• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    核-殼結構氧還原反應電催化劑

    2017-03-13 09:52:31常喬婉邵敏華
    物理化學學報 2017年1期
    關鍵詞:香港科技大學燃料電池形貌

    常喬婉 肖 菲 徐 源 邵敏華

    (香港科技大學化學工程與生物分子工程學系,香港)

    核-殼結構氧還原反應電催化劑

    常喬婉 肖 菲 徐 源 邵敏華*

    (香港科技大學化學工程與生物分子工程學系,香港)

    金屬鉑是最高效的氧還原反應催化劑而被廣泛應用于質子交換膜燃料電池,但其高成本阻礙了燃料電池的商業(yè)化進程。此專論主要總結了近年來核-殼結構納米催化劑的設計、合成及在燃料電池中的應用,討論了多種提高核-殼結構納米催化劑的策略包括去合金化、形貌控制、表面改性等,以及在放大制備及燃料電池測試中遇到的問題。

    核-殼結構;質子交換膜燃料電池;電催化;鉑合金;鈀;形貌控制

    1 Introduction

    Proton exchange membrane fuel cells(PEMFCs)involve two reactions:oneisthehydrogenoxidationreaction(HOR,H2→2H++ 2e-)at the anode,the other is the oxygen reduction reaction(ORR, 1/2O2+2H++2e-→H2O)at the cathode.The commercialization of PEMFCs has been hindered by costly Pt-based electrocatalysts at both electrodes,especially at the cathode since the slow reaction kinetics of ORR requires a higher Pt loading to achieve a desirable fuel cell performance.For the past five decades,great efforts have been spent on developing cost-competitive and highly active electrocatalysts for ORR1-3,including but not limited to advanced Pt alloys4-9,other noble-metal based materials10-13,core-shell structures14-18,and carbon-based non-noble metal composites19-23. This Account mainly focuses on the recent work of core-shell electrocatalysts for ORR in acidic media.Compared to conventional electrocatalysts,the core-shell nanostructures consisting of a thin Pt-based shell can significantly improve the utilization of Pt as only the surface atoms participate in electrocatalytic reactions.In addition,the use of less expensive cores,for example,Pd and Ru nanoparticles(NPs),reduces the overall cost of theelectrocatalysts.Furthermore,the possible strain and ligand effects from the core materials on the Pt shell may further improve the catalytic activity of Pt atoms in the surface24-29.Core-shell nanostructures can be synthesized by various methods1.In this Account,only the Cu-mediated-Pt deposition and chemical reduction methods are discussed.For other methods,the readers are referred to recent literature1,3,6,30.

    2 Core-shell synthesis

    2.1 Cu-mediated-Pt displacement method

    The Cu-mediated-Pt displacement method involves the deposition of a Cu monolayer(ML)at potentials higher than its bulk deposition(underpotential deposition,UPD)and subsequent displacement of the Cu ML by Pt atoms with a one-to-one ratio (surface limited redox replacement,SLRR)17.Ideally,a Pt ML is formed on a foreign metal core(typically another noble metal). Fig.1 illustrates the overall procedure of the Pt shell deposition using a Pd nanoparticle as the core1.The Adzic group17,24,31,32at Brookhaven National Laboratory pioneered this process and extensively investigated this kind of core-shell structure with various core and shell compositions.

    Fig.1 Model for Pt monolayer deposition on a foreign metal core (Pd as an example)involving the Cu UPD(underpotential deposition)and subsequent Pt displacement1

    CHANG Qiao-Wan,received a BS in Chemical Engineering from Tianjin University and BS(Double Degree)in Finance from Nankai University in 2014.She is now undertaking an MPhil degree at the Hong Kong University of Science and Technology under the supervision of Professor SHAO Min-Hua. Her main research interests are advanced materials for fuel cells.

    XIAO Fei,received a BS in Materials Science and Engineering from University of Science and Technology Beijing.She is now undertaking an MPhil degree at the Hong Kong University of Science and Technology under the supervision of Professor SHAO Min-Hua.Her main research interests are electrocatalysts for oxygen reduction reaction.

    XU Yuan,received a BS in Chemistry from South China Normal University in 2014,and a MSc in Chemical and Biomolecular Engineering from the Hong Kong University of Science and Technology in 2015.She is now a Research Assistant at the Hong Kong University of Science and Technology under the supervision of Professor SHAO Min-Hua. Her main research interests are advanced materials for fuel cells.

    SHAO Min-Hua,earned his BS(1999)and MS(2002)degrees in Chemistry from Xiamen University,and a PhD degree in Materials Science and Engineering from State University of New York at Stony Brook (2006).He joined UTC Power in 2007 to lead the development of advanced catalysts and supports for PEMFC and PAFC.In 2013,he joined Ford Motor Company to conduct research on lithium-ion batteries for electrified vehicles.He then joined the Hong Kong University of Science and Technology in the Department of Chemical and Biomolecular Engineering as anAssociate Professor in 2014.His research mainly focuses on electrocatalysis and advanced batteries.

    According to the Sabatier principle,a good catalyst for ORR should form a moderate bond with the reaction intermediates in order to balance the reaction kinetics of O―O bond breaking/ electron transfer and promote the reduction of adsorbed oxygencontaining species33.However,it was found that the oxygen binding energy on pure Pt is somewhat too strong.The Adzic group24demonstrated that the oxygen binding energy of a Pt ML deposited on a Pd(111)surface was slightly weaker mainly due to the electronic effect from the substrate.Ahigher ORR activity than Pt(111)was observed when a Pt ML supported on Pd(111)34. Besides,a similar improvement was achieved by using Pd NPs as the core.In addition,it was showed that the ORR activity of the Pt ML can be further improved by tuning the composition of the core,for instance,alloying Pd with other transition metals by introducing additional strain and ligand effects25-27,32.Other materials such asAu-,Ir-,and Ru-based NPs have been also explored as cores to support Pt shells35-37.We also found that small Au NPs (~3 nm)were also suitable cores.The specific activity of Pt ML-modified Au NPs(Au@Pt)was 60%higher than that of Pd@Pt with the similar particle size(Fig.2)38and the higher activity of Au@Pt was also confirmed by other groups39.These results were somewhat surprising since it was known that the Pt ML on a bulk Au(111)single crystal showed a lower ORR activity than Pt(111) or Pt ML on Pd(111)due to a large tensile strain in Pt ML causedby Au24.Surprisingly,our density functional theory(DFT)calculation results demonstrated the existence of a significant compressive strain in the surface of small Au NPs38.The existence of the compressive strain led to a weaken oxygen binding energy by down-shifting of the d-band center of the Pt shell,which played an important role in improving the ORR activity.

    Fig.2 Comparisons of normalized specific activities of Pt and Pt monolayer catalysts38

    ORR activities of core-shell electrocatalysts are not only dependent on the composition of the core,but also its structure, including the shape,particle size,and porosity16,40-42.We did a systematic study on the structural effect of Pd core on the ORR activity.Without surface modification,the ORR activity of Pd cubes enriched with{100}facets was 10 times higher than that of octahedra enriched with{111}facets in a 0.1 mol·L-1HClO4solution43.Whereas the specific activity of Pd octahedra(~5 nm) was improved by 30 times with a Pt ML on it,while the activity of Pd cubes with a similar size was almost no change44.As a result, the ORR activity of the Pt shell supported on Pd octahedra was 3.5 times higher than that on cubes(Fig.3).According to our DFT calculation,one of the possible reasons for this discrepancy was the difference in oxygen binding energy change upon Pt ML modification.When a Pt ML was deposited on the Pd(111)surface,a significant decrease(>10%)of the oxygen binding energy was found,while there was no change on the(100)surface.

    Fig.3 Comparisons of activities of the Pd and Pd@Pt catalysts44

    The Adzic group24,45,46proved that a Pd interlayer between Pt shells and other metal cores(Au,Ru,etc.)was beneficial for ORR activity.We,on the other hand,found that an Au interlayer was also effective to further enhance the activity of Pt shell on Pd cores.Depending on the structure of the Pd core,the enhancement extent was different.For example,with an Au interlayer,the Pt mass activity was improved by 2 times on conventional Pd NPs (from 0.75 to 1.4A·mg-1),while on shape controlled Pd cubes and octahedra,the Pt mass activities increased from 0.63 and 2.2 to 2.0 and 2.6A·mg-1,respectively.The effect of Au interlayer on ORR activity was much smaller on(111)surface than that on(100)as the respective enhancement factors for Pd cubes and octahedra were 3 and 1.2 times.The difference in activity enhancement may mainly be due to the different degree of oxygen binding energy changes in Pt MLs.We found that the oxygen binding energies were weakened by 0.275 and 0.075 eV upon Pt modification for Pd(111)and(100),respectively.Since adding an Au interlayer does not change the strain in the Pt monolayer,only the electronic effect from theAu interlayer might be responsible for the observed oxygen binding energy changes47.

    Fig.4 An HAADFTEM image of PdCu6/C after dealloying48

    Reduction of other noble metals,such as Pd in the core is also of considerable interest to further reduce the loading of precious metals in the catalyst.We explored the idea of using porous instead of solid Pd NPs as the core.The porous Pd-based NPs were synthesized by dealloying of Pd-Cu(Fig.4)and Pd-Ni alloy NPs via a potential cycling or acid washing protocol41,48.Atiny amount of transition metal(less than 1%(w,mass fraction))left in the core after dealloying changed the electronic properties of Pd,and in turn the Pt shell49.The nanopores generated during dealloying mayalso generate additional compressive strain in the core.As a result, Pt MLs on porous Pd NPs were 3.5 times more active than that deposited on conventional ones48.Pt mass activities on porous Pd prepared from Pd-Cu and Pd-Ni alloys achieved 2.8 and 1.9 A· mg-1,respectively.Even though Pt ML on dealloyed Pd-Ni was slightly less active than that on Pd-Cu,the former was more suitable for fuel cell application.During fuel cell operation,the Cu or Ni in the dealloyed core dissolves forming cations that poison the ionomer and membrane.Cu2+can be reduced at the anode and cover the active sites for HOR,while Ni2+cannot be redeposited in the potential range of the anode.

    2.1.1 Gram batch synthesis

    Ideally,a uniform Pt monolayer is deposited on the core after all the Cu atoms are replaced in the Cu-mediated method.However,our study demonstrated that Pt clusters rather than a uniform Pt shell were formed on Pd nanoparticles50.The mechanism underlying this observation is that the SLRR process involves the electron transfer from the substrate(Pd for example)toions,rather than direct electron exchange from Cu.That means electrons generated anywhere on the surface can move freely through Pd substrate,reducing PtCl42-ions wherever their activity and surface energy are greatest51.In other words,the Pt atom may not deposit on the same site left by the Cu dissolution,but rather on Pt that was already deposited on the core leading to the formation of Pt clusters.Due to the incomplete Pt coverage and low Pt usage,it is expected to have lower activity and stability than a perfect core-shell structure.Thus,to synthesize core-shell materials with good quality on a large scale,the key is to force Pt atoms to deposit on the surface of the core rather than on Pt atoms already deposited by manipulating the Cu-Pt displacement reaction kinetics.We demonstrated that adding proper additives in the Cumediated method could help Pt atoms to form a thin and uniform shell by avoiding the tendency to form clusters52.For example,the Pt mass activity of Pd@Pt/C synthesized by adding citric acid in the Cu-Pt displacement reaction solution was(0.95±0.10)A· mg-1,which was 4.8 times higher than that of Pt/C((0.20±0.02) A·mg-1)at 0.9 V.The electrochemical surface area of the coreshell catalysts was(160±10)m2·g-1,while it was(85±2)m2·g-1for Pt/C(~2.5 nm).For comparison,the Pt mass activity of coreshell catalysts synthesized without adding citric acid was only ~0.4 A·mg-1.The same synthesis protocol was applied in the deposition of Pt shell on porous Pd-Ni core.The Pt mass activity could achieve 1.4A·mg-1,which was higher than that of Pd@Pt/ C41.

    The role of citric acid in controlling the uniformity of Pt monolayers on Pd was studied by electrochemical techniques and theoretical approaches53.It was found that citric acid strongly adsorbed on Pd,Pt,Cu@Pd(Cu UPD layer)and Pd@Pt surfaces, especially in the double layer region in acid solutions.The strong adsorption of citric acid slowed down the Cu-Pt displacement reaction as indicated by the decrease of the rising rate of the open circuit potential during the reaction(Fig.5).This phenomenon might be caused by the fact that Pt atoms deposited on the Pd surface in the early stage of the Cu-Pt displacement reaction were covered by a dense layer of citric acid in the potential range where the reaction occurred.As a result,further deposition of Pt on the already existing Pt atoms covered by a citric acid layer to form 3D clusters was prohibited.

    Fig.5 (a)Open circuit potential(OCP)changes for Pd/C covered with a Cu monolayer;(b)the OCPchanges for the graphite electrode in the gram scale synthesis53

    The durability of core-shell electrocatalysts were evaluated on RDE using a square-wave signal between 0.65 and 1.00 V for 5 s at each potential.After 10000 cycles,the Pt mass activity of Pd@Pt/C dropped by 16%53.This result suggested that Pd@Pt/C was even more stable than Pt/C,which degraded 42%under the same testing condition.For Pt shell on dealloyed Pd-Ni,the stability was somewhat worse.After 5000 cycles,its Pt mass activity decreased by 35%,which was comparable to that of Pt/C41.

    2.2 Chemical reduction method

    2.2.1 Pt shell on Pd core

    There have been significant efforts to deposit Pt-based shell on foreign metals without using Cu UPD layer as the sacrificing template54-65.A special focus has been given to Pd@Pt core-shell materials18,60,61,66-70.We explored a simple method to synthesize Pd@Pt NPs with an ultrathin(0.4 nm)Pt shell in a gram batch with the assistance of citric acid15.In this synthesis protocol,the cleaned Pd/C particles were mixed with a K2PtCl4solution containing citric acid.The Pt shell deposition might involve threedifferent pathways:galvanic displacement reaction between Pd atoms and Pt cations,chemical reduction by citric acid,and reduction by negative charges on Pd surfaces.The Pd@Pt NPs were characterized by scanning transmission electron microscopy (STEM)and evaluated by RDE(Fig.6).Results showed that the Pt mass activity was 4 times higher than that of Pt/C and comparable to the one synthesized by a complicated Cu UPDmethod50.

    Fig.6 (a)HAADF-STEM image of Pd@Pt/C core-shell catalysts after 60 min of reaction.(b)EELS line scan profiles of Pt(blue)and Pd(red)of a single Pd@Pt core-shell particle(inset).(c)Comparisons of oxygen reduction polarization curves(positive-going)of Pd@Pt/C,Pd@Pt/C(UPD)and Pt/C.The inset of(c)compares the Pt mass activities of Pd@Pt/C(UPD),Pd@Pt/C and Pt/C before and after 10000 potential cycles between 0.65 and 1.0 V15

    2.2.2 Pt alloy shell on Pd core

    Pt alloys are more active toward ORR than pure Pt due to the strain and ligand effects from the transition metals in the alloys71,72. Thus,when Pt alloys instead of pure Pt are deposited on foreign metal cores,the ORR activity is expected to be further improved. The epitaxial overgrowth of thin Pt-Fe shells(0.3-1.3 nm)on Pd and Au NPs were achieved by Sun group73,74.For instance, Au@Pt3Fe showed 5-fold higher mass activity than that of Pt/C.

    It has been recognized that the ORR activities of Pt-Ni(111) plane has a much higher activity than(100)and(110)8.In order to take advantage of this structural effect,{111}facets of nanocatalysts exposed are more desirable.Some groups have demonstrated that Pt-Ni octahedral NPs enriched with{111}facets showed much higher activity than conventional Pt alloys7,75-80.We synthesized Pt-Ni octahedra with an edge length of 9 nm by reducing Pt(acac)2and Ni(acac)2in the mixture of oleylamine,oleic acid and benzyl ether with the presence of W(CO)65.The mass activity at 0.9 Vcould reach as high as 3.3A·mg-1,which was 17-fold higher than that of Pt/C.As for a 9 nm particle,most of Pt atoms are buried inside and do not participate in the catalytic reaction.To further reduce the Pt loading,a thin Pt-Ni shell can be deposited on a cheaper material core,for instance Pd,and maintain the octahedral shape.This approach indeed combines three strategies including high Pt utilization and low Pt loading from the core-shell structure,alloying effect from the transition metal,and structural effect from the{111}facets.The key to depositing a Pt-Ni shell on Pd cores is to find a proper solvent, which can not only keep good compatibility between the solvents used for Pt-Ni growth(non-aqueous)and Pd seed synthesis (aqueous),but also help reduce the coverage of surfactants on the final product.The protocol of transferring Pd seeds from a hydrophilic solvent to an amphiphilic reaction medium was illustrated in Fig.7.The 1 nm Pt2.5Ni shell was deposited on a 5 nm Pd octahedral seed to form an octahedral Pd@Pt-Ni core-shell structure14(Fig.8).The preliminary results showed that the Pt mass and specific activities were 2.5 A·mg-1and 2.7 mA·cm-2,respectively.

    Fig.7 Schematic illustration of a procedure about the transformation of the Pd nanocrystals from a hydrophilic solvent to am amphiphilic reaction medium and the preparation of Pd@Pt-Ni octahedra14

    2.3 Fuel cell testing

    Fig.8 (a)HAADF-STEM image of a single Pd@Pt-Ni octahedron; (b)energy-dispersive X-ray spectroscopy(EDS)mapping of elemental distributions for Pd,Pt,and Ni; (c)comparison of Pt mass and specific ORR activities for the Pd@Pt-Ni/C and state-of-the-art Pt/C(TKK)catalysts at 0.9 V

    A limited number of core-shell materials have been tested in fuel cells due to the difficulty to obtain high quality samples52,81,82. We found that the fuel cell performance of Pd@Pt/C was approximately 20 and 60 mV in the low and high current density regions in H2-air environment,respectively52(Fig.9(a)),which were both higher than that of Pt/C.The cell voltage could achieve 0.775 V at a current density of 400 mA·cm-2with a Pt loading of 0.1 mg·cm-2(80°C,100%relative humidity and 140 kPa backpressure).However,it did not show the improvement at the low current density as observed in RDE(44 mV improvement for a 4.8-fold higher mass activity).The lower than predicted performance may be due to the ink fabrication and spraying steps.We also tested the fuel cell performance of Pt ML on dealloyed Pd-Ni core with the same Pt loading41.The performance was better than Pd@Pt/C,as expected from its higher activity in RDE.The dealloyed Pd-Ni@Pt/C outperformed at least 40 mV through the whole potential range in both pure oxygen and air compared to Pt/ C(Fig.9(b)).The cell voltage achieved 0.791 V at a current density of 400 mA·cm-2(80°C,80%relative humidity and 100 kPa backpressure).Again,the core-shell catalyst did not show theimprovement as observed in RDE(65 mV improvement for a 7-fold higher mass activity).

    Fig.9 (a)Fuel cell performance of Pd@Pt/C and(b)d-PdNi@Pt/C comparing with Pt/C

    Table 1 Summary of ORR activities of recent work of core-shell catalysts(measured at 0.9 V)

    3 Conclusions and perspectives

    This Account mainly discusses the recent progress of core-shell electrocatalysts for oxygen reduction reaction in our group.The rational design,synthesis,characterization,and evaluation of Ptbased shells supported on Pd-based cores were summarized.The structure and composition of the core play a significant role in controlling the electronic properties of Pt shells.For instance,Pd nanocrystals enriched with{111}facets were better cores than those enriched with{100}facets;dealloyed Pd alloys were better than conventional Pd cores.The Pt mass and specific activities of various core-shell catalysts published by our group are summarized in Table 1.The highest Pt mass activity(~2.8 A·mg-1)was observed on Pt ML on octahedral Pd and dealloyed Pd-Cu cores synthesized on RDE.For the samples synthesized in a gram scale batch,Pt ML on dealloyed Pd-Ni showed the highest activity(1.4 A·mg-1).Based on our and others′results,the general strategies of design core-shell electrocatalysts for ORR are summarized below:(1)choosing proper materials as cores to modify the dband center of the Pt shell and in turn alter the binding energy of oxygen-containing species;(2)controlling morphologies of the core and core-shell structures with only the highest active facets (for example{111})exposed to electrolytes;(3)reducing noble metal loadings in the core by using porous/hollow structures and non-noble metal-based cores;(4)developing more feasible protocols for mass production of core-shell materials.We realize that it is still a big challenge to make high performance ORR electrocatalysts suggested by RDE to exhibit the same improvement factor in a real fuel cell.More studies on demonstrating their feasibility in fuel cell applications with desired performance and durability are required.

    (1)Shao,M.H.;Chang,Q.W.;Dodelet,J.P.;Chenitz,R.Chem. Rev.2016,116(6),3594.doi:10.1021/acs.chemrev.5b00462

    (2)Nie,Y.;Li,L.;Wei,Z.Chem.Soc.Rev.2015,44(8),2168. doi:10.1039/C4CS00484A

    (3)Shao,M.H.Electrocatalysis in Fuel Cells:a Non-and Lowplatinum Approach;Springer Science&Business Media: Heidelberg,2013;pp 1-745.

    (4)Wanjala,B.N.;Fang,B.;Shan,S.;Petkov,V.;Zhu,P.; Loukrakpam,R.;Chen,Y.;Luo,J.;Yin,J.;Yang,L.Chem. Mater.2012,24(22),4283.doi:10.1021/cm301613j

    (5)Choi,S.I.;Xie,S.;Shao,M.H.;Odell,J.H.;Lu,N.;Peng,H. C.;Protsailo,L.;Guerrero,S.;Park,J.;Xia,X.Nano Lett.2013, 13(7),3420.doi:10.1021/nl401881z

    (6)Strasser,P.;Koh,S.;Anniyev,T.;Greeley,J.;More,K.;Yu,C.; Liu,Z.;Kaya,S.;Nordlund,D.;Ogasawara,H.Nat.Mater. 2010,2(6),454.doi:10.1021/nl3032795

    (7)Cui,C.;Gan,L.;Li,H.H.;Yu,S.H.;Heggen,M.;Strasser,P. Nano Lett.2012,12(11),5885.doi:10.1021/nl3032795

    (8)Stamenkovic,V.R.;Fowler,B.;Mun,B.S.;Wang,G.;Ross,P. N.;Lucas,C.A.;Markovi?,N.M.Science 2007,315(5811), 493.doi:10.1126/science.1135941

    (9)Stamenkovic,V.R.;Mun,B.S.;Arenz,M.;Mayrhofer,K.J.; Lucas,C.A.;Wang,G.;Ross,P.N.;Markovic,N.M.Nat. Mater.2007,6(3),241.doi:10.1038/nmat1840

    (10)Shao,M.H.J.Power Sources 2011,196(5),2433.doi:10.1016/ j.jpowsour.2010.10.093

    (11)Shao,M.H.;Odell,J.;Humbert,M.;Yu,T.;Xia,Y.J.Phys. Chem.C 2013,117(8),4172.doi:10.1021/jp312859x

    (12)Shao,M.H.;Huang,T.;Liu,P.;Zhang,J.;Sasaki,K.; Vukmirovic,M.;Adzic,R.Langmuir 2006,22(25),10409. doi:10.1021/la0610553

    (13)Shao,M.H.;Sasaki,K.;Adzic,R.R.J.Am.Chem.Soc.2006, 128(11),3526.doi:10.1021/ja060167d

    (14)Choi,S.I.;Shao,M.H.;Lu,N.;Ruditskiy,A.;Peng,H.C.; Park,J.;Guerrero,S.;Wang,J.;Kim,M.J.;Xia,Y.ACS Nano 2014,8(10),10363.doi:10.1021/nn5036894

    (15)Zhang,L.L.;Zhu,S.Q.;Chang,Q.W.;Su,D.;Yue,J.;Du,Z.; Shao,M.H.ACS Catal.2016,6(6),3428.doi:10.1021/ acscatal.6b00517

    (16)Adzic,R.R.Electrocatalysis 2012,3(3-4),163.doi:10.1007/ s12678-012-0112-3

    (17)Adzic,R.R.;Zhang,J.;Sasaki,K.;Vukmirovic,M.B.;Shao, M.H.;Wang,J.;Nilekar,A.U.;Mavrikakis,M.;Valerio,J.; Uribe,F.Top.Catal.2007,46(3-4),249.doi:10.1021/ ja9067645

    (18)Zhang,G.;Shao,Z.G.;Lu,W.;Xie,F.;Xiao,H.;Qin,X.;Yi,B. Appl.Catal.B 2013,132,183.doi:10.1016/j.apcatb.2012.11.029

    (19)Akinpelu,A.;Merzougui,B.;Bukola,S.;Azad,A.M.;Basheer, R.A.;Swain,G.M.;Chang,Q.W.;Shao,M.H.Electrochim. Acta 2015,161,305.doi:10.1016/j.electacta.2015.02.072

    (20)Jaouen,F.;Proietti,E.;Lefèvre,M.;Chenitz,R.;Dodelet,J.P.; Wu,G.;Chung,H.T.;Johnston,C.M.;Zelenay,P.Energy Environ.Sci.2011,4(1),114.doi:10.1039/C0EE00011F

    (21)Wu,G.;More,K.L.;Johnston,C.M.;Zelenay,P.Science 2011, 332(6028),443.doi:10.1126/science.1200832

    (22)Lefèvre,M.;Proietti,E.;Jaouen,F.;Dodelet,J.P.Science 2009, 324(5923),71.doi:10.1126/science.1170051

    (23)Proietti,E.;Jaouen,F.;Lefèvre,M.;Larouche,N.;Tian,J.; Herranz,J.;Dodelet,J.P.Nat.Commun.2011,2,416. doi:10.1038/ncomms1427

    (24)Zhang,J.;Vukmirovic,M.B.;Xu,Y.;Mavrikakis,M.;Adzic,R. R.Angew.Chem.Int.Ed.2005,44(14),2132.doi:10.1002/ anie.200462335

    (25)Rodriguez,J.Surf.Sci.Rep.1996,24(7),223.doi:10.1016/ 0167-5729(96)00004-0

    (26)Brankovic,S.;Wang,J.;Adzic,R.Surf.Sci.2001,474(1), L173.doi:10.1016/S0039-6028(00)01103-1

    (27)Hammer,B.;N?rskov,J.K.Adv.Catal.2000,45,71.doi:10.1016/S0360-0564(02)45013-4

    (28)Shao,M.H.;Odell,J.H.;Peles,A.;Su,D.Chem.Commun. 2014,50(17),2173.doi:10.1002/cssc.201400051

    (29)Calle-Vallejo,F.;Koper,M.T.;Bandarenka,A.S.Chem.Soc. Rev.2013,42(12),5210.doi:10.1039/C3CS60026B

    (30)Oezaslan,M.;Hasche?,F.D.R.;Strasser,P.J.Phys.Chem.Lett. 2013,4(19),3273.doi:10.1021/jz4014135

    (31)Zhang,J.;Sasaki,K.;Sutter,E.;Adzic,R.Science 2007,315 (5809),220.doi:10.1126/science.1134569

    (32)Zhou,W.P.;Sasaki,K.;Su,D.;Zhu,Y.;Wang,J.X.;Adzic,R. R.J.Phys.Chem.C 2010,114(19),8950.doi:10.1021/ jp100283p

    (33)Xu,Y.;Ruban,A.V.;Mavrikakis,M.J.Am.Chem.Soc.2004, 126(14),4717.doi:10.1021/ja031701+

    (34)Zhang,J.;Mo,Y.;Vukmirovic,M.;Klie,R.;Sasaki,K.;Adzic, R.J.Phys.Chem.B 2004,108(30),10955.doi:10.1021/ jp0379953

    (35)Zhang,L.;Iyyamperumal,R.;Yancey,D.F.;Crooks,R.M.; Henkelman,G.ACS Nano 2013,7(10),9168.doi:10.1021/ nn403788a

    (36)Karan,H.I.;Sasaki,K.;Kuttiyiel,K.;Farberow,C.A.; Mavrikakis,M.;Adzic,R.R.ACS Catal.2012,2(5),817. doi:10.1021/cs200592x

    (37)Brankovic,S.;McBreen,J.;Adzic,R.J.Electroanal.Chem. 2001,503(1),99.doi:10.1016/S0022-0728(01)00349-7

    (38)Shao,M.H.;Peles,A.;Shoemaker,K.;Gummalla,M.;Njoki,P. N.;Luo,J.;Zhong,C.J.J.Phys.Chem.Lett.2010,2(2),67. doi:10.1021/jz1015789

    (39)Iijima,Y.;Kondo,T.;Takahashi,Y.;Bando,Y.;Todoroki,N.; Wadayama,T.J.Electrochem.Soc.2013,160(8),F898. doi:10.1149/2.011309jes

    (40)Cai,Y.;Adzic,R.R.Adv.Phys.Chem.2011,530397. doi:10.1155/2011/530397

    (41)Shao,M.H.;Smith,B.H.;Guerrero,S.;Protsailo,L.;Su,D.; Kaneko,K.;Odell,J.H.;Humbert,M.P.;Sasaki,K.;Marzullo, J.Phys.Chem.Chem.Phys.2013,15(36),15078.doi:10.1039/ C3CP52252K

    (42)Gong,K.;Choi,Y.;Vukmirovic,M.B.;Liu,P.;Ma,C.;Su,D.; Adzic,R.R.Z.Phys.Chem.2012,226(9-10),1025. doi:10.1524/zpch.2012.0239

    (43)Xiao,L.;Zhuang,L.;Liu,Y.;Lu,J.J.Am.Chem.Soc.2008, 131(2),602.doi:10.1021/ja8063765

    (44)Shao,M.H.;He,G.;Peles,A.;Odell,J.H.;Zeng,J.;Su,D.; Tao,J.;Yu,T.;Zhu,Y.;Xia,Y.Chem.Commun.2013,49(79), 9030.doi:10.1039/C3CC43276A

    (45)Xing,Y.;Cai,Y.;Vukmirovic,M.B.;Zhou,W.P.;Karan,H.; Wang,J.X.;Adzic,R.R.J.Phys.Chem.Lett.2010,1(21), 3238.doi:10.1021/jz101297r

    (46)Yang,L.;Vukmirovic,M.B.;Su,D.;Sasaki,K.;Herron,J.A.; Mavrikakis,M.;Liao,S.;Adzic,R.R.J.Phys.Chem.C 2013, 117(4),1748.doi:10.1021/jp309990e

    (47)Shao,M.H.;Peles,A.;Odell,J.J.Phys.Chem.C 2014,118 (32),18505.doi:10.1021/jp503296s

    (48)Shao,M.H.;Shoemaker,K.;Peles,A.;Protsail,L.J.Am. Chem.Soc.2010,132,9253.doi:10.1021/ja101966a

    (49)Peles,A.;Shao,M.H.;Protsailo,L.Catalysts 2015,5(3),1193. doi:10.3390/catal5031193

    (50)Humbert,M.P.;Smith,B.H.;Wang,Q.;Ehrlich,S.N.;Shao, M.H.Electrocatalysis 2012,3(3-4),298.doi:10.1007/s12678-012-0103-4

    (51)Thambidurai,C.;Gebregziabiher,D.K.;Liang,X.;Zhang,Q.; Ivanova,V.;Haumesser,P.H.;Stickney,J.L.J.Electrochem. Soc.2010,157(8),D466.doi:10.1149/1.3454213

    (52)Khateeb,S.;Guerreo,S.;Su,D.;Darling,R.M.;Protsailo,L. V.;Shao,M.H.J.Electrochem.Soc.2016,163(7),F708. doi:10.1149/2.1301607jes

    (53)Zhu,S.Q;J.Y.;Qin X.P.;Wei,Z.;Liang,Z.D.;Adzic,R.R.; Brankovic,S.;Du,Z.;Shao,M.H.J.Electrochem.Soc.2016, 163(12),D3040.doi:10.1149/2.0061612jes

    (54)Long,N.V.;Ohtaki,M.;Hien,T.D.;Randy,J.;Nogami,M. Electrochim.Acta 2011,56(25),9133.doi:10.1016/j. electacta.2011.07.090

    (55)Chen,Y.;Liang,Z.;Yang,F.;Liu,Y.;Chen,S.J.Phys.Chem.C 2011,115(49),24073.doi:10.1021/jp207828n

    (56)Du,B.;Zaluzhna,O.;Tong,Y.J.Phys.Chem.Chem.Phys. 2011,13(24),11568.doi:10.1039/C1CP20761J

    (57)Atienza,D.O.;Allison,T.C.;Tong,Y.J.J.Phys.Chem.C 2012,116(50),26480.doi:10.1021/jp310313k

    (58)Jung,N.;Chung,Y.H.;Chung,D.Y.;Choi,K.H.;Park,H.Y.; Ryu,J.;Lee,S.Y.;Kim,M.;Sung,Y.E.;Yoo,S.J.Phys.Chem. Chem.Phys.2013,15(40),17079.doi:10.1039/C3CP52807C

    (59)Chen,Y.;Shi,J.J.Fuel Cell Sci.Technol.2015,12(2),021005. doi:10.1115/1.4028149

    (60)Xie,S.;Choi,S.I.;Lu,N.;Roling,L.T.;Herron,J.A.;Zhang, L.;Park,J.;Wang,J.;Kim,M.J.;Xie,Z.Nano Lett.2014,14 (6),3570.doi:10.1021/nl501205j

    (61)Park,J.;Zhang,L.;Choi,S.I.;Roling,L.T.;Lu,N.;Herron,J. A.;Xie,S.;Wang,J.;Kim,M.J.;Mavrikakis,M.ACS Nano 2015,9(3),2635.doi:10.1021/nn506387w

    (62)Peng,Z.;Yang,H.J.Am.Chem.Soc.2009,131(22),7542. doi:10.1021/ja902256a

    (63)Alia,S.M.;Jensen,K.O.;Pivovar,B.S.;Yan,Y.ACS Catal. 2012,2(5),858.doi:10.1021/cs200682c

    (64)Liu,X.;Eileen,H.Y.;Scott,K.Appl.Catal.B 2015,162,593. doi:10.1016/j.apcatb.2014.07.038

    (65)Zhang,L.;Roling,L.T.;Wang,X.;Vara,M.;Chi,M.;Liu,J.; Choi,S.I.;Park,J.;Herron,J.A.;Xie,Z.Science 2015,349 (6246),412.doi:10.1126/science.aab0801

    (66)Choi,R.;Choi,S.I.;Choi,C.H.;Nam,K.M.;Woo,S.I.;Park, J.T.;Han,S.W.Chem.Eur.J.2013,19(25),8190.doi:10.1002/ chem.201203834

    (67)Zhang,Y.;Hsieh,Y.C.;Volkov,V.;Su,D.;An,W.;Si,R.;Zhu,Y.;Liu,P.;Wang,J.X.;Adzic,R.R.ACS Catal.2014,4(3), 738.doi:10.1021/cs401091u

    (68)Zhang,G.;Shao,Z.G.;Lu,W.;Xiao,H.;Xie,F.;Qin,X.;Li,J.; Liu,F.;Yi,B.J.Phys.Chem.C 2013,117(26),13413. doi:10.1021/jp401375b

    (69)Liu,L.;Samjeske,G.;Nagamatsu,S.I.;Sekizawa,O.; Nagasawa,K.;Takao,S.;Imaizumi,Y.;Yamamoto,T.;Uruga, T.;Iwasawa,Y.J.Phys.Chem.C 2012,116(44),23453. doi:10.1021/jp308021a

    (70)Anderson,R.M.;Zhang,L.;Loussaert,J.A.;Frenkel,A.I.; Henkelman,G.;Crooks,R.M.ACS Nano 2013,7(10),9345. doi:10.1021/nn4040348

    (71)Wang,Y.J.;Zhao,N.;Fang,B.;Li,H.;Bi,X.T.;Wang,H. Chem.Rev.2015,115(9),3433.doi:10.1021/cr500519c

    (72)Hwang,S.J.;Kim,S.K.;Lee,J.G.;Lee,S.C.;Jang,J.H.; Kim,P.;Lim,T.H.;Sung,Y.E.;Yoo,S.J.J.Am.Chem.Soc. 2012,134(48),19508.doi:10.1021/ja307951y

    (73)Guo,S.;Zhang,S.;Su,D.;Sun,S.J.Am.Chem.Soc.2013,135 (37),13879.doi:10.1021/ja406091p

    (74)Wang,C.;Van der Vliet,D.;More,K.L.;Zaluzec,N.J.;Peng, S.;Sun,S.;Daimon,H.;Wang,G.;Greeley,J.;Pearson,J.Nano Lett.2010,11(3),919.doi:10.1021/nl102369k

    (75)Wu,J.;Gross,A.;Yang,H.Nano Lett.2011,11(2),798. doi:10.1021/nl104094p

    (76)Carpenter,M.K.;Moylan,T.E.;Kukreja,R.S.;Atwan,M.H.; Tessema,M.M.J.Am.Chem.Soc.2012,134(20),8535. doi:10.1021/ja300756y

    (77)Cui,C.;Ahmadi,M.;Behafarid,F.;Gan,L.;Neumann,M.; Heggen,M.;Cuenya,B.R.;Strasser,P.Farad.Discuss.2013, 162,91.doi:10.1039/C3FD20159G

    (78)Zhang,C.;Hwang,S.Y.;Trout,A.;Peng,Z.J.Am.Chem.Soc. 2014,136(22),7805.doi:10.1021/ja501293x

    (79)Huang,X.;Zhao,Z.;Cao,L.;Chen,Y.;Zhu,E.;Lin,Z.;Li,M.; Yan,A.;Zettl,A.;Wang,Y.M.Science 2015,348(6240),1230. doi:10.1126/science.aaa8765

    (80)Wu,Y.;Cai,S.;Wang,D.;He,W.;Li,Y.J.Am.Chem.Soc. 2012,134(21),8975.doi:10.1021/ja302606d

    (81)Sasaki,K.;Naohara,H.;Cai,Y.;Choi,Y.M.;Liu,P.; Vukmirovic,M.B.;Wang,J.X.;Adzic,R.R.Angew.Chem.Int. Ed.2010,49(46),8602.doi:10.1002/anie.201004287

    (82)Kongkanand,A.;Subramanian,N.P.;Yu,Y.;Liu,Z.;Igarashi, H.;Muller,D.A.ACS Catal.2016,6(3),1578.doi:10.1021/ acscatal.5b02819

    Core-Shell Electrocatalysts for Oxygen Reduction Reaction

    CHANG Qiao-Wan XIAO Fei XU Yuan SHAO Min-Hua*
    (Department of Chemical and Biomolecular Engineering,The Hong Kong University of Science and Technology, Hong Kong,P.R.China)

    The high cost of platinum in catalyst layers hinders the commercialization of proton exchange membrane fuel cells.This Account reviews recent progress on core-shell nanostructures for oxygen reduction reaction(ORR)in acidic media,which is the cathodic reaction in fuel cells.The synthesis,characterization and evaluation of different types of core-shell electrocatalysts are summarized.Various strategies to improve the performance of core-shell electrocatalysts,including dealloying,morphology control,and surface modification are presented.The issues of mass production and fuel cell performance of core-shell electrocatalysts are also discussed.

    Core-shell structure;Proton exchange membrane fuel cell;Electrocatalysis;Platinum alloy; Palladium;Shape control

    O646

    tureArticle]

    10.3866/PKU.WHXB201609202www.whxb.pku.edu.cn

    Received:August 2,2016;Revised:September 20,2016;Published online:September 20,2016.

    *Corresponding author.Email:kemshao@ust.hk;Tel:+852-34692269.

    The project was supported by the Research Grant Council of the Hong Kong SpecialAdministrative Region,China(26206115).

    香港特別行政區(qū)研究資助局(26206115)資助項目

    ?Editorial office ofActa Physico-Chimica Sinica

    猜你喜歡
    香港科技大學燃料電池形貌
    教育部批準設立香港科技大學(廣州)
    留學(2022年12期)2022-07-21 08:17:20
    燃料電池題解法分析
    試駕豐田氫燃料電池車“MIRAI未來”后的六個疑問?
    車迷(2017年12期)2018-01-18 02:16:11
    燃料電池的維護與保養(yǎng)
    電子制作(2017年10期)2017-04-18 07:23:13
    草酸鈷制備中的形貌繼承性初探
    論當代高校圖書館空間環(huán)境設計與服務理念創(chuàng)新——以香港科技大學圖書館空間環(huán)境設計為例
    MOOC促進高等教育改革與創(chuàng)新——訪香港科技大學首席副校長資深顧問龐鼎全教授
    集成成像同名像點三維形貌獲取方法
    中國光學(2015年1期)2015-06-06 18:30:20
    SAPO-56分子篩的形貌和粒徑控制
    不同形貌SBA-15的控制合成及應用
    97人妻天天添夜夜摸| xxx大片免费视频| 亚洲精品日韩在线中文字幕| 丝瓜视频免费看黄片| 亚洲av成人不卡在线观看播放网 | 韩国精品一区二区三区| 在线 av 中文字幕| av女优亚洲男人天堂| 女性被躁到高潮视频| 精品国产国语对白av| 啦啦啦中文免费视频观看日本| 中文字幕人妻熟女乱码| bbb黄色大片| 一本色道久久久久久精品综合| 在线看a的网站| 又大又爽又粗| 国产成人精品久久久久久| 麻豆av在线久日| 久久久久久人人人人人| 在线亚洲精品国产二区图片欧美| 欧美 日韩 精品 国产| 悠悠久久av| 亚洲成人免费av在线播放| 亚洲综合精品二区| 成年人午夜在线观看视频| 色视频在线一区二区三区| 777米奇影视久久| 日韩中文字幕视频在线看片| 亚洲国产欧美在线一区| 亚洲男人天堂网一区| 日本欧美视频一区| 狂野欧美激情性bbbbbb| 国产精品久久久久久精品电影小说| 久久精品亚洲熟妇少妇任你| 不卡av一区二区三区| 一二三四在线观看免费中文在| 国产黄色视频一区二区在线观看| 免费看av在线观看网站| 精品国产超薄肉色丝袜足j| 女的被弄到高潮叫床怎么办| 男女午夜视频在线观看| 爱豆传媒免费全集在线观看| 精品久久蜜臀av无| 一级片免费观看大全| 成人毛片60女人毛片免费| 免费高清在线观看日韩| 国产成人精品久久久久久| 黑丝袜美女国产一区| 欧美在线一区亚洲| 天天躁夜夜躁狠狠久久av| 欧美人与性动交α欧美精品济南到| 十分钟在线观看高清视频www| 综合色丁香网| 丰满少妇做爰视频| 久久人人爽人人片av| 女人高潮潮喷娇喘18禁视频| 啦啦啦视频在线资源免费观看| 老司机深夜福利视频在线观看 | 最近最新中文字幕大全免费视频 | 人人妻人人澡人人爽人人夜夜| 伊人久久大香线蕉亚洲五| 不卡av一区二区三区| 水蜜桃什么品种好| 欧美成人精品欧美一级黄| 高清欧美精品videossex| 下体分泌物呈黄色| 麻豆乱淫一区二区| 伊人久久大香线蕉亚洲五| 久久久久精品性色| 国产精品蜜桃在线观看| 丝袜喷水一区| 久久久久国产精品人妻一区二区| 女人被躁到高潮嗷嗷叫费观| 国产精品一二三区在线看| 99久久99久久久精品蜜桃| 久久人人爽人人片av| 国产亚洲精品第一综合不卡| 日韩 亚洲 欧美在线| 免费日韩欧美在线观看| 99热全是精品| 人妻人人澡人人爽人人| 王馨瑶露胸无遮挡在线观看| 女人精品久久久久毛片| 观看美女的网站| 午夜久久久在线观看| 久久韩国三级中文字幕| 午夜激情av网站| 美女国产高潮福利片在线看| 午夜激情av网站| 久久人人爽人人片av| 18禁动态无遮挡网站| 亚洲婷婷狠狠爱综合网| 国精品久久久久久国模美| 观看美女的网站| 国产亚洲欧美精品永久| 亚洲av福利一区| 日本wwww免费看| 成人18禁高潮啪啪吃奶动态图| 午夜日韩欧美国产| 大码成人一级视频| 在线观看国产h片| 亚洲欧美一区二区三区久久| 日韩 亚洲 欧美在线| 纯流量卡能插随身wifi吗| 伊人久久国产一区二区| 欧美黄色片欧美黄色片| 深夜精品福利| 黄色 视频免费看| 午夜福利乱码中文字幕| 国产乱人偷精品视频| 天天影视国产精品| 亚洲国产看品久久| 国产日韩欧美亚洲二区| 久久久国产精品麻豆| 亚洲成色77777| 考比视频在线观看| 999久久久国产精品视频| 男女午夜视频在线观看| 丝瓜视频免费看黄片| 免费在线观看完整版高清| 永久免费av网站大全| 丝袜喷水一区| 欧美精品高潮呻吟av久久| 亚洲成人国产一区在线观看 | 午夜免费观看性视频| 精品人妻熟女毛片av久久网站| 天天影视国产精品| 夫妻性生交免费视频一级片| 久久精品国产亚洲av涩爱| 人人妻人人澡人人爽人人夜夜| 国产精品香港三级国产av潘金莲 | 国产毛片在线视频| 亚洲精品aⅴ在线观看| 男女下面插进去视频免费观看| 中文字幕人妻熟女乱码| 欧美精品av麻豆av| 天堂8中文在线网| 美女福利国产在线| 欧美中文综合在线视频| 欧美日韩国产mv在线观看视频| 高清av免费在线| 观看美女的网站| 一区二区三区乱码不卡18| 国产无遮挡羞羞视频在线观看| 女人被躁到高潮嗷嗷叫费观| 侵犯人妻中文字幕一二三四区| 色婷婷久久久亚洲欧美| 狂野欧美激情性bbbbbb| 久久久久国产一级毛片高清牌| 亚洲色图综合在线观看| 99久久综合免费| 一级毛片黄色毛片免费观看视频| 老汉色av国产亚洲站长工具| 国产成人精品久久久久久| 1024视频免费在线观看| 中文字幕制服av| www.自偷自拍.com| 国产探花极品一区二区| 久久精品人人爽人人爽视色| 捣出白浆h1v1| 国产精品国产三级专区第一集| 亚洲一级一片aⅴ在线观看| 午夜久久久在线观看| 又黄又粗又硬又大视频| 老司机靠b影院| 97精品久久久久久久久久精品| 国产精品国产三级国产专区5o| 下体分泌物呈黄色| 免费少妇av软件| 97在线人人人人妻| 亚洲欧美成人精品一区二区| 日日啪夜夜爽| 久久国产精品大桥未久av| 国产成人精品久久久久久| 黄片无遮挡物在线观看| 欧美少妇被猛烈插入视频| 熟女少妇亚洲综合色aaa.| 国产成人啪精品午夜网站| 亚洲国产av新网站| av一本久久久久| 啦啦啦中文免费视频观看日本| 久久精品亚洲熟妇少妇任你| 99久久人妻综合| 日日啪夜夜爽| 在线天堂最新版资源| 成人亚洲欧美一区二区av| www.av在线官网国产| 黄片无遮挡物在线观看| 日韩大码丰满熟妇| 久久ye,这里只有精品| 搡老乐熟女国产| 热99国产精品久久久久久7| 久久人人97超碰香蕉20202| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品久久久av美女十八| 18禁国产床啪视频网站| 国产毛片在线视频| 汤姆久久久久久久影院中文字幕| 中文字幕人妻熟女乱码| 丁香六月欧美| 亚洲精品国产区一区二| 蜜桃国产av成人99| 在线天堂中文资源库| 亚洲国产精品一区二区三区在线| 亚洲人成77777在线视频| 国产精品秋霞免费鲁丝片| 久久久久精品国产欧美久久久 | 国产亚洲一区二区精品| 免费在线观看完整版高清| 男的添女的下面高潮视频| 午夜老司机福利片| 亚洲婷婷狠狠爱综合网| 亚洲熟女毛片儿| 人妻一区二区av| 亚洲欧美一区二区三区黑人| 精品福利永久在线观看| 99久久精品国产亚洲精品| 99久久综合免费| 国产精品一区二区精品视频观看| 精品国产一区二区三区四区第35| 国产伦人伦偷精品视频| 成人亚洲欧美一区二区av| 最近最新中文字幕免费大全7| 精品国产国语对白av| 亚洲av成人不卡在线观看播放网 | 一级a爱视频在线免费观看| 女性被躁到高潮视频| 秋霞在线观看毛片| 极品少妇高潮喷水抽搐| 国产视频首页在线观看| 久久久久久免费高清国产稀缺| videos熟女内射| 国产成人精品久久久久久| 狂野欧美激情性xxxx| 欧美久久黑人一区二区| 亚洲国产欧美网| 国产欧美日韩一区二区三区在线| 黄色视频不卡| 日本黄色日本黄色录像| 视频区图区小说| 国产精品人妻久久久影院| 九色亚洲精品在线播放| 精品一品国产午夜福利视频| 久热这里只有精品99| 在线看a的网站| 国产片内射在线| 国精品久久久久久国模美| 999精品在线视频| 欧美变态另类bdsm刘玥| 国产伦理片在线播放av一区| 最近中文字幕2019免费版| 午夜老司机福利片| 看免费av毛片| 狠狠精品人妻久久久久久综合| 一边摸一边做爽爽视频免费| 80岁老熟妇乱子伦牲交| 国产欧美亚洲国产| 性少妇av在线| 欧美精品av麻豆av| 蜜桃国产av成人99| 国产日韩欧美亚洲二区| 国产成人精品无人区| 69精品国产乱码久久久| 啦啦啦视频在线资源免费观看| 99久久人妻综合| 亚洲av日韩在线播放| 色94色欧美一区二区| 日本vs欧美在线观看视频| 国语对白做爰xxxⅹ性视频网站| 秋霞在线观看毛片| 精品少妇黑人巨大在线播放| 国产毛片在线视频| 18在线观看网站| bbb黄色大片| 最新在线观看一区二区三区 | 亚洲天堂av无毛| 亚洲av成人精品一二三区| 五月天丁香电影| 精品视频人人做人人爽| 国产一区二区三区综合在线观看| 少妇人妻 视频| 欧美人与性动交α欧美精品济南到| 99久久综合免费| 久久久久久久国产电影| 国产淫语在线视频| 国产伦人伦偷精品视频| 男女高潮啪啪啪动态图| 秋霞在线观看毛片| 国产精品.久久久| 国产熟女午夜一区二区三区| 看免费av毛片| 美女视频免费永久观看网站| 极品少妇高潮喷水抽搐| 久久精品国产亚洲av高清一级| 精品一区在线观看国产| 国产在线一区二区三区精| 国产 精品1| 老汉色av国产亚洲站长工具| 久久人妻熟女aⅴ| 精品一区在线观看国产| 亚洲自偷自拍图片 自拍| 久久婷婷青草| 最新的欧美精品一区二区| 欧美日韩亚洲综合一区二区三区_| 免费在线观看黄色视频的| 日日摸夜夜添夜夜爱| 久久久久久免费高清国产稀缺| 叶爱在线成人免费视频播放| 国产一区二区三区综合在线观看| 国产一区二区在线观看av| 水蜜桃什么品种好| 久久av网站| 1024视频免费在线观看| 国产av国产精品国产| 久久久久国产精品人妻一区二区| 午夜免费观看性视频| 性高湖久久久久久久久免费观看| 麻豆av在线久日| 两个人看的免费小视频| 亚洲自偷自拍图片 自拍| kizo精华| 别揉我奶头~嗯~啊~动态视频 | 欧美人与善性xxx| 纵有疾风起免费观看全集完整版| 男女高潮啪啪啪动态图| 狠狠精品人妻久久久久久综合| 伊人久久国产一区二区| 日韩av在线免费看完整版不卡| 午夜久久久在线观看| 午夜福利视频精品| 少妇被粗大的猛进出69影院| 宅男免费午夜| 亚洲一卡2卡3卡4卡5卡精品中文| 丝袜美足系列| 制服人妻中文乱码| 国产在线一区二区三区精| 黄色一级大片看看| 久久久国产精品麻豆| 欧美国产精品一级二级三级| 久久精品久久久久久久性| 国产成人精品在线电影| 日本色播在线视频| 午夜福利影视在线免费观看| 热99久久久久精品小说推荐| 国产精品秋霞免费鲁丝片| 久热爱精品视频在线9| 亚洲欧美精品综合一区二区三区| 精品酒店卫生间| 亚洲一级一片aⅴ在线观看| 亚洲色图综合在线观看| 欧美成人精品欧美一级黄| 欧美xxⅹ黑人| 爱豆传媒免费全集在线观看| 青春草国产在线视频| 国产欧美亚洲国产| 午夜激情久久久久久久| 下体分泌物呈黄色| 精品酒店卫生间| 亚洲国产精品一区二区三区在线| www.熟女人妻精品国产| 欧美乱码精品一区二区三区| 亚洲精品一二三| 水蜜桃什么品种好| 成人亚洲欧美一区二区av| www.精华液| 啦啦啦在线观看免费高清www| 亚洲精品国产区一区二| 国产成人精品在线电影| 亚洲熟女精品中文字幕| 高清不卡的av网站| 涩涩av久久男人的天堂| 日韩,欧美,国产一区二区三区| 久久久久精品久久久久真实原创| 日本欧美国产在线视频| h视频一区二区三区| 日日撸夜夜添| 操美女的视频在线观看| 亚洲欧美精品综合一区二区三区| 叶爱在线成人免费视频播放| 免费人妻精品一区二区三区视频| xxxhd国产人妻xxx| 青春草视频在线免费观看| 天堂中文最新版在线下载| 国产男人的电影天堂91| 丰满饥渴人妻一区二区三| 51午夜福利影视在线观看| 国产一区二区激情短视频 | 亚洲第一青青草原| 亚洲人成77777在线视频| 9色porny在线观看| 国产麻豆69| 亚洲三区欧美一区| 肉色欧美久久久久久久蜜桃| 精品第一国产精品| 91成人精品电影| 美女午夜性视频免费| 99精品久久久久人妻精品| 搡老乐熟女国产| 妹子高潮喷水视频| 天天添夜夜摸| 日韩成人av中文字幕在线观看| 三上悠亚av全集在线观看| 大陆偷拍与自拍| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美清纯卡通| 国产精品一区二区在线观看99| 91aial.com中文字幕在线观看| 日日爽夜夜爽网站| 男人添女人高潮全过程视频| 日本一区二区免费在线视频| 久久久久国产一级毛片高清牌| 伊人久久国产一区二区| 欧美精品一区二区免费开放| 一二三四中文在线观看免费高清| 国产亚洲精品第一综合不卡| 欧美日韩一级在线毛片| 一区二区三区四区激情视频| 国产在线一区二区三区精| 亚洲中文av在线| 免费av中文字幕在线| 又粗又硬又长又爽又黄的视频| 嫩草影视91久久| 国产一区二区三区av在线| 热99国产精品久久久久久7| 免费少妇av软件| 国产精品亚洲av一区麻豆 | 亚洲,欧美精品.| 久久天躁狠狠躁夜夜2o2o | 国产精品一二三区在线看| 成人亚洲欧美一区二区av| 精品一区在线观看国产| 国产精品香港三级国产av潘金莲 | 亚洲国产欧美一区二区综合| 欧美日韩视频精品一区| 水蜜桃什么品种好| 51午夜福利影视在线观看| 国产成人a∨麻豆精品| 尾随美女入室| 亚洲精品乱久久久久久| 激情视频va一区二区三区| 老司机影院毛片| 卡戴珊不雅视频在线播放| 青春草国产在线视频| 纵有疾风起免费观看全集完整版| 777米奇影视久久| 日本91视频免费播放| 国产精品秋霞免费鲁丝片| 久久久国产一区二区| 亚洲精品中文字幕在线视频| 亚洲av中文av极速乱| 亚洲熟女精品中文字幕| 人人妻人人添人人爽欧美一区卜| 亚洲人成网站在线观看播放| 午夜激情久久久久久久| 超碰成人久久| 精品国产一区二区三区久久久樱花| 男女边吃奶边做爰视频| 久久精品国产a三级三级三级| 黄色一级大片看看| 精品少妇久久久久久888优播| 自线自在国产av| 国产探花极品一区二区| 国产精品女同一区二区软件| 亚洲第一av免费看| 性少妇av在线| 韩国高清视频一区二区三区| 麻豆av在线久日| 亚洲欧美一区二区三区久久| 色94色欧美一区二区| 看非洲黑人一级黄片| 晚上一个人看的免费电影| 亚洲七黄色美女视频| 青青草视频在线视频观看| 宅男免费午夜| 亚洲熟女精品中文字幕| 超碰97精品在线观看| 大香蕉久久成人网| 亚洲精品av麻豆狂野| 捣出白浆h1v1| 可以免费在线观看a视频的电影网站 | 另类精品久久| 91国产中文字幕| 91精品国产国语对白视频| 精品人妻熟女毛片av久久网站| 久久影院123| 免费黄网站久久成人精品| 国产国语露脸激情在线看| 天堂俺去俺来也www色官网| 免费人妻精品一区二区三区视频| 五月天丁香电影| 在线看a的网站| 丝袜脚勾引网站| 精品亚洲成a人片在线观看| 国产一区二区在线观看av| 亚洲图色成人| 亚洲精品日韩在线中文字幕| 亚洲精品成人av观看孕妇| 天天添夜夜摸| 午夜91福利影院| 日日啪夜夜爽| 操美女的视频在线观看| 精品亚洲成国产av| 日韩大片免费观看网站| 国产精品久久久久久久久免| 老司机靠b影院| 考比视频在线观看| 久久午夜综合久久蜜桃| 狠狠精品人妻久久久久久综合| 日本一区二区免费在线视频| av电影中文网址| 51午夜福利影视在线观看| 亚洲四区av| 国产成人精品无人区| 日韩免费高清中文字幕av| 叶爱在线成人免费视频播放| 2021少妇久久久久久久久久久| 亚洲欧美一区二区三区黑人| 久久青草综合色| 亚洲视频免费观看视频| 欧美精品av麻豆av| 国产伦理片在线播放av一区| 精品一区二区三区四区五区乱码 | 性少妇av在线| 一个人免费看片子| 亚洲综合色网址| av卡一久久| 伦理电影大哥的女人| 久久热在线av| 99国产精品免费福利视频| 中文字幕色久视频| 一个人免费看片子| 熟女少妇亚洲综合色aaa.| 97在线人人人人妻| 久久久久视频综合| 国产色婷婷99| 最新的欧美精品一区二区| 国产无遮挡羞羞视频在线观看| 久久99精品国语久久久| 黄色视频在线播放观看不卡| 精品人妻在线不人妻| 成人黄色视频免费在线看| 亚洲专区中文字幕在线 | 高清在线视频一区二区三区| 日本av免费视频播放| 免费黄网站久久成人精品| 久久久久精品久久久久真实原创| 精品少妇一区二区三区视频日本电影 | 国产黄频视频在线观看| 一级黄片播放器| 亚洲激情五月婷婷啪啪| 亚洲欧美一区二区三区久久| 精品免费久久久久久久清纯 | 色94色欧美一区二区| 午夜福利影视在线免费观看| 99re6热这里在线精品视频| 亚洲精品av麻豆狂野| 成人亚洲欧美一区二区av| 亚洲天堂av无毛| 伊人久久国产一区二区| 桃花免费在线播放| 18禁动态无遮挡网站| 国产成人免费观看mmmm| 曰老女人黄片| 在线观看免费日韩欧美大片| 久久久久久久大尺度免费视频| 极品人妻少妇av视频| 免费在线观看视频国产中文字幕亚洲 | 制服人妻中文乱码| 九草在线视频观看| 精品第一国产精品| 国产欧美亚洲国产| 无限看片的www在线观看| 亚洲国产欧美一区二区综合| 性色av一级| 女性生殖器流出的白浆| 又黄又粗又硬又大视频| 国产精品 国内视频| 国产精品嫩草影院av在线观看| 国产精品久久久久久人妻精品电影 | 成人国产av品久久久| 综合色丁香网| 99国产综合亚洲精品| 午夜激情av网站| 青草久久国产| 黑人巨大精品欧美一区二区蜜桃| 精品久久蜜臀av无| 久久天堂一区二区三区四区| 亚洲情色 制服丝袜| 免费高清在线观看日韩| av女优亚洲男人天堂| 国产黄色免费在线视频| 麻豆精品久久久久久蜜桃| 中文天堂在线官网| 黄网站色视频无遮挡免费观看| 一区二区av电影网| 国产精品香港三级国产av潘金莲 | 中文字幕av电影在线播放| 美女脱内裤让男人舔精品视频| 亚洲欧洲日产国产| 十八禁网站网址无遮挡| 亚洲精品国产av成人精品| 国产成人精品久久二区二区91 | 麻豆精品久久久久久蜜桃| 久久久精品国产亚洲av高清涩受| 精品一区二区三卡| 久久这里只有精品19| avwww免费| xxxhd国产人妻xxx| 免费观看av网站的网址| 美女国产高潮福利片在线看| 久久鲁丝午夜福利片| 美国免费a级毛片| 男女免费视频国产| 国产无遮挡羞羞视频在线观看| 欧美日韩亚洲综合一区二区三区_|