• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Inverse Analysis of Origin-Destination matrix for Microscopic Traffic Simulator

    2017-03-13 05:01:44AbeFujiiandYoshimura
    關(guān)鍵詞:目標(biāo)群體認(rèn)知度種植業(yè)

    K.Abe,H.Fujii and S.Yoshimura

    1 Introduction

    Microscopic traffic simulations are useful for solving various traffic-related problems,e.g.traffic jams and accidents,local and global environmental and energy problems,maintenance of mobility in aging societies,and evacuation planning for natural as well asman-made disasters.To use such microscopic traffic simulators,we need to input various types of traffic data.Data is typically input as an origindestination(OD)matrix,which describes demands between origin-destination pairs in a traffic network,and is particularly necessary in microscopic simulators.Since the OD matrix cannot beobserved directly,it has to beestimated in someway.

    The approaches for OD matrix estimation can be roughly classified into two categories.The firstis based on the populationdistribution.This approach iscommonly used for traffic and civil planning using the four step model[Mc Nally(2008)].Since the population distribution isderived from traffic censusdata,wedo not have to measure the actual traffic fl ow.However,the resolution of the censusdataislow,and the accuracy of the estimated resultsisnot guaranteed.

    The second approachisan inverseanalysis of the link traffic volumedata.Link traffic volumeis the traffic volumecounted atafixed location.This approachisusually more accurate.Here,the OD matrix is optimized by minimizing the distance between the observed and estimated link traffic volume.This can be accomplished with a bi-level programming approach[Bera and Rao(2011)].

    The inverse analysis approaches can be classified into two categories depending on the method used to solve the direct problem involved in the estimation process.Here,the direct problem refers to the assignment from the OD matrix to the link traffic volume.The solution of the direct problem can be obtained analytically,or approximated with the equilibrium assignment algorithm[Larss on and Patriksson(1992)].Estimation of the OD matrix using this assignment algorithm was shown to be effective for large-scale road networks[Lundgren and Peterson(2008)].For dynamic estimates,Off-line time-sliced OD estimation based on dynamic equilibrium,which is similar to the static OD estimation method,has been proposed[Barceló and Montero(2015)].However,owing to the differencesin network handling,the results of the equilibriumal gorithmmay notbecompatible with the traffic simulator.The alternativeis to usethetraffic simulator to solvethedirect problem.However,this latter method requires a high computational cost.Few studies have been conducted on the use of the traffic simulator for solving the direct problem,so the stability and robustness of the subsequent resultsare unclear.

    In this paper,we newly propose an OD matrix estimation method using a microscopic traffic simulator.We then examine the accuracy and stability of our results for the inverse analysis.

    2 Method

    2.1 Outline of method

    An outline of our method isshown in Figure1.

    The proposed method consists of the following steps:(1)calculating link traffic volume from the OD matrix,and(2)updating the optimal OD matrix solution.In step(1),a multi-agent based microscopic traffic simulator“ADVENTURE_Mates(MATES)”[Yoshimura(2006);Fujii,Yoshimura,and Seki(2010)]is used.In step(2),we use the Levenberg-Marquardt gradient method.After cal-culating link traffic volume,the residuals of the link traffic volume are calculated.The optimal estimated OD matrix isupdated using the seresiduals.The sestepsare iterated until the estimated OD matrix converges to a tolerance level.

    Figure1:Flow diagram of theproposed method for estimating the OD matrix

    2.2 Formulation

    The OD matrix is estimated so as to minimize the residual norm of the link traffic volume between the estimated and the observed values.This process can be expressed asfollows:

    a Tnhde traffic simulation is used to evaluate QQQ?corresponds to the traffic simulation,where link traffic volumeiscalculated from the OD matrix xxx.

    We now define the dimensions of the vectors. N denotes the dimension of xxx,i.e.the number of OD pairs,and M is the dimension of QQQ,i.e.the number of observation points.In general,N>M.Therefore,in the OD matrix estimation,we have to estimate more variables from smaller datasets.

    xxx : OD matrix(asaform of vector)

    rrr : Residual(vector)of link traffic volume

    In this paper,we use Euclid norms.If the variance and covariance of the observed link traffic volumeareknown and we use the Mahalanobis distance to calculate the norms,we can regularize the residuals,with consideration of the variance and covariance.However,this requires multiple observation of the traffic volume,which takes much observation cost.Therefore we assume that there is no variance and covariance in the observed link traffic volume data,and we employ Euclid norms.For simplicity,we assume that the traffic flow is in a steady state and the relation between the OD matrix and the link traffic volume is linear.The assumption of such a linear relation is appropriate if traffic congestion does not occur.Here,the linear relation means that we can describe the relation in Equation 3 using amatrix

    In this study,we usetheobserved link traffic volumedata which satisfies Equation 3.The assumption of a steady state means that both the OD matrix and the link traffic volumearestationary in time.This assumption isreasonableif an appropriate time period is used,e.g.a short time period where a drastic change in traffic fl ow doesnot occur.

    J in Equation 3 corresponds to the Jacobian matrix of F with respect to xxx,which is an M×N matrix.Since this system has no explicit constitutive equation,we have to approximate JJJ.The value of JJJ isestimated asin Equation 4 using the results of the traffic simulator.

    Sinceachangein xxx corresponds to that in the routechoice,were-evaluate JJJ at each iteration.

    2.3 Modification of simulator

    MATES is a multi-agent microscopic traffic simulator,which models individual driver behavior.This isuseful for modeling individual vehicleson the microscopic scale and for extrapolating traffic flow on the macroscopic scale in a form of the emergence phenomena.Since MATESuses OD matrix as input data and outputs link traffic volume,we use this simulator to calculate link traffic volumefrom OD matrix.

    In order to model individual driver behavior,stochastic elements are necessary,so MATES simulates random numbers using some random seeds.In this study,wefix the serandom seedsto make MATES deterministic for simplicity.

    In addition,the original version of generates vehicles according to a Poissondistribution whose rate parameter corresponds to the OD traffic volume,i.e.the element of the OD matrix.However,when using a Poisson distribution,the number of generated vehicles in fixed interval of time is not always equal to that described in the OD matrix,which causes stochastic error in the OD estimation.Here,we modify the method to generate vehicles at fixed time intervals corresponding to the OD traffic volume.The number of generated vehicles thus is guaranteed to be exactly equal to the OD traffic volume.

    2.4 Solution updating step

    The OD matrix is updated using one of the gradient methods.This updatng step is given in the following general form:

    where

    其一,加大種植業(yè)保險(xiǎn)保費(fèi)補(bǔ)貼政策宣傳力度,提高農(nóng)戶對(duì)種植業(yè)保險(xiǎn)政策的認(rèn)知度?;ヂ?lián)網(wǎng)等信息技術(shù)在農(nóng)村的應(yīng)用與推廣為種植業(yè)保險(xiǎn)的宣傳提供了新的載體,為宣傳工作的進(jìn)一步開展提供了便利。保險(xiǎn)公司和政府相關(guān)部門應(yīng)在原有傳統(tǒng)宣傳方式的基礎(chǔ)上采用更多形式的宣傳手段,如建立微信公眾平臺(tái)、與農(nóng)業(yè)保險(xiǎn)相關(guān)的手機(jī)移動(dòng)客戶端等,拓寬農(nóng)戶的認(rèn)知渠道,讓農(nóng)戶足不出戶就可以了解最新的農(nóng)業(yè)保險(xiǎn)政策。另外,為了達(dá)到宣傳的視聽效果,相關(guān)機(jī)構(gòu)還應(yīng)制作拍攝與種植業(yè)保險(xiǎn)相關(guān)的微視頻、微廣告進(jìn)行宣傳教育;為了發(fā)揮宣傳的聯(lián)動(dòng)效應(yīng),在普遍宣傳中要對(duì)目標(biāo)群體特別是村干部和新型農(nóng)業(yè)經(jīng)營(yíng)主體等有針對(duì)性地進(jìn)行走訪式宣傳。

    In this study,weuse the Levenberg-Marquardt method(LMM)[Levenberg(1944);Marquardt(1963)].The definition ofΔxxx in the LMMisgiven asfollows:

    where

    GGG : Gradient of F with respect to xxx;GGG=?JJJTrrr

    HHH : Hessian matrix of F with respect to xxx.

    The steepest decent method(SDM)is commonly used in optimization problems,because it only requires a gradient matrix as input.However,the rate of convergence is slower than other methods.On the other hand,the LMM is based on the Gauss-Newton method(GNM)and is applicable to nonlinear problems.In this method,the Hessian matrix is assumed to be the product of Jacobian matrices:HHH=JJJTJJJ.However the GNM can only beapplied when N<M.In the LMM,the Hessian matrix isregularized asin Equation 7

    where λ denotes a regularization parameter for LMM and DDD denotes a diagonal matrix,e.g.,the identity matrix.The addition of the diagonal matrix makes the Hessian matrix non-singular,so that its inverse can be calculated.Marquardt proposed initially settingλ to alargevalue and decreasingλ with successive iterations[Marquardt(1963)].Ifλbecomes zero,Equation 7 is equivalent to the updating scheme for the GNM.Ifλ is sufficiently large,the search direction approaches that of the SDM.According to Marquardt’sproposal,the initial iteration stepshave the robustness of SDM,and the later iteration ones have the high rate of convergence of the GNM.In this study,evaluating Fiscomputationally expensive.Thus,we decreaseλ from an initial valueλ0(>0)at constant rateγ(0<γ<1)with successive iteration sas follows:

    The convergence is judged comparing relative residual norm(RRN)‖rrr‖/‖ˉQQQ‖and a to leranceε.Since RRN is regularized by observed link traffic volumeˉQQQ,it can be compared among different networks.

    2.5 Introduction of non-negativeconstraintsin to the estimation method

    Non-negative constraint of traffic volume is necessary for OD estimation.When the OD matrix satisfies the constraint,the link traffic volume then satisfies it.Thus it is sufficient to apply the constraint only to OD matrix.Since the original LMM has no constraint for variables,we have to in troduceit into the LMM.We propose the following two kinds of methods to do so.

    First,we describe the common assumption in both the methods.In this study,we makethenon-negativeconstraint stricter,i.e.for all elements i,xi>δ,whereδisa small value and is larger than zero.The reason is that too small OD traffic volume causes some estimated link traffic volume to be zero.If it occurs,some elements of Jacobian matrix become zero,then the zero elements are propagated to some elements ofΔxxx.Consequently,the search direction getslimited.

    Next,we describe the methods in sequence.The first,named method A,is designed to satisfy the constraint strictly.Here,the initial value ofαis set to 1.If<δ for any elementi,αis modified to be so smaller as to satisfy=δfor all elements i.It does not modify the search direction from that given in the LMM.Nevertheless,it is expected to that residuals stop decreasing within insufficient large values becauseαbecomes smaller toward zero with successiveiterations.

    The second,named method B,is the method using heuristics.Here,the search length coeffi cientαis fixed to be 1 strictly.After the solution updating step,the updated xiis forcibly modified to beδ individually when xi<δ for any index i.Although it makes different search direction from that in the LMM,sinceαdoes not becomezero,iteration isexpected not to halt except the convergence.

    We discuss these characteristics of the two methodsin Section 4.

    3 Numerical experiments

    3.1 Outline of experiments

    Before using the proposed method we describe previously, we have to determine thefollowing two things; the optimal tolerance for convergence ε and which methodto be used for the non-negative constraint. To determine them, it is necessary to usesome evaluation index which can be discussed in terms of traffic engineering, e.g.the proportion of reproduced link traffic volume to observed one and the correlationcoefficient between reproduced and observed link traffic volume. Here, we applythe proposed method to some cases considering observed link traffic volume withand without noise. Using these results, we determine these two things and discussaccuracy, stability and characteristics of each case or method.

    3.2 Networksused for experiments

    In the numerical experiments, we use two types of road networks, i.e. grids or roadmaps. The first map is a regular grid with simple topology, shown in Figure 2(a). Inthe figure, each line corresponds to a link. Numerical instabilities may arise whensolving symmetric maps. Therefore, we slightly displace all grid nodes in a randommanner. In this map, each link has 2 lanes, and all intersections have traffic signals.

    The second map is an actual road network topology,i.e.a 3 km x 3 km area in Tokyo.Themap isshown in Figure2(b).Thismap includes one way links,so that thenumber of ODpairs N islessthan n(n?1),where n denotesthenumber of OD nodes.

    The properties of these networks are shown in Table 1. In the table, detectors are thepoints at which link traffic volume is measured in a simulation. As a general rule inthis study, detectors are located on all links, 5 m from the end point. Consequently,there are twice as many detectors as links.

    Figure2:Networksused for experiments

    Table1:Network properties

    3.3 Initial conditionsfor experiments

    In the numerical experiments, we use two types of road networks, i.e. grids or roadmaps. The first map is a regular grid with simple topology, shown in Figure 2(a). Inthe figure, each line corresponds to a link. Numerical instabilities may arise whensolving symmetric maps. Therefore, we slightly displace all grid nodes in a randommanner. In this map, each link has 2 lanes, and all intersections have traffic signals.

    Table2:Initial conditionsin theexperiments

    Next,we consider the observed link traffic volume.In this study,we useasi mulated dataset in advance in all experiments.To generate this link traffic volume,we run the traffic simulator using OD matrices which satisfy the assumption of linearity described in Section 2.2.The results are given in Table 1.Since the data has been simulated under the seconditions,the existence of the solution isguaranteed.

    Using this data as a reference case, we can consider other cases where artificialnoise has been added to the data in Table 1, to examine the accuracy and stability of the proposal method. Noise is added to the networks as follows.

    Here, δ is a noise vector, where each element i follows a uniform distribution whoseupper and lower limits are within ±10% of ˉQi, For the experiments with each map,10 kinds of observed link traffic volume are prepared using 10 different randomseeds.

    4 Results and Discussions

    4.1 Experiments on the regular grid

    First of all,we apply the proposed method to the regular grid.As mentioned in Section 3.1,we apply both of the two methods of the non-negative constraint,i.e.methods A and B.

    We apply the methods to the cases with and with outnoise.RRN transi tionsin these cases are shown in Figures 3 and 4.The x-axis denotes the number of iteration counts,while the y-axis is the RRN on the logarithmic scale.Red and green lines denote the methods A and B,respectively.

    Figure 3:RRN transition in the regular grid without noise

    The sefigures show that RRN transitions in both the methods A and B decrease in the same rate until early iteration steps,i.e.6th iteration step without noise and 2nd iteration step with noise.The reason is that all elements of OD matrices are positive until those steps.Since the methods A and B consider both non-negativeconstraints,there is no difference unless the constraints are applied to the solution updating step.On the other hand,RRNs in method B shows different transition between the cases with and without noise.The RRN in the case without noise oscillates,while the RRN in the case with noise almost continuously increases after the RRN becomes minimum.This difference is caused by the difference of the number of the elements to which the non-negative constraint is applied in OD matrices.If the non-negative constraint is applied for an element in OD matrices,its value approachesδ.Thus,the number of the elements of xi=1 denotes the number of the elements to which the constraint is applied.Here,we show the resultsin Figure5.

    Figure4:RRN transition in the regular grid with noise

    This figure shows that there isadifferencein the number of the elements of xi=1 between the cases with and without noise.In the case without noise,the number oscillates in small,i.e.from 0 to 3,while in the case with noise,the number increases almost continuously.As a result,the case with noise has more elements to which the constraint is applied than the case without noise.This suggests that the situation of the regular grid without noise has much simplicity and stability in it erative solution search.

    To discuss the reasonable tolerance for convergenceε and the characteristics in estimated link traffic volume,we confirm the estimated link traffic volume using the minimum RRN in the following cases:method A without noise,method B without noise and method B with noise.These are considered with the difference of scale of minimum RRN among the cases.All the results are shown in Figure6.The x-axis denotes observed link traffic volumeˉQQQ,while the y-axis is the link traffic volume estimated from the OD matrix?QQQ.The approximate straight line is fixed at the origin point.

    Figure5:Transition of the number of theelementsof xi=1 in theregular grid

    These figures of Estimated link traffic volume shows following two evaluation indexes:gradient of approximate straight line a and correlation coefficient R. Thegradient of approximate straight line a shows the scale of estimated link traffic volume.If a equals to 1, it suggests that the scales of observed and the estimated linktraffic volume are same. The scale of the estimated link traffic volume is higherthan the observed one if a is greater than 1, otherwise the scale is lower. The correlationcoefficient R shows the dispersion of accuracy of reproduction. If R equals to1, the following relation is satisfied: ?QQ = aˉQQ. On the other hand, if some elementsof link traffic volume are plotted away from approximate straight line, R becomeslower.

    In terms of these evaluation indexes, the values of a in all of these cases equal to 1in error by at most 0.006. The values of R in all cases also equal to 1 in error byat most 0.004. This high correlations arise from the characteristic that the LMMweights residuals equally. These results suggest the accuracy in these cases are thesame or higher than 99% in proportion of the estimated link traffic volume to theobserved one. Since these errors are sufficiently small to ignore and the highestRRN in these cases is 2.96×10?2 at that time, it is sufficient to set convergencecoefficient ε to 0.03.

    Figure6:Estimated link traffic volume for the regular grid

    4.2 Application to an actual road network

    Next,we apply the proposed method to an actual road network,i.e.a3 km x 3 km areain Tokyo.We show the RRN transitionsin the cases with and without noisein Figures7 and 8.

    In this map,RRN transitions in both the two cases are alike.Until early several iteration steps,RRNs in method B are smaller than those in method A,while after that,RRNs in method B become larger than those in method A.The increase of RRNs in method B is explained by the same reason mentioned in Section 4.1,i.e.the increase of the elements of xi=1 in OD matrices.Actually,in this map,the transitions of the number of the elements of xi=1 are similar to the green line in Figure5 in both of the cases with and without noise.We show it in Figure9.

    Figure7:RRN transition for the3 km x 3 km areain Tokyo without noise

    Figure8:RRN transition for the3 km x 3km areain Tokyo with noise

    On the other hand,the seresults are different from those in the regular grid,where RRNs are the samein method A and Batearly several iteration steps.This suggests that in method A,the search lengthαapproaches zero at early few iteration steps and there fore the RRNsdecreaseinsuffi ciently.Actually,unlikein the regular grid,the non-negative constraint is applied to OD matrices at only the first iteration in Tokyo map.This is caused by the large number of variables in OD matrices in Tokyo map.

    Figure 9:Transition of the number of the elements of xi=1 for the 3 km x 3 km areain Tokyo

    For method B, the iteration steps when RRNs become minimum are alike as follows:3rd iteration steps in the case without noise and 2nd iteration steps in the casewith noise. These values are almost the same as that in the regular grid with noise,whose value is 2, and these are all small number. Therefore the results suggest thateven if not adding noise, solution search is more difficult in Tokyo map than in theregular grid, which is also caused by the large number of variables.

    In terms of minimum RRNs, as similar as the regular grid, there is some differencebetween in the cases with and without noise. Here, we show the estimated linktraffic volume when RRN is minimum in the following cases, considering the scaleof minimum RRN: method A without noise, method B without noise, method Awith noise and method B with noise. All the results are shown in Figure 10.

    These figures show that the gradient of approximate straight line a is distant from 1when method A is used, i.e. 0.852 without noise and 0.618 with noise. On the otherhand, when method B is used, a equals to 1 in error by at most 0.022 as like as inthe regular grid. The correlation coefficient R almost equals to 1 for all constraintmethods and cases about noise. These results suggest method B is more applicable.Then, the accuracy is the same or higher than 97% in proportion of estimated linktraffic volume to observed one. Even though this value is less than that in the regular grid, this is expected to be still sufficiently accurate. Consequently, it is sufficientto set the tolerance for convergence ε to 0.8, where only method B converges.

    Figure 10:Estimated link traffic volume for the 3 km x 3 km areain Tokyo

    5 Conclusions

    We newly proposed an OD estimation method using a traffic simulator,whose result is designed to be suitable for use of the simulator directly.In addition,we introduced two kinds of approaches of applying non-negative constraints to the proposed method.Through numerical experiments,we demonstrated the validity of the method.Thees timated link traffic volumeisstrongly correlated with the ob-served link traffic volume.This is due to the iterative process in the LMM.When we introduce the non-negative constraint into our method,the one using heuristics is found to beeff ectiveand givessmaller RRN.Then,the tolerance for convergence for the RRN is found to set 0.08,when the estimated link traffic volume has 97%or more accuracy to the observed one.To improve the accuracy,especially even if the number of observation points becomes smaller,it is necessary to improve the method of non-negativeconstraint in terms of heuristics.Infuturework,weplan to examine the accuracy and stability of the proposed method with fewer dataset and to consider the stateof congestion.

    Acknowledgement: This work wassupported by JSPSKAKENHI Grant Number 15H01785.

    Barceló,J.;Montero,L.(2015): A Robust Framework for the Estimation of Dynamic OD Trip Matricesfor Reliable Traffi c Management.Transportation Research Procedia,vol.10,pp.134–144.

    Bera,S.;Rao,K.(2011):Estimation of Origin-Destination Matrix from Traffi c Counts:the State of the Art.European Transport-Trasporti Europei,vol.49,pp.3–23.

    Fujii,H.;Yoshimura,S.;Seki,K.(2010):Multi-agent Based Traffi c Simulation at Merging Section Using Coordinative Behavior Model.Computer Modeling in Engineering and Sciences,vol.63,no.3,pp.265–282.

    Larsson,T.;Patriksson,M.(1992): Simplicial Decomposition with Disaggregated Representationfor the Traffic Assignment Problem.Transportation Science,vol.26,no.1,pp.4–17.

    Levenberg,K.(1944):A Method for the Solution of Certain Non-Linear Problemsin Least Squares.The Quarterly of Applied Mathematics,vol.2,pp.164–168.

    Lundgren,J.T.;Peterson,A.(2008): A Heuristic for the Bilevel Origin-Destination-Matrix Estimation Problem.Transportation Research Part B:Methodological,vol.42,pp.339–354.

    Marquardt,D.W.(1963):An Algorithm for Least-Squares Estimation of Nonlinear Parameters.Journal of the Society for Industrial and Applied Mathematics,vol.11,no.2,pp.431–441.

    McNally,M.G.(2008): The Four Step Model.Center for Activity Systems Analysis.

    Yoshimura,S.(2006): MATES:Multi-Agent Based Traffi c and Environment Simulator-Theory,Implementationand Practical Application.Computer Modeling in Engineering and Sciences,vol.11,no.1,pp.17–25.

    猜你喜歡
    目標(biāo)群體認(rèn)知度種植業(yè)
    托幼園所教師衛(wèi)生保健知識(shí)認(rèn)知度的研究分析
    PICC置管患者置管認(rèn)知度及影響因素的研究
    種植業(yè)結(jié)構(gòu)調(diào)整中存在的問題及對(duì)策
    論公共圖書館閱讀推廣的創(chuàng)新
    快速消費(fèi)品包裝效果對(duì)目標(biāo)群體的消費(fèi)影響研究
    綜合護(hù)理干預(yù)改善未婚人流術(shù)患者避孕知識(shí)認(rèn)知度效果觀察
    淺論公共政策執(zhí)行過程中目標(biāo)群體的政策遵從
    大數(shù)據(jù)告訴你湖南人如何“打年貨”
    華聲(2014年24期)2015-01-07 08:39:06
    種植業(yè)
    江蘇年鑒(2014年0期)2014-03-11 17:09:35
    鉆研種植業(yè) 帶頭奔小康童進(jìn)禮
    国产成人精品无人区| 99久久精品国产亚洲精品| 黄色丝袜av网址大全| 一级毛片高清免费大全| 91字幕亚洲| 88av欧美| 久久九九热精品免费| 精品久久久久久成人av| 久久精品亚洲精品国产色婷小说| 欧美日本亚洲视频在线播放| 中文字幕人妻丝袜一区二区| 成人黄色视频免费在线看| 亚洲精品国产色婷婷电影| 欧美精品啪啪一区二区三区| 色婷婷久久久亚洲欧美| 日本wwww免费看| 好男人电影高清在线观看| 亚洲av片天天在线观看| 老司机福利观看| 校园春色视频在线观看| 精品第一国产精品| 欧美中文综合在线视频| 精品久久久久久成人av| www.熟女人妻精品国产| 伦理电影免费视频| 亚洲色图综合在线观看| 美国免费a级毛片| 一边摸一边做爽爽视频免费| 久久婷婷成人综合色麻豆| 村上凉子中文字幕在线| 嫩草影院精品99| av福利片在线| 久久久久久久久免费视频了| 国产99白浆流出| 国产av在哪里看| 国产三级在线视频| 成人影院久久| 欧洲精品卡2卡3卡4卡5卡区| 久久国产精品人妻蜜桃| 韩国av一区二区三区四区| 不卡av一区二区三区| 九色亚洲精品在线播放| 久久人人97超碰香蕉20202| 亚洲av美国av| 成人黄色视频免费在线看| 91老司机精品| 亚洲专区中文字幕在线| 极品教师在线免费播放| 熟女少妇亚洲综合色aaa.| 色老头精品视频在线观看| av中文乱码字幕在线| 黑丝袜美女国产一区| 在线观看免费午夜福利视频| 日本黄色视频三级网站网址| 深夜精品福利| 国产欧美日韩综合在线一区二区| 韩国av一区二区三区四区| 午夜免费成人在线视频| 久久中文字幕人妻熟女| 久久这里只有精品19| 看片在线看免费视频| av免费在线观看网站| 国产精品香港三级国产av潘金莲| 久久久久国内视频| 脱女人内裤的视频| 免费看a级黄色片| 午夜福利免费观看在线| 女人精品久久久久毛片| 日韩精品中文字幕看吧| 免费av毛片视频| 亚洲一区二区三区欧美精品| 成人影院久久| 大型黄色视频在线免费观看| 一边摸一边抽搐一进一小说| 国产精品亚洲一级av第二区| 国产精品二区激情视频| 日本wwww免费看| 亚洲欧美一区二区三区久久| 无遮挡黄片免费观看| 国产伦人伦偷精品视频| 黄色丝袜av网址大全| 女同久久另类99精品国产91| 99在线人妻在线中文字幕| 国产欧美日韩综合在线一区二区| 国产精品乱码一区二三区的特点 | 日韩免费av在线播放| 五月开心婷婷网| 国产成人一区二区三区免费视频网站| 超碰成人久久| avwww免费| 国产精品 国内视频| 欧美另类亚洲清纯唯美| 在线观看66精品国产| 国产91精品成人一区二区三区| www.www免费av| 伦理电影免费视频| 成人国产一区最新在线观看| 午夜亚洲福利在线播放| 性欧美人与动物交配| 欧美国产精品va在线观看不卡| 日本欧美视频一区| 亚洲人成电影观看| 午夜免费鲁丝| 日韩成人在线观看一区二区三区| 99riav亚洲国产免费| 国产在线精品亚洲第一网站| 好男人电影高清在线观看| 国产av精品麻豆| 99久久综合精品五月天人人| 精品国产亚洲在线| 成在线人永久免费视频| √禁漫天堂资源中文www| 精品福利观看| 亚洲精品美女久久av网站| 欧美成狂野欧美在线观看| 亚洲精品av麻豆狂野| 久久久久亚洲av毛片大全| 午夜亚洲福利在线播放| 黄片播放在线免费| 免费看a级黄色片| 日本a在线网址| 午夜成年电影在线免费观看| 日韩精品中文字幕看吧| 亚洲国产精品sss在线观看 | www.精华液| 久久精品国产综合久久久| 一级a爱视频在线免费观看| 亚洲第一av免费看| 99精国产麻豆久久婷婷| 欧美成狂野欧美在线观看| 夜夜躁狠狠躁天天躁| 欧美成人午夜精品| 久久午夜亚洲精品久久| 18禁裸乳无遮挡免费网站照片 | 三级毛片av免费| 亚洲色图 男人天堂 中文字幕| 啪啪无遮挡十八禁网站| 亚洲精品中文字幕一二三四区| 极品教师在线免费播放| 国产成人精品在线电影| 成年人黄色毛片网站| 亚洲成a人片在线一区二区| 免费观看精品视频网站| 一二三四在线观看免费中文在| 纯流量卡能插随身wifi吗| 亚洲,欧美精品.| 最近最新免费中文字幕在线| 在线av久久热| 91在线观看av| 97碰自拍视频| 女生性感内裤真人,穿戴方法视频| 1024视频免费在线观看| 美女扒开内裤让男人捅视频| 国产熟女xx| 自线自在国产av| 日本精品一区二区三区蜜桃| 亚洲国产看品久久| 精品久久久久久久毛片微露脸| 亚洲欧美激情综合另类| 久久国产亚洲av麻豆专区| 亚洲欧美激情在线| 国产高清激情床上av| 亚洲九九香蕉| e午夜精品久久久久久久| 日日夜夜操网爽| 在线观看www视频免费| 国产一卡二卡三卡精品| 电影成人av| 高清在线国产一区| 亚洲欧美精品综合一区二区三区| 在线观看一区二区三区| 99国产精品一区二区蜜桃av| 91麻豆av在线| 亚洲va日本ⅴa欧美va伊人久久| 国产三级在线视频| 叶爱在线成人免费视频播放| 两人在一起打扑克的视频| 91在线观看av| 涩涩av久久男人的天堂| av在线天堂中文字幕 | 亚洲午夜理论影院| 亚洲伊人色综图| 国产一区二区在线av高清观看| 久久人人精品亚洲av| 久久人妻福利社区极品人妻图片| 99在线人妻在线中文字幕| 国产色视频综合| 久久 成人 亚洲| 亚洲专区中文字幕在线| 欧美日本中文国产一区发布| 18禁裸乳无遮挡免费网站照片 | 免费少妇av软件| 日本a在线网址| 三级毛片av免费| 91大片在线观看| 欧美激情久久久久久爽电影 | 女人高潮潮喷娇喘18禁视频| 国产一区二区在线av高清观看| 真人一进一出gif抽搐免费| 女性被躁到高潮视频| 久久欧美精品欧美久久欧美| 亚洲久久久国产精品| 国产色视频综合| 黄片播放在线免费| 国产一区二区三区视频了| 88av欧美| 欧美乱妇无乱码| 成人18禁高潮啪啪吃奶动态图| 国产亚洲精品综合一区在线观看 | 精品一区二区三卡| 青草久久国产| 曰老女人黄片| 国产精品爽爽va在线观看网站 | 人成视频在线观看免费观看| 国产成人免费无遮挡视频| 国产成人系列免费观看| 热99re8久久精品国产| 九色亚洲精品在线播放| 黄频高清免费视频| 美女福利国产在线| 成年人黄色毛片网站| 老司机深夜福利视频在线观看| 欧美黄色片欧美黄色片| 熟女少妇亚洲综合色aaa.| 亚洲全国av大片| 国产精品久久久久久人妻精品电影| 日韩大尺度精品在线看网址 | а√天堂www在线а√下载| 淫妇啪啪啪对白视频| 国产xxxxx性猛交| 一区二区三区精品91| 亚洲色图综合在线观看| 国产欧美日韩一区二区三区在线| 美女高潮喷水抽搐中文字幕| 亚洲精华国产精华精| 欧美日韩亚洲国产一区二区在线观看| 久久久久国产精品人妻aⅴ院| 啦啦啦免费观看视频1| av超薄肉色丝袜交足视频| 国内久久婷婷六月综合欲色啪| 黄网站色视频无遮挡免费观看| 日本精品一区二区三区蜜桃| 午夜福利免费观看在线| 在线免费观看的www视频| 国产精品综合久久久久久久免费 | 一级毛片女人18水好多| 日本免费一区二区三区高清不卡 | 99国产精品免费福利视频| 国产精华一区二区三区| 成人影院久久| 国产精品1区2区在线观看.| 国产不卡一卡二| 午夜亚洲福利在线播放| 精品欧美一区二区三区在线| 激情在线观看视频在线高清| 久热这里只有精品99| 一边摸一边抽搐一进一小说| 黄片播放在线免费| 久久久久久人人人人人| 国产精品九九99| 嫁个100分男人电影在线观看| 精品第一国产精品| 婷婷精品国产亚洲av在线| 国产三级黄色录像| 男人操女人黄网站| 日韩欧美一区视频在线观看| 制服诱惑二区| 精品国产乱子伦一区二区三区| 午夜精品国产一区二区电影| 99精国产麻豆久久婷婷| 黄色丝袜av网址大全| 99国产极品粉嫩在线观看| 母亲3免费完整高清在线观看| www.熟女人妻精品国产| 侵犯人妻中文字幕一二三四区| 午夜a级毛片| 精品福利永久在线观看| 男女高潮啪啪啪动态图| 日韩中文字幕欧美一区二区| 精品国产美女av久久久久小说| 两性夫妻黄色片| 一区二区三区国产精品乱码| 久久人人精品亚洲av| 夜夜爽天天搞| 久久国产精品人妻蜜桃| 一进一出抽搐gif免费好疼 | xxxhd国产人妻xxx| 韩国精品一区二区三区| 黄频高清免费视频| 一级片'在线观看视频| 手机成人av网站| 午夜免费观看网址| 18禁黄网站禁片午夜丰满| 一本综合久久免费| 国产又色又爽无遮挡免费看| 久久亚洲精品不卡| 亚洲激情在线av| 在线看a的网站| 一进一出抽搐动态| 在线播放国产精品三级| 亚洲欧美精品综合一区二区三区| 午夜福利一区二区在线看| 高清毛片免费观看视频网站 | 亚洲av五月六月丁香网| 国产精品免费一区二区三区在线| 久99久视频精品免费| 亚洲va日本ⅴa欧美va伊人久久| 女性生殖器流出的白浆| 真人做人爱边吃奶动态| 天堂√8在线中文| 国产日韩一区二区三区精品不卡| 午夜a级毛片| 亚洲成国产人片在线观看| 欧美+亚洲+日韩+国产| 欧美色视频一区免费| 男人舔女人下体高潮全视频| 99久久综合精品五月天人人| 免费少妇av软件| 操美女的视频在线观看| 乱人伦中国视频| 亚洲人成电影免费在线| 天天躁夜夜躁狠狠躁躁| 国产成人av教育| 免费在线观看影片大全网站| 久久久国产成人免费| 日本黄色视频三级网站网址| 一区二区三区精品91| 久久国产精品影院| 久久精品成人免费网站| 又紧又爽又黄一区二区| 无人区码免费观看不卡| 夜夜看夜夜爽夜夜摸 | 看黄色毛片网站| 成年人免费黄色播放视频| 久久人人爽av亚洲精品天堂| 黄片小视频在线播放| √禁漫天堂资源中文www| 欧美在线黄色| av网站在线播放免费| 亚洲国产毛片av蜜桃av| 成人国语在线视频| 成人三级黄色视频| 自拍欧美九色日韩亚洲蝌蚪91| 午夜免费成人在线视频| 欧美丝袜亚洲另类 | 欧美黑人精品巨大| 精品一品国产午夜福利视频| 在线av久久热| 久久国产精品男人的天堂亚洲| 国产精品亚洲av一区麻豆| 亚洲少妇的诱惑av| 国产97色在线日韩免费| 国产精品久久久av美女十八| 成年女人毛片免费观看观看9| 欧美日本亚洲视频在线播放| 极品人妻少妇av视频| 纯流量卡能插随身wifi吗| 国产色视频综合| 亚洲 欧美 日韩 在线 免费| 国产精华一区二区三区| 亚洲熟女毛片儿| 久久久久九九精品影院| 天堂俺去俺来也www色官网| 久久天躁狠狠躁夜夜2o2o| 亚洲一区中文字幕在线| 99国产精品一区二区蜜桃av| 国产精品免费一区二区三区在线| 亚洲精品国产色婷婷电影| 国产免费av片在线观看野外av| 国产激情久久老熟女| 免费少妇av软件| 亚洲欧美精品综合久久99| 成人三级黄色视频| 亚洲avbb在线观看| 欧美黑人精品巨大| 日韩欧美在线二视频| 久久精品aⅴ一区二区三区四区| 高清av免费在线| 午夜a级毛片| 国产激情久久老熟女| 精品一品国产午夜福利视频| 国产高清videossex| 1024香蕉在线观看| 亚洲欧美日韩高清在线视频| 琪琪午夜伦伦电影理论片6080| 国产1区2区3区精品| 男人舔女人下体高潮全视频| 午夜老司机福利片| 一本大道久久a久久精品| 丝袜美足系列| 国产蜜桃级精品一区二区三区| 午夜精品久久久久久毛片777| 欧美精品啪啪一区二区三区| 88av欧美| 在线播放国产精品三级| 久久久国产欧美日韩av| 午夜精品在线福利| 757午夜福利合集在线观看| 免费高清视频大片| 国产激情久久老熟女| 少妇 在线观看| 亚洲av美国av| av福利片在线| 在线观看舔阴道视频| 免费少妇av软件| 亚洲人成电影免费在线| 亚洲人成网站在线播放欧美日韩| 午夜福利,免费看| 亚洲色图 男人天堂 中文字幕| 国产国语露脸激情在线看| 黄色a级毛片大全视频| 三上悠亚av全集在线观看| 日韩三级视频一区二区三区| 国产麻豆69| 亚洲一区二区三区不卡视频| 久久国产乱子伦精品免费另类| 大型av网站在线播放| 久久久久精品国产欧美久久久| 欧美成人午夜精品| 99在线人妻在线中文字幕| 老司机午夜十八禁免费视频| 咕卡用的链子| 男女下面进入的视频免费午夜 | 日日摸夜夜添夜夜添小说| 丁香欧美五月| 在线观看午夜福利视频| 91老司机精品| 婷婷精品国产亚洲av在线| 日本a在线网址| 国内久久婷婷六月综合欲色啪| 精品一区二区三区视频在线观看免费 | 手机成人av网站| 99热只有精品国产| 久久久精品国产亚洲av高清涩受| 99国产精品一区二区三区| 免费av毛片视频| av福利片在线| 国产精品久久久久成人av| 他把我摸到了高潮在线观看| 男人操女人黄网站| 91九色精品人成在线观看| 国产精品香港三级国产av潘金莲| 又大又爽又粗| 免费一级毛片在线播放高清视频 | 18禁观看日本| 日日干狠狠操夜夜爽| av天堂久久9| 韩国精品一区二区三区| 久久久久久久精品吃奶| 国产在线精品亚洲第一网站| 精品人妻1区二区| 久久久久久久久久久久大奶| 免费在线观看日本一区| 日韩成人在线观看一区二区三区| 一边摸一边抽搐一进一小说| 久久国产亚洲av麻豆专区| 国产又色又爽无遮挡免费看| tocl精华| 99国产精品一区二区三区| 午夜福利,免费看| 色婷婷av一区二区三区视频| av免费在线观看网站| 国产精品日韩av在线免费观看 | 在线观看日韩欧美| 久久精品亚洲熟妇少妇任你| 在线十欧美十亚洲十日本专区| 十八禁网站免费在线| 亚洲精品国产色婷婷电影| 一区福利在线观看| 中出人妻视频一区二区| 亚洲国产毛片av蜜桃av| 久久久国产成人精品二区 | 免费不卡黄色视频| 日韩免费av在线播放| tocl精华| 亚洲 欧美 日韩 在线 免费| 久久精品成人免费网站| 老司机在亚洲福利影院| 亚洲一码二码三码区别大吗| 国产熟女xx| 国产亚洲精品第一综合不卡| 日韩有码中文字幕| 12—13女人毛片做爰片一| 如日韩欧美国产精品一区二区三区| 天堂俺去俺来也www色官网| 超色免费av| 亚洲熟女毛片儿| 黄片大片在线免费观看| 亚洲成人免费电影在线观看| 一区二区三区精品91| 激情视频va一区二区三区| 黄片大片在线免费观看| 丰满饥渴人妻一区二区三| 国产成人影院久久av| 亚洲欧美激情在线| 国产色视频综合| 国产成人欧美| 麻豆国产av国片精品| 欧美日韩亚洲高清精品| 久9热在线精品视频| 久久婷婷成人综合色麻豆| 在线观看日韩欧美| 大型黄色视频在线免费观看| 视频区图区小说| 国产主播在线观看一区二区| av片东京热男人的天堂| 脱女人内裤的视频| 在线视频色国产色| 91麻豆av在线| 婷婷六月久久综合丁香| 欧洲精品卡2卡3卡4卡5卡区| 在线观看一区二区三区激情| 精品午夜福利视频在线观看一区| 亚洲国产看品久久| 黑人猛操日本美女一级片| 亚洲视频免费观看视频| 久久热在线av| 亚洲激情在线av| 精品国产乱子伦一区二区三区| 国产亚洲欧美在线一区二区| 中文字幕高清在线视频| 欧美日韩亚洲综合一区二区三区_| 亚洲专区字幕在线| 18禁美女被吸乳视频| 老司机在亚洲福利影院| a在线观看视频网站| 12—13女人毛片做爰片一| 国产欧美日韩综合在线一区二区| 亚洲全国av大片| 99久久国产精品久久久| 97碰自拍视频| 亚洲欧美激情综合另类| 精品久久久久久,| 精品欧美一区二区三区在线| 久久国产精品男人的天堂亚洲| 精品午夜福利视频在线观看一区| 日韩欧美一区视频在线观看| 最近最新中文字幕大全电影3 | 一夜夜www| 国产精品99久久99久久久不卡| 1024视频免费在线观看| 免费日韩欧美在线观看| 国产有黄有色有爽视频| 免费日韩欧美在线观看| 一边摸一边抽搐一进一小说| 色哟哟哟哟哟哟| 一级作爱视频免费观看| 99久久人妻综合| 很黄的视频免费| 成人三级黄色视频| 黄色丝袜av网址大全| 亚洲久久久国产精品| 黄色怎么调成土黄色| 久久精品国产清高在天天线| 久久青草综合色| 视频区欧美日本亚洲| 精品卡一卡二卡四卡免费| 午夜亚洲福利在线播放| 亚洲av五月六月丁香网| 久久久久九九精品影院| 国产成人欧美| av片东京热男人的天堂| 国产精品香港三级国产av潘金莲| 欧美大码av| 亚洲熟妇熟女久久| 99精品在免费线老司机午夜| 亚洲av电影在线进入| 日韩免费高清中文字幕av| 亚洲国产精品一区二区三区在线| 又黄又粗又硬又大视频| 亚洲aⅴ乱码一区二区在线播放 | 丰满饥渴人妻一区二区三| 亚洲一卡2卡3卡4卡5卡精品中文| 韩国精品一区二区三区| 色综合欧美亚洲国产小说| 久久亚洲精品不卡| 夜夜躁狠狠躁天天躁| 欧美日本中文国产一区发布| 麻豆一二三区av精品| 国产av精品麻豆| 老熟妇仑乱视频hdxx| 国产午夜精品久久久久久| 国产亚洲精品综合一区在线观看 | 操出白浆在线播放| 男女午夜视频在线观看| 国产亚洲欧美精品永久| 国产一卡二卡三卡精品| 久久久久久久久免费视频了| 国产免费现黄频在线看| 老司机深夜福利视频在线观看| 一个人观看的视频www高清免费观看 | 精品乱码久久久久久99久播| 亚洲 欧美一区二区三区| 黄色视频,在线免费观看| 日韩精品中文字幕看吧| 久久天躁狠狠躁夜夜2o2o| 久久欧美精品欧美久久欧美| 久久国产精品人妻蜜桃| 最近最新中文字幕大全免费视频| 一进一出抽搐gif免费好疼 | 99热国产这里只有精品6| av在线播放免费不卡| 色播在线永久视频| 久久九九热精品免费| 日韩精品免费视频一区二区三区| 一级毛片高清免费大全| 桃红色精品国产亚洲av| 亚洲第一av免费看| 亚洲中文日韩欧美视频| www.www免费av| 搡老岳熟女国产| 中文字幕高清在线视频| 久久精品亚洲av国产电影网| 男女下面进入的视频免费午夜 | 国产国语露脸激情在线看|