林靖,劉蓉,宋朝理西部戰(zhàn)區(qū)空軍醫(yī)院神經(jīng)外科,神經(jīng)內(nèi)科,四川成都600
綜述
泛素連接酶FFbbww 77的調(diào)控異常及在腫瘤中的作用
林靖1,劉蓉2,宋朝理11西部戰(zhàn)區(qū)空軍醫(yī)院神經(jīng)外科,2神經(jīng)內(nèi)科,四川成都610021
泛素蛋白酶系統(tǒng)對(duì)于維持細(xì)胞正常生理功能具有重要作用,F(xiàn)bw7是E3泛素連接酶的底物結(jié)合單位,參與泛素化降解與細(xì)胞增殖、分化、凋亡有關(guān)的重要分子,其調(diào)控異常在腫瘤細(xì)胞中極為常見(jiàn)。Fbw7調(diào)控的底物包括一系列促癌分子和癌癥相關(guān)轉(zhuǎn)錄因子,被認(rèn)為是重要的抑癌分子。比如Fbw7可以通過(guò)調(diào)控Cyclin E、c-Myc、Aurora A減少因細(xì)胞周期異常而造成的染色體不穩(wěn),通過(guò)調(diào)控p63、Mcl1來(lái)影響細(xì)胞損傷修復(fù)并增加細(xì)胞凋亡,通過(guò)調(diào)控TGFβ、mTOR抑制腫瘤轉(zhuǎn)移,再者可以通過(guò)對(duì)Notch和Bcl2家族分子的調(diào)控增加腫瘤細(xì)胞對(duì)化療的敏感性。因此穩(wěn)定Fbw7的表達(dá)可以抑制腫瘤表型的產(chǎn)生和發(fā)展,本文就Fbw7結(jié)構(gòu)功能、突變機(jī)制,調(diào)控通路及其在腫瘤發(fā)生發(fā)展中的作用進(jìn)行綜述。
Fbw7;泛素蛋白酶系統(tǒng);泛素連接酶;腫瘤
泛素蛋白酶系統(tǒng)通過(guò)迅速降解蛋白質(zhì)來(lái)調(diào)節(jié)多種細(xì)胞生理過(guò)程[1-2]。泛素酶包括泛素激活酶E1,形成并調(diào)節(jié)泛素分子鏈的泛素結(jié)合酶E2和直接與底物連接的泛素連接酶E3,E3連接酶直接決定泛素化調(diào)控的特異性,它主要包括APC(分裂后期促進(jìn)復(fù)合物),和SCF(SKP1-CUL1-F-box復(fù)合物)這兩大類型,而Fbw7是SCF型E3連接酶的底物結(jié)合單位[3],其調(diào)控異常在所有泛素體系中最為常見(jiàn),高通量大樣本的芯片檢測(cè)和生物信息分析證實(shí)Fbw7在多種腫瘤中發(fā)生突變[4]。Fbw7參與降解的底物包括一系列已知的促癌因子,其中有一大部分是參與細(xì)胞惡性轉(zhuǎn)化的轉(zhuǎn)錄因子和促癌信號(hào)通路上的蛋白分子[4-5],因此,F(xiàn)bw7被認(rèn)為是重要的抑癌分子而逐漸受到重視。本文旨在對(duì)Fbw7的結(jié)構(gòu)功能,異常調(diào)控機(jī)制和底物泛素化在腫瘤惡性生物行為中的作用等研究進(jìn)展進(jìn)行綜述。
Fbw7是泛素蛋白酶系統(tǒng)中的SCF型E3連接酶的底物識(shí)別組份,包含F(xiàn)-box域、WD40-repeat域和D域3個(gè)功能域。Fbw7通過(guò)WD40域β-螺旋形成的口袋結(jié)構(gòu)與底物特異結(jié)合,然后通過(guò)F-box序列與另外3個(gè)亞單位SKP1,CUL1,及RBX1一起構(gòu)成E3連接酶復(fù)合物骨架,將泛素結(jié)合酶上的泛素Ub(鏈)連接到相應(yīng)底物上[6-7]。Fbw7發(fā)揮泛素化功能的前提是與底物分子的特異性結(jié)合,F(xiàn)bw7的底物具備一個(gè)或兩個(gè)磷酸化識(shí)別區(qū),磷酸化后的CPDs與單體或二聚化Fbw7的底物識(shí)別序列形成穩(wěn)定結(jié)合并被泛素化[8-9],隨后被細(xì)胞內(nèi)26S溶酶體降解。
2.1 Fbw7基因突變
Fbw7的突變類型有3種,最常見(jiàn)為錯(cuò)義突變,此種突變發(fā)生在Fbw7的WD-repeats域的3個(gè)精氨酸殘基上,由于這些殘基形成的肽鏈結(jié)構(gòu)對(duì)于Fbw7與底物CPDs的特異結(jié)合至關(guān)重要,因此該型突變導(dǎo)致顯性負(fù)效應(yīng),使Fbw7與底物的親和力嚴(yán)重受損。第2種突變屬于無(wú)義突變,該型突變的轉(zhuǎn)錄終止位點(diǎn)可發(fā)生在決定二聚化的D序列前或后,從而對(duì)正常Fbw7單體的功能產(chǎn)生影響,以上兩型同屬點(diǎn)突變,占所有突變種類的3/4。第三種突變型是單個(gè)等位基因刪失,這種情況下細(xì)胞依靠另一完好的等位基因產(chǎn)生正常野生型Fbw7單體,因此對(duì)底物降解功能的影響較小。另外,在乳腺癌中尚發(fā)現(xiàn)有Fbw7的啟動(dòng)子甲基化引起其功能失活[5,10-11]。
2.2 CPDs的磷酸化調(diào)控異常
底物CPDs的磷酸化由相應(yīng)的激酶參與,比如CyclinE的CPD區(qū)第384位絲氨酸和380位蘇氨酸分別由CDK2(細(xì)胞周期激酶2)和GSK3(糖原合成激酶3)磷酸化,往上游第380位蘇氨酸則由GSK3(糖原合成激酶3)磷酸化。GSK3另可磷酸化HIF-1α以及在細(xì)胞不同周期進(jìn)程中磷酸化JunB及Mcl1,促進(jìn)它們與Fbw7的結(jié)合和降解[12-14]。GSK3的磷酸化作用受到絲裂原刺激的PI3K-AKT通路及Wnt通路抑制,而抑癌因子PTEN則可通過(guò)拮抗PI3K而正向調(diào)控GSK3,這些通路發(fā)生異常的腫瘤細(xì)胞中,GSK3功能出現(xiàn)異常失活,從而導(dǎo)致癌癥相關(guān)蛋白分子的積累[15]。
2.3 Fbw7的上游分子異常
Mao等[16]報(bào)道細(xì)胞受到UV照射或阿霉素作用后膠質(zhì)瘤細(xì)胞中誘導(dǎo)p53表達(dá)而引起Fbw7β的表達(dá)增加。小分子RNA近年來(lái)被發(fā)現(xiàn)可以調(diào)節(jié)Fbw7的表達(dá),在白血病、胃癌、肺癌中,MiR-223、MiR-25、Mir-503等通過(guò)抑制Fbw7水平而促使細(xì)胞表達(dá)干性表型,細(xì)胞周期失控,增殖侵襲異常以及產(chǎn)生化療耐藥[17-18]。再者, NF-kB1、SREBP2等轉(zhuǎn)錄因子也通過(guò)調(diào)節(jié)microRNA來(lái)影響Fbw7表達(dá)[19-20]。新發(fā)現(xiàn)的一些Fbw7調(diào)控因子還有C/EBP-δ、PIN1、Hes-5、ERK激酶等[21-24]。
如前所述,F(xiàn)bw7通過(guò)泛素化降解途徑調(diào)控底物,廣泛參與細(xì)胞增殖、分化、凋亡、代謝等生物行為。Fbw7的底物大部分是與腫瘤發(fā)生發(fā)展密切相關(guān)的促癌因子以及重要轉(zhuǎn)錄因子,深入研究Fbw7對(duì)這些底物的調(diào)控作用,有助于我們了解Fbw7是如何參與腫瘤細(xì)胞的惡性轉(zhuǎn)化和惡性生物學(xué)行為,并開(kāi)發(fā)針對(duì)其調(diào)控機(jī)制的腫瘤治療措施和手段。
3.1 Fbw7參與細(xì)胞周期調(diào)控
細(xì)胞周期進(jìn)程由周期依賴激酶CDKs驅(qū)動(dòng)并由周期蛋白Cyclins和CDK共同調(diào)節(jié),細(xì)胞周期的異常調(diào)控引起細(xì)胞生長(zhǎng)和分化異常,并由此引發(fā)腫瘤[25]。泛素蛋白酶系統(tǒng)對(duì)細(xì)胞周期的調(diào)節(jié)至關(guān)重要,F(xiàn)-box蛋白Fbw7最早就是在酵母菌中發(fā)現(xiàn)能夠調(diào)控細(xì)胞周期相關(guān)蛋白而被命名為Cdc4[26],后來(lái)的研究逐漸發(fā)現(xiàn)其泛素化調(diào)控的底物廣泛參與周期進(jìn)程。
Cyclin E與細(xì)胞周期激酶CDK2共同調(diào)節(jié)細(xì)胞從G1到S期的進(jìn)程,對(duì)細(xì)胞增殖起到關(guān)鍵限速作用。作為細(xì)胞周期的重要調(diào)控因子,Cyclin E受到泛素蛋白酶系統(tǒng)的精確調(diào)控,其突變異常在腫瘤細(xì)胞中早已確認(rèn),過(guò)度激活的Cyclin E引起染色體基因組不穩(wěn)定從而引發(fā)腫瘤。有研究發(fā)現(xiàn)p53和Fbw7可協(xié)同調(diào)控Cyclin E,減少因細(xì)胞周期異常產(chǎn)生的基因組不穩(wěn)性[27-28]。Cyclin E是典型的雙CPDs底物,肽鏈C端的T380/ S384,和N端的T62/S58被磷酸化后可分別于Fbw7單體形成連接,相應(yīng)的當(dāng)其中S384或T62位點(diǎn)磷酸化受到抑制導(dǎo)致對(duì)應(yīng)CPD親和力下降時(shí)Fbw7則須形成二聚體才能與其結(jié)合[8-9]。
c-Myc是控制細(xì)胞進(jìn)入以及離開(kāi)分裂周期的關(guān)鍵轉(zhuǎn)錄因子,在許多惡性腫瘤中發(fā)現(xiàn)具有拷貝數(shù)擴(kuò)增,基因轉(zhuǎn)位等突變而導(dǎo)致表達(dá)水平升高,其轉(zhuǎn)錄活性參與調(diào)控細(xì)胞增殖、蛋白合成、凋亡、代謝以及細(xì)胞分化等生物過(guò)程[29],因此c-Myc在細(xì)胞內(nèi)的合理調(diào)控對(duì)細(xì)胞的正常生長(zhǎng)至關(guān)重要,其降解或調(diào)控異常即可導(dǎo)致細(xì)胞惡性轉(zhuǎn)化。正常生長(zhǎng)的細(xì)胞中,c-Myc蛋白極不穩(wěn)定,半衰期僅有30 min,這是因?yàn)榧?xì)胞中泛素化體系的存在使其在細(xì)胞完成分裂后隨即受到降解。c-Myc與Fbw7結(jié)合的磷酸化位點(diǎn)位于其CPD區(qū)的T58和S62殘基,兩者共同決定與Fbw7的親和力,這兩個(gè)位點(diǎn)在腫瘤細(xì)胞中經(jīng)常檢測(cè)到基因突變[30],導(dǎo)致c-Myc在G1和S期的異常表達(dá)水平。
Notch蛋白家族屬于配體激活的單次跨膜異二聚體轉(zhuǎn)錄因子,其胞內(nèi)區(qū)域由γ-分泌蛋白水解酶切割后進(jìn)入核內(nèi),并激活數(shù)種細(xì)胞分化、增殖、凋亡等生理過(guò)程[31]。Fbw7首先在線蟲(chóng)中由基因篩查發(fā)現(xiàn)是Notch的負(fù)性調(diào)控因子,并證實(shí)Notch1,Notch4的具備轉(zhuǎn)錄活性的胞內(nèi)段,以及切割它們的γ-分泌蛋白水解酶復(fù)合物的亞單位presenilin,均受到Fbw7泛素化降解[32]。Fryer等[33]研究指出,F(xiàn)bw7與Notch的結(jié)合,是基于Cyclin E:CDK8對(duì)Notch蛋白分子PEST區(qū)域中CPD的T2512殘基的磷酸化。業(yè)已發(fā)現(xiàn)在50%的T細(xì)胞急性淋巴白血?。═-ALL)發(fā)生Notch1的基因突變,且突變集中發(fā)生在上述與Fbw7互作的PEST序列,結(jié)合T-ALL中高頻率的Fbw7突變,可見(jiàn)Notch1與Fbw7的異常表達(dá)對(duì)于T-ALL極具相關(guān)性。但是當(dāng)在另一種細(xì)胞胚胎成纖維細(xì)胞中上調(diào)Notch過(guò)后卻觀察到細(xì)胞增殖減少,說(shuō)明Fbw7在該類細(xì)胞中可能是調(diào)控了別的底物來(lái)發(fā)揮抑瘤效果的,由此可見(jiàn)Fbw7對(duì)周期的調(diào)控具有細(xì)胞和器官特異性[34]。
c-Jun是API轉(zhuǎn)錄因子復(fù)合物的組份,在多種腫瘤細(xì)胞中呈組成性激活[35]。早期發(fā)現(xiàn)c-Jun基因敲除的成纖維細(xì)胞增殖抑制,并且在體外試驗(yàn)中失去促角化細(xì)胞增殖的能力。在成纖維細(xì)胞受到UV照射發(fā)生周期阻滯后,c-Jun的存在可以使得細(xì)胞重新進(jìn)入周期進(jìn)程。Musti[36]研究最早發(fā)現(xiàn)c-Jun受到Fbw7的負(fù)性調(diào)控,而調(diào)控的前提就是c-Jun的N端序列被JNK磷酸化。Wei等[37]發(fā)現(xiàn)除了N端磷酸抗原識(shí)別區(qū),C端的T239/S243也同樣可以被GSK3磷酸化而啟動(dòng)與Fbw7的結(jié)合,因此c-Jun可能與Cyclin E一樣同屬雙CPDs底物。
Aurora A是一種有絲分裂激酶,在細(xì)胞G2-M進(jìn)程中發(fā)揮重要作用,一方面參與著絲粒形成和染色體分布,另一方面響應(yīng)紡錘體組裝檢驗(yàn)蛋白MAD2,參與維持有絲分裂檢驗(yàn)點(diǎn)的正常機(jī)制[38]。在正常細(xì)胞中,AuroraA的表達(dá)受到節(jié)律性嚴(yán)格調(diào)節(jié),僅在處于在分裂旺盛的細(xì)胞中可以檢測(cè)到。而在腫瘤細(xì)胞中,發(fā)現(xiàn)Aurora A表達(dá)過(guò)度上調(diào),導(dǎo)致著絲粒功能異常以及檢驗(yàn)點(diǎn)機(jī)制紊亂,從而造成細(xì)胞多倍分裂而產(chǎn)生惡性轉(zhuǎn)化[39]。Kwon[40]對(duì)Fbw7泛素化結(jié)合Aurora A進(jìn)行了研究,發(fā)現(xiàn)Aurora A與Fbw7結(jié)合的區(qū)域位于其催化亞基的T217/E221,此位點(diǎn)被GSK3β磷酸化后才能受到Fbw7泛素化降解。再者,另一抑癌基因Pten敲減過(guò)后,可以通過(guò)Akt/GSK3β途徑抑制Fbw7對(duì)AuroraA的調(diào)控。
3.2 Fbw7參與DNA損傷反應(yīng)和細(xì)胞凋亡
Fbw7對(duì)于維持細(xì)胞染色體和基因組穩(wěn)定性有重要作用,這個(gè)作用與其底物參與DNA損傷的修復(fù)以及繼發(fā)的凋亡等過(guò)程有關(guān),而對(duì)Fbw7參與細(xì)胞損傷修復(fù)和凋亡的研究,始于對(duì)p53-Fbw7途徑的了解,眾所周知,p53參與DNA修復(fù),保持基因組穩(wěn)定,是重要的抑癌因子,p53可以正向調(diào)控Fbw7β的表達(dá),而Fbw7也可以反過(guò)來(lái)穩(wěn)定p53水平,從而觸發(fā)有絲分裂抑制劑引起的周期檢驗(yàn)機(jī)制。目前與細(xì)胞損傷和凋亡相關(guān)的Fbw7底物有如下幾種。
P63是一種p53相關(guān)的凋亡誘導(dǎo)分子,但是在腫瘤中的作用與p53相反,其基因拷貝和表達(dá)在腫瘤細(xì)胞中呈異常上調(diào),因此可能是一種促癌分子。P63可由轉(zhuǎn)錄剪切形成6種異構(gòu)體,均含有與p53同源的DNA結(jié)合區(qū)以及蛋白寡聚化區(qū),其中,ΔNp63與Fbw7的關(guān)系最為密切,研究發(fā)現(xiàn)ΔNp63在MDM2的細(xì)胞核定位信號(hào)的引導(dǎo)下離開(kāi)細(xì)胞核然后被Fbw7降解。另外,在UV照射或者阿霉素引起細(xì)胞損傷后,胞漿中Fbw7β的表達(dá)被激活,在MDM2的存在下降解內(nèi)源性的ΔNp63從而造成細(xì)胞凋亡[41]。
TGIF1是轉(zhuǎn)化生長(zhǎng)因子TGFβ的負(fù)性調(diào)控因子,TGFβ信號(hào)通路調(diào)控凋亡在內(nèi)的許多重要的細(xì)胞生理活動(dòng),其表達(dá)和功能異??梢鹉[瘤以及血管疾病。TGIF1是近來(lái)發(fā)現(xiàn)的受Fbw7泛素化調(diào)控的底物,通過(guò)下調(diào)TGIF1,F(xiàn)bw7增強(qiáng)TGFβ依賴的轉(zhuǎn)錄活性,反過(guò)來(lái),通過(guò)基因敲減抑制Fbw7活性后,TGIF1在細(xì)胞聚積并抑制TGFβ的正常轉(zhuǎn)錄活性,從而導(dǎo)致細(xì)胞異常增殖、侵襲等惡性行為,另外,通過(guò)Fbw7-TGIF1-TGFβ途徑,可以改變細(xì)胞的凋亡反應(yīng),從而成為潛在的腫瘤治療靶點(diǎn)[42-43]。
Mcl-1是凋亡家族Bcl-2成員,其作用是抑制該家族的促凋亡因子Bax、Bak從而對(duì)凋亡起到負(fù)向調(diào)控。Wertz等[44]證明Mcl-1的調(diào)控是由蛋白酶系統(tǒng)Fbw7參與,由GSK3激酶對(duì)Mcl-1的CPD區(qū)S121/E125位進(jìn)行磷酸化,而Inuzuka則證明磷酸化的S159/T163與Fbw7的親和力更高,他們進(jìn)一步分別在卵巢癌和T-ALL來(lái)源的腫瘤細(xì)胞株中慢病毒siRNA轉(zhuǎn)染抑制掉Fbw7后,Mcl-1原本在有絲分裂期的下調(diào)受到抑制,瘤細(xì)胞凋亡減少,表明Fbw7通過(guò)調(diào)控Mcl-1從而增加細(xì)胞凋亡。
3.3 Fbw7參與腫瘤細(xì)胞轉(zhuǎn)移
人類癌癥的死因90%是由腫瘤細(xì)胞發(fā)生轉(zhuǎn)移造成的,腫瘤細(xì)胞往鄰近或遠(yuǎn)隔器官的轉(zhuǎn)移、侵襲,需要一系列與細(xì)胞粘附、接觸相關(guān)的整合素、蛋白酶分子的參與。已證實(shí)在一些腫瘤中,F(xiàn)bw7可以調(diào)控一些與細(xì)胞侵襲遷移有關(guān)的分子的表達(dá),有研究發(fā)現(xiàn)c-Myc可以通過(guò)激活TGFβ從而激活SNAIL轉(zhuǎn)錄因子,進(jìn)而促進(jìn)表皮-間質(zhì)細(xì)胞轉(zhuǎn)換(EMT),而EMT的發(fā)生是腫瘤細(xì)胞侵襲和遷移的必要因素。在對(duì)TGFβ的研究中發(fā)現(xiàn)該分子在腫瘤的不同階段有不同的促瘤效應(yīng),在腫瘤早期因引發(fā)凋亡而起到抑瘤作用,而在腫瘤晚期則可激活EMT而造成腫瘤轉(zhuǎn)移[45]。以上c-Myc和TGFβ均是已知的Fbw7調(diào)控底物。另外一個(gè)與腫瘤轉(zhuǎn)移密切相關(guān)的信號(hào)通路是C/EBPδ-mTOR-HIF1α,該通路與Fbw7的功能也密不可分,Balamurugan[21]在乳腺癌細(xì)胞中研究發(fā)現(xiàn),在缺氧條件下腫瘤細(xì)胞可誘導(dǎo)CCAAT增強(qiáng)子結(jié)合蛋白C/EBPδ的表達(dá),并直接抑制Fbw7,從而激活Fbw7的底物mTOR,激活的mTOR通過(guò)mTOR/AKT/S6K1通路上調(diào)缺氧誘導(dǎo)因子HIF1α的表達(dá),從而使得腫瘤細(xì)胞適應(yīng)缺氧環(huán)境并發(fā)生侵襲和轉(zhuǎn)移,該研究也是首次將Fbw7和腫瘤轉(zhuǎn)移行為聯(lián)系起來(lái)。
3.4 Fbw7參與腫瘤耐藥
腫瘤耐藥機(jī)制非常復(fù)雜,包含多種蛋白分子和信號(hào)通路。腫瘤細(xì)胞可以利用能量依賴型轉(zhuǎn)運(yùn)蛋白(如ABC家族蛋白)將毒性化學(xué)藥物泵至胞外;同時(shí)在負(fù)責(zé)將化療藥物跨膜輸送進(jìn)胞內(nèi)的分子上也發(fā)生突變[46];DNA雙鏈斷裂修復(fù)(錯(cuò)配修復(fù)MMR、核苷酸修復(fù)NER)機(jī)制的過(guò)度激活,凋亡、自噬及衰老過(guò)程的調(diào)控失常,都可引起腫瘤細(xì)胞經(jīng)受住細(xì)胞毒藥物引起的DNA損傷反應(yīng)并逃避死亡命運(yùn)[47-48];更近的研究發(fā)現(xiàn),腫瘤細(xì)胞還可以通過(guò)改變細(xì)胞的行為和性狀來(lái)逃避化療殺傷作用,這其中就包含表皮-間質(zhì)轉(zhuǎn)化以及細(xì)胞干性轉(zhuǎn)化[49]。Fbw7在腫瘤細(xì)胞耐藥機(jī)制中的作用是最近幾年的研究中得到證實(shí),Wertz等[44]在研究Fbw7與Mcl-1的調(diào)控作用中發(fā)現(xiàn)Fbw7失活導(dǎo)致的Mcl-1水平上調(diào)使結(jié)腸癌及卵巢癌細(xì)胞對(duì)抗微管藥物Taxol及長(zhǎng)春新堿耐藥,而在Fbw7敲除的細(xì)胞中利用RNA干擾抑制Mcl-1水平則使細(xì)胞凋亡顯著增加從而恢復(fù)對(duì)藥物的敏感性。Inuzuka[12]的另一項(xiàng)研究則發(fā)現(xiàn),高表達(dá)Mcl-1的Fbw7敲除T-ALL細(xì)胞,對(duì)多激酶抑制劑sorafenib高度敏感,但是卻對(duì)Bcl-2蛋白家族抑制劑ABT-737表現(xiàn)出耐藥。另外,F(xiàn)bw7同樣參與了細(xì)胞對(duì)gamma分泌酶抑制劑GSI的藥物反應(yīng),其機(jī)制是GSI可以抑制Notch分子胞內(nèi)活性片段ICN的生成,而敲減Fbw7則可增加Notch的ICN水平從而穩(wěn)定其下游分子c-Myc,進(jìn)而導(dǎo)致細(xì)胞繼續(xù)增殖并耐藥[50]。
Fbw7作為細(xì)胞泛素蛋白酶系統(tǒng)中的關(guān)鍵組份,通過(guò)特異性結(jié)合底物使其進(jìn)入泛素化降解途徑來(lái)發(fā)揮調(diào)控細(xì)胞周期、生長(zhǎng)增殖、凋亡、損傷修復(fù)等重要生理過(guò)程的功能。當(dāng)Fbw7的功能因?yàn)槠浠?、轉(zhuǎn)錄、或者表觀修飾層面上的突變而發(fā)生異常時(shí),受其控制的各種底物分子相應(yīng)發(fā)生異常積累,從而導(dǎo)致細(xì)胞發(fā)生過(guò)度增生、侵襲轉(zhuǎn)移、耐藥等惡性行為。針對(duì)Fbw7及其上下游通路的分子靶標(biāo)實(shí)施干預(yù)將為臨床腫瘤治療提供新的手段。
[1]Hershko A,Ciechanover A.The ubiquitin system[J].Annu Rev Biochem,1998,67(4):425-9.
[2]Nakayama KI,Nakayama K.Ubiquitin ligases:cell-cycle control and cancer[J].Nat Rev Cancer,2006,6(5):369-81.
[3]Lau W,Fukushima H,Wei W.The Fbw7 and betaTRCP E3 ubiquitin ligases and their roles in tumorigenesis[J].Front Biosci, 2012,17(6):2197-212.
[4]Bredel M,Bredel C,Juric D,et al.Functional network analysis reveals extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas[J].Cancer Res,2005,65 (19):8679-89.
[5]Welcker M,Clurman E.FBW7 ubiquitin ligase:a tumour suppressoratthecrossroadsofcelldivision,growthand differentiation[J].Nat Rev Cancer,2008,8(2):83-93.
[6]Wang L,Ye XT,Liu YY,et al.Aberrant regulation of FBW7 in cancer[J].Oncotarget,2014,5(8):2000-15.
[7]Hao B,Oehlmann S,Sowa E,et al.Structure of a Fbw7-Skp1-cclin E complex:multisite-phosphorylated substrate recognition by SCF ubiquitin ligases[J].Mol Cell,2007,26(1):131-43.
[8]Welcker M,Larimore A,Swanger J,et al.Fbw7 dimerization determines the specificity and robustness of substrate degradation[J].Genes Dev,2013,27(23):2531-6.
[9]Koepp M,Schaefer K,Ye X,et al.Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase[J]. Science,2001,294(40):173-7.
[10]Cheng YB,Li G.Role of the ubiquitin ligase Fbw7 in Cancer progression[J].Cancer Metastasis Rev,2012,31(1/2):75-87.
[11]Akhoondi S,Lindstr?m L,Widschwendter M,et al.Inactivation of FBXW7/hCDC4-β expression by promoter hypermethylation is associated with favorable prognosis in primary breast cancer[J]. Breast Cancer Res,2010,12(6):R105-8.
[12]Inuzuka H,Shaik S,Onoyama I,et al.SCF(FBW7)regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction[J].Nature,2011,471(36):104-9.
[13]Flügel D,G?rlach A,Kietzmann T.GSK-3β regulates cell growth, migration,and angiogenesis via Fbw7 and USP28-dependent degradation of HIF-1α[J].Blood,2012,119(5):1292-301.
[14]Pérez BB,Farràs R.Regulation of GSK3β-FBXW7-JUNB axis[J]. Oncotarget,2013,4(7):956-7.
[15]Ren H,Zhao LQ,Li YK,et al.The PI3 kinase inhibitor NVP-BKM120inducesGSK3/FBXW7-dependentMcl-1 degradation,contributingtoinductionofapoptosisand enhancement of TRAIL-induced apoptosis[J].Cancer Lett,2013, 338(2):229-38.
[16]Mao H,Perez LJ,Wu D,et al.Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene[J].Nature,2004,432 (718):775-9.
[17]Kurashige J,Watanabe M,Iwatsuki M,et al.Overexpression of microRNA-223regulatestheubiquitinligaseFBXW7in oesophageal squamous cell carcinoma[J].Br J Cancer,2012,106 (1):182-8.
[18]Li L,Sarver AL,Khatri R,et al.Sequential expression of miR-182 and miR-503 cooperatively targets FBXW7,contributing to the malignant transformation of colon adenoma to adenocarcinoma[J]. J Pathol,2014,234(4):488-501.
[19]Kumar V,Palermo R,Talora C,et al.Notch and NF-kB signaling pathwaysregulatemiR-223/FBXW7axisinT-cellacute lymphoblastic leukemia[J].Leukemia,2014,28(12):2324-35.
[20]Esquejo M,Jeon TI,Osborne F.Lipid-cell cycle nexus:SREBP regulates microRNAs targeting Fbxw7[J].Cell Cycle,2014,13(3): 339-40.
[21]Balamurugan K,Wang M,Tsai H,et al.The tumour suppressor C/ EBPδ inhibits FBXW7 expression and promotes mammary tumour metastasis[J].EMBO J,2010,29(24):4106-17.
[22]Min H,Lau W,Lee H,et al.Negative regulation of the stability and tumor suppressor function of Fbw7 by the Pin1 prolyl isomerase[J]. Mol Cell,2012,46(6):771-83.
[23]Sancho R,Blake M,Tendeng C,et al.Fbw7 repression by hes5 creates a feedback loop that modulates Notch-mediated intestinal and neural stem cell fate decisions[J].PLoS Biol,2013,11(6): e1001586-94.
[24]Ji S,Qin Y,Shi S,et al.ERK kinase phosphorylates and destabilizes the tumor suppressor FBW7 in pancreatic cancer[J]. Cell Res,2015,25(5):561-73.
[25]Evans T,Rosenthal T,Youngblom J,et al.Cyclin:a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division[J].Cell,1983,33(2):389-96.
[26]Hartwell LH,Culotti J.Genetic control of the cell division cycle in yeast[J].Science,1974,183(4120):46-51.
[27]Spruck H,Won A,Reed I.Deregulated cyclin E induces chromosome instability[J].Nature,1999,401(50):297-300.
[28]Minella C,Grim E,Welcker M,et al.p53 and SCFFbw7cooperatively restrain cyclin e-associated genome instability[J]. Oncogene,2007,26(48):6948-53.
[29]Eilers M,Schirm S,Bishop M.The MYC protein activates transcription of the alpha-prothymosin gene[J].EMBO J,1991,10 (1):133-41.
[30]Yada M,Hatakeyama S,Kamura T,et al.Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7[J].EMBO J,2004,23(10):2116-25.
[31]Artavanis TA,Rand S,Lake RJ,et al.Notch signaling:cell fate control and signal integration in development[J].Science,1999,32 (284):770–6.
[32]Oberg C,Li J,Pauley A,et al.The notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog[J].J Biol Chem,2001,276(38):35847-53.
[33]Fryer J,White B,Jones A.Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover[J].Mol Cell,2004,16(4):509-20.
[34]Ishikawa Y,Onoyama I,Nakayama I,et al.Notch-dependent cell cycle arrest and apoptosis in mouse embryonic fibroblasts lacking Fbxw7[J].Oncogene,2008,27(47):6164-74.
[35]Hartl M,Bader G,Bister K.Molecular targets of the oncogenic transcription factor jun[J].Curr Cancer Drug Targ,2003,3(1): 41-55.
[36]Musti M,Treier M,Bohmann D.Reduced ubiquitin-dependent degradation of c-Jun after phosphorylation by MAP kinases[J]. Science,1997,275(98):400-2.
[37]Wei WY,Jin JP,Schlisio S,et al.The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase[J].Cancer Cell,2005,8(1):25-33.
[38]Marumoto T,Zhang D,Saya H.Aurora-A-a Guardian of poles[J]. Nat Rev Cancer,2005,5(1):42-50.
[39]Giet R,Petretti C,kinases C.Aurora prigent,aneuploidy and cancer: a coincidence or a real Link[J].Trends Cell Biol,2005,15(7): 241-50.
[40]Kwon W,Kim J,Wu D,et al.Pten regulates Aurora-A and cooperates with Fbxw7 in modulating radiation-induced tumor development[J].Mol Cancer Res,2012,10(6):834-44.
[41]Galli F,Rossi M,D'alessandra Y,et al.MDM2 and Fbw7 cooperate to induce p63 protein degradation following DNA damage and cell differentiation[J].J Cell Sci,2010,123(Pt 14):2423-33.
[42]Massagué J,Wotton D.Transcriptional control by the TGF-beta/ Smad signaling system[J].EMBO J,2000,19(8):1745-54.
[43]Bengoechea AT,Ericsson J.Tumor suppressor Fbxw7 regulates TGFβ signaling by targeting TGIF1 for degradation[J].Oncogene, 2010,29(38):5322-8.
[44]Wertz IE,Kusam S,Lam C,et al.Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7[J].Nature, 2011,471(7336):110-4.
[45]Wolfer A,Ramaswamy S.MYC and metastasis[J].Cancer Res, 2011,71(63):2034–7.
[46]Fletcher JI,Haber M,Henderson MJ.ABC transporters in cancer: more than just drug efflux pumps[J].Nat Rev Cancer,2010,10(2): 147-56.
[47]Happold C,Roth P,Wick W,et al.Distinct molecular mechanisms of acquired resistance to temozolomide in glioblastoma cells[J].J Neurochem,2012,122(2):444-55.
[48]Zhang JH,Stevens F,Laughton A,et al.Acquired resistance to temozolomide in glioma cell lines:molecular mechanisms and potential translational applications[J].Oncology,2010,78(2): 103-14.
[49]Dean M,Fojo T,Bates S.Tumour stem cells and drug resistance[J]. Nat Rev Cancer,2005,5(4):275-84.
[50]O'neil J,Grim J,Strack P,et al.FBW7 mutations in leukemic cells mediateNOTCHpathwayactivationandresistanceto gamma-secretase inhibitors[J].J Exp Med,2007,204(8):1813-24.
Deregulation of Ubiquitin Ligase Fbw7 and its role in Tumor Progression
LIN Jing1,LIU Rong2,SONG Chaoli11Department of Neurosurgery,2Department of Neurology,General Hospital of Western Air Force,Chengdu 610021,China
Ubiquitin proteasome system is physically essential to normal cell functions.Fbw7 is a subunit of E3 ligase specifically binding to a series of substrates to promote their lysosomal degradation,the regulation of which is commonly mutated in tumors.Most substrates of Fbw7 are dominant oncogenes,including Cyclin E,c-Myc,Notch,Aurora A,and Mcl1, which intensively regulate cell cycle,DNA repair,metastasis as well as chemoresistance.Therefore,Fbw7 targeting intervention can inhibit malignant transformation of cells.This review focuses on the biological functions,genetic alterations and regulation networks of Fbw7 in order to highlight its role in tumor progression.
Fbw7;ubiquitin proteasome system;ubiquitin ligase;tumor
2016-09-14
國(guó)家自然科學(xué)基金(30930094)
林靖,博士,E-mail:37772092@qq.com
宋朝理,Email:songcl123@163.com