• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rational Design of Corynebacterium glutamicum YILW for Isoleucine Production Based on Gene Transcription and Metabolite Analysis

    2017-03-27 06:50:26WENBingMAJieLIZhixiangZHANGChenglinXUQingyangCHENNing
    食品科學(xué) 2017年4期
    關(guān)鍵詞:異亮氨酸副產(chǎn)物谷氨酸

    WEN Bing, MA Jie, LI Zhixiang, ZHANG Chenglin, XU Qingyang, CHEN Ning

    (National and Local United Engineering Lab of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China)

    Rational Design of Corynebacterium glutamicum YILW for Isoleucine Production Based on Gene Transcription and Metabolite Analysis

    WEN Bing, MA Jie, LI Zhixiang, ZHANG Chenglin, XU Qingyang, CHEN Ning*

    (National and Local United Engineering Lab of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China)

    This study aimed to rationally identify new targets for improving isoleucine production. The transcription levels of the key genes and intermediate metabolite levels involved in the isoleucine synthesis pathway of Corynebacterium glutamicum ATCC 13032 and C. glutamicum YILW, a isoleucine-producing strain derived from the parental strain ATCC 13032, were compared. The gene pyc was down-regulated, which might consequently lead to reduced supply of oxaloacetate. Then pyc was overexpressed in C. glutamicum YILW (denoted as YILW-1), resulting in increased oxaloacetate concentration and isoleucine production (from 1.32 to 3.32 μmol/g (md) and from 5.18 to 5.81g/L) but higher accumulation of lysine and intracellular 2-ketobutyrate as byproduct. The ilvBNC operon was further overexpressed in YILW-1 (denoted as YILW-2), resulting in production of up to 6.63 g/L isoleucine. To enhance exportation and consequently further increase the production of isoleucine, the isoleucine exporter genes brnE and brnF was overexpressed in YILW-2 (denoted as YILW-3), leading to increased production of isoleucine (7.31 g/L) by 10.3% as compared to that of YILW-2. The strategy resulted in 41.1% higher isoleucine production (from 5.18 to 7.31 g/L) and 40.0% higher yield (from 0.10 to 0.14 g/g glucose) together with lower by-product lelvels by YILW-3 as compared to C. glutamicum YILW. It could be concluded that overexpression of the pyc, ilvBNC operon as well as brnE and brnF based on transcription and metabolite pool analysis could signif i cantly elevate isoleucine production and decrease by-product concentration levels.

    Corynebacterium glutamicum; isoleucine; metabolite pool; oxaloacetate

    As one of essential amino acids, isoleucine can improve endurance and assists in the repair and rebuilding of muscle. Isoleucine has been widely used in various fi elds, including food additives, components of cosmetics and pharmaceuticals, and additives in infusion solutions and precursors of herbicides[1-4].

    The numbers are the ratios of the comparative transcription levels in C. glutamicum strain YILW vs. ATCC 13032. pyc 0.21 indicates downregulation and others indicates up-regulation. The solid lines represent metabolic conversions, the dotted line depicts feedback control, and the thick arrows indicate the increased flux by directly overexpressing the corresponding genes. The × indicates the removal of the feedback control.Fig.1 Isoleucine biosynthesis pathway of C. glutamicum

    At present, industrial production of isoleucine is mainly achieved through fermentation by Corynebacterium glutamicum[5]. C. glutamicum synthesizes L-isoleucine in a split pathway from oxaloacetate via aspartate, threonine, ketobutyrate and 2-aceto-2-hydroxybutyrate as the main intermediates[6-7]. In the pathway, phosphoenolpyruvate carboxylase (PEPC, encoded by ppc), pyruvate carboxylase (PC, encoded by pyc), aspartate kinase (AK, encoded by Cgl0251), homoserine dehydrogenase (HD, encoded by Cgl1183), homoserine kinase (HK, encoded by Cgl1184), threonine synthetase (TS, encoded by Cgl2220), threonine dehydrogenase (TD, encoded by ilvA) and acetohydroxy acid synthase (AHAS, encoded by ilvB and ilvN ) are the key enzymes(Fig. 1)[8-9].

    The isoleucine-producing strains currently used in industry were mainly obtained through random mutagenesis[10]. However, such conventional methods relay on the chance to encounter desired mutants among resulting colonies that inevitably accumulate numerous unidentif i able and unwanted mutations. Moreover, unwanted changes in physiology and growth retardation may occur alongside the improvements[11]. Recently, rational metabolic engineering has been receiving much research attention in both academia and industries as a method to overcome the disadvantages of the classical method of strain development[12].

    In this study, we took a strategy to increase isoleucine production based on transcriptional analysis of key genes involved in isoleucine synthesis and integrated with metabolite pool analysis. With the direction of the strategy, pyc and desensitized ilvBNC operon as well as isoleucine exporter brnE and brnF were rationally overexpressed, resulting in 41.1% and 40.0% increases in isoleucine production and yield by YILW-3. The design principles described in this study would be useful to construct strains for producing other similar biological products.

    1 Materials and Methods

    1.1 Strains, plasmids and primers

    Strains, plasmids and primers used in this work were listed in Table1 and Table 2.

    Table1 Strains and plasmids used in this study

    Table2 Primers used in this study

    1.2 Instruments and equipments

    One Step SYBR?PrimeScript? RT-PCR Kit was purchased from Takara (Japan); SBA biosensor analyzer was obtained from Institute of Biology of Shandong Provincial Academy of Sciences (Shandong, China); high performance liquid chromatography (HPLC) was purchased from Agilent (Santa Clara, CA USA).

    1.3 Methods

    1.3.1 Media and growth conditions

    Lysogeny Broth (LB) medium supplemented with corresponding antibiotics was used for growth of E. coli and C. glutamicum strains.

    C. glutamicum cells was inoculated from seed culture (glucose 30 g/L, yeast extract 5 g/L, (NH4)2SO43 g/L, KH2PO4·3H2O 1.5 g/L, MgSO4·7H2O 0.6 g/L, FeSO4·7H2O 0.01 g/L, MnSO4·H2O 0.01 g/L, corn steep liquor 30 mL/L, soybean hydrolysate 30 mL/L) and cultured to exponential growth period (for quantitative real time-polymerase chain reaction (RT-qPCR) and intracellular metabolites detection) or to 48 h (for isoleucine fermentation) in 27 mL of fermentation medium (glucose 80 g/L, (NH4)2SO44 g/L, FeSO4·7H2O 0.015 g/L, MgSO4·7H2O 0.5 g/L, MnSO4·H2O 0.015 g/L, KH2PO4·3H2O 1.5 g/L, K2HPO4·3H2O 3 g/L, biotin 100 μg/L, VB15 mg/L, soybean hydrolysate 20 mL/L, and corn syrup 15 mL/L) in 500-mL shake fl asks with 10 % (V/V) inoculum size at 35 ℃ with 200 r/min[12].

    1.3.2 Quantitative RT-PCR

    Total RNA was isolated from C. glutamicum cells and transcription levels of selected genes were measured by quantitative RT-PCR according to the manufacturer instructions of One Step SYBR?PrimeScript? RT-PCR Kit. Data were analyzed using the 2-ΔΔCTmethod[14]and 16S rDNA was used as the internal control.

    1.3.3 Measurement of metabolite concentrations

    5 mL of samples were injected into 15 mL of quenching solutions (70 mmol/L 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) in 60% aqueous methanol (V/V), -50 ℃) and centrifuged at 6 000×g at -20 ℃. Cell pellets were collected and resuspended in 35% (V/V) perchloric acid. After one freeze (-80 ℃)-thaw cycle, the sample was neutralized with 5 mmol/L K2CO3and the precipitate was removed by another centrifugation. The resulting supernatants were stored at -80 ℃ until analysis[15]. Intracellular oxaloacetate, aspartate, threonine, 2-ketobutyrate and isoleucine were detected by HPLC.

    1.3.4 Constructions of YILW-1, YILW-2 and YILW-3 strains

    Fragment, in which the promoter of tuf gene[16]wasflanked by regions upstream and downstream the native promoter of pyc was generated in two rounds of overlap PCR using primers indicated in Table2 (Fig. 2). Fragment containing regions upstream and downstream of the native promoter of ilvBNC operon as well as tac promoter[17]was obtained by the same way. The fragments were then inserted into pK18mobsacB after being digested with Xba Ⅰ/Hind Ⅲand Hind Ⅲ/BamH Ⅰ, respectively, using E. coli DH5αMCR as host. The plasmids were designated as pK18mobsacBPtuf and pK18mobsacBPtac, respectively (Fig. 2).

    Fig.2 Construction of YILW-2

    The plasmid pK18mobsacBPtuf was electroporated into C. glutamicum YILW where Ptuf replaced the native promoter of pyc was constructed by two-step double homologous as reported (Fig. 2)[15,18]. Strain YILW-2 where tac promoter replaced the native promoter in YILW-1 was constructed with the same method using pK18mobsacBPtac. Finally, pXMJ19brnEF was introduced into YILW-2, resulting YILW-3.

    1.3.5 Analytical procedure

    Cell growth was monitored by measuring OD600nmand was converted to the corresponding cell dry weight (md/ (g/L)=0.24×OD600nm-0.01). Glucose concentration was determined by biosensor analyzer. Amino acids were analyzed by precolumn derivatization with 2,4-fluoro-dinitrobenzene and detected by HPLC with an Agilent C18column (150 mm×4.6 mm, 3.5 μm). Elution was performed using a gradient of 50% acetonitrile (V/V)/50mmol/L (CH3COONa), and injected at a constant flow rate of 1.0 mL/min. UV absorption at 360 nm was measured and the column temperature was maintained at 33 ℃.

    1.4 Statistical analysis

    All the experiments were repeated three times, and data were presented as±s (n=3). One-way analysis of variance (ANOVA) followed by Dunnett’s multiple comparison test was used to determine significant difference, and the statistical signi fi cance was de fi ned as P≤0.05.

    2 Results and Analysis

    2.1 Analysis of transcriptional levels of key genes and intermediate metabolites involved in isoleucine synthesis in C. glutamicum strains

    Transcriptional levels of key genes (ppc, pyc, Cgl0251, Cgl1183, Cgl1184, Cgl2220, ilvA, and ilvB) involved in isoleucine synthesis in C. glutamicum YILW and C. glutamicum ATCC 13032 were detected by quantitative RT-PCR. Results showed that transcription levels of all the genes examined except pyc were signif i cantly up-regulated in C. glutamicum YILW as compared to those in C. glutamicum ATCC 13032 (Fig. 1).

    In C. glutamicum, anaplerotic pathways catalyzed by PEPC and PC is the main source of oxaloacetate, which is the starting point of isoleucine synthesis in C. glutamicum. Although transcription level of ppc was up-regulated, it appears that PC is predominant during synthesis process of L-aspartate family amino acids[19-21]. So it can be assumed that the low expression of pyc may lead to a short supply of oxaloacetate in C. glutamicum YILW.

    Table3 Intracellular metabolite pool of C. glutamicum strains

    Subsequently, the concentrations of intracellular oxaloacetate together with aspartate, threonine and 2-ketobutyrate as main intermediate metabolites weredetected. It was found that oxaloacetate concentration in C. glutamicum YILW (1.32 μmol/g) was 37.4% lower than that in C. glutamicum ATCC 13032 (2.11 μmol/g, Table 3). However, concentrations of the other metabolites were similar in the two strains. So it could be deduced that a smaller oxaloacetate pool caused by down-regulated pyc is the metabolic bottleneck for increasing isoleucine production by C. glutamicum YILW.

    2.2 Effect of pyc overexpression on isoleucine production Considering the short supply of oxaloacetate and downregulated pyc, it made sense that amplification of pyc was expected to increase oxaloacetate supply and consequently enhance isoleucine production. Considering the potential metabolic burden caused by plasmid and further engineering modification, pyc was overexpressed via replacement of its native promoter with a promoter of tuf gene, resulting in YILW-1, which has been proved to be a strong promoter in C. glutamicum[16]. Transcription level of pyc was detected and found to be signif i cantly increased by 32.4 times in YILW-1.

    Table4 Metabolic characterization of C. glutamicumstrains

    To assess the effects of pyc overexpression on isoleucine production, batch cultivations were carried out. As shown in Table 4, isoleucine production and yield by YILW-1 were 12.2% and 10.0% higher (elevated from 5.18 g/L and 0.10 g/g glucose to 5.81 g/L and 0.11 g/g glucose) as compared to those produced by C. glutamicum YILW, respectively. Intracellular oxaloacetate concentration was significant increased to 3.32 μmol/g in YILW-1(Table 3), demonstrating that a smaller oxaloacetate pool is indeed the metabolic bottleneck for increasing isoleucine production by C. glutamicum YILW.

    The concentrations of common by-products during isoleucine fermentation were detected. It was found that alanine and valine accumulation decreased from 0.87 and 0.85 g/L to 0.65 and 0.71 g/L in YILW-1 (Table 4). Pyruvate is the precursor of both alanine and valine[5], so overexpression of pyc may consume more pyruvate and consequently result in decreased alanine and valine accumulation. Interestingly, the content of lysine in YILW-1 was higher (0.92 g/L) than that in C. glutamicum YILW (0.79 g/L), which is possibly due to the reason that oxaloacetate is the precursor of both isoleucine and lysine and enhanced oxaloacetate supply increased the two products accumulation as a matter of course[22]. Thus, it is necessary to drive more fl ux from oxaloacetate to isoleucine.

    2.3 Effects of pyc and desensitized ilvBNC operon cooverexpression on isoleucine production by YILW-2

    Higher lysine accumulation in YILW-1 indicated the necessity for enhancement of flux from oxaloacetate to isoleucine. Moreover, it should be notable that 2-ketobutyrate concentration was significantly higher (2.42 μmol/g) in YILW-1(Table 3).

    In C. glutamicum, acetolactate synthase (AHAS) catalyzing 2-ketobutyrate to 2-aceto-2-hydroxybutyrate is encoded by ilvBN. The two genes form an operon together with ilvC gene and expression of the operon are controlled by transcriptional attenuation mediated by isoleucine[23-25]. Transcription of ilvB was subsequently detected and was found to be 4.51-fold down-regulated in YILW-1. So it could be explained that accumulated 2-ketobutyrate was caused by attenuated transcription of ilvBNC operon by higher intracellular isoleucine concentration in YILW-1 (Table 3). Thus, defeating transcriptional attenuation of ilvBNC operon by isoleucine is urgent. The native promoter of ilvBN in YILW-1 was replaced by Ptac, which resulted in 15.1 times higher of ilvB transcription in YILW-2.

    Batch cultivations were performed and results showed that the isoleucine production and yield by YILW-2 were 14.1% and 18.2% higher than those by YILW-1 (elevated from 5.81 and 0.11 g/g glucose to 6.63 and 0.13 g/g glucose, Table 4). Moreover, intracellular 2-ketobutyrate concentration was found to be significantly decreased to 1.52 μmol/g in YILW-2 (Table 3). The accumulations of alanine, lysine and valine accumulation by YILW-2 were decreased to 0.54, 0.68 and 0.63 g/L, which were 16.9%, 26.1% and 11.3% lower than those by YILW-1. It should be notable that ilvC in the operon was together overexpressed and its translation product, acetohydroxy acid isomeroreductase, needs NADPH as cofactor, so next work will focus on elevation of NADPH supply within cell.

    Dihydroxy acid dehydratase (encoded by ilvD) and branched-chain amino acid aminotransferase (encoded by ilvE) are the other two non-rate-limiting enzymes forisoleucine synthesis. Although 2-oxo-3-methylvalerate produced by dihydroxy acid dehydratase is the direct precursor of isoleucine, we found that overexpression of ilvD in YILW-2 had no effect on promotion of isoleucine production (data not shown). Branched-chain amino acid aminotransferase (encoded by ilvE) catalyzes the last step of the pathway, while the reaction is nearly freely reversible (the equilibrium constant of the reaction was 0.5)[25]. So it appeas that overexpression of ilvE makes little contribution to the increased isoleucine production.

    2.4 Effect of enhancing isoleucine secretion on isoleucine production by YILW-3

    As mentioned above, the last reaction for isoleucine synthesis catalyzed by branched-chain amino acid aminotransferase is almost freely reversible[25]. So export of the synthetized isoleucine out of cell timely can decrease intracellular isoleucine concentration and thus promote the transaminase reaction. Furthermore, it is diff i cult to remove all the feedback controls in isoleucine synthesis pathway, so decreasing intracellular isoleucine concentration via enhancing its exportation can consequently decrease or defeat its feedback control.

    Intracellular isoleucine concentration in C. glutamicum strains was found to be higher in YILW-2 (13.27 μmol/g) and YILW-1 (12.31 μmol/g) than in C. glutamicum YILW. So isoleucine secretion is probably the limiting step in YILW-2.

    The isoleucine exporter is a two-component permease, encoded by brnE and brnF[26]. Our early studies reported that overexpression of the two genes resulted in a significantly increased export rate and production of isoleucine[13]. The plasmid carrying brnE and brnF was electroporated into YILW-2, obtaining YILW-3.

    Batch cultivations were performed to assess the effects of brnE and brnF overexpression on isoleucine production. As shown in Table 4, isoleucine production and yield by YILW-3 were 10.3% and 7.7% higher (elevated from 6.63 and 0.13 g/g glucose to 7.31 and 0.14 g/g glucose) than those by YILW-2. Furthermore, accumulated levels of alanine, lysine and valine by YILW-3 were decreased to 0.39, 0.43 and 0.46 g/L, which was 27.8%, 36.8% and 27.0% lower than those by YILW-2. However, biomass of YILW-3 was decreased to 7.11 g/L, possibly resulting from metabolic burden caused by plasmid. So next work should be focused on overexpressing brnE and brnF in genome by replacing the promoters of brnE and brnF with strong promoter.

    3 Conclusion

    In this study, we took a strategy to enhance isoleucine production based on metabolite pool analysis and transcriptional analysis of key genes involved in isoleucine synthesis. Low intracellular oxaloacetate pool in C. glutamicum YILW was identif i ed as a potential metabolic bottleneck for isoleucine production. And overexpression of pyc and desensitized ilvBNC operon effectively increased oxaloacetate supply and enhanced the metabolic flux from oxaloacetate to isoleucine. Moreover, enhancing isoleucine secretion resulted in its production. The strategy led to 41.1% increase in isoleucine production (from 5.18 to 7.31 g/L) and 40.0% higher yield (from 0.10 to 0.14 g/g glucose) by YILW-3 as compared to those by C. glutamicum YILW. Strategy used in this study had potential applications for rational modif i cation of industrial microorganisms.

    [1] IKEDA S, FUJITA I, YOSHINAGA F. Screening of L-isoleucine producers among ethionine resistant mutants of L-threonine producing bacteria[J]. Agricultural and Biological Chemistry, 1976, 40(3): 511-516. DOI:10.1271/bbb1961.40.511.

    [2] PARK J H, LEE S Y. Fermentative production of branched chain amino acids: a focus on metabolic engineering[J]. Applied Microbiology Biotechnology, 2010, 85(3): 491-506. DOI:10.1007/s00253-009-2307-y.

    [3] BLOMSTRAND E. A role for branched-chain amino acids in reducing central fatigue[J]. The Journal of Nutrition, 2006, 136(2): 544S-547S.

    [4] ROSE W C, HANIES W J, JOHNSON J E. The role of the amino acids in human nutrition[J]. The Journal of Biological Chemistry, 1947, 146(2): 683-684.

    [5] WANG J, WEN B, WANG J, et al. Enhancing L-isoleucine production by thrABC overexpression combined with alaT deletion in Corynebacterium glutamicum[J]. Applied Biochemistry and Biotechnology, 2013, 171(1): 20-30. DOI:10.1007/s12010-013-0321-0.

    [6] SHIIO I, MIYAJIMA R. Concerted inhibition and its reversal by end products of aspartate kinase in Brevibacterium fl avum[J]. Journal of Biochemistry, 1969, 65(6): 849-859.

    [7] YIN L H, HU X Q, XU D Q, et al. Co-expression of feedbackresistant threonine dehydratase and acetohydroxy acid synthase increase L-isoleucine production in Corynebacterium glutamicum[J]. Metabolic Engineering, 2012, 14(5): 542-550. DOI:10.1016/ j.ymben.2012.06.002.

    [8] MIYAJIMA R, SHIIO I. Regulation of aspartate family amino acid biosynthesis in Brevibacterium fl avum: Ⅲ. properties of homoserine dehydrogenase[J]. Journal of Biochemistry, 1970, 68(3): 311-319.

    [9] EIKMANNS B J, METZGER M, REINSCHEID D, et al. Amplif i cation of three threonine biosynthesis genes in Corynebacterium glutamicum and its influence on carbon flux in different strains[J]. Applied Microbiology and Biotechnology, 1991, 34(5): 617-622. DOI:10.1007/ BF00167910.

    [10] EGGELING L, BOTT M. Handbook of Corynebacterium glutamicum[M]. Boca Raton: CRC Press, 2005: 520-521.

    [11] BAILEY J E. Toward a science of metabolic engineering[J]. Science, 1991, 252: 1668-1675.

    [12] ZHANG C L, DU S S, LIU Y, et al. Strategy for enhancing adenosine production under the guidance of transcriptional and metabolite pool analysis[J]. Biotechnology Letters, 2015, 37(7): 1361-1369. DOI:10.1007/s10529-015-1801-9.

    [13] XIE X X, XU L L, SHI J M, et al. Effect of transport proteins on L-isoleucine production with the L-isoleucine-producing strain Corynebacterium glutamicum YILW[J]. Journal of Industrial Microbiology and Biotechnology, 2012, 39(10): 1549-1556. DOI:10.1007/s10295-012-1155-4.

    [14] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCTmethod[J]. Methods, 2001, 25(4): 402-408. DOI:10.1006/meth.2001.1262.

    [15] BUCHHOLZ A, HURLEBAUS J, WANDREY C, et al. Metabolomics: quantification of intracellular metabolite dynamics[J]. Biomolecular Engineering, 2002, 19(1): 5-15. DOI:10.1016/S1389-0344(02)00003-5.

    [16] BECKER J, KLOPPROGGE C, ZELDER O, et al. Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo fluxthrough the pentose phosphate pathway and lysine production on different carbon sources[J]. Applied Environmental Microbiology, 2005, 71(12): 8587-8596. DOI:10.1128/ AEM.71.12.8587-8596.2005.

    [17] CHENG Y S, ZHOU Y J, YANG L, et al. Modification of histidine biosynthesis pathway genes and the impact on production of L-histidine in Corynebacterium glutamicum[J]. Biotechnology Letters, 2013, 35(5): 735-741. DOI:10.1007/s10529-013-1138-1.

    [18] BECKER J, ZELDER O, HAFNER S, et al. From zero to hero-designbased systems metabolic engineering of Corynebacterium glutamicum for L-lysine production[J]. Metabolic Engineering, 2011, 13(2): 159-168. DOI:10.1016/j.ymben.2011.01.003.

    [19] PETERS-WENDISCH P, STAMSEM K C, GOTKER S, et al. Biotin protein ligase from Corynebacterium glutamicum: role for growth and L-lysine production[J]. Applied Microbiology Biotechnology, 2012, 93(6): 2493-2502. DOI:10.1007/s00253-011-3771-8.

    [20] SHIRAI T, FUJIMURA K, FURUSAWA C, et al. Study on roles of anaplerotic pathways in glutamate overproduction of Corynebacterium glutamicum by metabolic flux analysis[J]. Microbial Cell Factories, 2007, 6(19): 1-9. DOI:10.1186/1475-2859-6-19.

    [21] SATO H, ORISHIMO K, SHIRAI T, et al. Distinct roles of two anaplerotic pathways in glutamate production induced by biotin limitation in Corynebacterium glutamicum[J]. Journal of Bioscience and Bioengineering, 2008, 106(1): 51-58. DOI:10.1263/jbb.106.51.

    [22] PETERS-WENDISCH P G, EIKMANNS B J, THIERBACH G, et al. Phosphoenolpyruvate carboxylase in Corynebacterium glutamicum is dispensable for growth and lysine production[J]. FEMS Microbiology and Letters, 1993, 112(3): 269-274.

    [23] MORBACH S, JUNGER C, SAHM H, et al. Attenuation control of ilvBNC in Corynebacterium glutamicum: evidence of leader peptide formation without the presence of a ribosome binding site[J]. Journal of Bioscience and Bioengineering, 2000, 90(5): 501-507. DOI:10.1016/S1389-1723(01)80030-X.

    [24] ELISAKOVA V, PATEK M, HOLATKO J, et al. Feedbackresistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum[J]. Applied and Environmental Microbiology, 2005, 71(1): 207-213. DOI:10.1128/AEM.71.1.207-213.2005.

    [25] WILHELM C, EGGELING I, NASSENSTEIN A, et al. Limitations during hydroxybutyrate converison to isoleucine with Corynebacterium glutamicum, as analysed the formation of byproducts[J]. Applied Microbiology and Biotechnology, 1989, 31: 458-462. DOI:10.1007/ BF00270776.

    [26] KENNERKNECHT N, SAHM H, YEN M R, et al. Export of L-isoleucine from Corynebacterium glutamicum: a two-gene-encoded member of a new translocator family[J]. Journal of Bacteriology, 2002, 184(14): 3947-3956. DOI:10.1128/JB.184.14.3947-3956.2002.

    基于基因轉(zhuǎn)錄和代謝物分析的異亮氨酸生產(chǎn)菌谷氨酸棒狀桿菌YILW的理性改造

    溫 冰,麻 杰,李智祥,張成林,徐慶陽,陳 寧*
    (天津科技大學(xué)生物工程學(xué)院,代謝控制發(fā)酵技術(shù)國家地方聯(lián)合工程實驗室,天津 300457)

    為獲得異亮氨酸生產(chǎn)菌谷氨酸棒狀桿菌(Corynebacterium glutamicum)YILW的理性改造策略,考察該菌株與出發(fā)菌株C. glutamicum ATCC 13032異亮氨酸合成途徑中關(guān)鍵酶及代謝產(chǎn)物的差異。結(jié)果表明,C. glutamicum YILW丙酮酸羧化酶編碼基因pyc的下調(diào)表達使得其胞內(nèi)草酰乙酸含量降低,過表達該基因顯著增加胞內(nèi)草酰乙酸含量及異亮氨酸產(chǎn)量(分別從1.32 μmol/g(細胞干質(zhì)量,下同)和5.18 g/L提高至3.32 μmol/g和5.81 g/L),但副產(chǎn)物賴氨酸及胞內(nèi)2-酮丁酸積累量提高。針對該問題采用強啟動子替換手段過表達ilvBNC操縱子,使得其異亮氨酸產(chǎn)量提高至6.63 g/L。為進一步增加異亮氨酸合成,過表達輸出載體編碼基因brnE和brnF,其產(chǎn)量提高至7.31 g/L,較出發(fā)菌株C. glutamicum YILW提高41.1%,轉(zhuǎn)化率提高40.0%。由此可見,在基因轉(zhuǎn)錄及代謝物分析結(jié)果指導(dǎo)下理性過表達pyc、ilvBNC操縱子及brnE和brnF能夠顯著提高異亮氨酸產(chǎn)量并降低副產(chǎn)物濃度。

    谷氨酸棒桿菌;異亮氨酸;代謝庫;草酰乙酸

    Q935

    A

    1002-6630(2017)04-0032-07

    2016-06-14

    國家高技術(shù)研究發(fā)展計劃(863計劃)項目(2013AA102106);國家自然科學(xué)基金青年科學(xué)基金項目(31300069);天津市科技特派員項目(15JCTPJC62800)

    溫冰(1977—),女,高級工程師,博士,研究方向為氨基酸代謝控制發(fā)酵。E-mail:wbingr@126.com

    10.7506/spkx1002-6630-201704006

    *通信作者:陳寧(1963—),男,教授,博士,研究方向為氨基酸及其衍生物、核苷代謝工程和發(fā)酵工程。

    E-mail:ningch@tust.edu.cn

    WEN Bing, MA Jie, LI Zhixiang, et al. Rational design of Corynebacterium glutamicum YILW for isoleucine production based on gene transcription and metabolite analysis[J]. 食品科學(xué), 2017, 38(4): 32-38.

    10.7506/spkx1002-6630-201704006. http://www.spkx.net.cn

    WEN Bing, MA Jie, LI Zhixiang, et al. Rational design of Corynebacterium glutamicum YILW for isoleucine production based on gene transcription and metabolite analysis[J]. Food Science, 2017, 38(4): 32-38. DOI:10.7506/spkx1002-6630-201704006. http://www.spkx.net.cn

    猜你喜歡
    異亮氨酸副產(chǎn)物谷氨酸
    異亮氨酸在肉雞飼料中的應(yīng)用研究進展
    生物法合成4-羥基異亮氨酸的代謝工程研究進展
    桃果深加工及其副產(chǎn)物綜合利用研究進展
    保鮮與加工(2021年1期)2021-02-06 06:43:22
    合成4-羥基異亮氨酸的大腸桿菌構(gòu)建及其催化體系優(yōu)化
    兩階段溶氧控制及FeSO4添加對谷氨酸棒桿菌合成4-羥基異亮氨酸的影響
    基于正交設(shè)計的谷氨酸發(fā)酵條件優(yōu)化
    N-月桂?;劝彼猁}性能的pH依賴性
    問:如何鑒定谷氨酸能神經(jīng)元
    金銀花及其副產(chǎn)物的營養(yǎng)研究進展
    廣東飼料(2016年5期)2016-12-01 03:43:22
    飲用水中含氮消毒副產(chǎn)物的形成與控制
    曰老女人黄片| 欧美一级a爱片免费观看看 | 少妇粗大呻吟视频| 黄色女人牲交| 成在线人永久免费视频| 99久久国产精品久久久| 淫妇啪啪啪对白视频| 夜夜躁狠狠躁天天躁| 黑人操中国人逼视频| 亚洲午夜精品一区,二区,三区| 夜夜看夜夜爽夜夜摸| 少妇粗大呻吟视频| 午夜免费观看网址| 亚洲狠狠婷婷综合久久图片| 一级片免费观看大全| 国产av又大| 两人在一起打扑克的视频| 亚洲国产中文字幕在线视频| 精品高清国产在线一区| 级片在线观看| 看黄色毛片网站| 亚洲最大成人中文| 身体一侧抽搐| 少妇人妻一区二区三区视频| 长腿黑丝高跟| 九九热线精品视视频播放| 中文字幕人妻丝袜一区二区| 日日干狠狠操夜夜爽| 久久久久国内视频| av福利片在线| 欧美国产日韩亚洲一区| 国产探花在线观看一区二区| 成人欧美大片| 曰老女人黄片| 女人高潮潮喷娇喘18禁视频| 久久久久久久久久黄片| 女生性感内裤真人,穿戴方法视频| 91成年电影在线观看| 亚洲七黄色美女视频| 一本久久中文字幕| 夜夜夜夜夜久久久久| 国产av一区在线观看免费| 精品久久久久久久久久免费视频| 亚洲人与动物交配视频| 国产精品精品国产色婷婷| 天堂√8在线中文| 日韩欧美精品v在线| 欧美性长视频在线观看| 国产av一区在线观看免费| 国产高清videossex| 麻豆国产av国片精品| 又大又爽又粗| 亚洲男人的天堂狠狠| 正在播放国产对白刺激| 欧美中文综合在线视频| 手机成人av网站| 一区二区三区高清视频在线| 一区福利在线观看| 黄色视频不卡| 国产成人影院久久av| 夜夜夜夜夜久久久久| 国产在线精品亚洲第一网站| 天天一区二区日本电影三级| 久久久久久免费高清国产稀缺| 波多野结衣高清无吗| 久久精品国产亚洲av香蕉五月| 黄色视频不卡| a在线观看视频网站| 日本在线视频免费播放| 亚洲av成人一区二区三| 欧美日韩黄片免| 久久国产乱子伦精品免费另类| 久久天堂一区二区三区四区| 免费观看人在逋| 精品欧美国产一区二区三| 性欧美人与动物交配| 九色国产91popny在线| 又黄又粗又硬又大视频| 午夜免费成人在线视频| 国产高清视频在线观看网站| 国产成人精品久久二区二区91| 精品欧美国产一区二区三| 成人亚洲精品av一区二区| 久久 成人 亚洲| 欧美性长视频在线观看| 午夜福利18| 国产精品一区二区三区四区久久| 免费搜索国产男女视频| 亚洲人成电影免费在线| 级片在线观看| 国产精品野战在线观看| 亚洲熟女毛片儿| 亚洲成人精品中文字幕电影| 黄片小视频在线播放| 51午夜福利影视在线观看| 两性夫妻黄色片| 最新在线观看一区二区三区| 精品国产乱子伦一区二区三区| 色老头精品视频在线观看| 国产亚洲精品久久久久久毛片| 我的老师免费观看完整版| 国产在线观看jvid| 久久久久久大精品| 国产成人影院久久av| 99久久综合精品五月天人人| 搡老熟女国产l中国老女人| 欧美成人午夜精品| 亚洲全国av大片| av在线播放免费不卡| 日韩三级视频一区二区三区| 在线观看免费日韩欧美大片| 精品日产1卡2卡| 欧美最黄视频在线播放免费| 免费无遮挡裸体视频| 成人国产一区最新在线观看| 国产精品免费一区二区三区在线| 久久久久久久精品吃奶| 国产亚洲欧美98| 精品一区二区三区av网在线观看| 国产午夜福利久久久久久| 日韩精品青青久久久久久| 91麻豆精品激情在线观看国产| 天天添夜夜摸| 非洲黑人性xxxx精品又粗又长| 成人18禁在线播放| 精品一区二区三区av网在线观看| 搞女人的毛片| 人人妻人人澡欧美一区二区| 长腿黑丝高跟| 99riav亚洲国产免费| 亚洲一区高清亚洲精品| 老司机深夜福利视频在线观看| 国产一区二区三区视频了| 丰满的人妻完整版| 在线观看午夜福利视频| 91在线观看av| 国内揄拍国产精品人妻在线| 在线观看免费午夜福利视频| 欧美日韩瑟瑟在线播放| 波多野结衣高清作品| 女警被强在线播放| 亚洲天堂国产精品一区在线| 长腿黑丝高跟| 黄色成人免费大全| 亚洲自偷自拍图片 自拍| 老司机靠b影院| 999久久久精品免费观看国产| 色噜噜av男人的天堂激情| 黄色视频不卡| 一级片免费观看大全| 51午夜福利影视在线观看| 99精品久久久久人妻精品| 成人国语在线视频| 一级毛片精品| 亚洲av中文字字幕乱码综合| 女同久久另类99精品国产91| 国产精品99久久99久久久不卡| 国产亚洲av高清不卡| 女人高潮潮喷娇喘18禁视频| 性色av乱码一区二区三区2| av福利片在线| 精品高清国产在线一区| 亚洲专区中文字幕在线| 日韩欧美三级三区| 黄片大片在线免费观看| 亚洲天堂国产精品一区在线| 91在线观看av| 国产爱豆传媒在线观看 | 91成年电影在线观看| 国产一区在线观看成人免费| 精品国产亚洲在线| 熟女电影av网| 免费在线观看影片大全网站| 国产野战对白在线观看| 亚洲全国av大片| 久久国产精品影院| av福利片在线观看| 1024香蕉在线观看| 午夜a级毛片| 日韩欧美国产一区二区入口| 少妇粗大呻吟视频| 丰满的人妻完整版| 在线观看免费日韩欧美大片| 脱女人内裤的视频| 看免费av毛片| 在线观看舔阴道视频| 91字幕亚洲| 男女床上黄色一级片免费看| 欧美日韩乱码在线| 国产精品久久视频播放| 日韩欧美在线二视频| 超碰成人久久| 一区二区三区高清视频在线| 亚洲欧美精品综合一区二区三区| 日韩国内少妇激情av| 在线视频色国产色| cao死你这个sao货| 99热这里只有是精品50| 一本综合久久免费| 97碰自拍视频| 黄色视频不卡| 色精品久久人妻99蜜桃| 成人手机av| 欧美性猛交黑人性爽| 高清在线国产一区| 一级a爱片免费观看的视频| 色哟哟哟哟哟哟| 成年版毛片免费区| 欧美中文综合在线视频| 午夜福利视频1000在线观看| 99久久国产精品久久久| 欧美成狂野欧美在线观看| 亚洲人与动物交配视频| 日韩高清综合在线| 日韩欧美三级三区| 老熟妇乱子伦视频在线观看| 国产精品1区2区在线观看.| 动漫黄色视频在线观看| 国产精品一及| 两个人免费观看高清视频| 天堂√8在线中文| 精品久久久久久久毛片微露脸| 亚洲精品粉嫩美女一区| 少妇裸体淫交视频免费看高清 | 精品久久久久久久久久久久久| 在线观看免费午夜福利视频| 天堂√8在线中文| 日韩欧美免费精品| 日本 欧美在线| 一个人观看的视频www高清免费观看 | 好男人电影高清在线观看| 日日夜夜操网爽| 国产99久久九九免费精品| 波多野结衣巨乳人妻| netflix在线观看网站| 国产精品野战在线观看| 国产精品亚洲美女久久久| 日韩中文字幕欧美一区二区| 亚洲乱码一区二区免费版| 日韩欧美国产在线观看| 99国产精品一区二区蜜桃av| 久久天躁狠狠躁夜夜2o2o| 久久婷婷人人爽人人干人人爱| 久久99热这里只有精品18| 亚洲真实伦在线观看| 欧美成人午夜精品| 亚洲男人天堂网一区| 欧美一区二区国产精品久久精品 | 一卡2卡三卡四卡精品乱码亚洲| 国产免费男女视频| 国内精品一区二区在线观看| 久久国产精品影院| e午夜精品久久久久久久| 欧美黑人巨大hd| 桃色一区二区三区在线观看| 欧美激情久久久久久爽电影| 免费av毛片视频| 99riav亚洲国产免费| 一边摸一边抽搐一进一小说| 久久久久国产一级毛片高清牌| 脱女人内裤的视频| 国产精品久久久av美女十八| a在线观看视频网站| 国产成人啪精品午夜网站| 久久香蕉精品热| 丰满人妻一区二区三区视频av | 亚洲真实伦在线观看| 亚洲av电影在线进入| 久久久久性生活片| 欧美激情久久久久久爽电影| 国产成年人精品一区二区| 麻豆国产av国片精品| 中文字幕高清在线视频| 欧美在线黄色| 久久天躁狠狠躁夜夜2o2o| 韩国av一区二区三区四区| 在线视频色国产色| 久久精品成人免费网站| 久久 成人 亚洲| 久久婷婷成人综合色麻豆| 亚洲av熟女| 正在播放国产对白刺激| 国产一区二区三区视频了| 亚洲中文av在线| 首页视频小说图片口味搜索| 国产亚洲av高清不卡| 国产精品自产拍在线观看55亚洲| 欧美丝袜亚洲另类 | 人妻久久中文字幕网| 老熟妇乱子伦视频在线观看| 久久香蕉国产精品| 中文字幕久久专区| 女人高潮潮喷娇喘18禁视频| 午夜福利在线观看吧| 50天的宝宝边吃奶边哭怎么回事| 日本五十路高清| 精品免费久久久久久久清纯| 亚洲一区二区三区不卡视频| 丰满的人妻完整版| 狂野欧美白嫩少妇大欣赏| 一本综合久久免费| 国产精品久久久人人做人人爽| 夜夜夜夜夜久久久久| 亚洲中文av在线| 精品午夜福利视频在线观看一区| 色哟哟哟哟哟哟| 母亲3免费完整高清在线观看| 欧美大码av| 亚洲av成人不卡在线观看播放网| 国模一区二区三区四区视频 | 欧美精品啪啪一区二区三区| av在线播放免费不卡| 久久天躁狠狠躁夜夜2o2o| 脱女人内裤的视频| 免费看a级黄色片| a级毛片在线看网站| 免费在线观看日本一区| 免费看a级黄色片| 亚洲精华国产精华精| 人妻丰满熟妇av一区二区三区| 村上凉子中文字幕在线| 亚洲精品久久国产高清桃花| 久久久久国产精品人妻aⅴ院| 99久久精品热视频| 99久久国产精品久久久| 欧美精品亚洲一区二区| 国产黄色小视频在线观看| 日本在线视频免费播放| 好男人电影高清在线观看| 99国产综合亚洲精品| 亚洲欧美精品综合久久99| 99国产极品粉嫩在线观看| 精品久久久久久久末码| 亚洲中文日韩欧美视频| 国产精品久久久人人做人人爽| 亚洲成人久久爱视频| 亚洲电影在线观看av| 午夜福利免费观看在线| 蜜桃久久精品国产亚洲av| 不卡一级毛片| 亚洲七黄色美女视频| 欧美一级a爱片免费观看看 | 久久久久国内视频| 99久久99久久久精品蜜桃| 国产欧美日韩一区二区精品| 国产亚洲av高清不卡| 听说在线观看完整版免费高清| 亚洲国产中文字幕在线视频| 日韩免费av在线播放| 亚洲精品中文字幕一二三四区| 最近最新中文字幕大全电影3| 国产精品影院久久| 亚洲av熟女| 日本熟妇午夜| 他把我摸到了高潮在线观看| aaaaa片日本免费| 国产精品1区2区在线观看.| 99精品欧美一区二区三区四区| 最新在线观看一区二区三区| 日本黄色视频三级网站网址| 91av网站免费观看| 成人18禁在线播放| 欧美av亚洲av综合av国产av| 99精品久久久久人妻精品| 一区二区三区国产精品乱码| 午夜福利欧美成人| 免费在线观看黄色视频的| 777久久人妻少妇嫩草av网站| 大型av网站在线播放| 黄色毛片三级朝国网站| 国产精品av视频在线免费观看| av福利片在线| 久久香蕉精品热| 国产成人影院久久av| 99久久99久久久精品蜜桃| 欧美午夜高清在线| 91麻豆av在线| 国产精品香港三级国产av潘金莲| 99久久国产精品久久久| 欧美三级亚洲精品| 亚洲七黄色美女视频| 亚洲最大成人中文| 亚洲av成人av| svipshipincom国产片| 此物有八面人人有两片| 国产av又大| 亚洲精品久久国产高清桃花| 亚洲欧美日韩东京热| 免费观看人在逋| 香蕉久久夜色| 亚洲精品中文字幕一二三四区| 成人高潮视频无遮挡免费网站| 国内毛片毛片毛片毛片毛片| 国产成人av激情在线播放| 午夜福利欧美成人| 精品久久久久久久久久久久久| 久久久久亚洲av毛片大全| 久久精品91无色码中文字幕| 国产亚洲精品一区二区www| 黄色女人牲交| 91大片在线观看| 亚洲美女黄片视频| cao死你这个sao货| 欧美日韩国产亚洲二区| 国产av不卡久久| 黄色a级毛片大全视频| 国产精品香港三级国产av潘金莲| 国产单亲对白刺激| 国产一区二区三区视频了| 麻豆成人午夜福利视频| 午夜激情av网站| 欧美日韩中文字幕国产精品一区二区三区| 色av中文字幕| 亚洲乱码一区二区免费版| cao死你这个sao货| 国语自产精品视频在线第100页| 国产精品自产拍在线观看55亚洲| 50天的宝宝边吃奶边哭怎么回事| 99re在线观看精品视频| 亚洲avbb在线观看| 女人高潮潮喷娇喘18禁视频| 真人一进一出gif抽搐免费| 亚洲va日本ⅴa欧美va伊人久久| 国产精品一及| 欧美中文综合在线视频| 亚洲自拍偷在线| 欧美人与性动交α欧美精品济南到| 国产精品1区2区在线观看.| 国产成人影院久久av| www日本在线高清视频| 美女免费视频网站| 午夜激情福利司机影院| 激情在线观看视频在线高清| 听说在线观看完整版免费高清| 亚洲 欧美一区二区三区| 久久婷婷人人爽人人干人人爱| 少妇的丰满在线观看| 国产视频一区二区在线看| 午夜福利视频1000在线观看| 国语自产精品视频在线第100页| 亚洲av第一区精品v没综合| 人人妻人人看人人澡| 亚洲成人国产一区在线观看| 99热这里只有精品一区 | 日韩国内少妇激情av| 国产伦人伦偷精品视频| 男男h啪啪无遮挡| 亚洲,欧美精品.| 亚洲精品国产一区二区精华液| 免费看美女性在线毛片视频| 亚洲在线自拍视频| 国产精品一及| 日日夜夜操网爽| 91成年电影在线观看| 怎么达到女性高潮| 美女午夜性视频免费| 午夜成年电影在线免费观看| 美女午夜性视频免费| 国产97色在线日韩免费| 国产三级中文精品| 亚洲欧美日韩高清专用| 成人国产综合亚洲| 50天的宝宝边吃奶边哭怎么回事| av在线播放免费不卡| 久久久久久亚洲精品国产蜜桃av| 亚洲精品在线观看二区| 嫁个100分男人电影在线观看| 中文资源天堂在线| 国内毛片毛片毛片毛片毛片| 91在线观看av| 国产精品九九99| 黑人操中国人逼视频| 久久精品综合一区二区三区| 国产探花在线观看一区二区| 美女高潮喷水抽搐中文字幕| 亚洲精品av麻豆狂野| www.999成人在线观看| 法律面前人人平等表现在哪些方面| 色噜噜av男人的天堂激情| 99热6这里只有精品| 亚洲国产精品sss在线观看| aaaaa片日本免费| 91字幕亚洲| 1024手机看黄色片| 好男人电影高清在线观看| 国产精品美女特级片免费视频播放器 | www.999成人在线观看| 日本在线视频免费播放| 国产免费av片在线观看野外av| 成年免费大片在线观看| 免费av毛片视频| 黄色丝袜av网址大全| 国产精品久久久久久精品电影| 蜜桃久久精品国产亚洲av| 天堂动漫精品| 午夜精品一区二区三区免费看| 国产精品免费一区二区三区在线| 国内久久婷婷六月综合欲色啪| 亚洲成人国产一区在线观看| 亚洲欧美激情综合另类| 不卡av一区二区三区| 久久久久精品国产欧美久久久| 成人高潮视频无遮挡免费网站| 免费在线观看完整版高清| 国产真实乱freesex| 亚洲av片天天在线观看| 十八禁网站免费在线| 亚洲av成人精品一区久久| 久久中文看片网| 国内久久婷婷六月综合欲色啪| 国产av在哪里看| 很黄的视频免费| 国产精品免费视频内射| 嫁个100分男人电影在线观看| 一级黄色大片毛片| 18禁美女被吸乳视频| 一边摸一边做爽爽视频免费| 少妇裸体淫交视频免费看高清 | 亚洲av成人一区二区三| 久久久国产精品麻豆| 老司机在亚洲福利影院| 日本 欧美在线| 日本成人三级电影网站| 日韩大码丰满熟妇| 国产精品98久久久久久宅男小说| 亚洲国产精品成人综合色| 国产免费男女视频| 国产伦人伦偷精品视频| 亚洲国产高清在线一区二区三| 十八禁人妻一区二区| 亚洲人成网站在线播放欧美日韩| 后天国语完整版免费观看| 大型黄色视频在线免费观看| 操出白浆在线播放| 久久久久久九九精品二区国产 | 国产av在哪里看| 免费在线观看亚洲国产| 久久国产乱子伦精品免费另类| 天堂影院成人在线观看| 亚洲男人天堂网一区| 亚洲 欧美一区二区三区| 久久久久久久久久黄片| 黄色a级毛片大全视频| 在线视频色国产色| 亚洲国产精品999在线| 88av欧美| 夜夜夜夜夜久久久久| av免费在线观看网站| 日韩三级视频一区二区三区| 少妇的丰满在线观看| 久久精品91蜜桃| 一个人免费在线观看的高清视频| 欧美人与性动交α欧美精品济南到| 欧美不卡视频在线免费观看 | 欧美在线一区亚洲| 久久国产精品人妻蜜桃| 精品人妻1区二区| 1024视频免费在线观看| 亚洲中文日韩欧美视频| 亚洲av美国av| e午夜精品久久久久久久| 欧美日韩黄片免| 亚洲五月天丁香| 午夜日韩欧美国产| 1024香蕉在线观看| 国产精品亚洲av一区麻豆| 久久婷婷成人综合色麻豆| 久久亚洲真实| 韩国av一区二区三区四区| 免费高清视频大片| 日本在线视频免费播放| 婷婷精品国产亚洲av在线| 91国产中文字幕| 欧美乱色亚洲激情| 欧美一区二区国产精品久久精品 | 男男h啪啪无遮挡| 亚洲av成人av| 成人18禁在线播放| 国产野战对白在线观看| 久久精品国产99精品国产亚洲性色| 无遮挡黄片免费观看| 少妇的丰满在线观看| 国产三级在线视频| xxx96com| 久久精品影院6| 黑人操中国人逼视频| 日韩大码丰满熟妇| 免费在线观看影片大全网站| www.精华液| 日韩欧美三级三区| 欧美日本视频| 亚洲黑人精品在线| 成人av一区二区三区在线看| 欧美丝袜亚洲另类 | 91麻豆av在线| 两个人免费观看高清视频| 日日摸夜夜添夜夜添小说| a级毛片a级免费在线| 熟妇人妻久久中文字幕3abv| 成人午夜高清在线视频| 免费无遮挡裸体视频| 非洲黑人性xxxx精品又粗又长| 2021天堂中文幕一二区在线观| 久久久久国产一级毛片高清牌| 男女做爰动态图高潮gif福利片| 香蕉久久夜色| 欧美成人性av电影在线观看| 欧美性长视频在线观看| 久久久久久久午夜电影| 亚洲专区字幕在线| 国产成人精品无人区| 夜夜看夜夜爽夜夜摸| 两人在一起打扑克的视频| 国产在线观看jvid| 欧美中文综合在线视频|