• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimization of Nonlinear Vibration Characteristics for Seismic Isolation Rubber

    2017-03-13 05:01:07TakahashiShibataMotoyamaandMisaji

    A. Takahashi , T. Shibata, K. Motoyamaand K. Misaji

    1 Introduction

    Seismic-isolation laminated rubber is used as a means of suppressing damage to structures caused by earthquakes. Placed between the ground and a building structure, it absorbs seismic energy by flexibly deforming in the horizontal direction. Seismicisolation laminated rubber has a characteristic called a “non-linear restoring force”(which depends on displacement amplitude), and comprehending the dynamic response reflected in that characteristic is a vital factor in the design of the rubber. Moreover, when designing a structure with seismic-isolation laminated rubber, the designer usually selects one rubber from existing rubbers provided by rubber manufacturers in consideration of the kind of structure and its earthquake resistance. If the restoring-force characteristic of the selected rubber could be optimized, and thereby minimize the seismic response of the structure, it would make designing the rubber much easier.

    In the present study, a method called PFT-ELS (Equivalent Linear System using Restoring Force Model of Power Function Type) is used for analyzing the non-linear oscillation of seismic isolation laminated rubber. PFT-ELS has been used for calculating approximate responses of various non-linear-vibration systems [Kazuhito, M., et al.(1994); Koichi, S., et al. (1995); Koichi, S., et al. (1996)]. By applying PFT-ELS to seismic-isolation laminated rubber, a 15-layer model using that rubber is constructed.After that, the restoring-force characteristic of the rubber (which minimizes the seismic response of the structure) is optimized by using a generic algorithm (GA). In this manner,it is possible to design the rubber so that it minimizes the damage to a structure due to an earthquake.

    On the basis of these results, the optimum solution for the restoring-force characteristic during different earthquakes can be considered, and the effectiveness and usability of the optimization method is demonstrated. As a result, the vibration characteristics of the laminated rubber that minimize damage to a building were revealed by using the developed optimization method during the design stage. As examples of earthquakes,ones that occurred in El Centro, California, USA in 1940 and Hachinohe, Aomori prefecture, Japan in 1968 were used.

    2 Analysis method

    2.1 Equivalent Linear System using Restoring Force Model of Power Function Type(PFT-ELS) Method

    The analysis method used obtains a bone curve and area from a hysteresis restoring-force curve that was changed under displacement amplitude, creates a restoring force model of power function type (PFT-RFM, hereafter) equivalent to those values, and obtains a damping coefficient and dynamic spring constant of a seismic-isolation laminated rubber.In general, a single-degree-of-freedom system affected by an involuntary external force(acceleration) is expressed in terms of mass of a mass m, displacement x, and restoring force f (x)as the following equation:

    Making this equation dimensionless gives the following equation:

    where F (X)is dimensionless restoring force,xsand Fsare displacement and restoring force under linear limits,ωsis inherent angular frequency under linear limits, and x0is displacement amplitude. The following equation is obtained by replacing the hysteresisvibration system in Equation (2) with an equivalent-linear-vibration system:

    where equivalent damping coefficient Heqand equivalent spring constant Keqare given as

    where G(X0)is the area enclosed by the hysteresis loop with respect to the amplitude of displacement X0,R(X)represents a hysteresis loop (sum curve) formed by an ascending branch and a descending branch for each angular displacement, and P(X)is given as

    In this case, as a basic hysteresis-loop model for calculating G(X0)and R(X), a softspring-type PFT-RFM (Fig. 1), which has a similarly shaped hysteresis loop to that of seismic isolation laminated rubber, is used. The basic equations for the soft spring type are given as follows.

    Figure 1: Restoring- force model of with power function model(soft- spring type)

    Bone curve:

    Ascending branch of the hysteresis loop:

    Descending branch of the hysteresis loop:

    With regard to this restoring-force model, the area enclosed by the hysteresis loop G(X0)is given as

    To find shape parameters a and k of the PFT-RFM in Equations (6), (7) and (8),vibration characteristics of seismic isolation laminated rubber are incorporated in the basic hysteresis-loop model under conditions (I) and (II) as follows:

    (I) The area enclosed by the hysteresis loop obtained from vibration tests and the area enclosed by the hysteresis loop given by the PFT-RFM were equalized.

    (II) The bone curve obtained by linking the peaks of the hysteresis loops obtained from the vibration tests was matched to the bone curve given by the PFT-RFM.

    The areas and peaks of the hysteresis loops obtained from the vibration tests are approximated by the least-squares method. By finding area G0and peak F0obtained from the functions, shape parameters a and k are obtained from the following equations.

    That is, if the area of the hysteresis loop and bone curve is functionalized in terms of displacement amplitude X0, [object] can be replaced with the PFT-RFM using α(X0)and k (X0)given by Equations (10) and (11). Therefore,G(X0)and R (X)in Equations (4)and (5) can be calculated, and equivalent damping coefficient Heqand equivalent spring constant Keqof the rubber are given as follows:

    Substituting Equations (12) and (13) into Equations (14) and (15) makes it possible to calculate displacement amplitude x0, non-linear damping coefficient C (x0), and dynamic spring constant K (x0)of the rubber.

    Using C (x0)and K (x0), the equation of motion in the case that an involuntary external force is applied to a single-degree-of-freedom system is given as

    Solving Equation (16) (displacement amplitude x0) by determining C (x0)and K (x0)for each hysteresis loop is known as the “equivalent-linear-system analytical method” using the PFT-RFM.

    Solving the above equation enables analysis of response in connection with systems possessing damping and spring properties depending on amplitude of displacement. This is known as the analytical method of equivalent linear system.

    2.2 Modeling of a High-rise Building Incorporating Seismic-isolation Rubber

    A high-rise (15-storey) building incorporating seismic isolation rubber is expressed as a 16-degree-of-freedom spring-mass model. The model is shown in Fig. 2, and the specifications of the high-rise building are listed in Table 1 [The Architectural Institute of Japan (1989)]. In the figure,miis the mass of the ith layer,ciis the damping coefficient of the ith layer,kiis the spring coefficient of the ith layer,mbis the mass of a seismically isolated layer,Cbis the damping coefficient of the seismically isolated layer,and Kbis the spring coefficient of the seismically isolated layer.Cband Kbare calculated by the PFT-ELS method.

    The equations of motion can be expressed by the following equation when an external force (acceleration ˙y˙) is applied to 16 degree of freedom system.

    3 Seismic-isolation Laminated Rubber

    The laminated rubber used in this study has high damping coefficient, and its specifications are listed in Table 2. While under a vertical load, the rubber was deformed in the horizontal direction (i.e., shear deformation), and the static shear load was measured. The hysteresis restoring force loops given by these measurements are shown in Fig. 3. Using the mass of a high-rise building and the recommended long-term axial force to be applied to the laminated rubber, the PFT-RFM was applied to six types of laminated rubbers.

    Figure 2: Schematic diagram of high-rise building structure

    Table1: Specifications of high-rise building

    3.1 Functionalization

    The areas and peaks of the loops necessary to create the PFT-RFM were calculated, from the hysteresis restoring-force loops of the laminated rubber (Figure 3). The bone curve obtained from each peak and the area enclosed by the hysteresis loop were made dimensionless and approximated as functions by the least-squares method. The approximated functions for the area and bone curve, which depend on displacement amplitude X0, are shown in Table 3. In this manner, shape parameters α and k of the PFTRFM are obtained from Equations (10) and (11). Moreover, the damping coefficient and spring constant of the rubbers can be calculated from Equations (14) and (15).

    Table 2: Specifications of seismic isolation rubber used in this study

    Figure 3: Hysteresis loops of measured values

    Table 3: Functions of the bone carve and area

    4 Validation of Seismic-isolation-laminated-rubber Model

    4.1 Calculation of Discrete Values of Damping Coefficient and Spring Constant

    To validate the accuracy of the analysis results, discrete values of the damping coefficient and spring constant of the rubbers were obtained from the hysteresis loop in Figure 4 by using Equations (18) and (19) and evaluated in comparison with published analysis results (Tajima, et al. 1965).

    Here,δis loss angle,ΔWis the energy absorbed by the rubber in one period (area surrounded by the hysteresis loop), and W is the elastic energy stored by the rubber(shaded triangular areas in the figure).

    Here,C’is the discrete value of the damping coefficient, and K’is the discrete value of the spring constant.

    Figure 4: Method of calculating discrete values of damping coefficient and spring constant

    4.2 Comparison of Hysteresis Loops of Measured and Calculated Values

    Hysteresis loops of values calculated by the PFT-RFM are compared with the hysteresis loops of measured values in Figures 5 and 6 (dotted lines: measured values; solid lines:calculated values). The calculated values of loop 1 to loop 5 are approximately consistent with the corresponding measured values. However, the calculated values and measured values of loops 6 and 7 diverge slightly, but their peaks are consistent.

    Figure 5: Hysteresis loop for seismic isolation rubber (Loop 1 ~ Loop 5)

    Figure 6: Hysteresis loop for seismic isolation rubber (Loop 6, Loop 7)

    4.3 Dependency of Damping Coefficient and Spring Coefficient on Displacement Amplitude

    The discrete (measured) values of the damping coefficient and spring constant obtained from the measured hysteresis loops described in the preceding section are compared with the continuous (analytical) values found by PFT-ELS in Figures 7 and 8, respectively.The PFT-ELS values are approximately consistent with the discrete values. Moreover, as mentioned above, although the ascending and descending branches of the measured and calculated loops 6 and 7 in Fig. 6 deviate, that deviation does not influence the damping coefficient or spring constant. The above results indicate that it is possible to apply the PFT-ELS method to analysis of nonlinear vibration of seismic-isolation rubber.

    Figure 7: Damping coefficient dependence on amplitude

    Figure 8: Spring constant dependence on amplitude

    5 Analysis of Seismic Response of a High-rise-building Model Incorporating Seismic-isolation Rubber

    The seismic response of a seismically isolated building model was analyzed as follows.The PFT-ELS method was applied to the seismic-isolation layer. The 1940 El Centro Earthquake (which acted in the east-west direction) was used as the seismic wave in the analysis (see Fig. 9). To confirm the effect of the seismic isolation, the results of the seismic-response analysis using the seismically isolated building model were compared with those obtained using a non-seismically isolated building model. The absolute response acceleration of the first layer (is shown in Fig. 10, and that of the 15th layer (˙) is shown in Fig. 11. The relative response velocity of the first layer() is shown in Fig. 12, and that of the 15th layer () is shown in Fig. 13. It is clear from these results that the response of both layers diminishes with time in both the with- and without-isolation cases.

    Figure 9: Input acceleration (Elcentro EW)

    Figure 10: Absolute response acceleration of 1st layer

    Figure 11: Absolute response acceleration of 15th layer

    Figure 12: Relative response velocity of 1st laye

    Figure 13: Relative response velocity of 15th layer

    6 Optimization of Seismic-isolation Rubber by Using a Genetic Algorithm

    The restoring-force characteristic of seismic-isolation rubber that minimizes the response of a seismic-isolated structure during an earthquake was optimized by using a generic algorithm (GA) as follows, and the seismic response of the building model was analyzed by using the optimized restoring-force characteristics. These results are compared with response-analysis results before optimization. The seismic waves used in the optimizations were generated by the El Centro (E-W) and Hachinohe (E-W) earthquakes(Fig. 16), and the restoring-force characteristics of seismic-isolation rubber were optimized for each seismic wave.

    6.1 Design Variables and Objective Function

    As explained in Section 2, the PFT-RFM was constructed by calculating the shape parameters from the bone-curve function and area function (Table 3). Constant multiples of these functions are defined as design variables as follows:

    Bone-curve and area functions are calculated by combining design variables βand γ,and the PFT-RFM is constructed. The design variables range from 0.5 to 2.0 in steps of 0.1. The constructed PFT-RFM was used to analyze the seismic response of a seismicisolation-structure model shown in Fig. 2. Maximum response velocity and maximum response acceleration of the top layer were taken as objective functions (objective functions 1 and 2, respectively), and design variables that minimize these functions were identified by using the GA.

    6.2 Analysis Results

    First, the characteristics of the seismic-isolation rubber for the El Centro (E-W)earthquake were optimized. A Pareto chart and hysteresis loop for the optimized seismicisolation rubber are shown in Figures 14 and 15, respectively. The damping coefficient is plotted in Fig. 16, and the spring constant is plotted in Fig. 17. According to the optimization results, β = 0.6 and γ = 0.6 is the optimum combination for minimizing the maximum response velocity and maximum response acceleration of the top layer of the laminated rubber.

    The area of the hysteresis loop and the gradient of the bone curve decrease as compared to those values before the optimization. That is, after the optimization, the stiffness and damping coefficient of the rubber are decreased (Figs. 16 and 17). The seismic response of the rubber was re-analyzed by using the optimized restoring-force model, and the results were compared with those before the optimization. Response acceleration and response velocity of the top layer are plotted in Figures 18 and 19. It was thus confirmed that by optimizing the hysteresis restoring-force characteristic, it is possible to reduce the maximum response amplitude.

    Next, the characteristics of the seismic-isolation rubber for the Hachinohe (E-W)earthquake (1968) were optimized. Input acceleration is plotted in Figure 20, the hysteresis loop for the optimized rubber is shown in Figure 21, the rubber’s damping coefficient is plotted in Figure 22, and its spring constant is plotted in Figure 23.According to the optimization results, β = 0.8 and γ = 1.0 is an optimum combination for the earthquake in question. The area of the history loop is decreased as compared to that before the optimization; that is, only the damping characteristic is degraded (Figures 22 and 23). These results indicate that the optimization results depend on the input seismic wave.

    Next, the effect of optimization is confirmed by frequency characteristics. Acceleration spectrums of 15th layer for El Centro (E-W) earthquake and Hachinohe (E-W)earthquake are shown in Figures 25 and 26, respectively. In Fig. 25, the peak of the first order natural frequency (0.2[Hz]) of the structure reduced by about 30%, and the peak of the second order natural frequency (1.4[Hz]) was also reduced by about 60% (Fig. 25).Moreover, in Fig. 26, the peak of the first order natural frequency (0.2[Hz]) of the structure reduced by about 40%. From these results, it was found that the effect of optimization was the largest at the resonance peak. And, it was confirmed that the effect of optimization differs depending on the type of earthquake.

    Figure 14: Pareto chart

    Figure 15: Hysteresis loop for seismic isolation rubber after optimization

    Figure 16: Damping coefficient dependence on amplitude

    Figure 17: Spring constant dependence on amplitude

    Figure 18: Absolute response acceleration of 15th layer

    Figure 19: Relative response velocity of 15th layer

    Figure 20: Input acceleration(Hachinohe E-W)

    Figure 21: Hysteresis loop for seismic isolation rubber after optimization

    Figure 22: Damping coefficient dependence on amplitude

    Figure 23: Spring constant dependence on amplitude

    Figure 25: Acceleration spectrum(Elcentro EW)

    Figure 26: Acceleration spectrum (Hachinohe EW)

    7 Conclusions

    Nonlinear-vibration characteristics of seismic-isolation rubber were modeled, and the PFT-ELS (power-function-type equivalent linear system using restoring-force model)method was applied to analyze the model. Next, the restoring-force characteristic of the seismic-isolation rubber that minimizes the behavior of a structure subjected to seismic waves with different characteristics was obtained by using a genetic algorithm. The findings of this study are summarized as follows.

    ? The non-linear vibration characteristics of the seismic-isolation rubber (which depend on displacement amplitude) could be accurately obtained by using the PFTELS method.

    ? Two design variables (γ and β), which show the restoring-force characteristics of the seismic-isolation rubber, could be obtained by using a generic algorithm for two objective functions (namely, the minimum of the maximum response velocity of the top layer and the minimum of maximum response acceleration).

    ? Restoring-force characteristics of the optimized rubber for minimizing the response of a high-rise building depend on the characteristics of the seismic wave.

    ? The proposed PFT-ELS method can obtain the optimum restoring-force characteristic of the rubber that minimizes the response of a structure for a target earthquake. By utilizing this method, it is possible to optimize the design of a certain seismic-isolation rubber instead of simply selecting a suitable rubber from existing seismic-isolation rubbers in the conventional manner.

    ? As a future schedule, at first we would like to verify by comparing the analysis result shown in this paper with the experimental value. Next, we carry out similar verification against wind load too.

    Kazuhito, M.; Hideki, K.; Koichi, S. (1994): Vibration Characteristics of Rubber Vibration Isolators of Vehicle: Analysis of Nonlinear Vibration Response. Transactions of the Japan Society of Mechanical Engineers Series C, Vol. 60 (1994) No. 578 P 3274-3280.

    Koichi, S.; TSUTOMU, T. TAKAYOSHI, S. (1995): Vibration Properties of Rubber Bearing for Base Isolation System: Analytical modeling for the hysteresis restoring force characteristics and nonlinear vibration properties. Journal of Structural and Construction Engineering, Vol. 60 (1995) No. 475 p. 93-102.

    Yasuhiro, S.; Shuichi, O.; Hiroyuki, S., Koichi, S. (2000): Study on Response Analysis of Vibration System using Laminated Rubber for Earthquake Isolation System:Improvement on analytical method of hysteresis system and verification by experiment,frequency and surface pressure and analysis of vibration response. Journal of Structural and Construction Engineering, Vol. 65 (2000) No. 532 p. 71-78

    The Architectural Institute of Japan (1989): Design Recommendations for Seismically Isolated Buildings. The Architectural Institute of Japan, p.348.

    Goldberg, D. E. (1989): Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Company.

    Motoyama, K. etc. (2012): Study on Nonlinear Vibration of Rubber Bearing for Base Isolation System with Hysteresis Restoring Force Charachteristics of Hardening Type:Dependency of amplitude of horizontal displacement, frequency and surface pressure and analysis of vibration response. SAE 2012 World Congress, 2012-01-0772.

    Islam, M. R.; Bujik, A.; Rais-Rohani, M.; Motoyama, K. (2014): Simulation-Based Numerical Optimization of Arc Welding Process for Reduced Distortion in Welded Structures. Finite Elements in Analysis and Design, Vol. 84, P 54–64.

    成人三级黄色视频| 国产成人欧美| 正在播放国产对白刺激| 狂野欧美激情性xxxx| 中文字幕人妻熟女乱码| 操出白浆在线播放| 久久久精品国产亚洲av高清涩受| 欧美丝袜亚洲另类 | 一边摸一边抽搐一进一小说| 国产精品自产拍在线观看55亚洲| 亚洲男人天堂网一区| 久久亚洲精品不卡| 亚洲美女黄片视频| 女人高潮潮喷娇喘18禁视频| 女人被躁到高潮嗷嗷叫费观| 国产欧美日韩一区二区三区在线| 亚洲伊人色综图| 长腿黑丝高跟| 国产成人影院久久av| 高清av免费在线| 色综合婷婷激情| 色哟哟哟哟哟哟| 精品国产美女av久久久久小说| 嫩草影院精品99| 中文字幕人妻熟女乱码| 午夜日韩欧美国产| 村上凉子中文字幕在线| 91av网站免费观看| 中文字幕色久视频| 成年版毛片免费区| 另类亚洲欧美激情| 大香蕉久久成人网| 亚洲精品久久午夜乱码| 午夜精品国产一区二区电影| 午夜福利免费观看在线| 女人精品久久久久毛片| 精品卡一卡二卡四卡免费| 老熟妇仑乱视频hdxx| 天堂动漫精品| 免费在线观看黄色视频的| 一级毛片女人18水好多| 亚洲 国产 在线| 99在线人妻在线中文字幕| 两性夫妻黄色片| 黄色丝袜av网址大全| 777久久人妻少妇嫩草av网站| 男人舔女人下体高潮全视频| 免费观看人在逋| 一级片免费观看大全| 免费在线观看亚洲国产| 级片在线观看| 欧美日韩av久久| 丁香欧美五月| 母亲3免费完整高清在线观看| 成熟少妇高潮喷水视频| 欧美成人午夜精品| 长腿黑丝高跟| 亚洲一区高清亚洲精品| 欧美日韩av久久| 一区福利在线观看| 男女下面插进去视频免费观看| 99久久综合精品五月天人人| av免费在线观看网站| 亚洲成人免费av在线播放| 精品久久久久久久毛片微露脸| 视频区图区小说| 99国产精品99久久久久| 欧美在线黄色| 亚洲精品中文字幕一二三四区| 久久九九热精品免费| 乱人伦中国视频| 757午夜福利合集在线观看| 亚洲av片天天在线观看| 国产精品98久久久久久宅男小说| 日韩中文字幕欧美一区二区| 亚洲全国av大片| 精品国产美女av久久久久小说| 丝袜人妻中文字幕| 国产99久久九九免费精品| 一二三四在线观看免费中文在| 亚洲伊人色综图| 俄罗斯特黄特色一大片| svipshipincom国产片| 亚洲一区中文字幕在线| 精品乱码久久久久久99久播| 欧美乱妇无乱码| xxxhd国产人妻xxx| 涩涩av久久男人的天堂| 日韩视频一区二区在线观看| www国产在线视频色| 欧美国产精品va在线观看不卡| 欧美在线黄色| 制服诱惑二区| av电影中文网址| 久久国产乱子伦精品免费另类| 少妇裸体淫交视频免费看高清 | 国产免费男女视频| 午夜福利一区二区在线看| 午夜福利在线观看吧| 在线播放国产精品三级| 精品电影一区二区在线| 日日干狠狠操夜夜爽| av网站在线播放免费| 老熟妇乱子伦视频在线观看| 在线免费观看的www视频| 国产精品成人在线| 亚洲国产欧美网| 欧美日本亚洲视频在线播放| 久久天躁狠狠躁夜夜2o2o| 亚洲欧洲精品一区二区精品久久久| 黄色成人免费大全| 岛国视频午夜一区免费看| 99精品久久久久人妻精品| 99国产精品99久久久久| av欧美777| 一级,二级,三级黄色视频| 9色porny在线观看| 神马国产精品三级电影在线观看 | 一二三四在线观看免费中文在| 宅男免费午夜| 欧美乱妇无乱码| 看片在线看免费视频| 黑人巨大精品欧美一区二区蜜桃| 人成视频在线观看免费观看| 亚洲色图综合在线观看| 在线视频色国产色| 嫁个100分男人电影在线观看| 亚洲在线自拍视频| 亚洲 国产 在线| 99精国产麻豆久久婷婷| 免费av中文字幕在线| 日韩中文字幕欧美一区二区| 极品教师在线免费播放| 国产片内射在线| 老司机在亚洲福利影院| 亚洲美女黄片视频| 天堂√8在线中文| 国产成年人精品一区二区 | 久久久国产一区二区| 一级毛片女人18水好多| 欧美不卡视频在线免费观看 | www.999成人在线观看| 99国产综合亚洲精品| 如日韩欧美国产精品一区二区三区| 夜夜夜夜夜久久久久| 久久久久久久久免费视频了| 一边摸一边抽搐一进一出视频| 嫩草影视91久久| 欧美激情 高清一区二区三区| 亚洲人成77777在线视频| 欧美乱妇无乱码| 成人精品一区二区免费| 精品一品国产午夜福利视频| 欧美人与性动交α欧美精品济南到| 在线观看免费高清a一片| av中文乱码字幕在线| 日本a在线网址| 国产精品 欧美亚洲| 精品国产亚洲在线| 天天添夜夜摸| 国产高清videossex| 欧美亚洲日本最大视频资源| 午夜亚洲福利在线播放| 窝窝影院91人妻| 国产三级在线视频| 国产黄a三级三级三级人| 日韩中文字幕欧美一区二区| 亚洲五月色婷婷综合| 一进一出抽搐gif免费好疼 | 成人亚洲精品一区在线观看| 国产成人影院久久av| 女人被狂操c到高潮| 国产亚洲精品综合一区在线观看 | 波多野结衣av一区二区av| 欧美日韩中文字幕国产精品一区二区三区 | av网站在线播放免费| 成人精品一区二区免费| 悠悠久久av| 国产精品香港三级国产av潘金莲| 久久久久久大精品| 久99久视频精品免费| 正在播放国产对白刺激| 久久精品亚洲熟妇少妇任你| 亚洲人成网站在线播放欧美日韩| 女人高潮潮喷娇喘18禁视频| 亚洲av电影在线进入| 超色免费av| 精品日产1卡2卡| netflix在线观看网站| 大型黄色视频在线免费观看| 久久精品国产亚洲av香蕉五月| 亚洲精品国产精品久久久不卡| 亚洲中文av在线| 黑人巨大精品欧美一区二区蜜桃| 欧美老熟妇乱子伦牲交| 满18在线观看网站| 国产精品秋霞免费鲁丝片| e午夜精品久久久久久久| 日本一区二区免费在线视频| 国产片内射在线| 激情在线观看视频在线高清| 成人三级黄色视频| 18美女黄网站色大片免费观看| 日日爽夜夜爽网站| 亚洲国产看品久久| 热99re8久久精品国产| 亚洲一区中文字幕在线| 黄色视频不卡| 多毛熟女@视频| 999久久久国产精品视频| 久久精品国产亚洲av高清一级| 人人妻人人添人人爽欧美一区卜| 婷婷六月久久综合丁香| 国产精品秋霞免费鲁丝片| 国产精品98久久久久久宅男小说| 免费观看人在逋| 亚洲情色 制服丝袜| 国产男靠女视频免费网站| 亚洲aⅴ乱码一区二区在线播放 | 亚洲久久久国产精品| 十分钟在线观看高清视频www| 国产亚洲精品久久久久久毛片| 一个人免费在线观看的高清视频| 欧美大码av| 久久人人精品亚洲av| 最近最新免费中文字幕在线| 校园春色视频在线观看| 一级,二级,三级黄色视频| 可以免费在线观看a视频的电影网站| 成人精品一区二区免费| 亚洲一区二区三区色噜噜 | 免费在线观看完整版高清| 国产精品久久久久久人妻精品电影| 欧美中文日本在线观看视频| 国产成人免费无遮挡视频| 欧美亚洲日本最大视频资源| 日本黄色日本黄色录像| 欧美乱妇无乱码| 日日夜夜操网爽| 动漫黄色视频在线观看| 男女午夜视频在线观看| 国产精品一区二区三区四区久久 | 日日摸夜夜添夜夜添小说| 天堂俺去俺来也www色官网| a级片在线免费高清观看视频| 亚洲欧美激情综合另类| 精品国产超薄肉色丝袜足j| 丝袜美腿诱惑在线| 两个人看的免费小视频| 精品久久久久久,| 99riav亚洲国产免费| 中文字幕精品免费在线观看视频| 久久久久久大精品| 国产激情欧美一区二区| 婷婷六月久久综合丁香| 一级片'在线观看视频| 悠悠久久av| 夜夜爽天天搞| 欧美 亚洲 国产 日韩一| 欧美黑人欧美精品刺激| 亚洲欧美精品综合久久99| 亚洲国产欧美日韩在线播放| 电影成人av| 在线国产一区二区在线| 黄片小视频在线播放| 国产亚洲欧美98| 亚洲成人免费电影在线观看| 久久久久久久精品吃奶| 国产亚洲精品综合一区在线观看 | 亚洲av成人一区二区三| 亚洲精品国产精品久久久不卡| 伦理电影免费视频| 精品一品国产午夜福利视频| 欧美成人免费av一区二区三区| 午夜视频精品福利| 大香蕉久久成人网| 女同久久另类99精品国产91| 亚洲国产欧美一区二区综合| 热99国产精品久久久久久7| videosex国产| 欧美最黄视频在线播放免费 | 大码成人一级视频| av天堂在线播放| 中文欧美无线码| 欧美激情久久久久久爽电影 | 97超级碰碰碰精品色视频在线观看| 久久久久久免费高清国产稀缺| 一个人观看的视频www高清免费观看 | √禁漫天堂资源中文www| 99国产极品粉嫩在线观看| 国产色视频综合| 国产精品98久久久久久宅男小说| 99国产精品一区二区蜜桃av| 国产免费男女视频| 国内毛片毛片毛片毛片毛片| 在线国产一区二区在线| 90打野战视频偷拍视频| 国产成人精品久久二区二区免费| 在线天堂中文资源库| 国内久久婷婷六月综合欲色啪| 女人高潮潮喷娇喘18禁视频| 性少妇av在线| 欧美+亚洲+日韩+国产| 十八禁人妻一区二区| 欧美日韩av久久| 黄频高清免费视频| 美女福利国产在线| av在线播放免费不卡| 中文欧美无线码| 日日爽夜夜爽网站| 国产无遮挡羞羞视频在线观看| 啦啦啦 在线观看视频| 国产国语露脸激情在线看| 色综合婷婷激情| 村上凉子中文字幕在线| 久久精品91无色码中文字幕| 精品国内亚洲2022精品成人| 美女高潮喷水抽搐中文字幕| 国产在线精品亚洲第一网站| 国产成年人精品一区二区 | 80岁老熟妇乱子伦牲交| 欧美精品一区二区免费开放| 精品国产乱子伦一区二区三区| 身体一侧抽搐| 国产欧美日韩精品亚洲av| 久久久精品国产亚洲av高清涩受| 亚洲专区字幕在线| 日韩精品免费视频一区二区三区| 一边摸一边抽搐一进一小说| 国产99久久九九免费精品| 99国产极品粉嫩在线观看| 免费搜索国产男女视频| 欧美国产精品va在线观看不卡| 俄罗斯特黄特色一大片| 亚洲欧美日韩另类电影网站| 国产黄色免费在线视频| 变态另类成人亚洲欧美熟女 | 极品人妻少妇av视频| 999久久久国产精品视频| 欧美人与性动交α欧美精品济南到| 中文亚洲av片在线观看爽| 亚洲黑人精品在线| 亚洲欧美精品综合一区二区三区| 视频在线观看一区二区三区| 中文亚洲av片在线观看爽| 99国产精品一区二区蜜桃av| 日日摸夜夜添夜夜添小说| 99re在线观看精品视频| 1024视频免费在线观看| 久久人人爽av亚洲精品天堂| 久久欧美精品欧美久久欧美| 亚洲国产精品一区二区三区在线| 国产高清videossex| 嫩草影视91久久| 欧美日韩乱码在线| 色尼玛亚洲综合影院| 国产高清视频在线播放一区| 亚洲av第一区精品v没综合| netflix在线观看网站| 久久久久久大精品| 久久影院123| 婷婷精品国产亚洲av在线| 亚洲国产欧美一区二区综合| 最新美女视频免费是黄的| 少妇粗大呻吟视频| 免费人成视频x8x8入口观看| 国产精品1区2区在线观看.| 夜夜爽天天搞| 国产视频一区二区在线看| 久久精品91无色码中文字幕| 午夜两性在线视频| 后天国语完整版免费观看| 欧美不卡视频在线免费观看 | 国产黄a三级三级三级人| 国内久久婷婷六月综合欲色啪| 婷婷六月久久综合丁香| 成人18禁高潮啪啪吃奶动态图| 在线永久观看黄色视频| 老司机福利观看| 日韩中文字幕欧美一区二区| 麻豆一二三区av精品| 亚洲伊人色综图| 久久99一区二区三区| 久久午夜综合久久蜜桃| 久久久久亚洲av毛片大全| 日本免费a在线| 91麻豆av在线| 亚洲熟女毛片儿| 国产一区二区在线av高清观看| 国产国语露脸激情在线看| 久久青草综合色| 视频区图区小说| 99久久99久久久精品蜜桃| 两个人免费观看高清视频| 日韩一卡2卡3卡4卡2021年| 老司机在亚洲福利影院| 成人免费观看视频高清| 国产av又大| 午夜福利影视在线免费观看| 在线永久观看黄色视频| 一进一出抽搐动态| 欧美日韩精品网址| 亚洲av日韩精品久久久久久密| 婷婷丁香在线五月| 悠悠久久av| 免费搜索国产男女视频| 9色porny在线观看| 97碰自拍视频| 国产成人精品无人区| 久久热在线av| 女人高潮潮喷娇喘18禁视频| 亚洲av第一区精品v没综合| 久久人妻av系列| 国产野战对白在线观看| a在线观看视频网站| 99久久99久久久精品蜜桃| 免费av毛片视频| 精品一区二区三区四区五区乱码| 夜夜看夜夜爽夜夜摸 | 一个人免费在线观看的高清视频| 99久久综合精品五月天人人| 午夜视频精品福利| 这个男人来自地球电影免费观看| 欧美精品啪啪一区二区三区| 99精品欧美一区二区三区四区| 最新在线观看一区二区三区| 天天躁夜夜躁狠狠躁躁| 久久精品亚洲av国产电影网| 国产成人免费无遮挡视频| 久久久久亚洲av毛片大全| 亚洲色图 男人天堂 中文字幕| 在线十欧美十亚洲十日本专区| 久久精品国产清高在天天线| 十分钟在线观看高清视频www| 国产人伦9x9x在线观看| 欧美亚洲日本最大视频资源| 91av网站免费观看| 国产成人av激情在线播放| 美女午夜性视频免费| 国产熟女午夜一区二区三区| a级毛片黄视频| 黑丝袜美女国产一区| 国产aⅴ精品一区二区三区波| 色在线成人网| 久久性视频一级片| 精品久久久精品久久久| 亚洲男人天堂网一区| 精品久久久久久成人av| 一级a爱片免费观看的视频| 成人黄色视频免费在线看| 无限看片的www在线观看| 亚洲熟妇熟女久久| 国产人伦9x9x在线观看| 亚洲少妇的诱惑av| 亚洲五月婷婷丁香| 午夜91福利影院| 91精品三级在线观看| 亚洲欧美精品综合久久99| 欧美日韩亚洲高清精品| 免费人成视频x8x8入口观看| 黑人操中国人逼视频| 日本精品一区二区三区蜜桃| 三级毛片av免费| 久热爱精品视频在线9| 91成年电影在线观看| 久久午夜综合久久蜜桃| 午夜a级毛片| 国产精品 欧美亚洲| 日韩精品免费视频一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 午夜影院日韩av| e午夜精品久久久久久久| 在线观看日韩欧美| 亚洲精品中文字幕在线视频| 日本撒尿小便嘘嘘汇集6| 亚洲成人久久性| 欧美日韩视频精品一区| 亚洲精品成人av观看孕妇| 在线看a的网站| 精品国产国语对白av| 国产三级黄色录像| 日日爽夜夜爽网站| av有码第一页| 99国产精品99久久久久| 女生性感内裤真人,穿戴方法视频| 淫妇啪啪啪对白视频| 亚洲熟妇熟女久久| 一级毛片精品| 国产精品九九99| 欧美大码av| 91精品三级在线观看| 免费观看精品视频网站| 亚洲久久久国产精品| 免费观看精品视频网站| 长腿黑丝高跟| 日日摸夜夜添夜夜添小说| 国产精品爽爽va在线观看网站 | 欧美一区二区精品小视频在线| 母亲3免费完整高清在线观看| 美女国产高潮福利片在线看| 极品教师在线免费播放| 搡老熟女国产l中国老女人| 香蕉丝袜av| 热re99久久国产66热| 叶爱在线成人免费视频播放| 黄色毛片三级朝国网站| 欧美黑人欧美精品刺激| 精品久久久久久久久久免费视频 | 两性夫妻黄色片| 国产一区二区三区视频了| 久久午夜亚洲精品久久| 国产视频一区二区在线看| 国产精华一区二区三区| 欧美日韩黄片免| 国产av又大| 亚洲精品中文字幕在线视频| 欧美日韩福利视频一区二区| 亚洲专区中文字幕在线| 日韩有码中文字幕| 人人妻,人人澡人人爽秒播| 亚洲免费av在线视频| 亚洲成人免费av在线播放| 国产单亲对白刺激| 男女午夜视频在线观看| 久久久久国产一级毛片高清牌| 亚洲国产精品sss在线观看 | av电影中文网址| 久久中文字幕人妻熟女| 香蕉久久夜色| 俄罗斯特黄特色一大片| 一本综合久久免费| 久久精品国产亚洲av高清一级| 高清欧美精品videossex| 国产亚洲精品久久久久5区| 亚洲欧美一区二区三区久久| 久久精品人人爽人人爽视色| 国产精品电影一区二区三区| 岛国视频午夜一区免费看| 国产人伦9x9x在线观看| 精品人妻在线不人妻| 亚洲精品国产一区二区精华液| 亚洲国产精品sss在线观看 | 男男h啪啪无遮挡| 男女床上黄色一级片免费看| 级片在线观看| 一进一出好大好爽视频| 男女高潮啪啪啪动态图| 国产不卡一卡二| 精品日产1卡2卡| 日韩欧美一区视频在线观看| 可以免费在线观看a视频的电影网站| 国产在线观看jvid| 成人三级做爰电影| 欧美在线黄色| 校园春色视频在线观看| 男女做爰动态图高潮gif福利片 | 久久国产精品人妻蜜桃| 久久人妻熟女aⅴ| 免费在线观看影片大全网站| 美女扒开内裤让男人捅视频| 琪琪午夜伦伦电影理论片6080| 一边摸一边抽搐一进一出视频| 男人操女人黄网站| 在线观看免费视频网站a站| 怎么达到女性高潮| 交换朋友夫妻互换小说| 亚洲av成人不卡在线观看播放网| 法律面前人人平等表现在哪些方面| 亚洲熟妇熟女久久| 国产精品1区2区在线观看.| 日本撒尿小便嘘嘘汇集6| 欧美黄色片欧美黄色片| 757午夜福利合集在线观看| 国产欧美日韩综合在线一区二区| 另类亚洲欧美激情| 无限看片的www在线观看| 欧美乱妇无乱码| 久久狼人影院| 中文字幕高清在线视频| 1024视频免费在线观看| 色在线成人网| 窝窝影院91人妻| 中国美女看黄片| 亚洲欧美日韩无卡精品| 99精品在免费线老司机午夜| 亚洲黑人精品在线| av中文乱码字幕在线| 人人妻人人添人人爽欧美一区卜| 交换朋友夫妻互换小说| 午夜免费成人在线视频| 50天的宝宝边吃奶边哭怎么回事| 人成视频在线观看免费观看| 亚洲精品在线观看二区| 我的亚洲天堂| 一级片免费观看大全| 国产三级在线视频| 欧美最黄视频在线播放免费 | 国产成+人综合+亚洲专区| 欧美人与性动交α欧美精品济南到| 男女做爰动态图高潮gif福利片 | 手机成人av网站| 国产成人一区二区三区免费视频网站| 91麻豆精品激情在线观看国产 | 久久久久国内视频| 免费看a级黄色片| 50天的宝宝边吃奶边哭怎么回事| 精品免费久久久久久久清纯| 日本免费一区二区三区高清不卡 | 亚洲成人免费电影在线观看| 人人妻人人澡人人看| 精品国产一区二区三区四区第35| 中出人妻视频一区二区| 精品国产国语对白av| 亚洲欧美一区二区三区黑人| 老司机深夜福利视频在线观看|