• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      地下生態(tài)系統(tǒng)中氮素的循環(huán)及影響因素

      2017-03-27 03:46:16蔡義民陳有軍陳冬明孫飛達(dá)裴姝婷周春梅申旭東
      草業(yè)科學(xué) 2017年3期
      關(guān)鍵詞:氮素根系植物

      曾 凱,劉 琳,蔡義民,陳有軍,陳冬明,孫飛達(dá),裴姝婷,周春梅,申旭東

      (1.四川農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院草業(yè)科學(xué)系,四川 成都 611130;2.日本畜產(chǎn)草地研究所,日本 東京 329-2793; 3.西南民族大學(xué)青藏高原研究院,四川 成都 610041)

      地下生態(tài)系統(tǒng)中氮素的循環(huán)及影響因素

      曾 凱1,劉 琳1,蔡義民2,陳有軍3,陳冬明1,孫飛達(dá)1,裴姝婷1,周春梅1,申旭東1

      (1.四川農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院草業(yè)科學(xué)系,四川 成都 611130;2.日本畜產(chǎn)草地研究所,日本 東京 329-2793; 3.西南民族大學(xué)青藏高原研究院,四川 成都 610041)

      氮素是陸地生態(tài)系統(tǒng)初級生產(chǎn)力的主要限制因子之一。地下生態(tài)系統(tǒng)中絕大部分氮素以不溶的聚合物形式存在,不能直接被植物吸收,因此其轉(zhuǎn)化為可吸收的離子氮的生態(tài)過程受到人們越來越多的關(guān)注。本文主要綜述了土壤生物與非生物兩個(gè)自然因素在地下生態(tài)系統(tǒng)氮素循環(huán)過程中發(fā)揮的重要作用。土壤生物通過自身代謝和分泌各種酶類來加速各種形態(tài)氮素相互轉(zhuǎn)化;植物根系可以通過影響土壤物理結(jié)構(gòu)和分泌大量有機(jī)物質(zhì),實(shí)現(xiàn)與地下生態(tài)系統(tǒng)氮素循環(huán)之間的“相互交流”;而由于生物生存與環(huán)境因子有直接聯(lián)系,二者之間的相互作用也對土壤氮素循環(huán)起著特殊作用。目前,由于土壤生物種類繁多、營養(yǎng)流通途徑復(fù)雜、分子生物學(xué)實(shí)驗(yàn)技術(shù)較昂貴以及在全球氣候變化背景下對許多自然規(guī)律的響應(yīng)變化認(rèn)識(shí)有限,因此,尚不能完全在分子水平形成一張氮素在地下生態(tài)系統(tǒng)的流通網(wǎng)絡(luò)圖,這應(yīng)該成為今后相關(guān)研究工作的方向和重點(diǎn)。

      地下生態(tài)系統(tǒng);氮素循環(huán);生物因子;環(huán)境因子

      地下生態(tài)過程對于陸地生態(tài)系統(tǒng)有著極其重要的意義,不僅為地上植物提供有效的水和養(yǎng)分,而且其中豐富多樣的生物類群也是維持生態(tài)系統(tǒng)功能的必要條件,保證了土壤養(yǎng)分循環(huán)的高效運(yùn)轉(zhuǎn)[1-3]。氮素是植物體內(nèi)蛋白質(zhì)、核酸以及葉綠素等生物大分子的重要組成物質(zhì),缺乏氮素常導(dǎo)致植物的光合作用速率顯著降低,其對植物的生存、發(fā)展及初級生產(chǎn)力形成至關(guān)重要。并且,植物對氮素的吸收往往還與碳、硫、磷等元素的吸收相互耦合[4]。

      盡管有些植物能直接從土壤中吸收有機(jī)氮,但由于微生物的競爭等因素[5],植物能夠吸收利用的氮素主要還是無機(jī)氮(包括NH4+和NO3-),而這只占土壤全氮的1%,其余大部分氮(93%~97%)以有機(jī)氮的形式存在[6]。因此,土壤氮素循環(huán)不僅是整個(gè)生態(tài)系統(tǒng)生物地化循環(huán)的重要環(huán)節(jié)之一,更是限制生態(tài)系統(tǒng)生產(chǎn)力的重要因素。陸地生態(tài)系統(tǒng)中,土壤氮素的來源主要有生物固氮、施肥、大氣氮沉降等途徑,經(jīng)過氨化及硝化等作用被植物利用,同時(shí)也可能通過反硝化作用轉(zhuǎn)化為硝態(tài)氮經(jīng)淋洗與侵蝕等作用流失或者作為NH3、NO、N2O等氣體揮發(fā)。地下生態(tài)系統(tǒng)中,眾多的生物和非生物因子均對土壤氮循環(huán)產(chǎn)生著復(fù)雜的影響。土壤微生物是促進(jìn)氮素循環(huán)主要的動(dòng)力[2],不僅通過自身代謝極大地推動(dòng)氮素循環(huán)進(jìn)程,還是土壤酶的主要來源之一[7-8]。微生物還能與植物根系相互共生形成菌根[9],這種共生體不僅能顯著提高植物抗病與抗旱等抗逆能力,并且對包括氮素在內(nèi)的土壤養(yǎng)分循環(huán)也發(fā)揮著重要作用[10]。土壤動(dòng)物的活動(dòng)和生理代謝也常常顯著影響土壤氮循環(huán)。此外,植物根系不僅利用自身結(jié)構(gòu)及分布等特點(diǎn)來影響土壤物理結(jié)構(gòu)[11],還能通過根系分泌物和凋落物等形式來決定土壤氮素循環(huán)過程[12]。綜上所述,土壤氮循環(huán)是一個(gè)受微生物驅(qū)動(dòng),由土壤酶介導(dǎo)催化的生物地化過程,這一過程同時(shí)受土壤溫濕度、土壤理化性質(zhì)、微型動(dòng)物以及根系生長發(fā)育等生物和非生物因子的綜合影響[6,12-13]。由于土壤氮循環(huán)發(fā)生紊亂,流入與輸出不協(xié)調(diào)是導(dǎo)致許多生態(tài)問題出現(xiàn)的關(guān)鍵因素[14],因此深入了解地下生態(tài)過程中氮素循環(huán)的機(jī)制以及影響因素,對實(shí)現(xiàn)生態(tài)系統(tǒng)健康管理和維持生態(tài)系統(tǒng)的可持續(xù)發(fā)展至關(guān)重要。

      1 地下生態(tài)系統(tǒng)中氮循環(huán)的主要過程

      氮素循環(huán)是地下生態(tài)系統(tǒng)元素循環(huán)的核心過程之一,深入研究其主要反應(yīng)過程和機(jī)制,對于調(diào)控土壤氮素循環(huán)的過程以及提高其利用效率都具有積極的作用[15]。氮素在土壤中的轉(zhuǎn)化主要包括生物固氮作用、氨化作用、硝化作用和反硝化作用等,均由微生物所驅(qū)動(dòng),且在各種土壤酶蛋白的催化下進(jìn)行[2](表1)。由于這個(gè)過程主要靠生物因子來驅(qū)動(dòng),因此能夠影響生物因素的環(huán)境因子均能改變這一過程的方向和速率[29]。

      1.1 生物固氮作用

      固氮微生物體內(nèi)含有將大氣中穩(wěn)定性高的分子態(tài)氮轉(zhuǎn)化成植物可利用的銨態(tài)氮的固氮酶,這種氮素轉(zhuǎn)化方式成為生物固氮,并且這是自然環(huán)境中土壤氮素的主要來源[30]。根據(jù)微生物和植物之間相互固氮方式的不同,可以將它們分為共生固氮、自生固氮和聯(lián)合固氮微生物3類[31]。自然界存在大量的兼性類型和需氧類型的固氮微生物,其種類涉及廣泛包括各類細(xì)菌、真菌、放線菌以及少量古菌。這些微生物主要通過分泌一些由nifD、nifK和nifH基因編碼的鉬鐵(MoFe)固氮酶和少許由vnf、anf基因編碼的釩鐵(VFe)固氮酶和鐵鐵(FeFe)固氮酶[16-17],進(jìn)而催化完成對大氣中氮素的直接吸收。一些固氮細(xì)菌(如固氮螺菌)還可分泌生長素、赤霉素等一些生長激素,促使植物更好地吸收土壤環(huán)境中的水分和養(yǎng)分,調(diào)控植生長發(fā)育[32]。而且通過影響植物根系生長和生理特性等行為,固氮微生物還可以間接擴(kuò)大根系分布范圍,以提高植物獲取土壤有效氮的能力,加快氮素在土壤中的轉(zhuǎn)化進(jìn)程[30]。另外,固氮微生物與土壤中生物與非生物因素有著密切的聯(lián)系,其不僅受植被差異的影響,還與土壤條件、當(dāng)?shù)貧夂蛞约肮芾泶胧┯嘘P(guān)[33]。

      表1 參與氮素循環(huán)的微生物及其分泌的酶

      1.2 氨化作用

      氨化作用是氮素礦化的第一步,也是給植物提供可利用有效氮素的關(guān)鍵一步。按照分子量的大小,可溶性有機(jī)氮分為高分子量與低分子量兩種,后者雖然占總有機(jī)氮的比例不足5%,遠(yuǎn)低于前者(75%),但極易被微生物吸收轉(zhuǎn)化[34]。胞外酶將高分子量有機(jī)氮分解成小分子量有機(jī)氮后,才能更有效地被微生物吸收利用,且這個(gè)過程往往是氨化過程的限速步驟[35]。微生物在氨化過程中起到巨大的推動(dòng)作用,這不僅因?yàn)橛袡C(jī)氮物質(zhì)經(jīng)過微生物體內(nèi)代謝過程能產(chǎn)生銨態(tài)氮,而主要是由于微生物分泌的各種蛋白酶是氨化作用的主要介導(dǎo)者[23]。其中,真菌不僅能在土壤中相對較大的區(qū)域內(nèi)活動(dòng),而且還可以分泌對高分子含氮化合物解聚有重要貢獻(xiàn)的胞外酶[35]。研究發(fā)現(xiàn),微生物和胞外酶的活性與氨化速率呈明顯的正相關(guān)關(guān)系,在氨化過程中蛋白酶起著極其重要的作用,而且部分氨基酸脫氨酶能在胞外對低分子量有機(jī)氮進(jìn)行分解并釋放銨態(tài)氮[36]。但也有研究發(fā)現(xiàn),長期施有機(jī)肥雖能提高土壤中氮素礦化的速率,但與精氨酸脫氨酶等轉(zhuǎn)移酶并無明顯相關(guān)性,這可能與土地利用狀況和養(yǎng)分水平有關(guān)[37]。

      1.3 硝化作用

      硝化作用是土壤氮素轉(zhuǎn)化過程的中心環(huán)節(jié)[15],主要分為兩個(gè)步驟,即氨氧化過程和亞硝酸鹽氧化過程,且前者為整個(gè)反應(yīng)過程的限速步驟[38]。氨氧化過程主要由微生物內(nèi)在基因amoA、amoB和amoC編碼的氨單加氧酶(AMO)來完成[39]。普遍認(rèn)為,氨氧化細(xì)菌(AOB)和氨氧化古菌(AOA)是催化氮素硝化作用的主要微生物[39]。在某些條件下,AOA數(shù)量還要高于AOB數(shù)千倍成為主導(dǎo)氨氧化作用的微生物類群[40]。目前已經(jīng)發(fā)現(xiàn)的AOA主要有廣古菌門(Euryarchaeota)、泉古菌門(Crenarchaeota)、奇古菌門(Thaumarchaeota)三大類群,且都具有與AOB類似的編碼AMO的基因[26]。土壤性質(zhì)和土地利用方式等因素都可影響主導(dǎo)硝化作用微生物類群。如隨pH下降,土壤中AOA數(shù)量明顯高于AOB,甚至檢測不到AOB存在[41],并且pH增加與硝化速率升高有著明顯的線性關(guān)系[42]。這可能是因?yàn)槎邔Π毖趸耐緩揭约半娮觽鬟f系統(tǒng)有明顯的差異,且此過程中AOA更有利于減少能量的消耗,因此保證了AOA在惡劣條件下表現(xiàn)出更強(qiáng)的生命力[43]。此外,不同的氮素濃度、肥料施加以及耕作方式也會(huì)明顯改變氨氧化微生物群落特征[44]。

      1.4 反硝化作用

      土壤反硝化作用就是NO3-在一系列化學(xué)反應(yīng)下經(jīng)過NO2-→NO→N2O轉(zhuǎn)化最后生成N2的過程,主要有生物反硝化和化學(xué)反硝化兩種形式。目前的研究熱點(diǎn)主要集中于前者。已發(fā)現(xiàn)的參與生物反硝化過程的微生物有80多個(gè)屬的細(xì)菌和部分古菌、真菌和放線菌[15]。這些微生物能分泌4種相關(guān)的酶來逐步催化反硝化反應(yīng),包括硝酸還原酶(Nar)、亞硝酸還原酶(Nir)、一氧化氮還原酶(Nor)以及氧化亞氮還原酶(Nos)。土壤環(huán)境因子能顯著影響反硝化過程。例如,中性與堿性土壤中的反硝化速率明顯高于酸性土壤2.6至16.6倍[16]。而不同種類的反硝化微生物對環(huán)境變化的響應(yīng)有差異,在同樣施肥條件下,黑土中含有nirS基因的微生物能較好的解釋土壤反硝化速率的變化,但與含有nirK基因的微生物無明顯關(guān)系[45];而紅壤中長期施肥僅對該微生物群落結(jié)構(gòu)產(chǎn)生較大的影響,這種差異可能與環(huán)境條件,以及施肥種類不同有關(guān)[46]。另外,土壤反硝化作用還與氨氧化微生物的豐富度有明顯的線性關(guān)系[47]。

      目前對土壤中參與氮素循環(huán)的各微生物類群、相關(guān)酶類以及轉(zhuǎn)化過程均有較為清晰的認(rèn)識(shí)。然而,參與此過程的生物種類和反應(yīng)步驟極其復(fù)雜,其對各環(huán)境因子變化的響應(yīng)規(guī)律還認(rèn)識(shí)較少,且對引起變化的內(nèi)在機(jī)理認(rèn)識(shí)更存在嚴(yán)重不足。在當(dāng)前全球氣候變化影響下,增強(qiáng)對這一機(jī)理的認(rèn)識(shí)已迫在眉睫。

      1.5 地下生態(tài)系統(tǒng)氮素源匯格局

      自工業(yè)革命以來,由于化石燃料燃燒、化肥的使用以及森林砍伐等人類活動(dòng)嚴(yán)重破壞了土壤氮素循環(huán)的動(dòng)態(tài)平衡,導(dǎo)致陸地生態(tài)系統(tǒng)(主要包括森林、草地和農(nóng)田生態(tài)系統(tǒng))氮素的源匯格局發(fā)生了顯著變化[48]。人類活動(dòng)導(dǎo)致大氣氮素沉降量增加[49-50],進(jìn)而加快土壤NO與N2O等溫室氣體的排放,從而形成惡性循環(huán)[50-51]。因此,近年來關(guān)于陸地生態(tài)系統(tǒng)土壤氮素的源匯格局成為了國內(nèi)外研究的焦點(diǎn)[52]。

      森林作為最大的陸地生態(tài)系統(tǒng),占有近90%的土壤氮素[52],其氮素流動(dòng)的動(dòng)態(tài)變化一直是研究的熱點(diǎn)。據(jù)專家預(yù)測,至2050年全球大氣氮沉降將達(dá)到200 kg N·(hm2·a)-1,這將對森林土壤氮素循環(huán)產(chǎn)生顯著影響[49]。適當(dāng)?shù)牡黾佑欣谏滞寥赖剞D(zhuǎn)化;但過量則會(huì)嚴(yán)重影響森林生態(tài)系統(tǒng)的健康發(fā)展[52]。森林土壤釋放N2O量的增加,是大氣氮沉降的一個(gè)主要負(fù)面效應(yīng)。據(jù)估計(jì),全球森林土壤大約可以釋放氮素(N2O)0.47 kg N·(hm2·a)-1[53]。在全球尺度上看,氣候是影響森林溫室氣體通量的主要驅(qū)動(dòng)因子。局部地區(qū),不同植被類型也對含N溫室氣體(主要是N2O的排放)有顯著影響。我國亞熱帶馬尾松(Pinusmassoniana)林地每年每公頃平均向大氣中釋放超過1.6 kg N(N2O),并且季節(jié)之間有顯著的差異[54]。加拿大北部(苔原氣候)山楊(Populusdavidiana)、黑云杉(Piceamariana)和斑克松(Pinusbanksiana)3種林地土壤向大氣中釋放氮(N2O)的速率分別為0.065、0.055和0.13 kg N·(hm2·a)-1[55]。在英國西加云杉(Sitkaspruce)林地兩年的試驗(yàn)測得N2O凈通量為0.62 kg N·(hm2·a)-1[56]。目前,對于土壤氮素源匯的定位研究大多局限于某個(gè)特定的氣候帶,且試驗(yàn)?zāi)晗蘧^短,因此很難看出土壤氮素在較大時(shí)空下的動(dòng)態(tài)關(guān)系。

      2 地下生態(tài)過程中氮循環(huán)的主要影響因素及機(jī)制

      2.1 植物及其根系與土壤氮元素的關(guān)系

      2.1.1 根系凋落物的分解對土壤氮素循環(huán)的影響 土壤不僅通過改善生物活性和化學(xué)循環(huán)發(fā)生的環(huán)境來加快土壤養(yǎng)分循環(huán)速率,植物根系也是陸地生態(tài)系統(tǒng)礦質(zhì)元素的重要儲(chǔ)存庫,并以此實(shí)現(xiàn)植被與土壤之間養(yǎng)分的交換[57]。根系從土壤中吸收的氮素,在植物體內(nèi)經(jīng)過一系列轉(zhuǎn)化形成各種復(fù)雜的大分子物質(zhì)以供植物生長[58],再經(jīng)過死根的分解又重新回歸土壤。這一轉(zhuǎn)化過程不僅對氮素在生態(tài)系統(tǒng)中的循環(huán)有極大的推動(dòng)作用,還能提高土壤質(zhì)量、促進(jìn)微生物增殖以及增加土壤酶來源,這對加速土壤氮素礦化有極其重要的意義[57]。如歐洲山毛櫸(Fagussylvatica)根系在土壤中凋落能顯著提高土壤有效氮含量,且微生物對根系氮源的利用效率要明顯高于葉片[59]。然而,近年來研究發(fā)現(xiàn),根系周轉(zhuǎn)過程中釋放的化感物質(zhì)對氮素轉(zhuǎn)化表現(xiàn)出有較強(qiáng)的負(fù)面效應(yīng)。多種林木以及草本植物在根系周轉(zhuǎn)過程中釋放出來的單寧酸和環(huán)二肽等化感物質(zhì)會(huì)通過絡(luò)合蛋白質(zhì)、抑制微生物繁殖以及降低酶活性等方式對土壤氮素的有效性產(chǎn)生不利的影響[60-61]。由于凋落物的分解與其自身性質(zhì)也有較大的關(guān)系,因此植被根系對土壤氮素循環(huán)產(chǎn)生的影響還因植被種類不同而有較大的差異[62]。

      2.1.2 植物根系分泌物對氮素循環(huán)的影響 根系分泌物對土壤產(chǎn)生的生態(tài)效應(yīng)也是當(dāng)前研究的重點(diǎn)。根系通過向周圍釋放大量低分子有機(jī)物、高分子聚合糖以及有機(jī)酸等,對土壤理化性質(zhì)、生物地球循環(huán)過程產(chǎn)生極大的影響。主要包括幾個(gè)方面:1)根系能分泌對土壤顆粒有很強(qiáng)粘著力的高分子多糖,能顯著改善土壤微團(tuán)聚體的穩(wěn)定性及大小分布等物理性質(zhì),間接促進(jìn)土壤養(yǎng)分的循環(huán)[63];2)分泌的低分子量有機(jī)酸,能明顯降低土壤pH[64],這可以螯合以及活化土壤中難溶的含氮物質(zhì),從而能被植被根系吸收[65];3)植物根系分泌物也是土壤酶重要的來源之一,包括磷酸酶、轉(zhuǎn)氨酶、淀粉酶、蛋白酶、多聚半乳糖醛酸酶等,可作為土壤碳、氮元素轉(zhuǎn)化的催化劑[66];4)另外向土壤中添加植物根系分泌物既能顯著提高其氮素礦化速率,降低氮素流失量[12],又能促進(jìn)土壤氮素從無機(jī)態(tài)向有機(jī)態(tài)轉(zhuǎn)化[67]。5)根系分泌物不僅能通過供給更養(yǎng)分促進(jìn)微生物繁殖[64],還能選擇性的增加與氮素循環(huán)相關(guān)微生物的增長速度[68],因此對氮素循環(huán)產(chǎn)生影響。然而根系分泌物對土壤氮素循環(huán)產(chǎn)生的影響與其種類也有顯著的關(guān)系[69-70],準(zhǔn)確測定不同植被根系分泌物的成分、各自對環(huán)境產(chǎn)生的生態(tài)效應(yīng)以及與氣候變化之間的規(guī)律,對進(jìn)一步認(rèn)識(shí)根系分泌物的作用有重要的意義。

      2.1.3 植物根系參與形成的菌根在氮素循環(huán)中的作用 菌根(Mycorrhiza)是土壤真菌與植物根系形成的共生體。不僅能增加植物根系干重、根瘤數(shù)量以及微生物活性,還會(huì)顯著提高植物氮素吸收的效率,因此也是影響地下生態(tài)系統(tǒng)氮素循環(huán)的重要環(huán)節(jié)[3,71]。菌根對氮素循環(huán)的促進(jìn)作用與真菌種類以及組合方式有關(guān)[3]。菌根種類繁多,其中叢枝菌根(Arbuscularmycorrhiza)和外生菌根(Ectomycorrhizas)是最重要的兩種形式[9]。

      目前的研究表明,菌根主要通過以下幾個(gè)方面來影響氮素的循環(huán)過程:1)菌根產(chǎn)生的菌絲能夠擴(kuò)大植物根系吸收土壤氮素的范圍。用摩西球囊霉(Glomusaggregatum)接種玉米(Zeamays)后發(fā)現(xiàn),產(chǎn)生的菌絲對土壤中的無機(jī)氮有明顯的吸收作用,且對銨態(tài)氮吸收效果較好[72]。2)通過改變土壤微生物群落結(jié)構(gòu)和生物量,能夠間接對氮素循環(huán)產(chǎn)生影響。如根內(nèi)球囊霉(G.intraradices)產(chǎn)生的菌絲不僅增加了細(xì)菌數(shù)量,還可以中和洋蔥伯克霍爾德菌(Burkholderiacepacia)對真菌的抑制影響[73]。研究發(fā)現(xiàn),AMF可以解釋土壤中大概10%的微生物群落變化,對厚壁菌門細(xì)菌產(chǎn)生積極作用而對叢毛單胞菌和放線菌表現(xiàn)出抑制作用,并認(rèn)為這可能正是其影響土壤氮素輸出的一種潛在機(jī)制[74]。此外,叢枝菌根真菌還可以通過增強(qiáng)細(xì)菌對無機(jī)氮源的利用從而加速有機(jī)氮降解[10];3)菌根自身對氮素的吸收轉(zhuǎn)化。目前已發(fā)現(xiàn)了大量存在于菌根中與各種形態(tài)氮素吸收相關(guān)的基因(表2);并有研究發(fā)現(xiàn),從土壤中吸收到的氮素有部分將留在菌根菌絲中[72]。這些研究都證明了菌根真菌在地下生態(tài)系統(tǒng)氮素循環(huán)中的重要性。

      雖然,植物根系在土壤氮素循環(huán)中的重要性已被廣泛認(rèn)同,并圍繞幾個(gè)主要的方面也做了大量研究,但是缺乏系統(tǒng)綜合的深入研究。比如,根系分泌物對根圍微生物影響顯著,而微生物也通過根系影響植物的生理活動(dòng),但它們相互影響的具體機(jī)制以及與環(huán)境條件之間的關(guān)系仍需進(jìn)一步的研究探明。此外,不同植物種根系生長情況及其根系分泌物的成分、含量和分泌速率的規(guī)律不盡相同,也需要進(jìn)行大量研究工作。

      表2 菌根真菌中與氮素吸收的相關(guān)基因

      注:*的具體表示氨基酸種類未知。

      Note: The specific amino acid type is unknown.

      2.2 土壤微型動(dòng)物與氮元素的關(guān)系

      陸地生態(tài)系統(tǒng)中,土壤微型動(dòng)物不僅數(shù)量龐大并且分布非常廣泛,生態(tài)功能極其重要[85],其中原生動(dòng)物與線蟲是最典型的兩類。原生動(dòng)物具有快速分布的能力,有時(shí)甚至風(fēng)吹亦可促進(jìn)其傳播,并且還可以通過脫包囊快速生存下來[86]。線蟲世代周期較短,在外界干擾下容易恢復(fù),并且在受到逆境干擾時(shí)常通過脫水和禁食等方式來規(guī)避外界的傷害[87]。

      2.2.1 土壤微型動(dòng)物對氮素礦化的影響 原生動(dòng)物和線蟲等微型動(dòng)物不僅能提高土壤氮素礦化速率,還能有效促進(jìn)植物對其吸收的效率[1]。微型動(dòng)物不僅能顯著促進(jìn)微生物對土壤氮素的礦化速率,并增加其氮素的生物固定[88];還能有效提高植被對土壤氮素的吸收效率,增加地上植被的初級生產(chǎn)力[89]。植物寄生性線蟲破壞一些植物根系,釋放更多的營養(yǎng)物質(zhì)而有利于提高微生物活性和氮素礦化速率,但破壞過度又會(huì)對微生物產(chǎn)生明顯的負(fù)面影響[13]。然而不同種類和體型的微型動(dòng)物在土壤氮素礦化中起到的作用并不完全一致[90]。例如,線蟲促進(jìn)氮素礦化的速率不僅決定于物種差異,還與其體型大小有密切的關(guān)系[91]。蚯蚓對土壤氮素循環(huán)的影響不僅取決于土壤物理?xiàng)l件的差異,還歸結(jié)于其自身的生物活性[92]。

      2.2.2 土壤微型動(dòng)物影響氮素礦化的機(jī)制 土壤微型動(dòng)物主要通過與氮循環(huán)相關(guān)的微生物來對土壤氮素循環(huán)產(chǎn)生間接影響。一方面,土壤動(dòng)物可通過特定的捕食習(xí)慣打破微生物物種之間的平衡關(guān)系,影響其群落結(jié)構(gòu)[1,13]。如食細(xì)菌性線蟲通過改變氨氧化細(xì)菌的群落結(jié)構(gòu),提高其土壤中NH4+和NO3-的含量[7],但食細(xì)菌性線蟲對氨氧化古菌沒有明顯的影響[13]。另一方面,微型動(dòng)物取食能夠刺激微生物活性。由于微型動(dòng)物體內(nèi)碳氮比要高于微生物,加上呼吸過程碳元素的損失,會(huì)造成前者體內(nèi)氮素過剩而排出體外[7]。這不僅顯著促進(jìn)了氮素礦化速率還給其它微生物提供了充足的養(yǎng)分[1]。而且,微型動(dòng)物取食的往往都是“年老體弱”的個(gè)體,因此給其它生命旺盛的微生物提供了更加充足的生存條件[1]。如線蟲的捕食雖然減少了28%的微生物生物量,但反而增加了18%的微生物活性[89]。此外,土壤微型動(dòng)物通過新陳代謝不斷向體外分泌養(yǎng)分和多種酶[8],并且其遷移過程加快微生物在土壤中的擴(kuò)散,這對于促進(jìn)地下生態(tài)系統(tǒng)氮素循環(huán)的速率都有積極的意義[93]。

      盡管人們對土壤動(dòng)物與氮素循環(huán)的關(guān)系已有清晰認(rèn)識(shí),但土壤動(dòng)物物種類較多,且結(jié)構(gòu)和功能均極其復(fù)雜。今后的工作還需進(jìn)一步加強(qiáng)對養(yǎng)分在物種和營養(yǎng)級之間的流通特點(diǎn),以及在全球氣候變化背景下其對大氣氮沉降做出的響應(yīng)及其機(jī)制的了解。

      2.3 土壤非生物環(huán)境與氮元素的關(guān)系

      研究發(fā)現(xiàn),不同地區(qū)的土壤因溫度、濕度等環(huán)境條件,以及質(zhì)地和類型等理化性質(zhì)的不同,其氮素循環(huán)過程往往會(huì)產(chǎn)生顯著的差異[94-95]。雖然不直接參與氮素循環(huán)的過程,但是土壤理化性質(zhì)明顯改變影響氮素循環(huán)的生物與非生物因素,如空氣、水分以及與氮素轉(zhuǎn)化相關(guān)的微生物、微型動(dòng)物以及酶活性等。

      2.3.1 土壤濕度與土壤溫度 土壤溫、濕度條件對氮素循環(huán)的影響主要表現(xiàn)在對微生物、微型動(dòng)物以及其釋放的酶活性等方面。土壤溫度過低將不利于微生物生存以及增加銨態(tài)氮的積累,導(dǎo)致硝化作用降低[96]。適當(dāng)增加土壤含水量可以促進(jìn)氮素礦化[97],并降低土壤pH以利于植物對氮素的吸收。但過高的含水量如遇到極端降水反而會(huì)增加土壤淋溶和反硝化作用,造成氮素的流失[98]。一般土壤最大持水量在60%~80%,土壤溫度在0~35 ℃范圍內(nèi),土壤微生物活性和氮素礦化速率與二者呈正相關(guān)關(guān)系[95]。

      氣候極端地區(qū)的季節(jié)性溫度和水分條件變化能較好的說明這一問題。在高緯度或高海拔地區(qū),季節(jié)性的土壤凍融交替能顯著改變土壤氮素循環(huán)的過程[94]。由于低溫冰凍使植物根系和微生物死亡而釋放了大量有機(jī)物質(zhì),隨后氣溫回升,微生物利用這些物質(zhì)迅速繁殖,因此加快了生長季(暖季)土壤中氮素礦化的速率[95,99]。但相關(guān)結(jié)論并不一致,也有研究發(fā)現(xiàn)土壤凍融交替反而顯著降低了氮素的礦化速率[100]。這有可能是不同區(qū)域的土壤微生物耐凍融處理的能力不同,不適當(dāng)?shù)牡蜏乜赡軐ξ⑸锂a(chǎn)生不利影響的結(jié)果。此外,溫度還能通過影響根系分泌物分泌速率來改變土壤中與氮素循環(huán)相關(guān)的微生物增長速度,從而間接影響氮素循環(huán)速率[68]。

      2.3.2 土壤類型與團(tuán)聚體結(jié)構(gòu) 不同土壤類型的水、氣、熱以及養(yǎng)分狀況有明顯差異,這也是影響土壤氮循環(huán)的重要因素。土壤容重過大會(huì)明顯降低氮素礦化速率,且這種抑制作用隨著水分含量的上升而增加[101],這可能與高容重土壤中氧氣含量較少有一定關(guān)系。此外,由高容重造成土壤孔隙度降低限制了微型動(dòng)物的活動(dòng)范圍,影響其對微生物的取食[13],因此影響著微生物體內(nèi)固定的氮素在土壤氮素循環(huán)過程中流動(dòng)[101]。土壤酶活性與土壤顆粒大小的分布顯著相關(guān),如在黑土和棕壤中脲酶主要分布于團(tuán)聚體結(jié)構(gòu)較小的部分[102],可能是這部分土壤能夠固定較多的碳、氮和有機(jī)質(zhì)[103],為各類微生物的生存提供了大量的營養(yǎng)物質(zhì)。此外,還有研究發(fā)現(xiàn)與氮素循環(huán)密切相關(guān)的叢枝菌根真菌在不同的土壤類型如始成土、沖積土和薄層土中,其群落結(jié)構(gòu)有明顯的差異且具有各自的特點(diǎn)[104]。

      2.3.3 土壤pH 土壤pH對地下生態(tài)系統(tǒng)中氮素循環(huán)的限制主要與對微生物和酶活性的影響有關(guān)。1)不同的酶有各自最適的pH[105],過酸過堿性的條件都不利于酶功能的發(fā)揮。如在珠江三角洲酸性土壤中施加石灰能明顯提高土壤酶活力,并因此增加該地區(qū)水稻產(chǎn)量[106]。反硝化酶最適偏堿性的土壤條件(pH為8.4),且土壤pH是影響反硝化產(chǎn)物產(chǎn)生的最主要的因素[107-108]。2)土壤有機(jī)質(zhì)的可溶性與土壤pH也有密切的聯(lián)系,這又直接影響到微生物的生長速度以及其分泌酶的能力,從而改變土壤氮素循環(huán)的進(jìn)程[109]。3)土壤pH還能影響某些與土壤氮素循環(huán)相關(guān)的微生物群落結(jié)構(gòu)。如極端的酸性條件甚至檢測不到AOB的存在[110]。

      2.3.4 土壤有機(jī)質(zhì)含量 土壤有機(jī)質(zhì)不僅能促進(jìn)土壤團(tuán)聚體形成、降低容重以及增加土壤保水保肥能力,還能調(diào)節(jié)土壤固、液、氣三相的量和結(jié)構(gòu),影響地下生態(tài)系統(tǒng)氮循環(huán)的各個(gè)過程[111]。土壤有機(jī)質(zhì)通過促進(jìn)土壤微型動(dòng)物和微生物群落發(fā)育[112],增加土壤酶的來源和活性從而間接加快土壤氮素礦化速率[113]。施加生物碳和凋落物能明顯提高土壤有機(jī)質(zhì)含量來改善土壤理化性質(zhì),從而有效提高與氮素循環(huán)相關(guān)的微生物數(shù)量和改變土壤中細(xì)菌與真菌的比例[114-115]。在各種土壤環(huán)境中,土層深度造成的微生物數(shù)量與種類的差異,常常也是由于不同土層有機(jī)質(zhì)含量不同引起的[103]。此外,有機(jī)質(zhì)是氮素儲(chǔ)存的重要形式之一,在一些氧化酶的催化下可以從中釋放出來,因此土壤有機(jī)質(zhì)與全氮和堿解氮之間表現(xiàn)出了顯著的正相關(guān)關(guān)系[116]。

      3 結(jié)語及展望

      氮素對植物生長發(fā)育過程極其重要,且在土壤中生物地化反應(yīng)過程十分復(fù)雜。雖然,國內(nèi)外學(xué)者圍繞地下生態(tài)過程對氮循環(huán)的影響已進(jìn)行了大量的研究并取得了顯著進(jìn)展。但目前對于地下生態(tài)過程對氮循環(huán)影響的具體機(jī)制仍有不少環(huán)節(jié)不甚清楚:1)由于目前宏基因組測序費(fèi)用昂貴,該方法使用范圍嚴(yán)重受限。因此無法精準(zhǔn)描述環(huán)境變化條件下土壤微生物各物種的變化規(guī)律;2)當(dāng)環(huán)境因素引起微生物群落結(jié)構(gòu)變化后,對行使其功能的酶活性變化的深層機(jī)理還認(rèn)識(shí)不足;3)目前對根系分泌物的收集及其成分的鑒定存在較大困難,且雖已認(rèn)識(shí)到根系分泌物是地上植被與地下生態(tài)系統(tǒng)“相互交流”的紐帶,但這種交流的具體機(jī)制還缺乏認(rèn)識(shí);4)受限于地下生態(tài)過程難于直接觀測,過去一直缺乏精準(zhǔn)的研究技術(shù)手段,且現(xiàn)有的研究手段花費(fèi)較高,比如植物根系研究對試驗(yàn)設(shè)備的要求較高,因此系統(tǒng)全面的研究較少。綜上所述,為了更加深入的了解影響土壤氮素循環(huán)的具體機(jī)制,需要在分子等微觀層面和各種不同生態(tài)系統(tǒng)中開展更具體更系統(tǒng)的研究。

      References:

      [1] Ronn R,Vestergard M,Ekelund F.Interactions between bacteria,protozoa and nematodes in Soil.Acta Protozoologica,2012,51(3):223-235.

      [2] Nannipieri P,Giagnoni L,Renella G,Puglisi E,Ceccanti B,Masciandaro G,Fornasier F,Moscatelli M C,Marinari S.Soil enzymology:Classical and molecular approaches.Biology and Fertility of Soils,2012,48(7):743-762.

      [3] Abd A H,Enany A W,Nafady N A,Khalaf D M,Morsy F M.Synergistic interaction ofRhizobiumleguminosarumbv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (ViciafabaL.) in alkaline soil.Microbiological Research,2014,169(1):49-58.

      [4] Zhou X J,Liang Y,Chen H,Shen S H,Jing Y X.Effects of rhizobia inoculation and nitrogen fertilization on photosynthetic physiology of soybean.Photosynthetica,2006,44(4):530-535.

      [5] 蔡瑜如,傅華,陸麗芳,王靜.陸地生態(tài)系統(tǒng)植物吸收有機(jī)氮的研究進(jìn)展.草業(yè)科學(xué),2014,31(7):1357-1366. Cai Y R,Fu H,Lu L F,Wang J.Research progress on the uptake of organic nitrition by terresterial plants.Pratacultural Science,2014,31(7):1357-1366.(in Chinese)

      [6] Bowles T M,Raab P A,Jackson L E.Root expression of nitrogen metabolism genes reflects soil nitrogen cycling in an organic agroecosystem.Plant and Soil,2015,392(1-2):175-189.

      [7] Xiao H,Griffiths B,Chen X,Liu M,Jiao J,Hu F,Li H.Influence of bacterial-feeding nematodes on nitrification and the ammonia-oxidizing bacteria (AOB) community composition.Applied Soil Ecology,2010,45(3):131-137.

      [8] 陳小云,劉滿強(qiáng),胡鋒,毛小芳,李輝信.根際微型土壤動(dòng)物——原生動(dòng)物和線蟲的生態(tài)功能.生態(tài)學(xué)報(bào),2007(8):3132-3143. Chen X Y,Liu M Q,Hu F,Mao X F,Li H X.Contributions of soil micro——fauna(protozoa and nematodes) to rhizosphere ecological functions.Actaecology Since,2007(8):3132-3143.(in Chinese)

      [9] He X H,Critchley C,Bledsoe C.Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs).Critical Reviews in Plant Sciences,2003(6):531-567.

      [10] Johansen A,Jakobsen I,Jensen E S.Hyphal transport of15N-labelled nitrogen by a vesicular-arbuscular mycorrhizal fungus and its effect on depletion of inorganic soil N.New Phytologist,1992,122(2):281-288.

      [11] 周艷松,王立群.星毛委陵菜根系構(gòu)型對草原退化的生態(tài)適應(yīng).植物生態(tài)學(xué)報(bào),2011(5):490-499. Zhou Y S,Wang L Q.Ecological adaptation of root architecture to grassland degradation inPotentillaacaulis.Chinese Journal of Plant Ecology,2011(5):490-499.(in Chinese)

      [12] Fisk L M,Barton L,Jones D L,Glanville H C,Murphy D V.Root exudate carbon mitigates nitrogen loss in a semi-arid soil.Soil Biology and Biochemistry,2015,88:380-389.

      [13] Jiang Y,Jin C,Sun B.Soil aggregate stratification of nematodes and ammonia oxidizers affects nitrification in an acid soil.Environmental Microbiology,2014,16(10):3083-3094.

      [14] Schlesinger W H,Reynolds J F,Cunningham G L,Huenneke L F,Jarrell W M.Biological feedbacks in global desertification.Science,1990,247:1043-1048.

      [15] 賀紀(jì)正,張麗梅.土壤氮素轉(zhuǎn)化的關(guān)鍵微生物過程及機(jī)制.微生物學(xué)通報(bào),2013(1):98-108. He J Z,Zhang L M.Key processes and microbial mechanisms of soil nitrogen transformation.Microbiology China,2013(1):98-108.(in Chinese)

      [16] Lan T,Han Y,Cai Z.Denitrification and its product composition in typical Chinese paddy soils.Biology and Fertility of Soils,2014,51(1):89-98.

      [17] Zou Y,Zhang J,Yang D,Chen X,Zhao J,Xiu W,Lai X,Li G.Effects of different land use patterns onnifHgenetic diversity of soil nitrogen-fixing microbial communities inLeymuschinensissteppe.Acta Ecologica Sinica,2011,31(3):150-156.

      [18] 宋成軍,馬克明,傅伯杰,曲來葉,劉楊.固氮類植物在陸地生態(tài)系統(tǒng)中的作用研究進(jìn)展.生態(tài)學(xué)報(bào),2009(2):869-877. Song C J,Ma K M,Fu B J,Qu L Y,Liu Y.A review on the functions of nitrogen-fixers interrestrial ecosystems.Acta Ecologica Sinica,2009(2):869-877.(in Chinese)

      [19] Jonathan P Z,Jenkins B D,Short S M,Steward G F.Nitrogenase gene diversity and microbial community structure:A cross-system comparison.Environmental Microbiology,2003,69(7):539-554.

      [20] Mcglynn S E,Boyd E S,Peters J W,Orphan V J.Classifying the metal dependence of uncharacterized nitrogenases.Frontiers In Microbiology,2013,3:doi:10.3389/fmicb.2012.00419.

      [21] Morrissey J P,Walsh U F,O’Donnell A,Moёnne L Y,O’Gara F.Exploitation of genetically modified inoculants for industrial ecology applications.Antonie van Leeuwenhoek,2002(1-4):599-606.

      [22] Li X.Quantifying biological nitrogen fixation of different catch crops and residual effects of roots and tops on nitrogen uptake in barley using in-situ15N labelling.Plant and Soil,2015,395(1-2):273-287.

      [23] Marzadori C,Antisari L V,Gioacchini P,Sequi P.Turnover of interlayer ammonium in soil cropped with sugar beet.Biology and Fertility of Soils,1994,18(1):27-31.

      [24] Bach H J,Hartmann A,Schloter M,Munch J C.PCR primers and functional probes for amplification and detection of bacterial genes for extracellular peptidases in single strains and in soil.Journal of Microbiological Methods,2001,44(2):173-182.

      [25] Rao M B,Tanksale A M,Ghatge M S,Deshpande V V.Molecular and biotechnological aspects of microbial proteases.Microbiology and Molecular Biology Reviews,1998,62(3):597-635.

      [26] Brochier A C,Boussau B,Gribaldo S,Forterre P.Mesophiliccrenarchaeota:Proposal for a third archaeal phylum,theThaumarchaeota.Nature Reviews Microbiology,2008,6(3):245-252.

      [27] Head I M,Hiorns W D,Embley T M,Mccarthy A J,Saunders J R.The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences.Journal of General Microbiology,1993,139(3):1147-1153.

      [28] Teske A,Alm E,Regan J M,Toze S,Rittmann B E,Stahl D A.Evolutionary relationships among ammonia- and nitrite-oxidizing bacteria.Journal of Bacteriology,1994,176(21):6623-6630.

      [29] Kirstein K,Bock E.Close genetic relationship betweenNitrobacterhamburgensisnitrite oxidoreductase andEscherichiacolinitrate reductases.Archives of Microbiology,1993,160(6):447-453.

      [30] Hirofumi S,Du H K,Hiroo U,Junta S.Denitrification by fungi.Fems Microbiology Letters,1992,73(3):277-281.

      [31] Shoun H,Kano M,Baba I,Takaya N,Matsuo M.Denitrification by actinomycetes and purification of dissimilatory nitrite reductase and azurin fromStreptomycesthioluteus.Journal of Bacteriology,1998,180(17):4413-4415.

      [32] Philippot L.Denitrifying genes in bacterial andArchaealgenomes.Biochimica Et Biophysica Acta,2002,1577(3):355-376.

      [33] 呼和,陳先江,程云湘.撂荒地亞硝酸還原酶基因nirK和nirS豐度動(dòng)態(tài).草業(yè)科學(xué),2016,33(7):1253-1259. Hu H,Chen X J,Cheng Y X.The dynamics for abundance of nitrite reductase genesnirKandnirSin abandoned land.Pratacultural Science,2016,33(7):1253-1259.(in Chinese)

      [34] Jones D L,Kielland K.Amino acid,peptide and protein mineralization dynamics in a taiga forest soil.Soil Biology and Biochemistry,2012,55:60-69.

      [35] Schimel J P,Bennett J.Nitrogen mineralization:Challenges of a changing parading.Ecology,2004,85(3):591-602.

      [36] Zaman M,Di H J,Cameron K C,Frampton C M.Gross nitrogen mineralization and nitrification rates and their relationships to enzyme activities and the soil microbial biomass in soils treated with dairy shed effluent and ammonium fertilizer at different water potentials.Biology and Fertility of Soils,1999,29(2):178-186.

      [37] Stark C H,Condron L M,O’Callaghan M,Stewart A,Di H J.Differences in soil enzyme activities,microbial community structure and short-term nitrogen mineralisation resulting from farm management history and organic matter amendments.Soil Biology and Biochemistry,2008,40(6):1352-1363.

      [38] 賀紀(jì)正,張麗梅.氨氧化微生物生態(tài)學(xué)與氮循環(huán)研究進(jìn)展.生態(tài)學(xué)報(bào),2009(1):406-415. He J Z,Zhang L M.Advances in ammonia-oxidizing microorganisms and global nitrogen cycle.Acta Ecology Sinica,2009(1):406-415.(in Chinese)

      [39] Venter J C,Remington K,Heidelberg J F,Halpern A L.Environmental genome shotgun sequencing of the Sargasso Sea.Science,2004,304:84-87.

      [40] Leininger S,Urich T,Schloter M,Schwark L,Qi J,Nicol G W,Prosser J I,Schuster S C,Schleper C.Archaea predominate among ammonia-oxidizing prokaryotes in soils.Nature,2006,442:806-809.

      [41] Reigstad L J,Richter A,Daims H,Urich T,Schwark L,Schleper C.Nitrification in terrestrial hot springs of Iceland and Kamchatka.FEMS Microbiol Ecology,2008,64(2):167-174.

      [42] Chen J,Zhao X Q,Xue Z,Jia Z J,Ren F S.High pH-enhanced soil nitrification was associated with ammonia-oxidizing bacteria rather than archaea in acidic soils.Applied Soil Ecology,2015,85:21-29.

      [43] Shen X Y,Zhang L M,Shen J P,Li L H,Yuan C L,He J Z.Nitrogen loading levels affect abundance and composition of soil ammonia oxidizing prokaryotes in semiarid temperate grassland.Journal of Soils and Sediments,2011,11(7):1243-1252.

      [44] WaIker C B,Torre J R,Klotz M G,Urakawa H,Pinela N,Arp D J,Brochier A C,Chain P G,Chan P P,GoIIabgir A,Hemp J,HügIer M,Karr E A,K?nneke M,Shin M,Lawton T J,Lowe T,Martens H W,Sayavedra L A,Lang D.Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea.Proceedings of the National Academy of Sciences,2010,107(19):8818-8823.

      [45] Yin C,Fan F,Song A,Cui P,Li T,Liang Y.Denitrification potential under different fertilization regimes is closely coupled with changes in the denitrifying community in a black soil.Applied Microbiology and Biotechnology,2015,99(13):5719-5729.

      [46] Chen Z,Luo X,Hu R,Wu M,Wu J,Wei W.Impact of long-term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil.Microbial Ecology,2010,60(4):850-861.

      [47] Paranychianakis N V,Tsiknia M,Giannakis G,Nikolaidis N P,Kalogerakis N.Nitrogen cycling and relationships between ammonia oxidizers and denitrifiers in a clay-loam soil.Applied Microbiology Biotechnology,2013,97(12):5507-5515.

      [48] Pachouri P K,Meyer L A.IPCC,2014:Climate Change 2014:Synthesis Report.Geneva:Contribution of Working Groups Ⅰ,Ⅱ and Ⅲ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2014:151.

      [49] Galloway J N,Townsend A R,Erisman J W,Bekunda M,Cai Z,Freney J R,Martinelli L A,Seitzinger S P,Sutton M A.Transformation of the nitrogen cycle:Recent trends,questions,and potential solutions.Astronomy and Astrophysics,2008,565(9):89-93.

      [50] Luo Y.Responses of ecosystem nitrogen cycle to nitrogen addition:A meta-analysis.New Phytologist,2011,189(4):1040-1050.

      [51] Cheng S,Wang L,Fang H,Yu G,Yang X,Li X,Si G,Geng J,He S,Yu G.Nonlinear responses of soil nitrous oxide emission to multi-level nitrogen enrichment in a temperate needle-broadleaved mixed forest in Northeast China.Catena,2016,147:556-563.

      [52] Zhu X,Zhang W,Chen H,Mo J.Impacts of nitrogen deposition on soil nitrogen cycle in forest ecosystems:A review.Acta Ecologica Sinica,2015,35(3):35-43.

      [53] Lin H,Ge W,Wei W,Xi Z.Factors affecting global forest soil N2O emission flux.Chinese Journal of Ecology,2012,31(2):446-452.

      [54] Chen D,Fu X Q,Wang C,Liu X L,LI H,Shen J L,Wang Y,Li Y,Wu J S.Nitrous Oxide Emissions from a masson pine forest soil in subtropical central China.Pedosphere,2015,25(2):263-274.

      [55] Matson A,Pennock D,Bedard H A.Methane and nitrous oxide emissions from mature forest stands in the boreal forest,Saskatchewan,Canada.Forest Ecology and Management,2009,258(7):1073-1083.

      [56] Zerva A,Mencuccini M.Short-term effects of clearfelling on soil CO2,CH4,and N2O fluxes in a Sitka spruce plantation.Soil Biology and Biochemistry,2005,37(11):2025-2036.

      [57] 胡雷,王長庭,阿的魯驥,字洪標(biāo).高寒草甸植物根系生物量及有機(jī)碳含量與土壤機(jī)械組成的關(guān)系.西南民族大學(xué)學(xué)報(bào):自然科學(xué)版,2015,41(1):6-11. Hu L,Wang C T,Ade L J,Zi H B.Relationship between root biomass,soil organic carbon and soil mechanical composition in alpine meadow.Journal of Southwest University for Nationalities:Natural Science Edition,2015,41(1):6-11.(in Chinese)

      [58] Lea P J,Azevedo R A.Nitrogen use efficiency:Uptake of nitrogen from the soil.Annals of Applied Biology,2006,149(3):243-247.

      [59] Guo C,Dannenmann M,Gasche R,Zeller B,Papen H,Polle A,Rennenberg H,Simon J.Preferential use of root litter compared to leaf litter by beech seedlings and soil microorganisms.Plant and Soil,2013(1-2):519-534.

      [60] Kraus T C,Dahlgren R A,Zasoski R J.Tannins in nutrient dynamics of forest ecosystems:A review.Plant and Soil,2003,256(1):41-66.

      [61] Kong C H,Chen L C,Xu X H,Wang P,Wang S L.Allelochemicals and activities in a replanted Chinese fir (Cunninghamialanceolata(Lamb.)) tree ecosystem.Journal of Agricultural and Food Chemistry,2008,56(24):11734-11739.

      [62] Uselman S M,Quails R G,Lilienfein J.Quality of soluble organic C,N,and P produced by different types and species of litter:Root litter versus leaf litter.Soil Biology and Biochemistry,2012,54(6):57-67.

      [63] 羅永清,趙學(xué)勇,李美霞.植物根系分泌物生態(tài)效應(yīng)及其影響因素研究綜述.應(yīng)用生態(tài)學(xué)報(bào),2012(12):3496-3504. Luo Y Q,Zhao X Y,Li M X.Ecological effect of plant root exudates and related affecting factors:A review.Chinese Journal of Applied Ecology,2012(12):3496-3504.(in Chinese)

      [64] Neumann G.Root Exudates and Nutrient Cycling.Heidelberg:Springer,2006:123-157.

      [65] Long L,Li S,Zhou L.Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils.Proceedings of the National Academy of Sciences of the United States of America,2007,104(27):11192-11196.

      [66] Feth Z H,Catherine S,Thierry H,Wafa A.Root exudates mediated interactions belowground.Soil Biology and Biochemistry,2014,56:69-80.

      [67] Nardi S,Sessi E,Pizzeghello D,Sturaro A,Rella R,Parvoli G.Biological activity of soil organic matter mobilized by root exudates.Chemosphere,2002(7):1075-1081.

      [68] Zhangac Z,Qiaoac M,Liab D,Yina H,Liua Q.Do warming-induced changes in quantity and stoichiometry of root exudation promote soil N transformations via stimulation of soil nitrifiers,denitrifiers and ammonifiers? European Journal of Soil Biology,2016,74:60-68.

      [69] Landi L,Valori F,Ascher J,Renella G,Falchini L,Nannipieri P.Root exudate effects on the bacterial communities,CO2evolution,nitrogen transformations and ATP content of rhizosphere and bulk soils.Soil Biology and Biochemistry,2006,38(3):509-516.

      [70] Renella G,Egamberdiyeva D,Landi L,Mench M,Nannipieri P.Microbial activity and hydrolase activities during decomposition of root exudates released by an artificial root surface in Cd-contaminated soils.Soil Biology and Biochemistry,2006,38(4):702-708.

      [71] Guo W,Zhao R,Zhao W,Fu R,Guo J,Bi N,Zhang J.Effects of arbuscular mycorrhizal fungi on maize (ZeamaysL.) and sorghum (SorghumbicolorL.) grown in rare earth elements of mine tailings.Applied Soil Ecology,2013,83:85-92.

      [72] Tanaka Y,Yano K.Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied.Plant,Cell and Environment,2005,28(10):1247-1254.

      [73] Albertsen A,Ravnskov S,Green H,Jensen D F,Larsen J.Interactions between the external mycelium of the mycorrhizal fungusGlomusintraradicesand other soil microorganisms as affected by organic matter.Soil Biology and Biochemistry,2006,38(5):1008-1014.

      [74] Nuccio E E,Hodge A,Pett R J,Herman D J,Weber P K,Firestone M K.An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition.Environmental Microbiology,2013,15(6):1870-1881.

      [75] Perez T J,Testillano P S,Balestrini R,Fiorilli V,Azcon A C,Ferrol N.GintAMT2,a new member of the ammonium transporter family in the arbuscular mycorrhizal fungusGlomusintraradices.Fungal Genetics and Biology,2011,48(11):1044-1055.

      [76] Willmann A,Wei M,Nehls U.Ectomycorrhiza-mediated repression of the high-affinity ammonium importer geneAmAMT2 inAmanitamuscaria.Current Genetics,2007,51(2):71-78.

      [77] Montanini B,Gabella S,Abbà S,Peter M,Kohler A,Bonfante P,Chalot M,Martin F,Ottonello S.Gene expression profiling of the nitrogen starvation stress response in the mycorrhizal ascomyceteTuberborchii.Fungal Genetics and Biology,2006,43(9):630-641.

      [78] Cappellazzo G,Lanfranco L,Fitz M,Wipf D,Bonfante P.Characterization of an amino acid permease from the endomycorrhizal fungusGlomusmosseae.Plant Physiology,2008,147(1):429-437.

      [79] Javelle A,Morel M,Rodríguezpastrana B R,Botton B,André B,Marini A M,Brun A,Chalot M.Molecular characterization,function and regulation of ammonium transporters (Amt) and ammonium-metabolizing enzymes (GS,NADP-GDH) in the ectomycorrhizal fungusHebelomacylindrosporum.Molecular Microbiology,2003,47(2):411-430.

      [80] Montanini B,Moretto N,Soragni E,Percudani R,Ottonello S.A high-affinity ammonium transporter from the mycorrhizal ascomyceteTuberborchii.Fungal Genetics & Biology,2002,36(1):22-34.

      [81] Jargeat P,Rekangalt D,Verner M C,Gay G,Debaud J C,Marmeisse R,Fraissinettachet L.Characterisation and expression analysis of a nitrate transporter and nitrite reductase genes,two members of a gene cluster for nitrate assimilation from the symbiotic basidiomyceteHebelomacylindrosporum.Current Genetics,2003,43(3):199-205.

      [82] Nehls U,Kleber R,Wiese J,Hampp R.Isolation and characterization of a general amino acid permease from the ectomycorrhizal fungusAmanitamuscaria.New Phytologist,1999,144(2):343-349.

      [83] Wipf D,Benjdia M,Tegeder M,Frommer W B.Characterization of a general amino acid permease fromHebelomacylindrosporum.FEBS Letters,2002,528(1-3):119-124.

      [84] Morel M,Jacob C,Fitz M,Wipf D,Chalot M,Brun A.Characterization and regulation ofPiDur3,a permease involved in the acquisition of urea by the ectomycorrhizal fungusPaxillusinvolutus.Fungal Genetics and Biology,2008,45(6):912-921.

      [85] Gregory P J.Roots,rhizosphere and soil:The route to a better understanding of soil science?European Journal of Soil Science,2006(1):2-12.

      [86] Griffiths B S,Caul S.Migration of bacterial-feeding nematodes,but not protozoa,to decomposing grass residues.Biology and Fertility of Soils,1993,15(3):201-207.

      [87] Bongers T,Ferris H.Nematode community structure as a bioindicator in environmental monitoring.Trends in Ecology and Evolution,1999,14(6):224-228.

      [88] Woods L E,Col C V,Elliott E T,Anderson R V,Coleman D C.Nitrogen transformations in soil as affected by bacterial-microfaunal interactions.Soil Biology and Biochemistry,1982(2):93-98.

      [89] Djigal D,Brauman A,Diop T A,Chotte J L,Villenave C.Influence of bacterial-feeding nematodes (Cephalobidae) on soil microbial communities during maize growth.Soil Biology and Biochemistry,2004(2):323-331.

      [90] Fu S,Ferris H,Brown D,Plant R.Does the positive feedback effect of nematodes on the biomass and activity of their bacteria prey vary with nematode species and population size?Soil Biology and Biochemistry,2005,78(11):1979-1987.

      [91] Ferris H,Venette R C,Meulen H Rvd,Lau S S.Nitrogen mineralization by bacterial-feeding nematodes:Verification and measurement.Plant and Soil,1998(2):159-171.

      [92] Costello D M,Lamberti G A.Biological and physical effects of non-native earthworms on nitrogen cycling in riparian soils.Soil Biology and Biochemistry,2009,41(10):2230-2235.

      [93] Jiang Y,Sun B,Li H,Liu M,Chen L,Zhou S.Aggregate-related changes in network patterns of nematodes and ammonia oxidizers in an acidic soil.Soil Biology and Biochemistry,2015,88:101-109.

      [94] Urakawa R,Shibata H,Kuroiwa M,Inagaki Y,Tateno R,Hishi T,Fukuzawa K,Hirai K,Toda H,Oyanagi N.Effects of freeze-thaw cycles resulting from winter climate change on soil nitrogen cycling in ten temperate forest ecosystems throughout the Japanese archipelago.Soil Biology and Biochemistry,2014,74:82-94.

      [95] Griffin T,Honeycutt C,He Z.Effects of temperature,soil water status,and soil type on swine slurry nitrogen transformations.Biology and Fertility of Soils,2002,36(6):442-446.

      [96] Smith J,Wagner R C,Dunfield K.Season and management related changes in the diversity of nitrifying and denitrifying bacteria over winter and spring.Applied Soil Ecology,2010,44(2):138-146.

      [97] Bai Y,Wu J G,Clark C M.Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning:Evidence from Inner Mongolia grasslands.Global Change Biology,2010,16(2):889-899.

      [98] Xiao T L,Han X G.Nutrient resorption responses to water and nitrogen amendment in semi-arid grassland of Inner Mongolia,China.Plant and Soil,2010(1-2):481-491.

      [99] Zhao H,Zhang X,Xu S,Zhao X,Xie Z,Wang Q.Effect of freezing on soil nitrogen mineralization under different plant communities in a semi-arid area during a non-growing season.Applied Soil Ecology,2010,45(3):187-192.

      [100] Hentschel K,Borken W,Matzner E.Repeated freeze-thaw events affect leaching losses of nitrogen and dissolved organic matter in a forest soil.Journal of Plant Nutrition and Soil Science,2008,171(5):699-706.

      [101] Breland T A,Hansen S.Nitrogen mineralization and microbial biomass as affected by soil compaction.Soil Biology and Biochemistry,1996,28(4):655-663.

      [102] 索南吉.青藏高原東緣土壤酶活性空間格局變化及對干擾的響應(yīng)研究.蘭州:蘭州大學(xué)碩士學(xué)位論文,2012. Suo N J.Spatial variation of siol enzyme activity in eastern Qing-Tibet Plateau—— Effect of fertilization and grazing.Master Thesis.Lanzhou:Lanzhou University,2012

      [103] 李貴才,韓興國,黃建輝,唐建維.森林生態(tài)系統(tǒng)土壤氮礦化影響因素研究進(jìn)展.生態(tài)學(xué)報(bào),2001(7):1187-1392. Li G C,Han X G,Huang J H,Tang J W.A review of affecting factors of soil nitrogen mineralization in forest ecosystems.Acta Ecologica Sinica,2001(7):1187-1392.(in Chinese)

      [104] Oehl F,Laczko E,Bogenrieder A,Stahr K,B?sch R,Heijden M,Sieverding E.Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities.Soil Biology and Biochemistry,2010,42(5):724-738.

      [105] Renella G,Landi L,Ascher J,Ceccherini M T,Pietramellara G,Nannipieri P.Phosphomonoesterase production and persistence and composition of bacterial communities during plant material decomposition in soils with different pH values.Soil Biology and Biochemistry,2006,38(4):795-802.

      [106] Ai C,Liang G,Sun J,He P,Tang S,Yang S,Zhou W,Wang X.The alleviation of acid soil stress in rice by inorganic or organic ameliorants is associated with changes in soil enzyme activity and microbial community composition.Biology and Fertility of Soils,2015,51(4):465-477.

      [109] Curtin D,Campbell C A,Jalil A.Effects of acidity on mineralization:pH-dependence of organic matter mineralization in weakly acidic soils.Soil Biology and Biochemistry,1998,30(1):57-64.

      [110] Zhang L M,Hu H W,Shen J P,He J Z.Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils.The ISME Journal,2012,6(5):1032-1045.

      [111] Chertov O G,Komarov A S,Bykhovets S S,Kobakc K I.Simulated soil organic matter dynamics in forests of the Leningrad administrative area,northwestern Russia.Forest Ecology and Management,2002(1-2):29-44.

      [112] Treonis A M,Austin E E,Buyer J S,Maul J E,Spicer L,Zasada I A.Effects of organic amendment and tillage on soil microorganisms and microfauna.Applied Soil Ecology,2010,46(1):103-110.

      [113] Scott N A,Binkley D.Foliage litter quality and annual net N mineralization:Comparison across North American forest sites.Oecologia,1997,113(2):151-159.

      [114] Anderson C R,Condron L M,Clough T J,Fiers M,Stewart A,Hill R A,Sherlock R R.Biochar induced soil microbial community change:Implications for biogeochemical cycling of carbon,nitrogen and phosphorus.Pedobiologia,2011,54(5-6):309-320.

      [115] Pisani O,Lin L,Lun O,Lajtha K,Nadelhoffer K,Simpson A,Simpson M.Long-term doubling of litter inputs accelerates soil organic matter degradation and reduces soil carbon stocks.Biogeochemistry,2016,127(1):1-14.

      [116] Kieloaho A J,Pihlatie M,Carrasco M D,Kanerva S,Parshintsev J,Riekkola ML,Pumpanen J,Heinonsalo J.Stimulation of soil organic nitrogen pool:The effect of plant and soil organic matter degrading enzymes.Soil Biology and Biochemistry,2016,96:970-106.

      (責(zé)任編輯 茍燕妮)

      The nitrogen cycle and factors affecting it in the belowground ecosystem

      Zeng Kai1, Liu Lin1, Cai Yi-min2, Chen You-jun3, Chen Dong-ming1,Sun Fei-da1, Pei Shu-ting1, Zhou Chun-mei1, Shen Xu-dong1

      (1.Department of Grassland Science, Animal Science and Technology College of Sichuan Agricultural University, Chengdu 611130, China;2.National Institute of Livestock and Grassland Science, Tokyo 329-2793, Japan 3.Institute of Qinghai-Tibetan Plateau, Southwest University for Nationalities, Chengdu 610041, China)

      Nitrogen (N) is one of the main factors limiting primary productivity in terrestrial ecosystems due to its role in plant growth and development. In belowground ecosystems, most nitrogen exists in the form of complex polymers, but these forms of nitrogenous compounds cannot be absorbed and assimilated directly by plants. Hence, the ecological process from complex polymers to simple inorganic substances has always been a focus of research; this process is regulated and controlled by a series of complex biogeochemical reactions that occur belowground via symbiotic associations between plant roots and bacteria (e.g., biological nitrogen fixation). In this paper, we summarize the effects of soil biotic and abiotic factors on the belowground nitrogen cycle. Soil organisms promote the belowground nitrogen cycle through metabolism and release of various enzymes; Plant roots change the soil properties and secrete organic matter. The development of soil organisms is strongly restricted by abiotic factors, so the interaction between organisms and some abiotic factors also exerts important influences on the belowground nitrogen cycle. Currently, due to the high abundance of soil organism species, the complexity of nutrient circulation patterns, the limited understanding regarding the response of nature to global climate change, and the expense of molecular biotechnology, it is still difficult to define the whole nitrogen nutrition circulation network in the belowground ecosystem at the molecular level. This review summarizes our current understanding regarding the belowground nitrogen cycle and how it is regulated by biotic and abiotic factors.

      belowground ecosystem; nitrogen cycle; biotic factor; abiotic factor

      Liu Lin E-mail:liulinsky@126.com

      10.11829/j.issn.1001-0629.2016-0342

      2016-06-24 接受日期:2016-11-17

      教育部“春暉計(jì)劃”合作科研項(xiàng)目(Z2015078);四川省科技廳國際合作項(xiàng)目(2016HH0087);四川省科技廳重大專項(xiàng)(2015SZ0062)

      曾凱(1991-),男,湖南益陽人,在讀碩士生,研究方向?yàn)椴莸厣鷳B(tài)。E-mail:514995903@qq.com

      劉琳(1978-),女,四川成都人,副教授,博士,研究方向?yàn)椴莸厣鷳B(tài)。E-mail:liulinsky@126.com

      S154.1

      A

      1001-0629(2017)3-0502-13*

      曾凱,劉琳,蔡義民,陳有軍,陳冬明,孫飛達(dá),裴姝婷,周春梅,申旭東.地下生態(tài)系統(tǒng)中氮素的循環(huán)及影響因素.草業(yè)科學(xué),2017,34(3):502-514.

      Zeng K,Liu L,Cai Y M,Chen Y J,Chen D M,Sun F D,Pei S T,Zhou C M,Shen X D.The nitrogen cycle and factors affecting it in the belowground ecosystem.Pratacultural Science,2017,34(3):502-514.

      猜你喜歡
      氮素根系植物
      雅安市:織密根治欠薪“根系網(wǎng)”
      根系分泌物解鋁毒作用研究進(jìn)展
      哦,不怕,不怕
      將植物穿身上
      烤煙漂浮育苗根系致腐細(xì)菌的分離與鑒定
      長期膜下滴灌棉田根系層鹽分累積效應(yīng)模擬
      植物罷工啦?
      植物也瘋狂
      楸樹無性系苗期氮素分配和氮素效率差異
      基于光譜分析的玉米氮素營養(yǎng)診斷
      新乐市| 双江| 泽普县| 光山县| 山阳县| 文成县| 赤峰市| 蓬莱市| 和林格尔县| 宿迁市| 广东省| 黎川县| 河间市| 玛沁县| 宁晋县| 临泉县| 包头市| 新化县| 淮阳县| 金门县| 定州市| 牡丹江市| 定日县| 保康县| 娄烦县| 建始县| 新巴尔虎右旗| 纳雍县| 盘山县| 大姚县| 林口县| 宜城市| 湘潭市| 宜良县| 正宁县| 紫云| 清水县| 竹溪县| 龙泉市| 达拉特旗| 固原市|