• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of particle size of near-sphere gold powder on microstructure and cambering of Au-metallized low temperature cofired ceramics

    2017-03-30 09:24:47LUOHuiLIShihongLIANGYunLIWenlinLIUJisongLIJunpeng
    電子元件與材料 2017年3期
    關(guān)鍵詞:方阻金粉金屬化

    LUO Hui, LI Shihong, LIANG Yun, LI Wenlin, LIU Jisong, LI Junpeng

    ?

    Effect of particle size of near-sphere gold powder on microstructure and cambering of Au-metallized low temperature cofired ceramics

    LUO Hui, LI Shihong, LIANG Yun, LI Wenlin, LIU Jisong, LI Junpeng

    (State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Sino-Platinum Metals Co., Ltd, Kunming 650106, China)

    The shrinkage behavior of low temperature co-fired ceramics (LTCC) during cofiring process and the main factors having an effect on cambering of metallized LTCC ceramics after cofiring were investigated. Six kinds of near-sphere gold powders with different average diameters, ranging from 0.7 μm to 2.3 μm, were chosen to formulate gold conductive pastes together with a proper organic vehicle and glass frit. The pastes were printed on LTCC green tapes, laminated and cofired according to conventional LTCC process. The microstructure and cambering of each ceramic, sheet resistance of each paste were measured and calculated respectively. Experimental results show that pastes formed with large particle size gold powder have advantages in bringing down the cambering extent of the ceramic, but the film shows poor sintering and densification as well as high sheet resistance.

    metal materials; LTCC; near-sphere gold; cambering; particle size of powder; densification

    Low temperature cofired ceramic (LTCC) technology was developed in 1960 s and had been widely used for fabrication of various miniaturized electronic devices. The main difference between LTCC and conventional thick film technology was in LTCC, passive components (conductors and resisters) and the substrates were cofired through one sintering cycle, while in conventional thick film technology the substrates were sintered previously and passive components were printed and sintered later on. Therefore, the common materials formulating pastes used in LTCC were quite different from those used in conventional thick film technology[1], which included a series of materials, such as, copper, silver, gold and their alloy powder, organic vehicle and glass powder. The firing process of LTCC differed from the conventional thick film technology in at least two aspects, those were, the cofiring process and a relatively longer period of burning out organic vehicle. These differences required extra consideration when developing pastes used in LTCC in order to avoid defects or even failure of the components. Mismatch between the ceramic and the paste after cofiring, was the most commonly detected defect, which may finally lead to cambering of the metallized ceramic. Thus, the pastes used in LTCC must be tailored to meet the demand of cofiring with the tape to avoid mismatch between the components and the substrates[2-4].

    Typical pastes consisted of metal powder, glass frit and organic vehicle. To date, several reports have been made to investigate cambering of the metallized ceramic printed with paste. Many researches pointed out that thermal expansion coefficient between glass frit and the ceramic was related to cambering of the ceramic[5-7]. Bangali J et al[8]studied the effect of ink organics on cambering of an Ag-metallized LTCC by analyzing the microstructure of silver pastes with different formulations of organic vehicle and found that organic vehicle contributed to the cambering of the ceramic.Rane S et al[9]investigated organic vehicle, firing and processing and surfacants treatment on silver powder and their effect on microstructure and cambering of the ceramic. Li C F et al[10]studied the effect of Au powder morphology on properties of gold paste film. However, the effect of metal powder which took about 70% of the total weight of conductive paste on microstructure and cambering of the ceramic, was less investigated. This paper studied the effect of particle size of near-sphere gold powder on cambering of an Au-metallized LTCC.

    In our previous work, six kinds of near-sphere gold powder with different average diameters ranging from 0.7 μm to 2.3 μm were prepared. These gold powders together with a proper organic vehicle and glass frit were used to form six gold pastes. The organic vehicle primarily consisted of ethyl cellulose, butyl carbitol and organic additives. The glass frit used was the same as that forming the LTCC ceramic in order to eliminate the difference of thermal expansion coefficient between glass frit and the ceramic. By comparing study and analysis of the cofired ceramics and films formed by these gold pastes, the effect of particle size of near-sphere gold powder on microstructure and cambering of an Au-metallized LTCC ceramics was investigated, although in practical design of a paste it was wiser to adopt powder with a relatively wider size distribution.

    1 Experiment

    1.1 Preparation of gold conductive paste

    Gold conductive pastes s-01 to s-06 were prepared using 5% (mass fraction) of glass frit (received from Sino Platinum Metals, SG11) with a mean particle size of about 17 μm, 20% (mass fraction) of organic vehicle (received from Sino Platinum Metals, V01) and 75% (mass fraction) of near-sphere gold powders with different average diameters (prepared in author’s previous work(Tab.1), all calculated in total weight of each paste. The materials were mixed for 30 min by hand and then dispersed on three roll mill to get a fineness of 15-20 μm.

    1.2 Printing and cofiring

    The pastes were applied and screen-printed on LTCC green tape(78 cm×88 cm), using a standard 325-mesh (44mm) stainless steel screen and KEKO P-200 AVFTH screen printing machine, the printing graphic was 75 cm×85 cm by size for testing cambering at four corners, and standard 100 squares for tesing sheet resistance. The printed ceramics were levelled at room temperature for 15 min and dried at 70 ℃ for 15 min in air, laminated and pressed at 21 MPa for 15 min, and then cofired according to this process:0.6 ℃/min from 25 ℃to 450℃, dwell at 450 ℃for 120 min, 8℃/min from 450℃ to 850℃, dwell at 850℃for 15 min, and cool down at 15℃/min from 850℃ to 25℃.

    The microstructures of each film were examined by scanning electronic microscope (Hitachi X-650). Cambering of the ceramics at four corners were tested using a plug gauge. Sheet resistance of each paste were tested on resistance meter (Tianjin Wireless Factory) and calculated on average of 10 results with a standard thickness of 25.4 μm.

    2 Results and discussions

    2.1 Microstructure analysis

    The microstructures of the cofired films formed by gold pastes s-01 to s-6 were shown in Fig.1. As shown in Fig.1, the surface morphologies of the sintered film varied with different gold powder adopted. Films prepared with fine gold powder((a).s-01 and (b).s-02) showed better sintering extent and densification than those prepared with coarse gold powder. In (e).s-05 and (f).s-06 minor voids and coarse grain could be observed which indicated inadequate sintering and poor densification of the film. This was because fine particles were more likely to proceed good grain development during cofiring into continuous and densified film. To confirm this, the sheet resistance of each paste(Tab 1) were tested and calculated. The sheet resistance of each paste increased with the size of the gold powder used(Fig.2). High sheet resistance indicated poor sintering densification and continuity of the film. The increase of sheet resistance showed that gold pastes formed with large size gold powder had poor sintering densification and continuity.

    2.2 Cambering test

    Cambering extent of each ceramic printed with pastes formulated by near-sphere gold powders with different diameters was tested and calculated at four corners of the ceramic, and the results were shown in Tab.1. The most severe cambering (1.1 mm on average) was observed in s-01, which adopted the finest gold powder. Cambering extent of the ceramic decreased with the increase of diameter of gold powder. In s-06 gold powder with a diameter from 2.0 μm to 2.3 μm was used and the average cambering of the ceramic at four corners was only 0.065 mm which was qualified for the most practical use. Fig.3 showed the relationship between cambering and the diameter of gold powder. This indicated that the particle size of gold powder played a major role in deciding the cambering extent of the ceramic as well and coarse gold powder (more than 1.8 μm in diameter) showed advantages in bringing down cambering extent of the ceramic. This was because gold powder with larger particle size began to sinter and densify at a higher temperature which was closer to the sintering and densification temperature of the ceramic.

    (a) s-01???????????? (b) s-02???????????? (c) s-03

    (d) s-01???????????? (e) s-02 ???????????? (f) s-03

    Fig.1 SEM images of cofired films of pastes from s-01 to s-06

    Tab.1 Pastes formed with different diameters() of gold powder, average cambering of four corners of each ceramic and sheet resistance of each paste

    Fig.3 Relationship between cambering extent and diameter (f) of gold powder

    3 Conclusion

    Fine gold powder showed better sintering extent and densification during cofiring than coarse gold powder, thus films formed by fine gold powder showed better continuity and densification, and exhibited lower sheet resistance. The particle size of gold powder played a major role in deciding the cambering extent of the ceramic and large particle size gold powder showed better properties in bringing down cambering extent of the ceramic than fine gold powder. In practical design of a paste, all of film quality, sheet resistance and cambering of the ceramic should be taken into consideration. Gold powder with an average size of 2.0 μm and a wider size distribution should be used.

    [1] DERNOVSEK O, NAEINI A, PREU G. LTCC glass-ceramic composites for microwave application [J]. J Eur Ceram Soc, 2001, 21: 1693-1697.

    [2] JAU H J, CHANG C R, CHEN Z C. Effect of densification mismatch on camber development during cofiring of nickel-based multilayer ceramic capacitors [J]. J Am Ceram Soc, 1997, 80(9), 2401-2406.

    [3] BESENDORFER G, ROOSEN A, MODES C. Factors influencing the green body properties and shrinkage tolerance of LTCC green tapes [J]. J Appl Ceram Technol, 2007, 4(1): 53-59.

    [4] RAUSCHER M, ROOSEN A. Influence of low temperature co-fired ceramics green tape characteristics on shrinkage behavior [J]. J Appl Ceram Technol, 2007, 4(5): 387-397.

    [5] YAJIMA K, YAMAGUCHI T. Sintering and microstructure development of glass bonded silver thick films [J]. Mater Sci, 1984, 19: 777-784.

    [6] RAUSCHER M, ROOSEN A. Effect of particle shape on anistropic packing and shrinkage behavior of tape-cast glass-ceramic composites [J]. Appl Ceram Technol, 2009, 6(1): 24-34.

    [7] BIROL H, MAEDER T, JACQ C, et al. Investigation of interaction between co-fired LTCC components [J]. J Eur Ceram Soc, 2005, 25: 2065-2069.

    [8] BANGALI J, RANE S, PHATAK G. Effect of ink organics on cambering of an Ag-metallized low temperature co-fired ceramics(LTCC) [J]. J Mater Sci, 2009, 20: 455-460.

    [9] RANE S, SETH T, PHATAK G, et al. Influence of surfacants treatment on silver powder and its thick films [J]. Mater Lett, 2003, 57: 3096-3100.

    [10] 李程峰, 王海珍, 郭明亞, 等. 金粉形貌對(duì)金導(dǎo)體漿料印刷膜層性能的影響 [J]. 電子元件與材料, 2016, 35(10): 63-66.

    [10] LI C F, WANG H Z, GUO M Y, et al. Effect of Au powder morphology on properties of gold paste film [J]. Electron Compon Mater, 2016, 35(10): 63- 66.

    類(lèi)球形金粉粒徑對(duì)Au-金屬化低溫共燒陶瓷微觀結(jié)構(gòu)及翹曲度的影響

    羅 慧,李世鴻,梁 云,李文琳,劉繼松,李俊鵬

    (貴研鉑業(yè)股份有限公司 稀貴金屬綜合利用新技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室,云南 昆明 650106)

    研究和探討了低溫共燒陶瓷(LTCC)共燒過(guò)程中的收縮現(xiàn)象及LTCC陶瓷金屬化后翹曲的主要影響因素。采用六種不同平均粒徑(0.7~2.3 μm)的類(lèi)球形金粉、玻璃粉及一種合適的有機(jī)載體分別制備成金導(dǎo)體漿料。將制備成的金導(dǎo)體漿料印刷在LTCC 生瓷膜上,按LTCC常規(guī)工藝疊層、共燒。分析了不同粒徑金粉制備的漿料印刷在瓷片上燒結(jié)后的微觀結(jié)構(gòu),測(cè)量了各瓷片的翹曲度及各漿料的方阻。實(shí)驗(yàn)發(fā)現(xiàn)采用大粒徑的類(lèi)球形金粉有利于減小瓷片的翹曲度,但燒結(jié)膜層致密性變差,方阻也變大。

    金屬材料;低溫共燒陶瓷;近球形金粉;翹曲; 粉體粒徑;致密度

    (編輯:唐斌)

    TM241

    A

    1001-2028(2017)03-0007-04

    10.14106/j.cnki.1001-2028.2017.03.002

    2016-11-21

    LUO Hui

    Fundation:The Fund of the State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals (No. SKL-SPM- 201532); Key Technologies of Preparing LTCC Electronic Pastes and Their Industrial Applications(No. 2015020211); Development & Industrialization of Precious Metal Pastes Used in Integrated Chip Components(No. 2016020201)

    Biography:LUO Hui(1986-), female, engineer, master, E-mail:estron@126.com .

    Network publishing time:2017-03-10 11:35

    Network publishing address:http://kns.cnki.net/kcms/detail/51.1241.TN.20170310.1135.002.html

    猜你喜歡
    方阻金粉金屬化
    《金粉世家》:現(xiàn)代版“紅樓夢(mèng)”的亂世悲歌
    金橋(2021年10期)2021-11-05 07:23:46
    銀復(fù)合棉織物的制備及導(dǎo)電性能研究
    硼擴(kuò)散工藝對(duì)多晶黑硅效率的影響分析
    銅銦鎵硒靶材金屬化層制備方法
    基于軸對(duì)稱(chēng)四邊形薄導(dǎo)體模型的電阻估算法
    微波介質(zhì)陶瓷諧振器磁控濺射金屬化
    鎢基密封材料化學(xué)鍍Ni-P鍍層的制備方法
    從二次金粉中提取金、碲、鉑、鈀、硒工藝研究
    金粉硝浸提純液回收利用研究
    TiN/Si3N4復(fù)合材料的磁控濺射制備及其電性能研究
    黄片无遮挡物在线观看| 日韩大尺度精品在线看网址| 能在线免费看毛片的网站| 国产成人福利小说| 国产精品久久久久久亚洲av鲁大| 国产精品一区二区三区四区免费观看| 欧美高清性xxxxhd video| 性色avwww在线观看| 日韩欧美三级三区| 亚洲第一区二区三区不卡| 大又大粗又爽又黄少妇毛片口| 国产日本99.免费观看| 亚洲av一区综合| 日韩制服骚丝袜av| 悠悠久久av| 波多野结衣高清无吗| 国产三级在线视频| 五月伊人婷婷丁香| 国产精品无大码| 三级国产精品欧美在线观看| 波野结衣二区三区在线| 久久久久久久久中文| 国产成人a区在线观看| 日本三级黄在线观看| 欧美3d第一页| 精品人妻熟女av久视频| 美女内射精品一级片tv| 久久久精品欧美日韩精品| 看免费成人av毛片| 久久精品夜色国产| 午夜福利在线观看吧| 国产成人精品婷婷| 久久国产乱子免费精品| 你懂的网址亚洲精品在线观看 | 少妇熟女欧美另类| 国产成人a∨麻豆精品| 床上黄色一级片| av免费观看日本| 国产高潮美女av| 人妻制服诱惑在线中文字幕| 又黄又爽又刺激的免费视频.| 亚洲成人久久爱视频| 日日干狠狠操夜夜爽| 天堂√8在线中文| 久久精品国产自在天天线| 99久久久亚洲精品蜜臀av| 少妇熟女aⅴ在线视频| 亚洲天堂国产精品一区在线| 蜜桃亚洲精品一区二区三区| 在现免费观看毛片| 国产黄色小视频在线观看| 日日干狠狠操夜夜爽| 两个人视频免费观看高清| 欧美性猛交╳xxx乱大交人| 国产一区二区三区在线臀色熟女| 麻豆国产97在线/欧美| 激情 狠狠 欧美| 99热只有精品国产| 看非洲黑人一级黄片| 男女啪啪激烈高潮av片| 日韩av不卡免费在线播放| 久久精品人妻少妇| 人妻夜夜爽99麻豆av| 色哟哟哟哟哟哟| 欧美区成人在线视频| 欧美不卡视频在线免费观看| 内射极品少妇av片p| 中文字幕av在线有码专区| 99热精品在线国产| 精品久久久久久久久久久久久| 啦啦啦啦在线视频资源| 能在线免费观看的黄片| 99在线视频只有这里精品首页| 在线免费十八禁| 狂野欧美白嫩少妇大欣赏| 国产老妇伦熟女老妇高清| 给我免费播放毛片高清在线观看| 日日干狠狠操夜夜爽| 免费观看人在逋| 欧美在线一区亚洲| av在线天堂中文字幕| 久久人人爽人人爽人人片va| 国产成人福利小说| 亚洲av成人av| 国产男人的电影天堂91| 久久久久久久久久黄片| 国产亚洲91精品色在线| 亚洲aⅴ乱码一区二区在线播放| 99riav亚洲国产免费| 插阴视频在线观看视频| videossex国产| 一本一本综合久久| 人妻系列 视频| 日韩一区二区三区影片| 国产精品一区www在线观看| 禁无遮挡网站| 最后的刺客免费高清国语| 国产黄片视频在线免费观看| 日韩强制内射视频| 床上黄色一级片| av免费在线看不卡| 婷婷六月久久综合丁香| 国产三级在线视频| 中文字幕av成人在线电影| 高清午夜精品一区二区三区 | 男女下面进入的视频免费午夜| 国产av在哪里看| 悠悠久久av| 精品不卡国产一区二区三区| 看黄色毛片网站| 国产在线精品亚洲第一网站| 高清毛片免费看| 99热这里只有是精品在线观看| 国产精品久久久久久精品电影小说 | 国产午夜精品久久久久久一区二区三区| 成人毛片60女人毛片免费| 小说图片视频综合网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 熟女人妻精品中文字幕| 一本久久精品| 97热精品久久久久久| 午夜福利在线观看吧| 卡戴珊不雅视频在线播放| 亚洲七黄色美女视频| 欧美一区二区亚洲| 国产精品日韩av在线免费观看| 国产精品人妻久久久影院| 亚洲av男天堂| 日日撸夜夜添| 精品一区二区免费观看| eeuss影院久久| 国产精品福利在线免费观看| av在线蜜桃| 国产午夜福利久久久久久| 欧美日韩综合久久久久久| 网址你懂的国产日韩在线| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲无线观看免费| 久久久久久久久中文| 亚洲国产日韩欧美精品在线观看| 不卡视频在线观看欧美| 国产探花极品一区二区| 人人妻人人澡人人爽人人夜夜 | 又粗又爽又猛毛片免费看| 亚洲电影在线观看av| 亚洲第一区二区三区不卡| 色哟哟哟哟哟哟| 日韩av不卡免费在线播放| 蜜臀久久99精品久久宅男| 久久99精品国语久久久| 日韩欧美精品v在线| 国产 一区精品| 成人国产麻豆网| 九九久久精品国产亚洲av麻豆| 一区福利在线观看| 九九久久精品国产亚洲av麻豆| 99热只有精品国产| 青春草亚洲视频在线观看| 一夜夜www| av卡一久久| 免费观看的影片在线观看| 国产美女午夜福利| 亚洲一区高清亚洲精品| 一卡2卡三卡四卡精品乱码亚洲| 99久久成人亚洲精品观看| 老女人水多毛片| 少妇的逼水好多| 免费看光身美女| 国产精品一区二区在线观看99 | 久久热精品热| 亚洲精品日韩av片在线观看| 久久这里只有精品中国| 欧美精品国产亚洲| 少妇裸体淫交视频免费看高清| 日本av手机在线免费观看| 国模一区二区三区四区视频| 午夜精品在线福利| 亚洲av电影不卡..在线观看| 日本在线视频免费播放| 国产精品永久免费网站| 精品久久久久久久久久免费视频| 欧美变态另类bdsm刘玥| 久久精品国产亚洲av涩爱 | 国产黄a三级三级三级人| a级毛片a级免费在线| 午夜老司机福利剧场| 成人av在线播放网站| 99热这里只有是精品在线观看| 国产在视频线在精品| 久久亚洲国产成人精品v| 久久久久久久久久久免费av| 亚洲人成网站在线播放欧美日韩| 亚洲一区二区三区色噜噜| 只有这里有精品99| 哪个播放器可以免费观看大片| 一级二级三级毛片免费看| 一级毛片我不卡| 日韩 亚洲 欧美在线| 一级av片app| 久久这里有精品视频免费| 免费看光身美女| 日本-黄色视频高清免费观看| 中文欧美无线码| 亚洲国产欧美在线一区| 嫩草影院新地址| 国产精华一区二区三区| 非洲黑人性xxxx精品又粗又长| 性欧美人与动物交配| 欧美极品一区二区三区四区| 国产精品蜜桃在线观看 | 伊人久久精品亚洲午夜| 亚洲欧美精品自产自拍| 美女大奶头视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 蜜臀久久99精品久久宅男| 久久精品影院6| 午夜福利在线观看吧| 能在线免费观看的黄片| 成熟少妇高潮喷水视频| 亚洲在线观看片| 免费av观看视频| 美女被艹到高潮喷水动态| 日韩在线高清观看一区二区三区| 亚洲人成网站在线观看播放| 免费无遮挡裸体视频| 日本黄色视频三级网站网址| 日韩一本色道免费dvd| 五月伊人婷婷丁香| 深夜精品福利| 99在线人妻在线中文字幕| 深爱激情五月婷婷| 好男人视频免费观看在线| 成人av在线播放网站| 久久99热6这里只有精品| 国产在视频线在精品| 亚洲av中文字字幕乱码综合| 91狼人影院| 在线a可以看的网站| ponron亚洲| 少妇被粗大猛烈的视频| 噜噜噜噜噜久久久久久91| 一本久久精品| 内地一区二区视频在线| 小蜜桃在线观看免费完整版高清| 伦理电影大哥的女人| 亚洲av中文av极速乱| 亚洲av男天堂| 国产精品女同一区二区软件| 一本久久精品| 欧美丝袜亚洲另类| 丝袜喷水一区| 天天一区二区日本电影三级| 日韩一本色道免费dvd| 国产私拍福利视频在线观看| 一本久久精品| 国产亚洲欧美98| 中国美白少妇内射xxxbb| 91av网一区二区| 观看美女的网站| 美女高潮的动态| 国内精品久久久久精免费| 一级黄色大片毛片| 成人三级黄色视频| 精品久久久久久久久av| 久久午夜福利片| 免费看av在线观看网站| 91精品一卡2卡3卡4卡| 你懂的网址亚洲精品在线观看 | 国产伦理片在线播放av一区 | 久久99蜜桃精品久久| 久久精品夜夜夜夜夜久久蜜豆| 麻豆国产97在线/欧美| 色播亚洲综合网| 欧美xxxx性猛交bbbb| 久久精品国产鲁丝片午夜精品| 人人妻人人看人人澡| 在线观看免费视频日本深夜| 村上凉子中文字幕在线| 99在线人妻在线中文字幕| 亚洲国产精品成人综合色| 中文字幕免费在线视频6| 三级经典国产精品| 男女做爰动态图高潮gif福利片| 亚洲四区av| 亚洲av不卡在线观看| 亚洲丝袜综合中文字幕| 欧美一区二区精品小视频在线| 色综合站精品国产| 国产精品嫩草影院av在线观看| 美女高潮的动态| 欧美高清成人免费视频www| 免费av不卡在线播放| 哪个播放器可以免费观看大片| 欧美性感艳星| 在线免费观看不下载黄p国产| 日韩视频在线欧美| 永久网站在线| 99热网站在线观看| 亚洲四区av| 最近最新中文字幕大全电影3| 人人妻人人澡人人爽人人夜夜 | 最好的美女福利视频网| 欧美一区二区国产精品久久精品| 国产成人影院久久av| 在线播放国产精品三级| 国产白丝娇喘喷水9色精品| 午夜a级毛片| 狠狠狠狠99中文字幕| 欧美极品一区二区三区四区| 亚洲无线观看免费| 神马国产精品三级电影在线观看| 久久久久久久午夜电影| 好男人在线观看高清免费视频| 国产色爽女视频免费观看| 老熟妇乱子伦视频在线观看| 97人妻精品一区二区三区麻豆| а√天堂www在线а√下载| 精品一区二区三区视频在线| 成人欧美大片| 日韩欧美 国产精品| 国产成年人精品一区二区| 午夜精品在线福利| 亚洲不卡免费看| 久久久久久久久久久免费av| www日本黄色视频网| 夜夜爽天天搞| 级片在线观看| 成年版毛片免费区| 国产伦精品一区二区三区四那| 内射极品少妇av片p| 此物有八面人人有两片| 国产av不卡久久| 亚洲av免费高清在线观看| 又爽又黄a免费视频| 少妇高潮的动态图| 中文欧美无线码| 我要看日韩黄色一级片| 精品一区二区三区视频在线| 丝袜喷水一区| 小说图片视频综合网站| 亚洲欧洲国产日韩| 一夜夜www| 色视频www国产| 国产午夜精品一二区理论片| 成人毛片a级毛片在线播放| 亚洲18禁久久av| 最后的刺客免费高清国语| 国产精品久久电影中文字幕| 免费看光身美女| 日韩欧美精品v在线| 免费大片18禁| 一级av片app| 国产午夜福利久久久久久| 天堂√8在线中文| 久久久久性生活片| 久久精品国产亚洲av涩爱 | 一本久久精品| 国产精品电影一区二区三区| 国产爱豆传媒在线观看| 亚洲无线在线观看| 人妻系列 视频| 色5月婷婷丁香| www日本黄色视频网| 欧美激情在线99| 久久精品国产鲁丝片午夜精品| 日本成人三级电影网站| 黑人高潮一二区| 精品一区二区三区视频在线| 99精品在免费线老司机午夜| 久久久久久九九精品二区国产| 亚洲精品国产成人久久av| 在线免费观看不下载黄p国产| 中文字幕av在线有码专区| av天堂在线播放| 欧美性猛交╳xxx乱大交人| 麻豆av噜噜一区二区三区| 亚洲欧美成人精品一区二区| 97人妻精品一区二区三区麻豆| 少妇猛男粗大的猛烈进出视频 | 亚洲一区高清亚洲精品| 不卡视频在线观看欧美| 中文欧美无线码| 男人的好看免费观看在线视频| 国产av麻豆久久久久久久| 欧美一区二区精品小视频在线| 欧美性感艳星| 成熟少妇高潮喷水视频| 熟女电影av网| 久久人人爽人人爽人人片va| 热99re8久久精品国产| av在线亚洲专区| 婷婷六月久久综合丁香| 禁无遮挡网站| 亚洲性久久影院| 国产不卡一卡二| 毛片一级片免费看久久久久| 色视频www国产| 人妻制服诱惑在线中文字幕| 国产精品av视频在线免费观看| 一边摸一边抽搐一进一小说| 高清在线视频一区二区三区 | 好男人在线观看高清免费视频| 亚洲三级黄色毛片| 精品人妻偷拍中文字幕| 乱人视频在线观看| 国产精品伦人一区二区| 99久久九九国产精品国产免费| 久久久成人免费电影| 禁无遮挡网站| 国产精品野战在线观看| 久久99精品国语久久久| а√天堂www在线а√下载| 啦啦啦观看免费观看视频高清| 97人妻精品一区二区三区麻豆| 一区二区三区免费毛片| 观看免费一级毛片| 男的添女的下面高潮视频| 久久久精品欧美日韩精品| 久久精品国产99精品国产亚洲性色| www.av在线官网国产| 免费av毛片视频| 国产片特级美女逼逼视频| 日韩欧美在线乱码| 热99在线观看视频| 亚洲国产色片| 亚洲欧美日韩东京热| 国产成年人精品一区二区| 少妇熟女欧美另类| 内射极品少妇av片p| 日日撸夜夜添| 久久久久性生活片| 日本成人三级电影网站| 麻豆国产97在线/欧美| 国产精品伦人一区二区| 高清午夜精品一区二区三区 | 国产视频内射| 网址你懂的国产日韩在线| 国产成人精品婷婷| 蜜桃亚洲精品一区二区三区| 国产老妇女一区| 欧美一区二区国产精品久久精品| 91精品国产九色| 国产精品一区二区性色av| 一个人免费在线观看电影| 老师上课跳d突然被开到最大视频| 国产爱豆传媒在线观看| 日韩av在线大香蕉| 联通29元200g的流量卡| 国产精品福利在线免费观看| 能在线免费看毛片的网站| 国产精品不卡视频一区二区| 搡女人真爽免费视频火全软件| 麻豆国产av国片精品| 尾随美女入室| 亚洲av.av天堂| 久久草成人影院| 日本黄大片高清| 日本爱情动作片www.在线观看| 老女人水多毛片| 日本与韩国留学比较| 成人性生交大片免费视频hd| 三级经典国产精品| 久久久久久大精品| 亚洲人成网站高清观看| 中文欧美无线码| 国国产精品蜜臀av免费| 欧美成人精品欧美一级黄| 午夜福利在线观看免费完整高清在 | 久久国产乱子免费精品| 精品人妻熟女av久视频| 亚洲欧美精品自产自拍| 亚洲七黄色美女视频| 欧美一级a爱片免费观看看| 国产三级在线视频| 国产精华一区二区三区| 熟妇人妻久久中文字幕3abv| 精品午夜福利在线看| 亚洲精品456在线播放app| 三级国产精品欧美在线观看| 国产黄片视频在线免费观看| 成人性生交大片免费视频hd| 中文资源天堂在线| 色吧在线观看| 啦啦啦啦在线视频资源| 精品熟女少妇av免费看| 国产黄片视频在线免费观看| 青春草视频在线免费观看| 久久精品国产自在天天线| 成人av在线播放网站| 国产黄片美女视频| 九九热线精品视视频播放| 尤物成人国产欧美一区二区三区| 欧美+亚洲+日韩+国产| 好男人视频免费观看在线| 国产精品人妻久久久久久| 国产成人91sexporn| 欧美色欧美亚洲另类二区| 亚洲电影在线观看av| 天美传媒精品一区二区| 免费观看精品视频网站| 最新中文字幕久久久久| 热99re8久久精品国产| 人体艺术视频欧美日本| 69人妻影院| 99久久精品一区二区三区| 国产蜜桃级精品一区二区三区| 一级黄片播放器| 成年女人看的毛片在线观看| 日日干狠狠操夜夜爽| 国产精品电影一区二区三区| 热99在线观看视频| 日本撒尿小便嘘嘘汇集6| 在线天堂最新版资源| а√天堂www在线а√下载| 可以在线观看毛片的网站| 菩萨蛮人人尽说江南好唐韦庄 | 少妇丰满av| 国产视频内射| 国产女主播在线喷水免费视频网站 | 午夜福利视频1000在线观看| 亚洲最大成人中文| 噜噜噜噜噜久久久久久91| 99精品在免费线老司机午夜| 日韩三级伦理在线观看| 久久人妻av系列| 色噜噜av男人的天堂激情| 免费在线观看成人毛片| 国产成人精品久久久久久| 女人十人毛片免费观看3o分钟| 欧美变态另类bdsm刘玥| 国产精品国产三级国产av玫瑰| 中文字幕免费在线视频6| av在线观看视频网站免费| 久久久色成人| 一级黄色大片毛片| 欧美激情在线99| 国产伦理片在线播放av一区 | av卡一久久| 精品少妇黑人巨大在线播放 | 国产成人91sexporn| 国产单亲对白刺激| 亚洲真实伦在线观看| 国产真实乱freesex| 成人特级黄色片久久久久久久| 卡戴珊不雅视频在线播放| 91狼人影院| 嫩草影院精品99| a级一级毛片免费在线观看| 五月玫瑰六月丁香| 国产日韩欧美在线精品| 天堂√8在线中文| 国产综合懂色| 免费电影在线观看免费观看| 亚洲精品乱码久久久v下载方式| 国产真实伦视频高清在线观看| 可以在线观看的亚洲视频| av.在线天堂| 能在线免费看毛片的网站| 国语自产精品视频在线第100页| 99久久无色码亚洲精品果冻| 日韩,欧美,国产一区二区三区 | 亚洲av免费在线观看| 国产乱人偷精品视频| 欧美bdsm另类| 国产一级毛片在线| 亚洲精品久久久久久婷婷小说 | 搡女人真爽免费视频火全软件| 中出人妻视频一区二区| 久久99蜜桃精品久久| 国产中年淑女户外野战色| 色哟哟哟哟哟哟| 美女cb高潮喷水在线观看| av天堂中文字幕网| 一个人观看的视频www高清免费观看| 伦理电影大哥的女人| 日韩高清综合在线| 精品熟女少妇av免费看| 在现免费观看毛片| 91久久精品电影网| 韩国av在线不卡| 欧美日韩精品成人综合77777| 精品久久久久久成人av| 久久精品久久久久久噜噜老黄 | 免费看av在线观看网站| av国产免费在线观看| 男人狂女人下面高潮的视频| 91av网一区二区| 特大巨黑吊av在线直播| 国产不卡一卡二| 九九爱精品视频在线观看| 精品一区二区免费观看| 国产大屁股一区二区在线视频| 亚州av有码| 久久这里有精品视频免费| 久久久久久久午夜电影| 亚洲人成网站在线观看播放| 欧美一区二区亚洲| 日韩,欧美,国产一区二区三区 | 国产成人a∨麻豆精品| 变态另类成人亚洲欧美熟女| 99riav亚洲国产免费| 亚洲欧美精品自产自拍| 国产精品久久久久久精品电影小说 | 99热只有精品国产| 午夜福利在线在线| 日韩亚洲欧美综合| 12—13女人毛片做爰片一| 午夜爱爱视频在线播放| 日本免费一区二区三区高清不卡| 51国产日韩欧美| 国产三级在线视频| 校园春色视频在线观看| 久久久久久伊人网av| 国产精品电影一区二区三区| 一级二级三级毛片免费看|