王利娟 楊 春 谷牧青 Pierre Hardy 阮祥燕,4* Alfred O. Mueck,4
(1.首都醫(yī)科大學附屬北京婦產醫(yī)院婦科內分泌科,北京 100026;2.蒙特利爾大學藥理系圣賈斯汀醫(yī)院研究中心,蒙特利爾 H3T 1C5,加拿大;3. 首都醫(yī)科大學附屬北京婦產醫(yī)院生殖醫(yī)學科,北京 100026;4.德國圖賓根大學婦產醫(yī)院絕經內分泌中心,圖賓根D-72076,德國)
?
受孕激素調節(jié)的microRNAs與乳腺癌的關系
王利娟1楊 春2谷牧青3Pierre Hardy2阮祥燕1,4*Alfred O. Mueck1,4
(1.首都醫(yī)科大學附屬北京婦產醫(yī)院婦科內分泌科,北京 100026;2.蒙特利爾大學藥理系圣賈斯汀醫(yī)院研究中心,蒙特利爾 H3T 1C5,加拿大;3. 首都醫(yī)科大學附屬北京婦產醫(yī)院生殖醫(yī)學科,北京 100026;4.德國圖賓根大學婦產醫(yī)院絕經內分泌中心,圖賓根D-72076,德國)
microRNAs(miRNAs)是一類小的非編碼RNAs,在轉錄后水平調節(jié)多細胞真核生物基因的表達。miRNA突變或異常表達與各種人類癌癥相關,并且可作為腫瘤抑制因子和致癌基因發(fā)揮作用。孕激素受體(progesterone receptor, PR)介導正常乳腺和乳腺癌組織對孕激素的應答。孕激素暴露是絕經后乳腺癌的一個公認風險因素,尤其是合成孕激素。研究結果表明激素調節(jié)的miRNAs在激素受體介導的基因調控中起重要作用,受孕激素調節(jié)的miRNAs可影響孕激素受體的表達及其活動。因此,未來應該深入研究孕激素、孕激素受體和miRNAs關系的基因調控和分子機制,就miRNA對乳腺癌診斷、治療和預后的潛力進行深入評估。
乳腺癌;孕激素;孕激素受體;microRNAs;基因調控;分子機制
乳腺癌是全球死亡的主要原因之一,是婦女易患第二常見的癌癥。世界各地每年診斷出浸潤性乳腺癌的病例超過130萬例,每年有超過45萬婦女死于乳腺癌[1]。雖然目前對乳腺癌的了解取得了重大進展,但要想進一步改善治療,確定新的治療靶點很重要。了解參與調控乳腺癌發(fā)生、發(fā)展和轉移的分子機制是制定或改進乳腺癌治療策略的關鍵。
microRNAs(miRNAs)是一類非蛋白編碼的長約18~24個核苷酸的內源性小RNAs分子,在轉錄后水平調節(jié)多細胞真核生物基因的表達。miRNA通過介導的快速脫腺苷化發(fā)動的轉錄抑制、mRNA切割和mRNA衰變調節(jié)基因表達。miRNAs與其靶mRNAs間的堿基配對作用,經常發(fā)生在靶基因的非翻譯區(qū)(3′untranslated region,3′UTR),可導致靶mRNAs降解和/或翻譯抑制[2]。在哺乳動物中,預測miRNA可以控制所有蛋白編碼基因約30%的活動[3]。目前對miRNAs功能的研究[4]表明,它幾乎參與對每個細胞過程的調節(jié),并且miRNAs表達的改變與人類的許多病理有關。越來越多的研究[5-7]表明,miRNA突變或異常表達與各種人類癌癥相關,一些參與調節(jié)細胞增生和凋亡過程的miRNAs,對腫瘤形成的抑制或促進至關重要。
孕激素(progesterone,P4)和孕激素受體(progesterone receptor, PR)對女性正常的生理和激素反應性組織(如子宮和乳腺)的病理起到很重要的作用,P4和PR對乳腺的發(fā)育及乳腺癌的發(fā)生發(fā)展都很重要。PR狀態(tài)對乳腺癌病人治療決策有重要意義。孕激素暴露是絕經后乳腺癌的一個公認風險因素,尤其是合成孕激素。Neubauer 等[8]的研究表明黃體酮對孕激素受體膜組分1(progesterone receptor membrane component 1,PGRMC1)過表達的乳腺癌細胞(MCF-7/PGRMC1-3HA)沒有促增生作用,而合成孕激素屈螺酮、醋酸甲羥孕酮和炔諾酮可顯著促進MCF-7/PGRMC1-3HA細胞的增生,其中炔諾酮對乳腺癌細胞的促增生作用最顯著,而這些孕激素對PGRMC1非過表達的乳腺癌細胞(MCF-7)的增生幾乎沒有影響。由此得出結論:孕激素對乳腺癌發(fā)生的影響可能取決于激素治療中使用的特定孕激素類型和乳腺組織中PGRMC1、PR-A和PR-B的表達。 Zhang 等[9]和Ruan等[10]的研究結果顯示乳腺癌組織中PGRMC1的表達高于正常組織且與雌激素受體α(estrogen receptor α,ERα)的表達呈正相關 (OR=1.42, 95%CI1.06~1.91,P=0.02)。 PGRMC1可能有助于預測乳腺癌的發(fā)生風險及乳腺癌病人的預后。PR狀態(tài)對區(qū)分不同乳腺癌亞組可能對輔助抗雌激素治療受益不同尤為重要:ER+/PR-亞組被認為對內分泌治療的反應比ER+/PR+亞組差[11-13]。有研究[14-17]表明miRNAs在激素反應性組織(子宮和乳腺)中的表達狀態(tài)隨類固醇激素濃度而變化。Williams等[18]的研究表明miRNA特異性地參與了PR在生理和病理狀態(tài)下的功能。最近的研究結果[19-26]表明激素調節(jié)的miRNAs在激素受體介導的基因調控中起重要作用,且初步揭示了miRNA如何影響激素受體的表達和活性。大部分的研究[19-22]證實了miRNAs可靶向調節(jié)ERα,并且與乳腺癌中ERα陽性表達相關。一些研究[23-26]也證實了乳腺癌細胞中的miRNAs受ERα的調節(jié)。相比之下,關于孕激素調節(jié)miRNAs和miRNAs靶向調節(jié)PR,以及miRNAs如何潛在地影響PR功能的研究相對較少。目前,越來越多的研究[27-28]顯示乳腺癌中一些miRNA的表達變化與P4和/或PR有關。
目前關于孕激素調節(jié)miRNAs的研究較少,大多數(shù)研究[28-30]都集中在子宮組織。Cochrane等[31]的研究顯示miR-29家族的3位成員(miR-29a、 miR-29b和miR-29c)在經過6 h的醋酸甲羥孕酮處理后,以劑量依賴的方式下降了,miR-141也被醋酸甲羥孕酮降調了。而Finlay-Schultz等[32]的研究表明P4可降調miR29a和miR141。經實時PCR檢測,來自同一miRNA前體的miR-513a-5p和miR-513a-3p經過孕激素處理后上調,miR-513a-5p的上調差異有統(tǒng)計學意義。孕激素通過結合其受體介導miR-513a-5p上調,而miR-513a-5p通過靶向調節(jié)PR的 3′UTR導致PR蛋白濃度下降。孕激素還可通過降調miR-29增加PR介導的Krüppel樣因子4(Krüppel-like factor 4,KLF4)上調,進而增加激素反應性乳腺癌中的干樣細胞群(CK5+和CD44+)[33]。還有研究[34]表明孕激素可通過PR和Stat3與致癌轉錄因子c-myc之間經典的層級相互作用誘導miR-16的降低,而體內和體外miR-16過表達均可抑制孕激素誘導的乳腺腫瘤生長。
雌二醇(estradiol,E2)抑制的miR-26a和miR-181a調節(jié)與細胞生長和增生有關的許多基因,包括孕激素受體基因-雌激素信號轉導的關鍵參與者[35]。值得注意的是,接受抗雌激素新輔助治療的乳腺癌婦女miRNA的表達也受到了調節(jié)。同ERs一樣,PR的亞型(PR-A和PR-B)是類固醇激素受體家族的成員,也是轉錄因子和雌激素信號轉導的關鍵介質[36]。Maillot等[35]發(fā)現(xiàn)極長的PR 3′UTR(>9 kpb)上保守預測的miRNA結合位點(miRNA響應元件)很少。另外,預測結合PR 3′UTR的7種miRNAs中的6種miRNA(miR-26a、miR-26b、 miR-181a、 miR-181b、miR-23a、 miR-23b)在研究中已被發(fā)現(xiàn)能被E2抑制,其中miR-26a和miR-181a能顯著抑制雌激素依賴的MCF-7細胞生長以及PR在RNA和蛋白質水平的表達,抗miR-26a和miR-181a能夠解除對PR表達的抑制。通過熒光素酶檢測報告判斷,預測的miRNA響應元件對于miR-26a和miR-181a與PR mRNA的直接和特異性結合至關重要。Gilam等[27]的研究首次證實MCF-7細胞中miR-181a、miR-23a 和miR-26b過表達可降低PR mRNA的表達水平,且這3個miRNAs在PR基因的3′UTR上有一個共同的保守結合位點,直接靶向調節(jié)PR。研究[27]還顯示,乳腺癌標本中miR-181a和miR-26b的相對表達明顯高于相鄰的正常組織標本,此結果暗示miR-181a和miR-26b對乳腺癌的發(fā)生有潛在作用。此外,miR-98 和miR-181a可能通過它們對PGRMC1、 PR、細胞色素P450芳香化酶(Cytochrome P450 aromatase,CYP19A)、基質金屬蛋白酶3組織抑制劑(tissue inhibitor of matrix metalloproteinase 3,TIMP3)和X染色體相關的DEAD盒多肽3[DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked,DDX3X]表達的調節(jié)功能影響正常月經周期和疾病過渡狀態(tài)(子宮內膜癌)的子宮內膜細胞活性[37]。 Lu等[38]通過實時定量PCR檢測了67名乳腺浸潤性導管癌miRNA-155和miR-31的組織和血漿濃度以及這2個miRNA與乳腺癌臨床病理特點的關系,結果表明乳腺癌病人miRNA-155和miR-31的血漿濃度比健康人群分別高6倍和5倍。而且,在癌組織中miR-155的表達比非癌組織高5倍(P<0.05),沒有觀察到miR-31表達的變化(P>0.05)。miR-155的表達與ER(r=-0.353,P=0.003)和PR呈負相關(r=-0.357,P=0.003)。MiR-126-3p能夠抑制小鼠乳腺上皮細胞的增生(P<0.01)和β酪蛋白的表達(P<0.01),并降調PR蛋白(P<0.05)[39]。因此,MiR-126-3p可能在乳腺的發(fā)育過程中扮演了重要作用,這將有助于人們對乳腺上皮細胞腫瘤的研究。
綜上所述,乳腺癌中孕激素調節(jié)的miRNAs在孕激素受體介導的基因調控中起重要作用。目前有關孕激素和孕激素受體影響乳腺癌發(fā)生發(fā)展的分子機制尚未完全了解,乳腺癌中孕激素受體的調控尚未得到充分的研究。已知miRNAs可作為腫瘤抑制因子或促癌基因影響乳腺癌的發(fā)生、發(fā)展和轉移,但由于miRNAs種類繁多、功能各異,研究結果尚未達成一致。鑒于孕激素、孕激素受體和miRNAs在乳腺癌發(fā)生發(fā)展中的重要作用,深入研究孕激素、孕激素受體和miRNAs關系的基因調控和分子機制,將有助于miRNAs對乳腺癌的診斷、治療和預后發(fā)揮重要作用。
[1] Manne R K, Agrawal Y, Bargale A, et al. A microRNA/ubiquitin ligase feedback loop regulates slug-mediated invasion in breast cancer[J]. Neoplasia, 2017, 19(6):483-495.
[2] Zhang B, Pan X, Cobb GP, et al. microRNAs as oncogenes and tumor suppressors[J]. Dev Biol, 2007, 302(1):1-12.
[3] Filipowicz W, Bhattacharyya S N, Sonenberg N, Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?[J].Nat Rev Genet,2008,9(2):102-114.
[4] Krol J, Loedige I, Filipowicz W. The widespread regulaton of microRNA biogenesis, function and decay[J]. Nat Rev Genet, 2010, 11(9):597-610.
[5] Melo S A, Esteller M. Dysregulation of microRNAs in cancer: playing with fire[J]. FEBS Lett, 2011,585(13):2087-2099.
[6] Babashah S, Soleimani M. The oncogenic and tumour suppressive roles of microRNAs in cancer and apoptosis[J].Eur J Cancer, 2011,47(8):1127-1137.
[7] Jansson M D, Lund A H. MicroRNA and cancer[J]. Mol Oncol,2012,6(6):590-610.
[8] Neubauer H, Chen R, Schneck H, et al. New insight on a possible mechanism of progestogens in terms of breast cancer risk[J]. Horm Mol Biol Clin Investig, 2011, 6(1):185-192.
[9] Zhang Y, Ruan X, Willibald M, et al. May progesterone receptor membrane component 1 (PGRMC1) predict the risk of breast cancer?[J]. Gynecol Endocrinol, 2016, 32(1):58-60.
[10]Ruan X, Zhang Y, Mueck A O, et al. Increased expression of progesterone receptor membrane component 1 is associated with aggressive phenotype and poor prognosis in ER-positive and negative breast cancer[J]. Menopause, 2017, 24(2):203-209.
[11]Bardou V J, Arpino G, Elledge R M, et al. Progesterone receptor status signifcantly improves outcome prediction over estrogen receptor status alone for adjuvant endocrine therapy in two large breast cancer databases[J]. J Clin Oncol, 2003, 21(10):1973-1979.
[12]Colozza M, Larsimont D, Piccart M J. Progesterone receptor testing: not the right time to be buried[J]. J Clin Oncol, 2005, 23(16):3867-3868.
[13]Fern? M, St?l O, Baldetorp B, et al. Results of two or five years of adjuvant tamoxifen correlated to steroid receptor and S-phase levels. South Sweden Breast Cancer Group, and South-East Sweden Breast Cancer Group[J]. Breast Cancer Res Treat, 2000, 59(1):69-76.
[14]Kuokkanen S, Chen B, Ojalvo L, et al. Genomic profling of microRNAs and messenger RNAs reveals hormonal regulation in microRNA expression in human endometrium[J]. Biol Reprod, 2010, 82(4):791-801.
[15]Xia H F, Jin X H, Song P P, et al. Temporal and spatial regulation of let-7a in the uterus during embryo implantation in the rat[J]. J Reprod Dev, 2010, 56(1):73-78.
[16]Xia H F, Jin X H, Song P P, et al. Temporal and spatial regulation of miR-320 in the uterus during embryo implantation in the rat[J]. Int J Mol Sci, 2010, 11(2):719-730.
[17]Silveri L, Tilly G, Vilotte J L, et al. MicroRNA involvement in mammary gland development and breast cancer[J]. Reprod Nutr Dev, 2006, 46(5):549-556.
[18]Williams K C, Renthal N E, Condon J C, et al. MicroRNA-200a serves a key role in the decline of progesterone receptor function leading to term and preterm labor[J]. Proc Natl Acad Sci U S A, 2012, 109(19):7529-7534.
[19]Adams B D, Furneaux H, White B A. The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines[J]. Mol Endocrinol, 2007, 21(5):1132-1147.
[20]Castellano L, Giamas G, Jacob J, et al. The estrogen receptor-alpha-induced microRNA signature regulates itself and its transcriptional response[J]. Proc Natl Acad Sci USA, 2009, 106(37):15732-15737.
[21]Pandey D P, Picard D. miR-22 inhibits estrogen signaling by directly targeting the estrogen receptor alpha mRNA[J]. Mol Cell Biol, 2009, 29(13):3783-3790.
[22]Zhao J J, Lin J, Yang H, et al. MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer[J]. J Biol Chem, 2008, 283(45):31079-31086.
[23]Cohen A, Shmoish M, Levi L, et al. Alterations in micro-ribonucleic acid expression profiles reveal a novel pathway for estrogen regulation[J]. Endocrinology, 2008, 149(4):1687-1696.
[24]Klinge C M. Estrogen regulation of microRNA expression[J]. Curr Genomics, 2009,10(3): 169-183.
[25]Nothnick W B, Healy C, Hong X. Steroidal regulation of uterine miRNAs is associated with modulation of the miRNA biogenesis components Exportin-5 and Dicer1[J]. Endocrine, 2010, 37(2):265-273.
[26]Cizeron-Clairac G, Lallemand F, Vacher S,et al, MiR-190b, the highest up-regulated miRNA in ERα-positive compared to ERα-negative breast tumors, a new biomarker in breast cancers?[J]. BMC Cancer,2015,15:499
[27]Gilam A, Shai A, Ashkenazi I, et al. MicroRNA regulation of progesterone receptor in breast cancer[J]. Oncotarget, 2017, 8(16):25963-25976.
[28]Cochrane D R, Spoelstra N S, Richer J K. The role of miRNAs in progesterone action[J]. Mol Cell Endocrinol,2012,357(1-2):50-59.
[29]Nothnick W B, Healy C,Hong X. Steroidal regulation of uterine miRNAs is associated with modulation of the miRNA biogenesis components Exportin-5 and Dicer1[J]. Endocrine,2010,37(2): 265-273.
[30]Yuan D Z,Yu L L,Qu T, et al.Identification and characterization of progesterone- and estrogen-regulated microRNAs in mouse endometrial epithelial cells[J]. Reprod Sci, 2015,22(2): 223-234.
[31]Cochrane D R, Jacobsen B M, Connaghan K D, et al. Progestin regulated miRNAs that mediate progesterone receptor action in breast cancer[J]. Mol Cell Endocrinol, 2012, 355(1): 15-24.
[32]Finlay-Schultz J, Cittelly D M,Hendricks P,et al. Progesterone downregulation of miR-141 contributes to expansion of stem-like breast cancer cells through maintenance of progesterone receptor and Stat5a[J]. Oncogene, 2015,34(28): 3676-3687.
[33]Cittelly DM, Finlay-Schultz J, Howe E N, et al. Progestin suppression of miR-29 potentiates dedifferentiation of breast cancer cells via KLF4[J]. Oncogene, 2013, 32(20): 2555-2564.
[34]Rivas M A, Venturutti L, Huang Y W,et al. Downregulation of the tumor-suppressor miR-16 via progestin-mediated oncogenic signaling contributes to breast cancer development[J]. Breast Cancer Res, 2012, 14(3):R77.
[35]Maillot G, Lacroix-Triki M, Pierredon S, et al. Widespread estrogen dependent repression of micrornas involved in breast tumor cell growth[J]. Cancer Res, 2009, 69(21):8332-8340.
[36]Lange C A. Challenges to defining a role for progesterone in breast cancer[J]. Steroids, 2008, 73(9-10):914-921.
[37]Panda H, Chuang T D, Luo X, et al. Endometrial miR-181a and miR-98 expression is altered during transition from normal into cancerous state and target PGR, PGRMC1, CYP19A1, DDX3X, and TIMP3[J]. J Clin Endocrinol Metab, 2012, 97(7): E1316-1326.
[38]Lu Z, Ye Y, Jiao D, et al. miR-155 and miR-31 are differentially expressed in breast cancer patients and are correlated with the estrogen receptor and progesterone receptor status[J]. Oncol Lett, 2012, 4(5): 1027-1032.
[39]Cui W, Li Q, Feng L, et al. MiR-125-3p regulates progesterone receptors and involves development and lactation of mouse mammary gland[J]. Mol Cell Biochem, 2011, 355(1-2):17-25.
編輯 孫超淵
Relationship between progesterone-regulated microRNAs and breast cancer
Wang Lijuan1, Yang Chun2, Gu Muqing3, Pierre Hardy2, Ruan Xiangyan1,4*, Alfred O. Mueck1,4
(1.DepartmentofGynecologicalEndocrinology,BeijingObstetricsandGynecologyHospital,CapitalMedicalUniversity,Beijing100026,China; 2.ResearchCenterofCHU-saint-JustineHospital,PharmacologyDepartment,UniversityofMontreal,MontrealH3T 1C5,Canada; 3.DepartmentofReproduction,BeijingObstetricsandGynecologyHospital,CapitalMedicalUniversity,Beijing100026,China;4.SectionofEndocrinologyandMenopause,DepartmentofWomen’sHealth,UniversityofTubingen,TubingenD-72076,Germany)
microRNAs(miRNAs) are a class of small non-coding RNAs that regulate the expression of multicellular eukaryotic genes at post-transcriptional levels. miRNA mutations or abnormal expressions are associated with various human cancers. miRNAs can function as tumour suppressors and oncogenes. Progesterone receptors (PR) mediate response to progestins in the normal breast and breast cancer. Progesterone exposure is a recognized risk factor for postmenopausal breast cancer, especially synthetic progesterone. Several studies have shown that hormonal regulated miRNAs have an important role in hormone receptor mediated gene regulation. Progesterone regulated miRNAs can affect the expression of progesterone receptors and their activities. Therefore, further studies are needed to dissect the gene regulations and molecular mechanisms related to progestine, PR and miRNAs. The diagnostic, therapeutic and prognostic potential of these miRNAs in breast cancer should be further evaluated.
breast cancer; progesterone; progeterone receptor; microRNAs; gene regulation; molecular mechanisms
國家自然科學基金(81671411),國家外國專家局2017年度北京市引進國外技術、管理人才項目(20171100004),北京市自然科學基金(7162062), 北京市科技新星計劃交叉學科合作項目(Z161100004916045),北京市衛(wèi)生系統(tǒng)高層次衛(wèi)生技術人才(學科帶頭人)(2014-2-016)。This study was supported by National Natural Science Foundation of China(81671411), Foreign Technical and Administrative Talent Introduction Project in 2017,State Administration of Foreign Experts Affairs,China(20171100004); Natural Science Foundation of Beijing (7162062);Beijing Nova Program Interdisciplinary Studies Cooperative Projects (Z161100004916045); Beijing Municipal Health System High Level Health Technical Talents (Academic Leaders) (2014-2-016).
時間:2017-07-16 17∶16 網絡出版地址:http://kns.cnki.net/kcms/detail/11.3662.r.20170716.1716.006.html
10.3969/j.issn.1006-7795.2017.04.007]
R737.9
2017-06-05)
*Corresponding author, E-mail:ruanxiangyan@163.com