Syria)

    This paper presents a new kind of “Easily Measurable Aspheric Surfaces”(EMAS), which could be easily measured by a traditional optical interferometer. The measurement of EMAS is mainly based on using the multi-configuration feature in Zemax software. The first configuration represents the optical system with EMAS, and the second configuration represents the setup, using a parallel planes glass plate or a single lens as a null corrector to measure the aspheric surface used in the first configuration. The applications and advantages of this technique are illustrated by many examples, which could confirm the ease of manipulating and testing this kind of surfaces, compared with conical or general aspheric surfaces. It can also show its competence in minimizing the optical aberrations.

    easily measurable aspheric surfaces;interferometer;null test

    1 Introduction

    In the 15th century, scientists succeeded in designing the first optical systems using lenses or mirrors with spherical surfaces. Since the spherical surface has a constant curvature at all its points, it was possible to control the surfaces while manufacturing. Such systems were satisfactory at that time, but the rapid development in technical fields lead to the need for optical systems with better performance while being compact. Therefore, aspheric surfaces, though being difficult to manufacture and test, were the only option for optical designers when compactness or highest optical performance were required[1-2].

    The accurate metrology of optical surfaces is usually achieved by means of optical interferometers[3-4]. In such systems, the emitted spherical wave-front has to be diffraction-limit with radius of curvature matching that of the surface under test, so the optical rays fall perpendicularly upon the tested surface. Then, the reflected rays will be precisely coincident with the incident rays, which could make this method very sensitive to any sub-micron deviation over the whole of the tested surface[5-6].

    On the other hand, general aspheric surfaces cannot be directly measured using standard interferometers, and a suitable null corrector has to be introduced between the interferometer and the aspheric surface[7]. The null corrector function is to convert a spherical or plane wave-front into a form which could match the profile of the aspheric surface under test. As a result, the interferogram will display straight, parallel, and equally spaced fringes if the aspheric surface under test has the profile requested in the lens drawing. A variety of designs of null correctors are presented in several articles related in optics, and each corrector has been designed and manufactured to measure a specific aspheric surfaces[7].

    The design and handling of a null corrector are usually difficult because it is made of several lenses which have to be perfectly manufactured, and then accurately assembled. Even if the null corrector has been produced within the acceptable tolerances, the accuracy of the measurement requires the corrector to be precisely placed, relative to the aspheric surface and the interferometer. In this context it is appropriate to recall the problem of the Hubble Space Telescope where an incorrectly placed null lens resulted in the primary mirror being ground to an inaccurate surface figure, and thus producing strong spherical aberrations[8].

    The main goal of this study is to put forward a new technique where the optical design uses Easily Measurable Aspheric Surfaces(EMAS) instead of general aspheric surfaces, and this technique overpowers the problematic measurement of general aspheric surfaces. Thus, the outcome of this research is to provide the optical designer with a methodology allowing simultaneously the effective use of aspheric surfaces to achieve higher performances and a reduction of optical system size, while being able to easily measure such aspheric surfaces with the devices available in all optical workshops, transforming the well-known sentence “You can't manufacture what you can′t measure” to “Why don't you design what you can easily measure”.

    2 Definition of EMAS

    Aspheric surfaces are described by a polynomial expansion of the departure from a spherical surface. The even aspheric surface model uses only the even powers of the radial coordinate. The surface sag is given by equation (1)[9]:

    SAGevensphere(C0,k,r)=

    WhereC0is the curvature at the vertex;kis the conic constant. The first term in the previous equation describes the surface sag for a conical surface.

    As described in the introduction, general aspheric surfaces could probably be tested using null correctors consisting of several optical elements. For example, Fig.1 shows Shafer null corrector consisting of 3 lenses[10], while Fig.2 shows an Offner null corrector comprising two lenses[10]. In Fig.2, the first lens is called the field lens and its function is to image the aspheric surface onto the second lens which is called the relay lens. The role of the relay lens is to produce spherical aberration equaling the difference between the aspheric surface and the best-fit spherical surface[11-13].

    Fig.1 Schematics of Shafer null corrector[10]

    Fig.2 Schematics of Offner null corrector[10]

    EMAS are defined in this paper as the aspheric surfaces that can be tested by an optical interferometer using only one optical element as a null corrector in one of two cases:the first case includes the use of a parallel planes glass plate with a spherical wave-front(see Fig.3), and the second case uses one lens with a plane wave-front(see Fig.4). The two simple null correctors are easy to manufacture and less sensitive to their relative place between the aspheric surface and the interferometer.

    Fig.3 Testing EMAS by a parallel planes glass plate as null corrector with aspherical wave-front

    Fig.4 Testing EMAS by a single lens as null corrector with a plan wave-front

    3 Design technique using EMAS

    The aim of using EMAS is two-folds including minimization of the optical aberrations and using aspheric surfaces that can be easily measured. Therefore, two different optical systems have to be designed. The first system represents the required optical system with as minimal aberrations as possible using an aspheric surface, and the second optical system represents one of the null test setups illustrated in Fig.3 and Fig.4 is used to measure the aspheric surface appearing in the first optical system.

    To satisfy simultaneously these two conditions, a “multi-configuration” feature in optical design software “Zemax” has to be applied. The first configuration consists of the required optical system with suitable operands to satisfy the wanted optical system constrains, e.g. field of view, wavelengths, total track, image quality,etal. One of the surfaces in this configuration is chosen to be aspheric, or more specifically this surface would be EMAS. The second configuration is built with operands which could be suitable to the measurement setup constrains, e.g. field of view is zero, monochromatic wave length(He-Ne), double pass mode,etal, in addition to the parameters of the mirror surface which are “picked up” from the parameters of EMAS defined in the first configuration.

    The following paragraphs present three different examples, demonstrating the usefulness and easiness of the proposed technique.

    3.1 Designing an objective lens made of Germanium

    In this example, an objective lens for a thermal camera has been designed with the following parameters:

    ?Field of view:±6.5 degrees

    ?Main wavelengths:8, 10, 12 μm

    ?Effective focal length:55 mm

    ?Total track:less than 80 mm

    ?F/# :1.2

    Two Germanium lenses have been used in the design. The first surface of the first lens is selected to be even-aspheric, and would become EMAS.

    The null test setup to measure this EMAS is chosen as in Fig.3(i.e. parallel planes glass plate with spherical wave-front) but in this case the tested surface is convex; and the test wave length is 0.632 8 μm.

    Two configurations have been created in Zemax software. The first configuration represents the design of the objective lens, and the second one represents the null test setup.The parameters of EMAS in the second configuration have been picked up from the first configuration. The suitable start values of other parameters(curvatures, thickness,etal) have been selected carefully to satisfy the design requirements(see Tab.1).

    Tab.1 Parameters of the two configurations:Config 1 for the objective lens; Config 2 for the test setup

    Then, a default merit function has been generated, and the total track and effective focal length have been inserted for the first configuration(the manual of each optical design software gives full details of multi-configuration operands[14]). Afterwards, through repeated optimization, we obtained the final design of the objective lens as listed in Tab.2.

    Tab.2 Final lens objective design in Zemax software

    Fig.5 shows the objective lens and the modulating transfer function MTF, and the MTF chart demonstrates that this design is nearly diffraction-limit.

    Fig.6 MTF chart of an optimized objective lens with conical surface instead of EMAS

    For the completeness of the discussion, Fig.6 shows the resulted MTF when a conical surface has been used and optimized, instead of using EMAS. It is clear that the performance of the objective lens with EMAS is better than that with the conical surface at the field of 6.5°. This result can be justified by the fact that although there are special constraints imposed on EMAS for being in the second configuration, it has more variables that could be altered during the optimization than the conical surface.

    Fig.7 (a)Null test layout, (b)resulted interferogram of the EMAS

    The null test setup to measure the obtained EMAS using a parallel planes glass plate as a null lens is illustrated in Tab.3. The layout and the resulted interferogram are shown in Fig.7. It is worth mentioning that the surface 1(stop, even-aspher surface) in Tab.2 has the same parameters as the surface 3(surface under test) in Tab.3.

    Tab.3 Final null test of the EMAS used in the objective lens design

    The straight and equidistant lines in the interferogram with Peak to Valley error of less thanλ/50 could confirm that the parallel planes glass plate acts like a good null lens in this case. Another article by the same authors demonstrates that the use of parallel planes glass plate as a null corrector is much easier than designing and using conventional null lens[?].

    3.2 Designing an objective lens of Germanium using a null corrector containing only one lens

    In some cases, it is not possible to get a good optical performance design using EMAS with a null test setup of the first type(see Fig.3). Therefore, this example shows an objective lens which has the same parameters as in the previous example, but the null test setup is of the second type(see Fig.4). A suitable multi-configuration has been created in Zemax software to achieve the desired requirements(see Tab.4). A successive optimization has been applied. In this case the second surface of the first lens has been selected as EMAS. Note that the curvature of the tested surface in the second configuration picked up with it by factor-1(operands 2 and 3).

    Tab.4 Parameters of the two configurations:Config 1 for the objective lens; Config 2 for the test setup

    The final design of the objective lens is shown in Tab.5, while Fig.8 shows the design layout and the MTF chart.

    Comparing MTF curves in Fig.5 and Fig.8, it is clear that the same results are obtained in both cases.

    Tab.5 Final lens objective design in Zemax software

    Fig.8 (a)Final lens objective layout, (b)resulted MTF curves

    Surf:TypeRadius/mmThickness/mmGlassSemi?diameter/mmConicPar1Par2Par3OBJStandardInfinityInfinity00.000STOStandard-33.41810.000BK718.0000.0002Standard-514.86520.00020.0000.0003EvenAsphere-83.516-20.000MIRROR25.0000.7418.314×10-4-7.988×10-93.421×10-124Standard-514.865-10.000BK720.0000.0005Standard-33.418-15.00018.0000.0006Paraxial-20.00016.66620.00000IMAStandardInfinity-1.24×10-40.000

    Tab.6 shows the null test setup parameters to measure the EMAS, while Fig.9 shows the null test layout and the resulted interferogram. The Peak to Valley error in this case is less thanλ/150.

    Fig.9 (a)Null test layout, (b)resulted interferogram of the final EMAS

    Single null lens is more difficult to use than the plane parallel glass plate that was used in the previews example, but its use is definitely easier than

    conventional null lens(like Offner or Shafer null lens), because the relative position of the single null lens to the interferometer is not critical, since the incident beam is plan.

    3.3 Example of using EMAS in a laser collimating lens

    This example uses EMAS to design a laser collimating lens with a concave surface. The collimating lens has the following parameters:

    ?Effective focal length:150 mm

    ?Working wave length:0.632 8 μm(HeNe)

    ?Clear aperture:20 mm

    The two configurations have been built as described before(see Tab.7), and the Null test setup has been chosen of the first type(see Fig.3). Tab.8 shows the final lens design, while Fig.10 shows the layout and the MTF chart.

    Tab.7 Two configurations table, Config 1 for the collimating lens; Config 2 for the null test

    Tab.8 Final collimating lens design in Zemax software

    Fig.10 (a)Collimating lens layout, (b)resulted MTF curves

    Tab.9 shows the null test setup design, and the layout and the resulted interferogram are shown in Fig.11. The Peak to Valley error is less thanλ/10.

    Tab.9 Final Null test of the EMAS used in the collimating lens design

    Fig.11 (a)Null test layout, (b)resulted interferogram of the final EMAS

    4 Advantages of using EMAS

    The use of EMAS is highly beneficial because it does not require any expensive and specialized instruments that are not normally available in optical workshops. Actually, a typical null lens used in metrology usually consists of more than one optical element, and in some cases it may contain diffractive elements. In addition, the following notes have to be taken in consideration when designing, manufacturing, and assembling any conventional null corrector.

    (1)Optical elements must be fabricated, and null lens must be assembled, with extremely high accuracy, because they are made to measure aspheric surfaces.

    (2)The placement of the null lens must be defined and maintained accurately, referring to Hubble Space Telescope primary mirror problem[8].

    (3)The optical axis of the interferometer and the null lens must be accurately coincident. This step is usually achieved using expensive auxiliary elements, and needs a lot of expertise and time.

    On the other hand, EMAS allows the use of a plane parallel glass plate as null lens(spherical wave-front) or a null lens compromising only one lens(plane wave-front). Those simple null lenses have the following advantages:

    (4)Plane parallel glass plate is easy to fabricate since it is a plate of glass with only two parallel surfaces.

    (5)Plane parallel glass plate has not a specific optical axis, so it can be shifted up and down, right and left without effecting the accuracy of the measurement.

    (6)Plane parallel glass plate has no optical power, so its use is not sensitive to its position between the interferometer and the aspheric surface under test.

    (7)Only one lens with plane incident wave-front is easier to be aligned with the interferometer than Offner or Shafer null lenses.

    It also important to stress on the fact that an EMAS surface has more variables to change(more degrees of freedom) than aconical surface, so it may lead to better performance of the optical system when compared to a conical surface.

    5 Conclusion

    This paper proposes a new technique for aspheric optical design. The technique defines “Easily Measurable Aspheric Surfaces”(EMAS). The paper shows that EMAS can effectively minimize optical aberrations because of its asphericity, while being much easier to be tested compared to the general aspheric surfaces. Many examples have been presented to demonstrate the advantages of EMAS, and to show how it can be applied in optical design. The obtained results will hopefully encourage optical designers to use this kind of surfaces instead of conical or general aspheric surfaces which would require expansive and specialized devices and accessories.

    [1] SCHULZ,GüNTER. Imaging performance of aspherics in comparison with spherical surfaces[J].AppliedOptics,1987,26(23):5118-5124.

    [2] BRAUNECKER B,HENTSCHEL R,TIZIANI H.AdvancedOpticsUsingAsphericalElements[M]. Bellingham,USA:SPIE,2008.

    [3] BRIERS J. DAVID. Optical testing:a review and tutorial for optical engineers[J].OpticsandLasersinEngineering,1999,32:111-138.

    [4] SHI T U,ET A L. Surface testing methods of aspheric optical elements[J] .ChineseOptics,2014,7(1):26-46.

    [5] MALACARA,DANIEL.OpticalShopTesting[M]. New Jersey:John Wiley & Sons,2007.

    [6] WANG X K. Compensation of misalignment error on testing aspheric surface by subaperture stitching interferometry[J].ChineseOptics,2013,6(1):88-95.

    [7] OFFNER,ABE. A null corrector for paraboloidal mirrors[J].AppliedOptics,1963,2(2):153-155.

    [8] BOTTEMA,MURK. Reflective correctors for the Hubble Space Telescope axial instruments[J].AppliedOptics,1993,32(10):1768-1774.

    [9] OKA,KEITA,SCOTT SPARROLD. Asphere Design for Dummies[J].SPIE,2012,8487:84870B.

    [10] BURGE,JAMES HOWARD. Advanced techniques for measuring primary mirrors for astronomical telescopes[D]. Arizona:University of Arizona,1993.

    [11] DEVOE,CATHERINE ELLEN. Limitations on aspheric surface testing with simple null correctors[D]. Arizona:Optical Sciences Center,University of Arizona Tucson,1989.

    [12] SASIAN J M. Optimum configuration of the offner null corrector. testing an F#/1 paraboloid[J].SPIE,1989,1164:8-17.

    [13] MALACARA-HERN NDEZ,DANIEL,ZACAR AS MALACARA-ERN NDEZ.HandbookofOpticalDesign[M]. Florida:CRC Press,2016.

    [14] Zemax Manual:Optical Design Program User′s Guide[R]. Zemax,2009.

    Author biographies:

    YOUSSEF Al-Khateb(1976—), Master degree. His research interests are on optical design and optical metrology. E-mail:khatyos@hotmail.com

    MOHAMED Fawaz Mousselly(1949—), Engineer Doctor, Professor. His research interest is optical and electro-optical systems development. E-mail:fawaz.mousselly@hiast.edu.sy

    向您推薦《液晶與顯示》期刊

    ● 中文核心期刊

    ● 中國液晶學(xué)科和顯示技術(shù)領(lǐng)域的綜合性專業(yè)學(xué)術(shù)期刊

    ● 中國物理學(xué)會液晶分會會刊、中國光學(xué)光電子行業(yè)協(xié)會液晶分會會刊

    ● 英國《科學(xué)文摘》(INSPEC)、美國《化學(xué)文摘》(CA)、俄羅斯《文摘雜志》(AJ)、美國《劍橋科學(xué)文摘》(CSA)、“中國科技論文統(tǒng)計源期刊”等20余種國內(nèi)外著名檢索刊物和文獻數(shù)據(jù)庫來源期刊

    《液晶與顯示》以材料物理和化學(xué)、器件制備技術(shù)及器件物理、器件驅(qū)動與控制、成像技術(shù)與圖像處理等欄目集中報道國內(nèi)外液晶學(xué)科和顯示技術(shù)領(lǐng)域中最新理論研究、科研成果和創(chuàng)新技術(shù),及時反映國內(nèi)外本學(xué)科領(lǐng)域及產(chǎn)業(yè)信息動態(tài),是宣傳、展示我國該學(xué)科領(lǐng)域和產(chǎn)業(yè)科技創(chuàng)新實力與碩果,進行國際交流的平臺。其內(nèi)容豐富,涵蓋面廣,信息量大,可讀性強,是我國專業(yè)學(xué)術(shù)期刊發(fā)行量最大的刊物之一。

    《液晶與顯示》征集有關(guān)液晶聚合物、膠體等軟物質(zhì)材料和各類顯示材料及制備方法、液晶物理、液晶非線性光學(xué)、生物液晶;液晶顯示、等離子體顯示、發(fā)光二極管顯示、電致發(fā)光顯示、場發(fā)射顯示、3D顯示、微顯示、真空熒光顯示、電致變色顯示及其他新型顯示等各類顯示器件物理和制作技術(shù);各類顯示新型模式和驅(qū)動技術(shù)、顯示技術(shù)應(yīng)用;顯示材料和器件的測試方法與技術(shù);各類顯示器件的應(yīng)用;與顯示相關(guān)的成像技術(shù)與圖像處理等研究論文。

    《液晶與顯示》熱忱歡迎廣大作者、讀者廣為利用,踴躍投稿和訂閱。

    地 址:長春市東南湖大路3888號 國內(nèi)統(tǒng)一刊號:CN 22-1259/O4

    《液晶與顯示》 編輯部 國際標(biāo)準(zhǔn)刊號:ISSN 1007-2780

    郵 編:130033 國內(nèi)郵發(fā)代號:12-203

    電 話:(0431)6176059 國內(nèi)定價:50元/期

    E-mail:yjyxs@126.com 網(wǎng) 址:www.yjyxs.com

    2016-10-19;

    2016-12-05

    2095-1531(2017)02-0256-11

    易測量非球面定義及應(yīng)用

    YOUSSEF Al-Khatib, MOHAMED Fawaz Mousselly*, MAMOUN Naim

    (敘利亞應(yīng)用科學(xué)與技術(shù)高等學(xué)校,大馬士革 31983)

    本文提出了一種新型、易于用傳統(tǒng)光學(xué)干涉儀測量的非球面。該非球面的檢測主要基于Zemax光學(xué)程序軟件設(shè)計的多重配置特性。第一配置為易于測量非球面,第二配置為采用平行平面玻璃板或單透鏡作為零位校正器,用于檢測第一配置的非球面。本文通過一些實例,說明了易測量非球面檢測技術(shù)的應(yīng)用和優(yōu)勢,證實了與圓錐或普通非球面相比,易測量非球面更易于操作與檢測,同時有利于減小光學(xué)像差。

    易測量非球面;干涉儀;零位檢驗

    TG806

    A

    10.3788/CO.20171002.0256

    *Correspondingauthor,E-mail:fawaz.mousselly@hiast.edu.sy

    猜你喜歡
    非球面液晶文摘
    不可壓液晶方程組的Serrin解
    IAPA文摘
    《液晶與顯示》征稿簡則
    液晶與顯示(2020年8期)2020-08-08 07:01:46
    文摘
    寶藏(2017年2期)2017-03-20 13:16:46
    航天相機非球面光學(xué)元件的離子束拋光工藝研究
    液晶與顯示2015年第30卷第1期 目錄
    液晶與顯示(2015年1期)2015-02-28 21:15:54
    微小非球面納米拋光工藝研究
    液晶與顯示2014年第29卷第2期 目錄
    液晶與顯示(2014年2期)2014-02-28 21:11:05
    非球面檢測中最佳入射球面波和最佳參考球面波的確定
    非球面透鏡表面特性理論分析
    aaaaa片日本免费| 一本色道久久久久久精品综合| 三级毛片av免费| 免费av中文字幕在线| 99九九在线精品视频| 下体分泌物呈黄色| 人妻 亚洲 视频| 美女高潮到喷水免费观看| 电影成人av| 亚洲综合色网址| 精品久久久精品久久久| 国产一区有黄有色的免费视频| 国产免费现黄频在线看| 男人操女人黄网站| 国产一区二区 视频在线| 不卡av一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 91成年电影在线观看| 高清毛片免费观看视频网站 | 国产精品二区激情视频| 中亚洲国语对白在线视频| 成人国语在线视频| 免费日韩欧美在线观看| 亚洲五月色婷婷综合| 建设人人有责人人尽责人人享有的| 亚洲欧美激情在线| 在线观看www视频免费| 国产亚洲一区二区精品| 亚洲精品在线美女| 国产欧美日韩一区二区三区在线| 久久人人97超碰香蕉20202| 午夜免费成人在线视频| 欧美精品高潮呻吟av久久| 欧美av亚洲av综合av国产av| 日本欧美视频一区| 久久精品aⅴ一区二区三区四区| 亚洲精品久久成人aⅴ小说| 国产精品免费一区二区三区在线 | 怎么达到女性高潮| 精品国产国语对白av| 国精品久久久久久国模美| 高清在线国产一区| 色视频在线一区二区三区| 亚洲 欧美一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 亚洲专区字幕在线| 亚洲va日本ⅴa欧美va伊人久久| 激情在线观看视频在线高清 | 一区二区三区激情视频| 丝袜在线中文字幕| 国产免费视频播放在线视频| 考比视频在线观看| 亚洲精品久久成人aⅴ小说| 天堂中文最新版在线下载| 夜夜夜夜夜久久久久| netflix在线观看网站| 日韩制服丝袜自拍偷拍| 狠狠婷婷综合久久久久久88av| 菩萨蛮人人尽说江南好唐韦庄| 在线观看免费高清a一片| 纯流量卡能插随身wifi吗| 国产一区二区三区综合在线观看| 变态另类成人亚洲欧美熟女 | 天天添夜夜摸| 欧美日韩福利视频一区二区| netflix在线观看网站| 成人国产一区最新在线观看| 黄频高清免费视频| 国产成人欧美在线观看 | 乱人伦中国视频| 99精品欧美一区二区三区四区| 国产成人影院久久av| 久久久久精品国产欧美久久久| 亚洲色图av天堂| 一区二区日韩欧美中文字幕| 久久久久国内视频| 中文字幕av电影在线播放| 欧美亚洲 丝袜 人妻 在线| 夜夜夜夜夜久久久久| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产毛片av蜜桃av| cao死你这个sao货| 亚洲情色 制服丝袜| 久久久精品区二区三区| 国产成人精品在线电影| 精品午夜福利视频在线观看一区 | 一二三四社区在线视频社区8| tocl精华| 成人精品一区二区免费| 欧美精品高潮呻吟av久久| 久久久久久久精品吃奶| 91老司机精品| 午夜免费成人在线视频| 最近最新免费中文字幕在线| xxxhd国产人妻xxx| 丝袜喷水一区| 男女下面插进去视频免费观看| 国产精品 欧美亚洲| 亚洲专区国产一区二区| 亚洲久久久国产精品| 99精品久久久久人妻精品| 真人做人爱边吃奶动态| 国产真人三级小视频在线观看| 天天操日日干夜夜撸| 国产精品 欧美亚洲| 一边摸一边做爽爽视频免费| 国产午夜精品久久久久久| 黄色片一级片一级黄色片| netflix在线观看网站| 国产一区有黄有色的免费视频| 天天操日日干夜夜撸| 亚洲精品国产色婷婷电影| 日韩中文字幕欧美一区二区| 91精品三级在线观看| 最黄视频免费看| 亚洲中文日韩欧美视频| 精品亚洲成a人片在线观看| 最近最新中文字幕大全免费视频| 制服人妻中文乱码| 丝瓜视频免费看黄片| 精品国产一区二区三区久久久樱花| 成人国语在线视频| 国产亚洲一区二区精品| 90打野战视频偷拍视频| 亚洲avbb在线观看| 欧美日韩黄片免| 国产免费现黄频在线看| 午夜久久久在线观看| 日韩一区二区三区影片| 久久国产精品大桥未久av| 日韩中文字幕视频在线看片| 午夜两性在线视频| 国产三级黄色录像| 国产成人啪精品午夜网站| 黑人巨大精品欧美一区二区mp4| 国产免费av片在线观看野外av| 欧美成狂野欧美在线观看| 真人做人爱边吃奶动态| 久久精品aⅴ一区二区三区四区| 久久精品亚洲av国产电影网| 欧美日韩国产mv在线观看视频| 国产又爽黄色视频| 久久久国产成人免费| 精品卡一卡二卡四卡免费| 国产成人系列免费观看| 久久久久国内视频| 啦啦啦在线免费观看视频4| 岛国在线观看网站| 亚洲天堂av无毛| 久久九九热精品免费| 亚洲色图 男人天堂 中文字幕| 婷婷丁香在线五月| 国产精品久久久久成人av| 日韩免费高清中文字幕av| 国产精品久久久久久精品电影小说| 亚洲va日本ⅴa欧美va伊人久久| 国产老妇伦熟女老妇高清| 免费看a级黄色片| 国产欧美日韩精品亚洲av| 亚洲一区二区三区欧美精品| 亚洲人成伊人成综合网2020| 成人影院久久| av不卡在线播放| 国产精品免费视频内射| 日韩欧美国产一区二区入口| 精品视频人人做人人爽| 岛国毛片在线播放| av网站免费在线观看视频| 国产熟女午夜一区二区三区| 欧美中文综合在线视频| 国产免费视频播放在线视频| 一边摸一边做爽爽视频免费| 国产在线一区二区三区精| a级片在线免费高清观看视频| 人成视频在线观看免费观看| 日本av手机在线免费观看| 97在线人人人人妻| 久久午夜亚洲精品久久| 激情在线观看视频在线高清 | 成年人免费黄色播放视频| 国产区一区二久久| 激情视频va一区二区三区| 国产精品一区二区在线观看99| 欧美成人免费av一区二区三区 | 午夜视频精品福利| 久久亚洲真实| 美国免费a级毛片| 国产免费av片在线观看野外av| 日韩有码中文字幕| 又紧又爽又黄一区二区| 久久中文字幕人妻熟女| 国产精品一区二区在线不卡| 亚洲成人免费av在线播放| 亚洲一区二区三区欧美精品| 欧美人与性动交α欧美软件| 久久久水蜜桃国产精品网| 亚洲一区中文字幕在线| 亚洲av日韩精品久久久久久密| 欧美另类亚洲清纯唯美| 亚洲av成人不卡在线观看播放网| 亚洲人成电影观看| 亚洲中文日韩欧美视频| 国产91精品成人一区二区三区 | 久久精品aⅴ一区二区三区四区| 久9热在线精品视频| 国产精品熟女久久久久浪| 天堂动漫精品| 久久久国产一区二区| 飞空精品影院首页| 久久亚洲真实| 日韩免费高清中文字幕av| 黄片小视频在线播放| 99热网站在线观看| 建设人人有责人人尽责人人享有的| 大陆偷拍与自拍| 伦理电影免费视频| 极品少妇高潮喷水抽搐| 欧美日韩成人在线一区二区| 激情在线观看视频在线高清 | 最新的欧美精品一区二区| 大片免费播放器 马上看| 国产主播在线观看一区二区| 亚洲免费av在线视频| 动漫黄色视频在线观看| 一级片免费观看大全| 亚洲精品av麻豆狂野| 日韩视频在线欧美| 两人在一起打扑克的视频| 国产精品亚洲一级av第二区| 亚洲欧美一区二区三区黑人| 色综合婷婷激情| 精品一品国产午夜福利视频| 久久这里只有精品19| 欧美成人午夜精品| 一夜夜www| xxxhd国产人妻xxx| 18禁国产床啪视频网站| 亚洲精品乱久久久久久| 女人被躁到高潮嗷嗷叫费观| 中国美女看黄片| 99九九在线精品视频| 欧美黄色片欧美黄色片| 色综合欧美亚洲国产小说| 免费在线观看影片大全网站| 最新的欧美精品一区二区| 夜夜骑夜夜射夜夜干| 一二三四社区在线视频社区8| 久久久国产一区二区| 狠狠精品人妻久久久久久综合| 国产欧美亚洲国产| av又黄又爽大尺度在线免费看| 热re99久久精品国产66热6| 国产有黄有色有爽视频| 中文字幕高清在线视频| 在线观看一区二区三区激情| 久久久久久久久久久久大奶| 午夜91福利影院| 亚洲少妇的诱惑av| 久久精品国产亚洲av高清一级| 窝窝影院91人妻| 80岁老熟妇乱子伦牲交| 精品久久蜜臀av无| 成人国产一区最新在线观看| tocl精华| 亚洲欧美日韩另类电影网站| 满18在线观看网站| 王馨瑶露胸无遮挡在线观看| 十八禁网站免费在线| 国产成人啪精品午夜网站| 999久久久国产精品视频| 欧美在线一区亚洲| 超碰成人久久| av有码第一页| 99精品在免费线老司机午夜| 黄片小视频在线播放| 亚洲综合色网址| 国产在线一区二区三区精| 国产精品成人在线| 国产日韩欧美视频二区| 欧美精品人与动牲交sv欧美| 精品卡一卡二卡四卡免费| 国产精品二区激情视频| 亚洲综合色网址| 乱人伦中国视频| 欧美日韩视频精品一区| 欧美日韩av久久| 精品国产一区二区三区久久久樱花| 怎么达到女性高潮| 男女床上黄色一级片免费看| 久久人妻av系列| 久久国产精品男人的天堂亚洲| 成人黄色视频免费在线看| 手机成人av网站| 午夜福利在线免费观看网站| 色视频在线一区二区三区| 欧美变态另类bdsm刘玥| 欧美另类亚洲清纯唯美| 精品一区二区三卡| 最新在线观看一区二区三区| 精品一区二区三区视频在线观看免费 | 久久99一区二区三区| 啦啦啦中文免费视频观看日本| 精品人妻在线不人妻| 极品人妻少妇av视频| 欧美 日韩 精品 国产| 十八禁人妻一区二区| 久久精品亚洲熟妇少妇任你| 亚洲九九香蕉| 9191精品国产免费久久| 成人免费观看视频高清| 啦啦啦视频在线资源免费观看| 欧美激情 高清一区二区三区| 午夜久久久在线观看| 日韩成人在线观看一区二区三区| 日韩有码中文字幕| 久久久久久久国产电影| 日本一区二区免费在线视频| 久久久久久久大尺度免费视频| 嫁个100分男人电影在线观看| 曰老女人黄片| 久久99一区二区三区| 香蕉久久夜色| 欧美激情高清一区二区三区| 丰满少妇做爰视频| 女人久久www免费人成看片| 国产片内射在线| www.自偷自拍.com| 满18在线观看网站| av又黄又爽大尺度在线免费看| 欧美成人午夜精品| 国产亚洲欧美在线一区二区| 成人国产av品久久久| 国产一区二区三区综合在线观看| 性少妇av在线| 国产精品久久久久久精品电影小说| 少妇被粗大的猛进出69影院| 又大又爽又粗| 一级毛片精品| 欧美精品高潮呻吟av久久| 一边摸一边抽搐一进一小说 | 女性被躁到高潮视频| 欧美黑人欧美精品刺激| 久久久国产成人免费| 波多野结衣一区麻豆| 一区在线观看完整版| 久久 成人 亚洲| 日本五十路高清| 人成视频在线观看免费观看| 久久青草综合色| 国产精品麻豆人妻色哟哟久久| 这个男人来自地球电影免费观看| av电影中文网址| 一进一出好大好爽视频| 一本—道久久a久久精品蜜桃钙片| 在线观看舔阴道视频| 久热这里只有精品99| 国产色视频综合| 亚洲午夜理论影院| h视频一区二区三区| 操出白浆在线播放| 色老头精品视频在线观看| 久久久水蜜桃国产精品网| 老司机福利观看| 美女视频免费永久观看网站| 男女下面插进去视频免费观看| 欧美久久黑人一区二区| 精品亚洲乱码少妇综合久久| 黄片大片在线免费观看| 999久久久精品免费观看国产| 黄片大片在线免费观看| 久久婷婷成人综合色麻豆| 如日韩欧美国产精品一区二区三区| 国产视频一区二区在线看| 99riav亚洲国产免费| 国产视频一区二区在线看| 99riav亚洲国产免费| 中文亚洲av片在线观看爽 | 精品国产乱码久久久久久男人| 精品卡一卡二卡四卡免费| 国产精品一区二区在线观看99| 色综合婷婷激情| 精品久久久久久久毛片微露脸| 亚洲国产欧美网| 国产精品一区二区在线观看99| 亚洲av片天天在线观看| 丝袜美腿诱惑在线| 老司机亚洲免费影院| 亚洲性夜色夜夜综合| 精品国内亚洲2022精品成人 | 99精品久久久久人妻精品| 51午夜福利影视在线观看| 久久99热这里只频精品6学生| 亚洲精品久久成人aⅴ小说| 中文字幕人妻熟女乱码| 变态另类成人亚洲欧美熟女 | 婷婷丁香在线五月| 欧美亚洲日本最大视频资源| 在线看a的网站| 亚洲av成人一区二区三| 蜜桃在线观看..| 啪啪无遮挡十八禁网站| 一区二区三区乱码不卡18| 欧美黄色片欧美黄色片| 三级毛片av免费| 建设人人有责人人尽责人人享有的| 久久中文字幕人妻熟女| 精品国内亚洲2022精品成人 | 热99国产精品久久久久久7| 天堂动漫精品| √禁漫天堂资源中文www| 国产男靠女视频免费网站| 欧美乱妇无乱码| 国产精品98久久久久久宅男小说| 欧美日韩亚洲综合一区二区三区_| 两个人看的免费小视频| 丁香欧美五月| 久久这里只有精品19| 精品国产亚洲在线| av网站免费在线观看视频| 欧美乱码精品一区二区三区| 十八禁网站免费在线| √禁漫天堂资源中文www| 午夜福利视频在线观看免费| 午夜精品久久久久久毛片777| 一级黄色大片毛片| 成人手机av| 免费在线观看影片大全网站| 免费不卡黄色视频| 99re在线观看精品视频| 久久ye,这里只有精品| 国产精品二区激情视频| 精品卡一卡二卡四卡免费| 国产亚洲精品久久久久5区| 欧美人与性动交α欧美软件| 性色av乱码一区二区三区2| 色老头精品视频在线观看| 中亚洲国语对白在线视频| 午夜两性在线视频| 中文字幕人妻熟女乱码| 免费看a级黄色片| 老司机福利观看| 久久天堂一区二区三区四区| 一级毛片精品| 18禁美女被吸乳视频| 五月天丁香电影| 国产精品av久久久久免费| 99国产精品99久久久久| 在线天堂中文资源库| 制服人妻中文乱码| 欧美黑人精品巨大| 青草久久国产| 人妻久久中文字幕网| 女人被躁到高潮嗷嗷叫费观| 亚洲av欧美aⅴ国产| 女人爽到高潮嗷嗷叫在线视频| 老汉色av国产亚洲站长工具| av网站在线播放免费| 免费看a级黄色片| 欧美日韩福利视频一区二区| 久久国产精品影院| 免费女性裸体啪啪无遮挡网站| 少妇猛男粗大的猛烈进出视频| 亚洲久久久国产精品| 亚洲精品国产色婷婷电影| 成年动漫av网址| 国产成人免费观看mmmm| 悠悠久久av| 中文欧美无线码| 欧美成人午夜精品| 最近最新中文字幕大全免费视频| 一本久久精品| 午夜福利在线免费观看网站| 窝窝影院91人妻| www.999成人在线观看| 久久人妻av系列| 国产91精品成人一区二区三区 | 久久久国产欧美日韩av| 亚洲人成伊人成综合网2020| 伊人久久大香线蕉亚洲五| 亚洲天堂av无毛| 日韩欧美国产一区二区入口| 99精品久久久久人妻精品| 少妇粗大呻吟视频| 亚洲成国产人片在线观看| 日韩欧美一区视频在线观看| 国产99久久九九免费精品| 国产有黄有色有爽视频| 又紧又爽又黄一区二区| 女警被强在线播放| 精品一区二区三卡| 黄色a级毛片大全视频| 人人妻人人澡人人爽人人夜夜| 久久久久网色| 成人黄色视频免费在线看| 91成人精品电影| 国产高清videossex| 国产亚洲欧美在线一区二区| 美女国产高潮福利片在线看| 麻豆国产av国片精品| 国产男靠女视频免费网站| 国产精品欧美亚洲77777| www.999成人在线观看| 成人永久免费在线观看视频 | 少妇粗大呻吟视频| 中文字幕色久视频| 亚洲av美国av| 无限看片的www在线观看| 18在线观看网站| av线在线观看网站| 成人18禁在线播放| 久久久国产精品麻豆| 曰老女人黄片| 精品国产乱码久久久久久小说| 巨乳人妻的诱惑在线观看| 两个人看的免费小视频| 国产有黄有色有爽视频| 黄网站色视频无遮挡免费观看| 极品人妻少妇av视频| av视频免费观看在线观看| 国产一区二区 视频在线| 大陆偷拍与自拍| 国产精品亚洲一级av第二区| 日本vs欧美在线观看视频| 日韩欧美一区二区三区在线观看 | 国产精品久久久久成人av| 黄片大片在线免费观看| 丁香六月天网| 久久人人爽av亚洲精品天堂| 中文字幕人妻丝袜制服| 日韩中文字幕欧美一区二区| 欧美黄色淫秽网站| 午夜福利,免费看| 欧美日韩国产mv在线观看视频| 亚洲av国产av综合av卡| 亚洲少妇的诱惑av| 国产日韩一区二区三区精品不卡| 国产有黄有色有爽视频| 久久久久久免费高清国产稀缺| 国产区一区二久久| 人人妻人人爽人人添夜夜欢视频| 又黄又粗又硬又大视频| 久久九九热精品免费| 国产一区有黄有色的免费视频| 精品一区二区三区av网在线观看 | 日日夜夜操网爽| cao死你这个sao货| 伊人久久大香线蕉亚洲五| 黑人猛操日本美女一级片| 国产精品一区二区在线观看99| 又紧又爽又黄一区二区| e午夜精品久久久久久久| 久久久欧美国产精品| 午夜日韩欧美国产| 汤姆久久久久久久影院中文字幕| videos熟女内射| 9色porny在线观看| 国产免费福利视频在线观看| 国产成人欧美| 美女扒开内裤让男人捅视频| 国产一区二区激情短视频| 国产精品99久久99久久久不卡| 国产成人av教育| 欧美变态另类bdsm刘玥| 欧美日韩国产mv在线观看视频| 桃红色精品国产亚洲av| 丁香欧美五月| 久久 成人 亚洲| 1024视频免费在线观看| 国产野战对白在线观看| 久久久久久久久免费视频了| 男女免费视频国产| 午夜视频精品福利| 丰满人妻熟妇乱又伦精品不卡| 老司机影院毛片| 精品国产亚洲在线| 欧美成人免费av一区二区三区 | 在线看a的网站| 国产欧美日韩一区二区三区在线| svipshipincom国产片| 一个人免费在线观看的高清视频| 黄网站色视频无遮挡免费观看| 可以免费在线观看a视频的电影网站| 捣出白浆h1v1| 下体分泌物呈黄色| 日本vs欧美在线观看视频| 高清视频免费观看一区二区| 一边摸一边抽搐一进一出视频| 一区二区av电影网| 免费在线观看完整版高清| 五月天丁香电影| 国产成人一区二区三区免费视频网站| a级片在线免费高清观看视频| 久久精品亚洲熟妇少妇任你| 操出白浆在线播放| 蜜桃在线观看..| 欧美性长视频在线观看| 69精品国产乱码久久久| 日韩欧美一区二区三区在线观看 | 精品少妇一区二区三区视频日本电影| 久久久久久亚洲精品国产蜜桃av| 亚洲久久久国产精品| 高清欧美精品videossex| 免费看十八禁软件| 久久久久久人人人人人| 亚洲精品乱久久久久久| 午夜福利一区二区在线看| 天堂8中文在线网| 性色av乱码一区二区三区2| 999久久久国产精品视频| 国产人伦9x9x在线观看| 精品免费久久久久久久清纯 | 久久精品人人爽人人爽视色| 天堂俺去俺来也www色官网| 高清av免费在线| 午夜福利在线免费观看网站|