• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Acoustic Scattering Performance for Sources in Arbitrary Motion

    2017-03-13 05:02:07YunpengMaLifengWangandMingxuYi

    Yunpeng Ma, Lifeng Wang * and Mingxu Yi

    Nomenclature

    n : normal vector

    ρ0: fluid density

    ω: rotational angular velocity

    c0: sound speed

    G(x,y,t ?τ): Green function in time domain

    G(x,y,ω): Green function in frequency domain

    t : observe time

    τ: emission time

    x : observer position

    y : source position

    r : distance between observer and source

    k : wave number

    S : duct surface

    s : imaginary surface

    1 Introduction

    In recent decades, noise pollution has become a major issue of concern and the noise generation mechanisms have been investigated widely. Noise generated by aircraft, fans and others has great influence on the aeroacoustic research [Huang, Zhang and Xiang et al. (2015); Qian, Han and Atluri (2013); Kingan (2014); Johnson (1980); Mao, Zhang,Xu and Qi (2015)]. In these applications, the direct sound field and scattering effect are always considered to assess the acoustic impact of sound sources.

    The aerodynamic noise is based on the distinction between noise generation and propagation. The acoustic analogy and Kirchhoff method are two of the most popular noise computation method. Calculation of the acoustic field radiated by rotating sources is a meaningful problem in the prediction of noise of aircraft rotors. The main techniques for noise prediction are based on acoustic analogy Curle equation, FW-H (Ffowcs Williams-Hawkings) equation and the generalized treatment of Goldstein [Ffowcs Williams and Hawkings (1969); Farassat and Brentner (1988); Farassat and Brentner(1998)]. The inhomogeneous acoustic wave equation divides the aeroacoustic source into three types: monopole source, dipole source and quadruple source.

    The ability to solve the velocity components of a sound by a solid object is one of the most important goals in aeroacoustic research. They are used to deal with scattering problems, such as noise scattering by fuselage and noise scattering in rotating machines and wings in aircraft [Mao and Qi (2009); McAlpine, Astley and Hii et al. (2006)]. To evaluate the acoustic velocity, the common method is to use the acoustic pressure gradient through the linearized momentum equation. However, the evaluation of the pressure gradient may cost a lot of computing time and storage space. Recently, Lee et al.[Lee, Brentner and Farassat et al. (2009)] have proposed an efficient formulation for computation of the pressure gradient. Ghorbaniasl et al. [Ghorbaniasl and Hirsch et al.(2015)] used it to obtain an analytical formulation for the acoustic velocity. This formulation makes it easy and convenient to solve the velocity components of a sound wave.

    Since scattering sound wave may be greater amplitude than the incident sound wave,several methods have been proposed to calculate the acoustic scattering [Tausch and Xiao(2010); Dunn and Tinetti (2008); Lee, Brentner and Morris (2010)]. The evaluation of the acoustic velocity on the scattering surface is required in order to meet the boundary conditions [Kingan, Powles and Self (2010); Swift, Blaisdell and Lyrintzis (1983)]. The acoustic boundary element method (BEM) is usually applied to predict the sound radiating and scattering filed in the exterior and interior closed domain [Ciskowski and Brebbia (1991); Wu (2000)]. Wu and Wang [Wu and Wan (1992)] proposed a thin-body BEM, in which an imaginary interface is constructed to divide the domain into interior and exterior subdomains, and the imaginary surface is not discretized in the numerical implementation.

    In this paper, the analytical formulation of the acoustic velocity computation is also derived for sources in arbitrary motion. In order to consider the scattering effect of the thin duct, the newly developed FW-H-Helmholtz boundary elements method is introduced. The derived velocity analytical formulation is used as the Neumann boundary condition for the thin-body BEM. This method is not only simple to operation, but also easy to implement.

    The layout of this work is as follows: In Section 2, the mathematical background of sound radiation is introduced. In Section 3, the formulation to calculate acoustic velocity is derived. In Section 4, the thin-body BEM is developed. Some examples are provided to clarify the approach in Section 5. The conclusion is given in Section 6.

    2 Radiated sound field

    2.1 Ffowcs Williams-Hawkings equation

    In 1969, Williams Ffowcs and Hawkings [Ffowcs Williams and Hawkings (1969)] used the generalized function theory to derive the sound equation of the control plane in arbitrary motion in static fluid, that is, the famous FW-H equation. The FW-H equation can offer acoustic scatterings and reflections of turbulence over a solid wall boundary with simple shape, such as an infinite half-plane, by involving an acoustic Green’s function. The FW-H equation is given by

    for inviscid flow,is wave operator,uiis velocity,f denotes a moving Kirchhoff surface,p'is acoustic pressure,vnis normal component of surface velocity.denotes the compressive stress tensor,denotes a component of the Lighthill tensor,δ(f)is Dirac delta function,H (f)is Heaviside function and satisfied

    As f ( xi,t)=0, according to non penetration condition,un=vn, FW-H equation can be reduced as below

    2.2 Farassat method

    From the end of 1970s to the beginning of 1980s, basing on the integral of Green Function, conversion of the spatial derivatives and time derivatives, Farassat published the famous Farassat 1 and Farassat 1A formulations which are the solution of time domain integral expressions for the thickness noise and loading noise of FW-H equation.The solution of Eq. (4), the formulation of Farassat 1A, is expressed as follows [Dunn,Tinetti and Nark (2015)]

    3 Acoustic velocity formulation for sources in arbitrary motion

    The procedure of the velocity formulation for the thickness and loading sources has been recently proposed by[Farassat (2007)]. Following the same procedure gives the thickness and loading acoustic velocity as follows:

    where Q = ρ ( un?vn) +ρ0vn,andare the acoustic velocity components for the thickness and loading sources.unand vnare the fluid and the data surface normal velocity, respectively.ρdenotes the local fluid density, and ρ0is the density of the undisturbed medium. The subscript ret*indicates that all of the values have to be taken at the retarded time t*.

    For any function F(x, τ (x,t)), one has

    To improve the speed and accuracy of the velocity formulation V1, the time derivatives of formulation V1 can be taken inside the integrals. From the Eq. (11), one obtains

    The second term of the right hand of Eq.(13) can be given by

    Expansion of the expression in the same manner as in the derivation of Farassat 1A gives

    Next, simplifying Eq. (12) further, one can rewrite it as follows

    Using Eq.(14), we have

    Expansion of the expression in the same manner as in the derivation of Farassat 1A gives

    4 Thin-body acoustic boundary element method (BEM)

    In this section, a thin-body boundary integral formulation is applied to calculate the far field sound pressure. Due to the scattering effect of the solid wall in the duct, the total sound pressure is acquired as the sum of the incident and scattered pressure

    Figure 1: A diagram of acoustic scattering by a thin-body.

    where n1and n2are normal unit vectors at the two sides of the wall,C+(x)and C?(x)are the two constants that depend on the position of x

    Adding Eq. (27) and Eq.(28) gives the thin-body boundary integral equation

    where ?/? n1=??/? n2=?/?n, and the continuous boundary conditions of the pressure and its partial derivation on the imaginary surface s are used

    The assumption of acoustic rigid boundary conditions are used over the entire surface S

    Then Eq.(31) and Eq.(32) reduce to

    Eq.(36) is not sufficient to obtain the two unknowns P′+(x,ω)and P′?(x,ω).Differentiating Eq.(35) with regard to the direction of normal vector n(x), it can be transformed into

    The problem of scattering by the duct can be dealt with initially solving Eq.(37) to calculate the sound pressure jump P ′+( y , ω ) ? P ′?(y,ω)on the surface S , and afterwards evaluating the acoustic pressure at any filed point. Then the acoustic pressure on both sides of the duct could be easily got. However, the value ofcannot be obtained easily by using Eq.(6) or Eq.(7). We can acquire it indirectly by using the acoustic velocity formulation. If Eq.(37) satisfies the Neumann boundary condition, we will

    where vn={(x, ω ),(x, ω ),(x,ω)}for the thickness sources,vn={(x, ω ),x, ω ),(x,ω)}for the loading sources.

    Then, to solve the Eq.(37), a discretized scheme based on BEM should be used to calculate the unknown value P ′+( y , ω ) ? P ′?(y,ω). The simplest constant boundary element is applied in this paper and the thin-body surface S is discretized into N elements. Each element has one node which is located in the center of the element. Then,Eq.(37) can be transformed into a system of algebraic equations.

    Eq.(40) may be solved easily by using the software Mathematica. When the unknown ?is calculated, the acoustic pressure at any filed point can be obtained through Eq.(35)and (36).

    5 Numerical results

    In this part, the acoustic velocity field simulated by the derived formulation and scattering effect of the duct are validated through three test cases. The first case considers a monopole source, which is identified with a pulsating sphere. The second test case is a dipole source. The third case contains the consistency test known as the Isom thickness noise. All these sources are located at the center of the duct. Showing the validity and reliability of the developed formulation for acoustic scattering problems is our main work.The sound pressure is expressed as dB (decibels) and the predicted SPLs (sound pressure levels) is given by the following

    5.1 Pulsating sphere

    In order to verify the algorithms, the analytical solution of a monopole source has been investigated. The monopole is identified with a pulsating sphere as the small sphere with a radius a in Figure 2. The pressure fluctuation induced by the pulsating sphere is expressed by a harmonic spherical wave

    Figure 2: Monopole source and data surface are shown.

    where ωand k are angular velocity and the wave number, respectively, and

    where A=4πa2U. To perform this case, we take the radius of the spherical penetrable data surface rsto be 3.25a . The speed of sound c0is 340m/s. The density for medium is 1.2kg/m3. The angular velocity of the source is 1020rad/s. The other parameters are a =0.01m and U =8m/s. The pulsating sphere is located at the center of the duct, which is shown in Figure 3. The diameter of the duct is 0.07m. The length of the duct is 0.5m.The observer distance is assumed to be 2m.

    Figure 3: The duct in BEM.

    The acoustic velocity components are calculated by using the numerical method. The results are compared with analytical solutions for different observer time. The x ,y and z components of the acoustic velocity obtained with the derived formulation is plotted in Figures 4-6. From Figures 4-6, we find that the numerical solutions are very good agreement with the analytical solution. To perform the acoustic scattering problems of the duct, we use the thin-body BEM. Figure 7 shows the scattering performance of the pulsating sphere. The left is the incident sound pressure, the middle is the scattering effect of the duct and the right is the total sound pressure.

    Figure 4: The calculated x -component of acoustic velocity compared with that of the analytical solution for β1 = 1 8°. Monopole source.

    Figure 5: The calculated y -component of acoustic velocity compared with that of the analytical solution for β1 = 1 8°. Monopole source.

    Figure 6: The calculated z -component of acoustic velocity compared with that of the analytical solution for β1 = 1 8°. Monopole source.

    Figure 7: Directivity of calculated far-field SPLs at 4918 Hz (a) free field, (b) scattering effect of the duct and (c) total field. Monopole source.

    From the Figure 7, we can see the directivity of the incident sound pressure is circular as the property of monopole sound source. When the scattering effect is considered, the directivity of the sum sound becomes non-circular. For the angle (210 to 330 degrees and 30 to 150 degrees), SPLs of the total field is louder due to scattering where at the angle (-30 to 30 degrees and 150 to 210 degrees), it is quieter. It shows that the sound pressure is strengthened in the direction of duct both ends, and the sound pressure is subdued in the other direction.

    5.2 A three dimensional dipole source

    A dipole point source is equivalent to a compact oscillating sphere, which is denoted as two closely positioned identical monopole point sources. A dipole has an axis, which is the line connecting the centers of the two monopoles (pulsating sphere with radius of a ).The monopoles are positioned in the z direction at a distance of d =2.5a from the center(d is the distance between the two monopole points). The pressure fluctuation induced by the dipole source for an observer positioned at (x,y,z )is

    The integration surface used in the previous test case is also used here (rs=3.25a , in Figure 8). The other parameters are the same as the previous case. The observer distance is assumed to be 5m.

    Figure 8: Dipole source and data surface are shown.

    The calculation is performed for this case, and the acoustic velocity components are computed. The numerical results are compared with those of the analytical solution in Figures 9-11. Again, the numerical solution is in perfect coincidence with the analytical solution.

    Figure 9: The calculated x -component of acoustic velocity compared with that of the analytical solution for β1 = 1 8°. Dipole source.

    Figure 10: The calculated y -component of acoustic velocity compared with that of the analytical solution for β1 = 1 8°. Dipole source.

    Figure 11: The calculated z -component of acoustic velocity compared with that of the analytical solution for β1 = 1 8°. Dipole source.

    Figure 12 shows the scattering performance of the dipole source. The left is the incident sound pressure, the middle is the scattering effect of the duct and the right is the total sound pressure.

    Figure 12: Directivity of calculated far-field SPLs at 4918 Hz (a) free field, (b) scattering effect of the duct and (c) total field. Dipole source.

    From the Figure 12, we can find the directivity of the incident sound pressure is symmetrical as the property of dipole sound source. When the scattering effect is considered, the SPLs of the total field becomes slightly louder. It implies that the sound pressure of dipole source is strengthened through the duct scattering effect. The directivity of the total sound pressure is the same as the incident sound pressure.

    5.3 Isom noise consistency

    The Isom thickness noise property is discussed in [Brentner and Farassat (2003)]. When a constant aerodynamic load p=is used over a moving surface, the generated dipole loading noise should be identical to the monopole thickness noise. So we only consider the dipole loading noise for this problem.

    In this case, we will show the scattering effect of the Isom noise consistency. The numerical example is applied to the noise generated by the flow around a helicopter tail rotor. The tail rotor consists of 11 equally spaced blades 0.594m in diameter with a constant chord of 0.056m. The CATIA geometric model of the tail rotor is shown in Figure 13. The blade tip Mach number is 0.8. The tail rotor is located at the center of the duct with diameter 0.7m, and length 1.5m. The observer is located 5m from the origin of the blade fixed frame.

    Figure 13: Geometric model of tail rotor.

    The incident sound pressure, the scattering sound pressure and the total sound pressure generated by the Isom source are shown in Figure 14.

    Figure 14: Directivity of calculated far-field SPLs at 4930 Hz (a) free field, (b) scattering effect of the duct and (c) total field. Isom noise source.

    From the Figure 14, we can conclude the directivity of incident sound pressure and total sound pressure are the similar to the dipole noise source. The total sound pressure of Isom noise source is strengthened due to the duct scattering effect of the duct. However,the total sound pressure is slightly quieter in some local direction. The reason for the sound decreasing is likely due to noise cancellation.

    6 Conclusion

    The aim of this paper is to develop the FW-H/thin-body BEM method for studying the scattering effect of a duct numerically. An analytical formulation is derived for prediction the acoustic velocity generated by moving bodies. The acoustic velocity formulation can be used as boundary condition for thin-body BEM. Furthermore, a verification study was given based on three test cases: a pulsating sphere, a dipole source and Isom consistency test for helicopter tail rotor. The comparison is performed between analytical and numerical solution for acoustic velocity, and showed remarkable agreement. The scattering effect of duct for each case has been discussed. For the pulsating sphere, due to the scattering effect, the amplitude and directivity of SPLs are changed. For the dipole source, the amplitude only becomes greater.

    Brentner, K. S.; Farassat, F. (2003): Modeling aerodynamically generated sound of helicopter rotors. Progress in Aerospace Science, vol.39, no.2, pp. 83-120.

    Ciskowski, R. D.; Brebbia, C. A. (1991): Boundary element method in acoustics.Elsevier Science Publishing Co. Inc., New York.

    Dunn, M. H.; Tinetti, A. F. (2008): Application of fast multipole methods to the NASA fast scattering code, 14thAIAA/CEAS Aeroacoustics Conference, AIAA, 2008-2875.

    Dunn, M. H.; Tinetti, A. F.; Nark, D. M. (2015): Open rotor noise prediction using the time domain formulations of Farassat. Aeroacoustic, vol.14, no.1-2, pp. 51-86.

    Ffowcs Williams, J. E.; Hawkings, D. L. (1969): Sound Generated by Turbulence and Surfaces in Arbitrary Motion. Philosophical Transactions of the Royal Society, vol.A264,no. 1151, pp.321-342.

    Farassat, F.; Brentner, K. S. (1988): The Uses and Abuses of the Acoustic Analogy in Helicopter Rotor Noise Prediction. Journal of the AHS, vol. 33, no.1, pp.29-36.

    Farassat, F.; Brentner, K. S. (1998): Supersonic Quadruple Noise Theory for High-Speed Helicopter Rotors. Journal of Sound and Vibration, vol.218, no.3, pp.481-500.

    Ffowcs Williams, J. E.; Hawkings, D. L. (1969): Sound Generated by Turbulence and Surfaces in Arbitrary Motion. Philosophical Transactions of the Royal Society, vol.A264,no.1151, pp. 321-342.

    Farassat, F. (2007): Derivation of formulations 1 and 1A of Farassat. NASA, TM 214853.

    Ghorbaniasl, G.; Hirsch, C. et al. (2015): Acoustic velocity formulation for Kirchhoff data surfaces. Aerocoustics, vol.14, no.1-2, pp.105-132.

    Huang, J.; Zhang, C. P.; Xiang, S. et al. (2015): Computation of aerodynamic noise radiated from open propeller using boundary element method. CMES-Computer Modeling in Engineering & Sciences, vol. 108, no.5, pp. 315-330.

    Johnson,W. (1980): Helicopter Theory. Princeton University Press.

    Kingan, M. J. (2014): Advanced open rotor noise prediction. Aeronautical Journal,vol.118, no. 1208, pp.1125-1135.

    Kingan, M. J.; Powles, C.; Self, R.H. (2010): Effect of centerbody scattering on advanced open rotor noise. AIAA Journal, vol.48, no.5, pp. 975-980.

    Lee, S.; Brentner, K.S.; Farassat, F. et al. (2009): Analytic formulation and numerical implementation of an acoustic pressure gradient prediction. Journal of Sound and Vibration, vol.319, no.3-5, pp. 1200- 1221.

    Lee, S.; Brentner, K. S.; Morris, P. J. (2010): Acoustic scattering in the time domain using an equivalent source method. AIAA Journal, vol.48, no.12, pp. 2772-2780.

    Mao, J. Y.; Zhang, Q. L.; Xu, C.; Qi, D. T. (2015): Two Types of Frequency-Domain Acoustic Velocity Formulation for Rotating Thickness and Loading Sources. AIAA Journal, vol.53, no.3, pp.713-722.

    Mao, J. Y.; Qi, D. T. (2009): Computation of rotating blade noise scattered by a centrifugal volute. Proceedings of Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol.223, no.8, pp. 965-972.

    McAlpine, A.; Astley, R.; Hii, V. et al. (2006): Acoustic scattering by an Axiallysegmented Turofan inlet duct liner at supersonic fan speeds. Journal of Sound and Vibration, vol. 294, no. 4-5, pp. 780-806.

    Qian, Z. Y.; Han, Z. D. ; Atluri, S. N. (2013): A fast regularized boundary integral method for practical acoustic problems. CMES-Computer Modeling in Engineering &Sciences, vol. 91, no.6, pp. 463-483.

    Swift, S.; Blaisdell, G.; Lyrintzis, A. (1983): A time domain equivalent source method for acoustic scattering with coincident source and control points. AIAA, 2013-2017.

    Tausch, J.; Xiao, J. (2010): A spectral boundary element method for scattering problems.CMES-Computer Modeling in Engineering & Sciences, vol. 58, no.3, pp. 221-245.

    Wu, T. W. (2000): Boundary element acoustics: fundamentals and computer codes, WIT Press, Southampton.

    Wu, T. W.; Wan, G. C. (1992): Numerical modeling of acoustic radiation and scattering from thin bodies using a Cauchy principal integral equation. J. Acoust. Soc. Am., vol.92,pp. 2900- 2906.

    99久久人妻综合| 欧美不卡视频在线免费观看| av专区在线播放| 一个人看视频在线观看www免费| 色网站视频免费| 日日啪夜夜撸| 国产一区二区在线观看日韩| 日本猛色少妇xxxxx猛交久久| 一级二级三级毛片免费看| or卡值多少钱| 好男人在线观看高清免费视频| 久久精品久久久久久久性| 老女人水多毛片| 国产精品电影一区二区三区| 国产精品一区二区在线观看99 | 久久亚洲国产成人精品v| 国产高清不卡午夜福利| 精品人妻视频免费看| 国产欧美另类精品又又久久亚洲欧美| 校园人妻丝袜中文字幕| 麻豆乱淫一区二区| 精品久久久久久久人妻蜜臀av| 中文字幕av在线有码专区| 成人高潮视频无遮挡免费网站| 亚洲国产高清在线一区二区三| 中文字幕av成人在线电影| 在线观看一区二区三区| 青春草亚洲视频在线观看| 大香蕉97超碰在线| 欧美成人午夜免费资源| 欧美人与善性xxx| 国产极品精品免费视频能看的| 自拍偷自拍亚洲精品老妇| 亚洲国产精品专区欧美| 少妇裸体淫交视频免费看高清| 一级毛片我不卡| a级毛色黄片| 乱码一卡2卡4卡精品| 国产亚洲精品av在线| 欧美区成人在线视频| 久久欧美精品欧美久久欧美| 欧美精品国产亚洲| 久久午夜福利片| 久久人人爽人人片av| 亚洲图色成人| 国产免费男女视频| 午夜福利在线在线| 日韩三级伦理在线观看| 欧美激情在线99| 51国产日韩欧美| 国产精品永久免费网站| 欧美人与善性xxx| 99视频精品全部免费 在线| 神马国产精品三级电影在线观看| 免费不卡的大黄色大毛片视频在线观看 | 免费看光身美女| 亚洲国产高清在线一区二区三| 欧美日韩精品成人综合77777| 久久久精品94久久精品| 非洲黑人性xxxx精品又粗又长| 大又大粗又爽又黄少妇毛片口| 波野结衣二区三区在线| 精品一区二区三区人妻视频| 亚洲精品色激情综合| 亚洲av一区综合| 午夜a级毛片| 亚洲av成人精品一区久久| 麻豆国产97在线/欧美| 欧美日韩精品成人综合77777| 亚洲精品日韩在线中文字幕| 欧美不卡视频在线免费观看| 午夜福利成人在线免费观看| 校园人妻丝袜中文字幕| 国产高清国产精品国产三级 | 日韩制服骚丝袜av| 国产免费又黄又爽又色| 精品午夜福利在线看| 国产午夜精品论理片| 国产亚洲av嫩草精品影院| 自拍偷自拍亚洲精品老妇| 日韩欧美在线乱码| 亚洲一区高清亚洲精品| 欧美zozozo另类| 久久久久久伊人网av| 黄色日韩在线| 国产 一区 欧美 日韩| 成人无遮挡网站| 又爽又黄无遮挡网站| 看黄色毛片网站| 成人毛片60女人毛片免费| 亚洲精品乱久久久久久| 99久国产av精品国产电影| 国产精品永久免费网站| 国产一级毛片七仙女欲春2| 久久久久久久久大av| 少妇猛男粗大的猛烈进出视频 | 六月丁香七月| 国产在视频线在精品| 白带黄色成豆腐渣| 菩萨蛮人人尽说江南好唐韦庄 | av专区在线播放| 亚洲精品aⅴ在线观看| 久久久成人免费电影| 91久久精品国产一区二区成人| 麻豆av噜噜一区二区三区| 欧美高清成人免费视频www| 日本-黄色视频高清免费观看| 免费播放大片免费观看视频在线观看 | 亚洲高清免费不卡视频| 久久国内精品自在自线图片| 联通29元200g的流量卡| 国产乱人视频| 欧美性猛交黑人性爽| 午夜爱爱视频在线播放| 国产又色又爽无遮挡免| 亚洲国产精品sss在线观看| 中国国产av一级| 一级黄片播放器| 国产综合懂色| 永久网站在线| 国产亚洲午夜精品一区二区久久 | 美女内射精品一级片tv| 天堂网av新在线| 天堂中文最新版在线下载 | 欧美最新免费一区二区三区| 爱豆传媒免费全集在线观看| 狂野欧美白嫩少妇大欣赏| 亚洲人成网站在线观看播放| 亚洲精品日韩av片在线观看| 国产精品久久久久久av不卡| 天堂网av新在线| 两个人的视频大全免费| 久久精品久久精品一区二区三区| 免费看av在线观看网站| 国语自产精品视频在线第100页| 亚洲怡红院男人天堂| 能在线免费看毛片的网站| 在线播放国产精品三级| av在线蜜桃| 一边亲一边摸免费视频| 桃色一区二区三区在线观看| 久久久久国产网址| 高清日韩中文字幕在线| 免费黄色在线免费观看| 成人高潮视频无遮挡免费网站| 国产精品久久久久久精品电影| 午夜免费激情av| 成人综合一区亚洲| 国产 一区精品| 免费搜索国产男女视频| 免费人成在线观看视频色| 亚洲精品久久久久久婷婷小说 | 午夜视频国产福利| 久久精品久久久久久噜噜老黄 | 精品人妻偷拍中文字幕| 久久精品久久精品一区二区三区| 免费观看精品视频网站| 少妇人妻一区二区三区视频| 免费观看的影片在线观看| 久久这里有精品视频免费| 亚洲真实伦在线观看| 99久久无色码亚洲精品果冻| 午夜精品一区二区三区免费看| 日韩av不卡免费在线播放| 搡老妇女老女人老熟妇| 啦啦啦韩国在线观看视频| 久久99精品国语久久久| 最近手机中文字幕大全| av在线亚洲专区| 99久久精品热视频| 久久99热6这里只有精品| 国语自产精品视频在线第100页| 国产一区亚洲一区在线观看| 蜜桃亚洲精品一区二区三区| 国产av码专区亚洲av| 欧美一区二区国产精品久久精品| 免费黄网站久久成人精品| 日本黄色视频三级网站网址| 九九热线精品视视频播放| 一卡2卡三卡四卡精品乱码亚洲| 熟女电影av网| 99在线人妻在线中文字幕| 精品无人区乱码1区二区| 久久鲁丝午夜福利片| 我的女老师完整版在线观看| 国产一级毛片在线| 欧美一区二区精品小视频在线| 美女xxoo啪啪120秒动态图| 欧美高清成人免费视频www| 国产不卡一卡二| 男人的好看免费观看在线视频| 国产欧美日韩精品一区二区| 日本午夜av视频| 国语对白做爰xxxⅹ性视频网站| 一级毛片aaaaaa免费看小| 91aial.com中文字幕在线观看| 六月丁香七月| 午夜免费男女啪啪视频观看| 日韩精品有码人妻一区| 午夜激情欧美在线| 99视频精品全部免费 在线| 狂野欧美激情性xxxx在线观看| 99热这里只有精品一区| 只有这里有精品99| 亚洲四区av| 麻豆成人av视频| 亚洲一级一片aⅴ在线观看| 国产黄色视频一区二区在线观看 | 亚洲综合精品二区| 亚洲,欧美,日韩| 少妇熟女欧美另类| 日本熟妇午夜| 精品久久久久久久久av| 国产乱人偷精品视频| 天天躁夜夜躁狠狠久久av| av视频在线观看入口| 精品国内亚洲2022精品成人| 国产精品av视频在线免费观看| 国产淫片久久久久久久久| av在线亚洲专区| 亚州av有码| 桃色一区二区三区在线观看| 午夜福利高清视频| 精品久久久久久久末码| av在线亚洲专区| 久久久久久久久大av| 青春草国产在线视频| 久久久久久久久久久免费av| 青春草亚洲视频在线观看| 国产又黄又爽又无遮挡在线| 日韩中字成人| 在线免费十八禁| www.av在线官网国产| 国产国拍精品亚洲av在线观看| 免费看日本二区| 亚洲av二区三区四区| 国国产精品蜜臀av免费| 国产精品久久电影中文字幕| 国产精品无大码| 日韩高清综合在线| 成人午夜精彩视频在线观看| av免费在线看不卡| 久久99热6这里只有精品| 亚洲国产高清在线一区二区三| 成人特级av手机在线观看| 欧美另类亚洲清纯唯美| 自拍偷自拍亚洲精品老妇| 99久国产av精品国产电影| 亚洲丝袜综合中文字幕| 精品久久久久久电影网 | 日本五十路高清| 免费观看的影片在线观看| 日韩强制内射视频| 国产大屁股一区二区在线视频| 欧美日韩在线观看h| 久久久色成人| 成年版毛片免费区| 97在线视频观看| 99久久人妻综合| 人人妻人人澡欧美一区二区| 一级毛片我不卡| 两性午夜刺激爽爽歪歪视频在线观看| 国产黄a三级三级三级人| av线在线观看网站| av免费观看日本| 久久久国产成人免费| 看免费成人av毛片| 国产高清国产精品国产三级 | 国产亚洲最大av| 日本一本二区三区精品| 亚洲综合色惰| 成年免费大片在线观看| 男的添女的下面高潮视频| 99久久无色码亚洲精品果冻| 亚洲国产精品合色在线| 欧美性感艳星| 黄色欧美视频在线观看| 免费av毛片视频| 成年免费大片在线观看| 婷婷色麻豆天堂久久 | 亚洲精品,欧美精品| 国产精品嫩草影院av在线观看| 亚洲色图av天堂| 激情 狠狠 欧美| 丝袜喷水一区| 99久久精品热视频| 亚洲国产成人一精品久久久| 亚洲欧美日韩无卡精品| 韩国av在线不卡| 1000部很黄的大片| 男插女下体视频免费在线播放| 亚洲国产精品合色在线| 久久99热这里只频精品6学生 | 国产精品国产三级国产av玫瑰| 女的被弄到高潮叫床怎么办| 男人舔奶头视频| 禁无遮挡网站| 成人亚洲欧美一区二区av| 久久精品久久精品一区二区三区| 国产免费男女视频| 综合色av麻豆| 秋霞伦理黄片| 九色成人免费人妻av| 尤物成人国产欧美一区二区三区| 少妇丰满av| 非洲黑人性xxxx精品又粗又长| 大话2 男鬼变身卡| 一级毛片我不卡| 少妇高潮的动态图| 免费观看性生交大片5| 国产又色又爽无遮挡免| 亚洲国产欧美人成| a级一级毛片免费在线观看| 七月丁香在线播放| 国产在线一区二区三区精 | 国产精品美女特级片免费视频播放器| 国内精品美女久久久久久| 欧美成人a在线观看| 免费看光身美女| av在线天堂中文字幕| 亚洲av中文字字幕乱码综合| 日本猛色少妇xxxxx猛交久久| 日本一本二区三区精品| 国产成年人精品一区二区| 亚洲美女搞黄在线观看| 国产不卡一卡二| 男人狂女人下面高潮的视频| 成人三级黄色视频| 麻豆av噜噜一区二区三区| 久久精品人妻少妇| 午夜激情福利司机影院| 午夜福利在线在线| 最近的中文字幕免费完整| 你懂的网址亚洲精品在线观看 | 亚洲欧美精品自产自拍| 午夜精品在线福利| 插逼视频在线观看| 好男人视频免费观看在线| 不卡视频在线观看欧美| 免费观看性生交大片5| 97超碰精品成人国产| 精品久久久久久久久av| 麻豆一二三区av精品| 亚洲18禁久久av| 级片在线观看| 97超视频在线观看视频| 观看免费一级毛片| 亚洲18禁久久av| 日本一本二区三区精品| 又粗又硬又长又爽又黄的视频| 国产色爽女视频免费观看| 亚洲av男天堂| 国产在线一区二区三区精 | 秋霞在线观看毛片| 亚洲成人av在线免费| 一区二区三区四区激情视频| 亚洲国产日韩欧美精品在线观看| 欧美一区二区国产精品久久精品| 欧美高清成人免费视频www| 男女国产视频网站| 久久久久免费精品人妻一区二区| 秋霞在线观看毛片| 亚洲av中文av极速乱| 欧美xxxx性猛交bbbb| 1000部很黄的大片| 国产麻豆成人av免费视频| 我的老师免费观看完整版| 国模一区二区三区四区视频| 日本黄色视频三级网站网址| 亚洲欧美日韩高清专用| 熟女电影av网| 老司机影院成人| 精品一区二区三区人妻视频| 人妻少妇偷人精品九色| 两个人的视频大全免费| 最近2019中文字幕mv第一页| 亚洲真实伦在线观看| 建设人人有责人人尽责人人享有的 | 精品一区二区免费观看| 久久精品国产鲁丝片午夜精品| 久久99热这里只有精品18| 亚洲人成网站在线播| av免费观看日本| 如何舔出高潮| 免费看a级黄色片| 欧美丝袜亚洲另类| 亚洲激情五月婷婷啪啪| 三级毛片av免费| 三级国产精品欧美在线观看| 亚洲人与动物交配视频| 欧美日本亚洲视频在线播放| 婷婷色av中文字幕| www日本黄色视频网| 欧美极品一区二区三区四区| 色综合亚洲欧美另类图片| 在线播放国产精品三级| 亚洲18禁久久av| 青春草视频在线免费观看| 国产一区亚洲一区在线观看| 看片在线看免费视频| 色哟哟·www| 可以在线观看毛片的网站| 久久精品综合一区二区三区| 色5月婷婷丁香| 一夜夜www| 国产免费男女视频| 91精品伊人久久大香线蕉| 黄色一级大片看看| av卡一久久| 国产精品一区二区在线观看99 | 亚洲精品国产成人久久av| 免费观看精品视频网站| 中文字幕熟女人妻在线| 在线播放无遮挡| 日本免费a在线| 亚洲av成人精品一区久久| 九色成人免费人妻av| 中文字幕av在线有码专区| 一级二级三级毛片免费看| 亚洲在久久综合| av在线天堂中文字幕| 成人综合一区亚洲| 中文字幕熟女人妻在线| www.av在线官网国产| 精品久久久久久久末码| 日本黄大片高清| 国产精华一区二区三区| 男女啪啪激烈高潮av片| 国产一级毛片在线| 美女国产视频在线观看| 久久精品熟女亚洲av麻豆精品 | 白带黄色成豆腐渣| 男插女下体视频免费在线播放| 国产免费一级a男人的天堂| 亚洲国产精品成人久久小说| 久久久午夜欧美精品| 色视频www国产| 久久国产乱子免费精品| 尤物成人国产欧美一区二区三区| 久久99热这里只有精品18| 又黄又爽又刺激的免费视频.| 99在线人妻在线中文字幕| 人人妻人人看人人澡| 午夜亚洲福利在线播放| 日韩国内少妇激情av| 91在线精品国自产拍蜜月| 波野结衣二区三区在线| 国产老妇伦熟女老妇高清| 亚洲中文字幕一区二区三区有码在线看| 1024手机看黄色片| 亚洲精品,欧美精品| 一卡2卡三卡四卡精品乱码亚洲| 日日撸夜夜添| 精品久久久久久久人妻蜜臀av| 我要看日韩黄色一级片| 亚洲色图av天堂| 美女cb高潮喷水在线观看| 国产爱豆传媒在线观看| 精品一区二区三区视频在线| 日本黄色视频三级网站网址| 插阴视频在线观看视频| 国产老妇女一区| av视频在线观看入口| 亚洲精品,欧美精品| 亚洲五月天丁香| 看免费成人av毛片| 狠狠狠狠99中文字幕| 伦精品一区二区三区| 中国国产av一级| 国产精品野战在线观看| 亚洲av成人av| 国产探花在线观看一区二区| 久久人人爽人人爽人人片va| 亚洲人成网站高清观看| 日日撸夜夜添| 国产又黄又爽又无遮挡在线| 国产私拍福利视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 草草在线视频免费看| 极品教师在线视频| 亚洲乱码一区二区免费版| 午夜精品国产一区二区电影 | 一个人看视频在线观看www免费| 国模一区二区三区四区视频| 日韩av在线免费看完整版不卡| 91精品国产九色| 美女国产视频在线观看| 看黄色毛片网站| 日日摸夜夜添夜夜爱| 亚洲中文字幕日韩| 青春草国产在线视频| 日韩制服骚丝袜av| 精品久久久久久久人妻蜜臀av| 天美传媒精品一区二区| 国产熟女欧美一区二区| 熟女人妻精品中文字幕| 国产三级中文精品| 日本黄色片子视频| 亚洲精品,欧美精品| 国产视频内射| 人人妻人人澡欧美一区二区| 91精品国产九色| 日本wwww免费看| 夜夜爽夜夜爽视频| 久久99热这里只频精品6学生 | 亚洲aⅴ乱码一区二区在线播放| 你懂的网址亚洲精品在线观看 | 亚洲国产精品专区欧美| 国产午夜精品一二区理论片| 日韩av在线大香蕉| av免费在线看不卡| 日日摸夜夜添夜夜添av毛片| 卡戴珊不雅视频在线播放| 亚洲精品aⅴ在线观看| 精品无人区乱码1区二区| 神马国产精品三级电影在线观看| 韩国av在线不卡| 免费无遮挡裸体视频| 亚洲精品乱码久久久久久按摩| 非洲黑人性xxxx精品又粗又长| 蜜臀久久99精品久久宅男| 99热这里只有是精品在线观看| 又粗又爽又猛毛片免费看| 亚洲人与动物交配视频| 久久久亚洲精品成人影院| 免费在线观看成人毛片| 国产一区二区三区av在线| 如何舔出高潮| 菩萨蛮人人尽说江南好唐韦庄 | 国产免费男女视频| 欧美zozozo另类| 少妇高潮的动态图| 国产精品久久久久久av不卡| 色网站视频免费| 人妻少妇偷人精品九色| 只有这里有精品99| 亚洲av电影不卡..在线观看| 久久久久精品久久久久真实原创| 久久精品国产99精品国产亚洲性色| 3wmmmm亚洲av在线观看| 国产在线一区二区三区精 | 能在线免费观看的黄片| 亚洲精品久久久久久婷婷小说 | 日本黄色视频三级网站网址| 国产成人aa在线观看| 亚洲欧美精品专区久久| 久久精品国产99精品国产亚洲性色| 免费播放大片免费观看视频在线观看 | 精品国内亚洲2022精品成人| 国产亚洲午夜精品一区二区久久 | 日韩亚洲欧美综合| 国产乱人视频| 在线免费观看不下载黄p国产| av免费观看日本| 99久久人妻综合| 美女黄网站色视频| 成人综合一区亚洲| 91久久精品国产一区二区三区| 97超碰精品成人国产| 亚洲国产欧美在线一区| 欧美高清性xxxxhd video| 男人舔女人下体高潮全视频| 中文字幕人妻熟人妻熟丝袜美| 欧美日韩在线观看h| 午夜爱爱视频在线播放| 哪个播放器可以免费观看大片| 欧美高清性xxxxhd video| 日日撸夜夜添| 亚洲丝袜综合中文字幕| 久久99热这里只频精品6学生 | 欧美一区二区国产精品久久精品| 亚洲无线观看免费| 一二三四中文在线观看免费高清| 国产精品1区2区在线观看.| 国产老妇伦熟女老妇高清| 神马国产精品三级电影在线观看| 特大巨黑吊av在线直播| 亚洲av成人精品一二三区| 丝袜喷水一区| 国产高清国产精品国产三级 | 少妇丰满av| 亚洲人成网站高清观看| 大话2 男鬼变身卡| 日韩欧美精品免费久久| 国产成人精品久久久久久| 男人和女人高潮做爰伦理| 91午夜精品亚洲一区二区三区| 亚洲精品456在线播放app| 菩萨蛮人人尽说江南好唐韦庄 | 午夜福利在线在线| 国产91av在线免费观看| 搡女人真爽免费视频火全软件| 久久久国产成人精品二区| 日本wwww免费看| 亚洲不卡免费看| 亚洲怡红院男人天堂| 日韩一区二区视频免费看| 国产黄片视频在线免费观看| 欧美日韩综合久久久久久| 国产麻豆成人av免费视频| 美女大奶头视频| 亚洲国产精品久久男人天堂| 国产av不卡久久| 亚洲欧美成人精品一区二区| 亚洲伊人久久精品综合 | 亚洲欧美精品自产自拍| 精品人妻熟女av久视频| 黄片无遮挡物在线观看| 久久精品国产亚洲av天美| 九色成人免费人妻av| 精品少妇黑人巨大在线播放 | 天堂中文最新版在线下载 | 亚洲精品日韩av片在线观看| 又爽又黄a免费视频| 国产精品日韩av在线免费观看|