• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    導(dǎo)電聚合物在纖維狀能源器件中的應(yīng)用進展

    2017-03-10 08:09:14廖春榮李賢軍吳義強羅勇鋒
    物理化學(xué)學(xué)報 2017年2期
    關(guān)鍵詞:纖維狀中南物理化學(xué)

    廖春榮 熊 峰 李賢軍 吳義強 羅勇鋒,*

    (1中南林業(yè)科技大學(xué)理學(xué)院,長沙 410018;2復(fù)旦大學(xué),聚合物分子工程國家重點實驗室和先進材料實驗室,上海 200438;3中南林業(yè)科技大學(xué)材料科學(xué)與工程學(xué)院,長沙 410018)

    導(dǎo)電聚合物在纖維狀能源器件中的應(yīng)用進展

    廖春榮1,2熊 峰1,2李賢軍3吳義強3羅勇鋒1,2,*

    (1中南林業(yè)科技大學(xué)理學(xué)院,長沙 410018;2復(fù)旦大學(xué),聚合物分子工程國家重點實驗室和先進材料實驗室,上海 200438;3中南林業(yè)科技大學(xué)材料科學(xué)與工程學(xué)院,長沙 410018)

    導(dǎo)電聚合物由于成本低、安全環(huán)保、比電容高和電化學(xué)性能穩(wěn)定等特點,已經(jīng)被廣泛應(yīng)用于纖維狀能源器件中。導(dǎo)電聚合物具有良好的機械、電學(xué)和光學(xué)性能,同時具有方便可控的化學(xué)和電化學(xué)過程,可作為能源器件的電極材料。本文綜述了導(dǎo)電聚合物在纖維狀能源器件中的最新研究進展,如纖維狀超級電容器、纖維狀太陽能電池和纖維狀集成能源器件。同時根據(jù)纖維狀能源器件的性能要求,對相關(guān)材料、制備技術(shù)、纖維結(jié)構(gòu)、電子輸運以及機械性能等進行了全面總結(jié)。

    導(dǎo)電聚合物;纖維;超級電容器;太陽能電池;纖維狀能源器件

    1 Introduction

    Nowadays,energy storage is an important challenge.With the development of modern electronic equipments,it is urgently need to develop wearability and environmentally friendly energy storage devices.Fibrous energy devices possess excellent characteristics of lightweight,flexibility,portability and wearability, which become a hot topic in science and technology.Meanwhile, conductive polymers(CPs)have drawn great attention in the field of energy nanotechnology1-6.Typically,CP nanostructures can improve the electrical conductivity of composite materials and achieve a higher specific capacitance proving to be an alternative material in the development of next generation energy storage devices7-9,which including supercapacitors(SCs)10-12and solar cells13-15.CP nanostructures consist mainly of polyaniline(PANI), polypyrrole(PPy)and poly(3,4-ethylenediox-ythiophene)(PEDOT), which apply to fibrous energy devices that can effectively increasethe conductivity and the specific capacitance to meet requirements of light weight,portability and wearability for modern portable electronic applications10,14,16-20.Extensive effort has been made to develop all kinds of CPs and fabricate novel structures to realize fibrous SCs and solar cells.Mechanical stability is a significant factor for the flexible fibrous SCs and solar cells.In order to enhance the mechanical robustness,various flexible substrates containing stainless wire21,carbon nanofibers22-36have been introduced into fibrous electrodes.Furthermore,to improve the electroconductibility and electrochemical performance of fibrous electrodes,conductive polymers are a key active material to be introduced into the composite materials.Novel CPs applied in fibrous energy devices,preparation and structure design of fibrous electrode are summarized in this paper.

    2 Fibrous supercapacitors based on conductive polymers

    Electrochemically reactive polymers for SCs mostly consist of PANI,PPy,PEDOT and their derivatives37-39.According to theory of redox reactions,CPs demonstrate a high pseudocapacitance(for example,the theoretical capacitances of PANI,PPy and PEDOT are 1284,480 and 210 F·g-1,respectively).However,the active substance of a given electrode cannot be completely utilized,so these theoretical values are difficult to achieve in practical devices. The fibrous SCs(e.g.electrical double-layer capacitors40,41and pseudocapacitors42,43)can provide energy for portable and wearable electronic devices.Fibrous SCs typically possess two forms,a twisting shape and the more conventional coaxial shape structure. Usually,liquid electrolytes possess a number of security vulnerabilities that can fortunately be overcome by gel electrolytes. Furthermore,gel electrolytes are implemented in these devices and are easily applied to the flexible and wearable electronic devices. Fibrous SCs require a matching fiber electrode,e.g.carbon nanotube(CNT)fibers,graphene fibers,carbon nanomaterials/ conductive polymer composite fibers44-51.

    2.1 Polyaniline composite fiber electrodes for the fibrous supercapacitors

    Among various CPs,PANI is one of the most commonly implemented electrode materials for fibrous SCs due to its low cost of aniline monomers,light weight,facile synthesis,environmental friendliness and excellent capacity for energy storage52-54.In addition,PANI has a high specific pseudocapacitance and high rates of charge and discharge capacity55,56.To realize the full potential of PANI-based fiber-shape SCs,researchers have taken the following measures:(1)increasing the electrical conductivity of PANI;(2)increasing the capacitance retention of PANI;(3)optimizing the low stability of charge-discharge measurements;and (4)reducing the cost and simplifying the synthesis process.

    LIAO Chun-Rong,received her B.S.degree from Lingnan Normal University in 2014. She is now a Master Student in Central South University of Forestry and Technology.Her research interest focuses on the interaction between electromagnetic field and biomass materials.

    XIONG Feng,received his B.S.degree from Central South University of Forestry and Technology in 2015.He is now a master student in Central South University of Forestry and Technology.His research interest focuses on the supercapacitor and lithium ion battery of functional nanomaterial.

    LI Xian-Jun,received his Ph.D.in wood science and technology from Beijing Forestry University in 2005.He is now a professor at Central South University of Forestry and Technology.His research interests focus on wood drying,wood functional modification, forestry biomass composite material and synthesis of functional nanomaterial.

    WU Yi-Qiang,received his Ph.D.in biomass utilization from Ehime University in 2005. He is now a professor at Central South University of Forestry and Technology.In 2015, he was elected as fellow of International Academy of Wood Science and Chang Jiang Scholar.His research interests focus on biomass composites,biomass fictionalization and conversion,and advanced functional materials from biomass for energy storage and catalyst.

    LUO Yong-Feng,received his B.S.in physics from Hunan Normal University in 1999. Also,he received his M.S.in condensed matter physics from Nankai University in 2005.In 2012,he received his Ph.D.in materials science from Central South University. Since 1999,he has been at Central South University of Forestry and Technology,where he is currently an associate professor in college of science.His current research and interest areas include the solar cell,supercapacitor,lithium ion battery,and synthesis of functional nanomaterial.

    2.1.1 Synthesis of polyaniline composite fiber electrodes

    To improve the overall capacitance of fibrous SCs based on the PANI nanostructure,the structure of PANI electrodes require optimization57.Nowadays,the common methods to synthesize PANI electrodes are chemical-based and electrochemical-based methods.Liang et al.58successfully deposited PANI nanowire arrays on various substrates(Pt,Si,Au,C,SiO2)through controlled nucleation via an electrochemical process.Because CNTs and graphene possess a large surface area,excellent conductivity, stable chemical properties and outstanding mechanical properties, these carbon nanomaterials composited with PANI have been investigated as an active current collectors for fibrous SCs and these carbon materials modified by PANI in fibrous devices further achieve improved electrochemical performance.

    Meng et al.59developed all-solid-state SCs based on two separated PANI/CNT nano-composite fiber electrodes coated by poly (vinyl alcohol)(PVA)/H2SO4gel electrolyte(Fig.1(a)).ALED was lit up very well by this fibrous SC for almost 30 min(Fig.1(b)). Cheng et al.60synthesized a SCs′electrode by depositing PANI nanowires on the surface of an etched carbon fiber(Fig.1(c-e)).

    Furthermore,multi-walled CNTs(MWCNTs)are capable of achieving a higher energy density per mass unit than SWCNTs61. Wang et al.38prepared CNT/PANI fiber electrodes with gel PVA/ H2SO4polymer electrolyte through in-situ polymerization shown in Fig.2(a).ACNT fiber could be spun from an aligned MWCNT array,then electrodeposited with conductive PANI nanowire arrays,and subsequently coated with PVA-H2SO4gel electrolyte to form a CNT/PANI/PVA composite fiber.Finally,two composite fibers were twisted together to develop a fibrous SC(Fig.2(a)). The microstructure of the pure CNT and its composite fibers were observed respectively via SEM image(Fig.2(b,c)).After 800 cycles of consecutive charging and discharging,this fibrous SC showed excellent capacitance retention at 91%of its original value.

    In order to further improve cyclic stability of the PANI-based fiber SCs,Su et al.62prepared CNT/PANI fiber electrodes via chemical polymerization(shown in Fig.3).This SC based on a gamma-irradiated(IR)CNT fiber and aligned-PANI nanowires obtained enhanced cyclic stability of charge-discharge relative to Ref.38,which remained 89%of its original capacitance after 1000 cycles(Fig.3(a,c)),and possessed a high specific capacitance than other fiber materials(Fig.3(b)).

    CNT fibers can also be woven into fabric and then coated with PANI to form mesh electrodes61.Then,the gel electrolyte of PVA/ H3PO4was growth on CNT/PANI composite fabric.Finally,two mesh electrodes were stacked to form a planar SC(Fig.4(a)). Owing to the great mechanical strength and prominent electrical performance of CNT fibers and the high electrochemical activity of PANI,the planar SC exhibits a high specific capacitance of 272.7 F·g-1,which demonstrated a capacitance retention of 90% after 2000 cycles(Fig.4(b,c)).

    The combination of PANI and aligned CNT fibers in the synthesis of composites is simple,cheap,and effective,which can enhance the specific capacitance of SC.Further researches verify that the electrode of ordered PANI array nanostructure exhibits excellent specific capacitance and capacity retention in comparison with randomly disordered PANI nanowires62,63.

    Fig.1 (a)Schematic illustration of the PANI/CNT nanocomposite all-solid-state fibrous SCs device;(b)an optical picture of the above fibrous SCs with lighting a red light-emitting-diode59;(c)diagrammatic sketch and SEM image of a carbon fiber; (d)diagrammatic sketch and SEM of a etched carbon fiber;(e)etched carbon fiber coated with PANI60

    2.1.2 Impact of polyaniline content on the performance of SCs

    The PANI/MWCNT composite materials have a uniform core-shell structure which are prepared on the MWCNTs templates via in-situ polymerization64.The composite materials possessing 80% (w,mass fraction)PANI content could be obtained on aligned MWCNTs sheet.The impact of PANI contents on the specific capacitance was further studied(Fig.5).The results demonstrate that the highest specific capacitance had been observed when the PANI content was 66%(w).After 700 charging-discharging cycles,the specific capacitance is maintained at 70.9%and further remains stable after more cycles.

    Fig.2 (a)Diagrammatic sketch of the preparation for the two-ply yarn SCs;(b)SEM image of a pure CNT fiber and the morphologies of the initial pure CNT fibers;(c)SEM image of a CNT/PANI composite fiber and microstructure of the composite fibers38

    Fig.3 (a)Schematic illustration of gamma-IR-CNT/PANI two-ply fiber SC;(b)capacitance at different current densities; (c)stability of charge-discharge cycles62

    MWCNT sheets containing varying PANI content are also used as electrodes for flexible SCs and demonstrate the highest specific capacitance of 233 F·g-1.Under identical conditions,the maximum specific capacitance is 36 times greater than a neat MWCNT sheet and 23 times of pure PANI(Fig.6).The SCs also show high cyclic stability.Fig.6(b - f)demonstrate morphologies of the MWCNT/PANI composite films of varying PANI content.Thevoids were essentially filled in aligned CNTs when the PANI content was reached about 70%(w).When the PANI content was less than about 50%(w),specific capacitances increased with increasing PANI content,when the PANI content was more than about 50%(w),the specific capacitance reached a plateau(Fig.6 (g,h)).However,when the PANI content is more than 86%(w), excess PANI leads to weak interaction between the aligned MWCNT fiber and PANI,and poor efficiency of ion diffusion (Fig.6(i)).

    PANI and aligned MWCNTs composite fibrous electrodes were also assembled via chemical polymerization65.The aligned MWCNT/PANI composite films were winded on an elastic fiber as fibrous electrodes,which could realize flexible,stretchable,and electrochromic fibrous SCs62that facilitated quickly and reversible color conversions(Fig.7(a,b)).PANI content has a great influence on the performance of SCs,Fig.7(c)shows cyclic voltammograms with different PANI content in the fibrous SC.When the PANI content increased to 70%,the cyclic voltammagrams′area reached a maximum and when the PANI content was further increased to 90%,the cyclic voltammagram′s area decreased(Fig.7(d)).The previous conclusions were also validated by constant current charge-discharge(Fig.7(e)).

    Fig.4 (a)Preparation of a planar SC based on the CNT/PANI composite fabric;(b)constant current charge-discharge curves of the planar SC;(c)specific capacitance with different cycle numbers at 1A·g-161

    Fig.5 (a)Cyclic voltammograms of SCs based on MWCNT,pure PANI,and various PANI contents(scan rate,5 mV·s-1); (b)specific capacitances and PANI thickness affected by the PANI content in the SCs64

    2.2 Polypyrrole composite fiber electrodes for the fibrous supercapacitors

    PPy is another CP that has been utilized for its energy storage applications owing to its excellent physical and chemical properties66,67.

    2.2.1 Synthesis of polypyrrole composite fiber electrodes

    In comparison with PANI,the electrochemistry performance of

    the composite electrode based on PPy also relies on its synthesis method and active surface area.Wang et al.68designed composite fiber electrodes of CNT/PANI and CNT/PPy by electrochemical polymerization(Fig.8).It has been found that PPy is another kind of an active material(identical to PANI)to synthesize composite fibrous electrodes.The CNT and PPy composite fibers not only exhibit a high specific capacitance but also high stability and a wide temperature range69.

    Fig.6 MWCNT sheets with different mass fractions of PANI observed by SEM(a-f)and their performance in SCs(g-i)65

    Fig.7 (a)Electrochromic and(b)structure of the wearable fibrous SC;(c)cyclic voltammetry curves with different PANI content at 10 mV·s-1;(d)constant current charge-discharge curves for different weight percentages of PANI at 1A·g-1, (e)the relation between of specific capacitance and current density62

    Furthermore,Guo et al.69prepared CNT-PPy fibers by diamond wire-drawing dies which can used for electrodes of fibrous SCs. APPy nanolayer was deposited on carbon fibers by using an insitu polymerization technique70.Poly-2,5-dimercapto-1,3,4-thiadiazole(poly(DMcT))can also be deposited on outside of carbon fiber textile by electrochemical method71,producing flexible and huge surface area composite materials that behave as SCs′electrodes(Fig.9).The specific capacitance of this SC affected by the scan rate is shown in Fig.9(c);when the scan rate decreases,the specific capacitance increases.The maximum specific capacitance values can be obtained at 1 mV·s-1for PPy composite fibers.

    MnO2has a large theoretical specific capacitance of 1370 F·g-1and exhibits environmental friendliness,cost effectiveness and a natural abundance for pseudocapactive materials.Nonetheless,the poor electric conductivity of MnO2limits its application in capacitor72.Meanwhile,PPy with high conductivity and specific capacitance can solve the above shortcomings73.Hence,A thin PPy film deposited on the surface of MnO2nanostructures39(Fig.10(a)) and single-walled CNTs could improve the electrical conductivity and electrochemical performance(Fig.10(b,c)).

    Fig.8 (a)SEM image of a single CNT/PANI fiber and the morphologies of the aligned composite fibers,(b)cyclic voltammogram(CV)and (c)constant current charging-discharging curves of SC based on aligned CNT/PANI composite fiber;(d)SEM image of a single CNT/PPy composite fiber and the morphologies of the aligned composite fibers,(e)cyclic voltammograms of bare CNT fiber and CNT/PPY fiber, (f)constant current charge-discharge curves based on CNT/PPy composite fiber for SC68

    Fig.9 (a)SEM image of the PPy and the transversal surface of the CF/PPy composite fibers,(b)SEM image of the poly(DMcT)/PPy and the transversal surface of the CF/poly(DMcT)/PPy composite fibers,(c)scanning rate as a function of specific capacitance71

    2.2.2 Performance of polypyrrole composite fiber electrodes

    Flexible fibrous SCs is easy to be integrated into textiles. However,mass production of fibrous SCs is still a challenge by using manufacturing processes.Meanwhile,helical CNT fibrous SCs can work under many extreme deformation conditions suchas super-elongation(tensile strain up to 150%)(see Fig.11),arbitrary shape change(entangling),and high frequency stretching74, which offer opportunities for portable electronic device applications.

    However,mechanical damage of fibrous SCs seriously affects the reliability and lifespan of the device during practical applications.It is well known that Fe3O4exhibits permanent magnetism and provides self-healing properties,while the Fe3O4magnetic layer guarantees restoration of electrical conductivity via magnetic alignment75.Therefore,a fiber-based SC endowed with mechanically and electrically self-healing was fabricated based on magnetic Fe3O4and PPy(see Fig.12).These electrodes exhibit excellent performance of mechanical strength and self-healing behavior.

    PPy nanorods are also capable of being deposited on cotton fabrics via in-situ polymerization in the fibrillar complex of FeCl377.The fabrics could be directly implemented as SC electrodes.The capacitance remained higher than 200 F·g-1after 500 cycles.

    Wang et al.76synthesized densely packed PPy-nanocellulose composite electrodes via surface modified nanocellulose fibers (NCFs)as substrates for PPy-nanocellulose deposition(Fig.13). The composite with the highest bulk density(PPy/c-NCFs)exhibited the highest volumetric capacitances value(173 F·cm-3)at 1 mA · cm-2.The PPy/c-NCF-based symmetric supercapacitor showed excellent cycling stability,which retained 93%of its initial value after 5000 cycles(Fig.13(c)).More recently,PPy/TiN/ PANI coaxial nanotube composite materials were prepared by electroless plating78.

    Fig.10 (a)a cable-type supercapacitor and a twisting cable-type supercapacitor; (b)CV curves of SCs based on a PPy-MnO2-CNT-cotton thread electrodes;(c)galvanostatic charging and discharging curves of the SCs39

    Fig.11 (a)Illustration of the process of a helical CNT fiber(with or without PPy on the surface)coated by gel electrolyte,while two of such fibers twisted into a double-helix SC;(b)CV curves of the SC with different testing conditions including static(without stretching, f=0 Hz)and during dynamic test;(c)photographs of a double helix CNT fiber SC and its tensile strain(ε)up to 150%; (d)capacitance retention of the SC when stretched by different frequencies74

    2.3 Poly(3,4-ethylenedioxythiophene)composite fiber electrodes for the fibrous supercapacitors

    Apart from PANI and PPy,PEDOT was also utilized to fabricate composite fibrous SCs due to its high environmental stability79,80.Furthermore,PEDOT electropolymerized in ionic liquidsfor energy storage applications has been studied in recent publications81,82.

    Fig.12 (a)Preparation process of the magnetic-assisted self-healable SC;(b)the self-healing process of SC; (c)capacitance retention at 4.4 mA·cm-2;(d)before and after healing specific capacitance as a function of cycles75

    Fig.13 (a)Schematic of NCFs paper and molecular structure of NCFs;(b)volumetric capacitances as a function of varying charging/discharging current densities;(c)cycling performance in terms of capacitance retention at 30 mA·cm-2for a PPy/c-NCFs based device(the capacitance from the first cycle is set to 100%)76

    PEDOT nanostructures containing a large surface area were synthesized via vapor phase polymerization83and exhibited a specific capacitance of 175 F·g-1due to a highly conducting and efficient nanofibrillar electrode.CNT fibers can be used as an effective current collector in fibrous SCs(Fig.14).PEDOT was potentiostatically grown on CNT fibers84to yield a specific capacitance of 126.23 F·g-1.Meanwhile,wearable,knottable and viewable fibers were also implemented as high performance electrodes for pseudocapacitive SCs82.The SCs utilized a MWCNT/PEDOT nano-composite fiber and a Pt wire as two-fiber electrodes with a H2SO4/PVA gel polymer electrolyte.The fibrous SCs were twisted,helically wound or woven into textile and displayed capacitance reduction of only 2%after 2000 cycles and 8%after 10000 cycles,respectively,indicating excellent cycling performance under different flexible states.

    Su et al.85developed a facile synthesis route to yield highperformance,flexible,fibrous SCs based on PEDOT/poly(styrenesulfonate)(PSS)(Fig.15).The aligned CNT fiber was treated by gamma-irradiation(IR)and then coated with PEDOT/PSS and gel electrolyte in order to enhance capacitance.Finally,two coated fibers twisted around to form an electrode for SCs.The results verify that gamma-IR greatly increases the electrical conductivityand improves the gram capacitance of the fibrous SC.These flexible fibrous SCs with fine diameters can be easily applied in wearable electronics.

    PEDOT and its metal oxide composites have been synthesized in a porous alumina membrane by a simple electrochemical method86,87.Conventional metal oxides,such as MnO2and RuO2, possess poor conductivity,yet can be applied to pseudocapacitors and other electrochemical applications.In order to solve the problem of low electrical conductivity,Mirvakili et al.88deposited high performing pseudocapacitive materials(i.e.conductive polymers)or niobium nanowires on the electrode to realize high power,energy density and capacitance in fibrous SCs.Yuan et al.80prepared meter-long PEDOT:PSS fibers through a coagulation bath,in which the fibers could be used as electrodes of SC exhibiting an excellent areal capacitance and adequate mechanical stability.

    It is a challenge to further increase the electrical conductivity and stability of charge and discharge performance of the conductive polymers.However,compared with the traditional plane SCs,fibrous SCs have unique one-dimensional structure,that can meet the requirements of miniaturization,integration portable and wearable.In the future,fibrous SCs based on CPs and carbon composite materials can achieve greater advantages of high power

    density,fast charge-discharge and long cycle life.

    Fig.14 (a)Preparation of a biscrolled PEDOT/MWNT fiber;(b)SEM image of the PEDOT/MWNT biscrolled fiber; (c)capacitive performance of fibrous SC winding on a glass tube;(d)capacitive performance of fibrous SC woven into a glove82,83

    Fig.15 (a)Schematic of the preparation route for two-ply fiber SCs;methods used for(b)coating fibers with PEDOT/PSS and PVA-H3PO4gel and(c)preparing two-ply fiber SCs85

    3 Conductive polymers in fibrous solar cells

    With the recent advancement of portable devices,miniaturization of energy harvesting and storage devices is highly desired to meet their demands.Fibrous solar cells utilized as energy harvesting devices show unigue and promising advantages89. Materials and their structural designs are prominent for these fibrous solar cells.TiO2particles and CP are used as two opposite electrode materials,which were grown on the surface of a round steel to form a coaxial structure.The polymer solar cell(PSC)was triumphantly made into fiber format as the same of organic solar cell,which acquired a transfer efficiency of 0.6%higher than the latter of 0.5%90,91.

    The first fibrous PSC based on two metal wires was created in 2009.The PSC was composed of three parts,the electron transport layer(TiOx),hole transport layer(PEDOT:PSS),and photoactive layers were synthesized on a steel wire23.Twisted structure can improved electric contact between the two electrodes,in which experimental results showed that PSC had an average efficiency of 2.99%.However,the illuminated field of primary electrode would be shadowed by the superficially wrapped secondary electrode.The highest power conversion efficiency(PCE)is3.81%from the fibrous PSC,in which the shadowing effect of the secondary electrode was eliminated by placing it beneath the primary electrode.

    Two twisted metal fibrous electrodes with internal stress can be easily displaced because the metal electrode is not mechanically stable.However,as a more flexible fiber electrode,CNT fibers are chosen as the counter electrode of PSCs.A CNT fiber was wrapped around a metal wire deposited with ZnO nanoparticles, the corresponding PSC demonstrated an efficiency of 2.11%92.In addition,two-dimensional materials,such as graphene,are applied to counter electrode because of their flexibility,excellent electrical conductivity and enhanced surface area(see Fig.16(a))93.The graphene sheet modified by gold nanocrystal layer could improve electroconductivity which is then twisted with a primary electrode (see Fig.16(a)).Meanwhile,single-layer graphene has an optical transmission of 95%,which assists in obtaining insolation.The flexible single-layer graphene enhances a conformal contact with the electrode.Moreover,even though PSC is exposed to air for a few days,the PCE was still maintained by more than 95%.Because the charge generation and segregation only appear on the primary electrode,and the counter electrode acts as a significant factor of transfer electrons.

    Additionally,coaxial fibrous PSC based on optical fibers have been prepared(see Fig.16(b))94.Optical fibers modified by indium tin oxide(ITO)are utilized as substrates in the coaxial structure. Modified plastic fibers,like polypropylene fiber and polyimidebased silica fiber,could replace the optical fiber as a substrate in PSC.However,the thickness of the deposited metal layers was under 20 nm to ensure the propagation of incident ray96.A vast variety of fibrous PSCs based on aligned CNT fibers were studied in the recent years23,95.Because of their enhanced flexibility,light weight,high electrical conductivity(102-103S·cm-1),mechanical strength(~500 MPa),and electro-catalytic ability,aligned CNT fibers have been studied for their use as fibrous electrodes in PSCs.A titanium wire modified by TiO2nanotube acted as electron-transporting layer and electrode23.Subsequently,the titanium wire with TiO2nanotube was placed into a P3HT:PC70BM solution, and was then coated with PEDOT:PSS by dip-coating method, which acted as the primary electrode.Finally,the aligned CNT fiber was wrapped around the primary electrode(Fig.16(c)).The TiO2nanotube was used as electronic receiver,because the conduction band(4.2 eV)of TiO2was less than the P3HT′s lowest unoccupied molecular orbital level.The electrons drifted across PC70BM or TiO2,and then transferred to the Ti wire.Meanwhile, the holes drifted across PEDOT:PSS,and then converged on CNT fiber.This PSC gave a PCE of 0.15,while the values of the other parameters of PSC were Voc=0.42V,Jsc=0.98 mA·cm-2,and FF= 36%.The weak connection between the electrode and photosensitive layer led to low PCE(Fig.16(d))95.TiO2nanoparticles assist in increasing the contact surface area and display advantages for dye-sensitized solar cells.Sequentially,the PCE of PSC with TiO2nanoparticles was increased by 36%.If the outer surface of the Ti wire was destroyed via coating TiO2nanotubes,TiO2nanoparticles could remedy the defects.

    Fibrous solar cell with unique one-dimensional(1D)configurations can be woven into an energy textile,but the challenges in fabricating fibrous solar cell still remain.Such as uniform thin electrode layers are difficultly coated on the fiber substrate for the core sheath structure and two fiber electrode cannot closely and stably intertwined for the twisting structure.In addition the low efficiency of fibrous solar cell badly limits the commercialized development.However,we can further optimize the structure, material,and technique to fabricate better fibrous solar cell in the future.

    Fig.16 Preparation of a coaxial fibrous PSC based on(a)graphene93,(b)optical fiber94, (c)Ti wire amended by TiO2nanotubes23and(d)TiO2nanoparticles95

    4 Integration of supercapacitors and solar cells

    Integrated devices have been extensively researched for many years,while the first fibrous integrated devices were successfully realized in 201197.These results have attracted more and more efforts to investigate the viability of fibrous integrated energy devices.Planar integrated energy devices have been realized on the basis of PSC and then created a variety of integrated power conversion and storage devices97-101.

    Fig.17 (a)Schematic illustration of the all-solid-state,coaxial fibrous integrated energy device; (b)charging-discharging process of the integrated device;(c)charging-discharging curve at 0.1 μA19

    Fig.18 (a)Diagram of the integrated energy fiber based on fiber DSSC and fiber SC; (b)cross-sectional diagram of the fiber SC and(c)fiber DSSC98

    An all-solid-state,flexible fibrous integrated device incorporating photovoltaic conversion and energy storage has been developed by Zhang et al.19in 2014(see Fig.17).The coaxial structure of the fibrous integrated device was conducive to elucidating the preponderances for both components(see Fig.17(a)). This integrated fibrous energy device has been realized on the basis of Ti wire modified by TiO2nanotubes and aligned CNT sheets.For the photovoltaic conversion component,vertically arranged TiO2nanotubes are deposited Ti wire,followed by growing of P3HT:PCBM as the active materials and PEDOT:PSS as the hole transport materials,the aligned CNT sheet was finally twisted around the Ti wire to form the photovoltaic conversion component.For the energy storage component,the PVA/H3PO4gel electrolyte was coated outside of a modified Ti wire and then the aligned CNT sheets were wrapped on it to form the energy storage part.In this device,the electrons are transferred to the Ti wire by TiO2nanotubes.In the meantime,the holes are collected by CNT sheets via a hole transfer layer of PEDOT:PSS.The charge-discharge process is shown in Fig.17(b)while a charge-discharge curve is shown in Fig.17(c).The PCE of the photovoltaic conversion part can reach 1.01%and the specific length capacitance of the energy storage part is about 0.08 mF·cm-1.The total energy conversion efficiency is 0.82%for the fibrous integrated energydevice.All-solid-state status can allow for integrated devices to achieve high stability during the process of deformation.

    Another fibrous integrated device of a dye-sensitive solar cell (DSSC)and a SC has been reported by Fuet al.98.It also can be utilized for power conversion and storage.The PANI was coated on a metal wire by electrochemical deposition to form electrodes for the DSSC and SC.The total energy conversion efficiency of the fibrous integrated energy device was 2.1%.The structural schematic of the fibrous integrated device is shown in Fig.18(a).

    In more recent years,effective measures are underway to further improve the integration of energy devices.The total energy transformation efficiency act as a significant role that determines the overall performance of fibrous integrated device.In order to improve fibrous integrated devices,it is imperative to exploit solar cells exhibiting a higher PCE102,103.

    5 Conclusions

    In this review,recent work on CPs in fibrous energy devices has been summarized in detail.CPs,such as PANI,PPy and PEDOT, possess significant potential and outstanding performance in fibrous energy devices.Various CPs exhibit high pseudo-capacitance as active materials of fibrous electrodes.In the meantime, CPs,acting as active materials in the counter electrode behave comparable to platinum electrodes in solar cells.

    (1)Li,C.;Bai,H.;Shi,G.Chem.Soc.Rev.2009,38(8),2397. doi:10.1039/B816681C

    (2)Lu,X.;Zhang,W.;Wang,C.;Wen,T.C.;Wei,Y.Prog.Polym. Sci.2011,36(5),671.doi:10.1016/j. progpolymsci.2010.07.010

    (3)Tran,H.D.;Li,D.;Kaner,R.B.Adv.Mater.2009,21(14-15),1487.doi:10.1002/adma.200802289

    (4)Wang,L.L.;Xing,R.G.;Zhang,B.W.;Hou,Y.Acta Phys.-Chim.Sin.2014,30(9),1659.[汪麗麗,邢瑞光,張邦文,侯淵 .物理化學(xué)學(xué)報,2014,30(9),1659.]doi:10.3866/PKU. WHXB201406162

    (5)Yang,S.;Xu,G.Y.;Han,J.P.;Bing,H.;Dou,H.;Zhang,X.G.Acta Phys.-Chim.Sin.2015,31(4),685.[楊 碩,徐桂銀,韓金鵬,邴 歡,竇 輝,張校剛.物理化學(xué)學(xué)報,2015,31(4), 685.]doi:10.3866/PKU.WHXB201502022

    (6)Lin,Y.C.;Zhong,X.X.;Huang,H.X.;Wang,H.Q.;Feng,Q. P.;Li,Q.Y.Acta Phys.-Chim.Sin.2016,32(2),474.[林有鋮,鐘新仙,黃寒星,王紅強,馮崎鵬,李慶余.物理化學(xué)學(xué)報,2016,32(2),474.]doi:10.3866/PKU.WHXB201511104

    (7)Huang,M.H.;Mao,S.;Feick,H.;Yan,H.;Wu,Y.;Kind,H.; Weber,E.;Russo,R.;Yang,P.Science2001,292(5523),1897. doi:10.1126/science.1060367

    (8)Li,F.S.;Wu,Y.S.;Chou,J.;Winter,M.;Wu,N.L.Adv. Mater.2015,27(1),130.doi:10.1002/adma.201403880

    (9)Long,Y.Z.;Li,M.M.;Gu,C.;Wan,M.;Duvail,J.L.;Liu,Z.; Fan,Z.Prog.Polym.Sci.2011,36(10),1415.doi:10.1016/j. progpolymsci.2011.04.001

    (10)Lang,X.;Hirata,A.;Fujita,T.;Chen,M.Nat.Nanotech.2011,6(4),232.doi:10.1038/nnano.2011.13

    (11)Snook,G.A.;Kao,P.;Best,A.S.J.Power Sources2011,196(1),1.doi:10.1016/j.jpowsour.2010.06.084

    (12)Yu,X.;Su,X.;Yan,K.;Hu,H.;Peng,M.;Cai,X.;Zou,D.Adv.Mater.Technol.2016,doi:10.1002/admt.201600009

    (13)Alemu,D.;Wei,H.Y.;Ho,K.C.;Chu,C.W.Energy Environ. Sci.2012,5(11),9662.doi:10.1039/C2EE22595F

    (14)Chen,T.;Qiu,L.;Yang,Z.;Peng,H.Chem.Soc.Rev.2013,42(12),5031.doi:10.1039/C3CS35465B

    (15)Qiu,L.;He,S.;Yang,J.;Deng,J.;Peng,H.Small2016,doi:10.1002/smll.201600326

    (16)Cai,Z.;Li,L.;Ren,J.;Qiu,L.;Lin,H.;Peng,H.J.Mater. Chem.A2012,1(2),258.doi:10.1039/C2TA00274D

    (17)Chen,T.;Qiu,L.;Cai,Z.;Gong,F.;Yang,Z.;Wang,Z.;Peng, H.Nano Lett.2012,12(5),2568.doi:10.1021/nl300799d

    (18)Ren,J.;Bai,W.;Guan,G.;Zhang,Y.;Peng,H.Adv.Mater.2013,25(41),5965.doi:10.1002/adma.201302498

    (19)Lin,H.;Weng,W.;Ren,J.;Qiu,L.;Zhang,Z.;Chen,P.;Chen, X.;Deng,J.;Wang,Y.;Peng,H.Adv.Mater.2014,26(8), 1217.doi:10.1002/adma.201304319

    (20)Xia,K.L.;Jian,M.Q.;Zhang,Y.Y.Acta Phys.-Chim.Sin.2016,32(10),2427.[夏凱倫,蹇木強,張瑩瑩.物理化學(xué)學(xué)報,2016,32(10),2427.]doi:10.3866/PKU.WHXB201607261

    (21)Fan,X.;Chu,Z.;Wang,F.;Zhang,C.;Chen,L.;Tang,Y.;Zou, D.Adv.Mater.2008,20(3),592.doi:10.1002/adma.200701249

    (22)Guo,W.;Liu,C.;Sun,X.;Yang,Z.;Kia,H.G.;Peng,H.J. Mater.Chem.2012,22(3),903.doi:10.1039/C1JM13769G

    (23)Chen,T.;Qiu,L.;Li,H.;Peng,H.J.Mater.Chem.2012,22(44),23655.doi:10.1039/C2JM35158G

    (24)Ren,J.;Li,L.;Chen,C.;Chen,X.;Cai,Z.;Qiu,L.;Wang,Y.; Zhu,X.;Peng,H.Adv.Mater.2013,25(8),1155.doi:10.1002/ adma.201203445

    (25)Cai,Z.;Li,L.;Ren,J.;Qiu,L.;Lin,H.;Peng,H.J.Mater. Chem.A2013,1(2),258.doi:10.1039/C2TA00274D

    (26)Yang,Z.;Sun,H.;Chen,T.;Qiu,L.;Luo,Y.;Peng,H.Angew. Chem.Int.Ed.2013,52(29),7545.doi:10.1002/ ange.201301776

    (27)Chen,X.;Qiu,L.;Ren,J.;Guan,G.;Lin,H.;Zhang,Z.;Chen, P.;Wang,Y.;Peng,H.Adv.Mater.2013,25(44),6436. doi:10.1002/adma.201301519

    (28)Luo,Y.;Zhang,Y.;Zhao,Y.;Fang,X.;Ren,J.;Weng,W.; Jiang,Y.;Sun,H.;Wang,B.;Cheng,X;Peng,H.J.Mater. Chem.A2015,3(34),17553.doi:10.1039/C5TA04457J

    (29)Li,Z.;Mi,Y.;Liu,X.;Liu,S.;Yang,S.;Wang,J.J.Mater. Chem.2011,21(38),14706.doi:10.1039/C1JM11941A

    (30)Naoi,K.;Ishimoto,S.;Miyamoto,J.I.;Naoi,W.Energy Environ.Sci.2012,5(11),9363.doi:10.1039/C2EE21675B

    (31)Jiang,H.;Lee,P.S.;Li,C.Energy Environ.Sci.2013,6(1), 41.doi:10.1039/C2EE23284G

    (32)Dai,L.;Chang,D.W.;Baek,J.B.;Lu,W.Small2012,8(8), 1130.doi:10.1002/smll.201101594

    (33)Chen,W.;Rakhi,R.;Hedhili,M.N.;Alshareef,H.N.J.Mater. Chem.A2014,2(15),5236.doi:10.1039/C3TA15245F.

    (34)Dong,Z.;Jiang,C.;Cheng,H.;Zhao,Y.;Shi,G.;Jiang,L.; Qu,L.Adv.Mater.2012,24(14),1856.doi:10.1002/ adma.201200170

    (35)Cong,H.P.;Ren,X.C.;Wang,P.;Yu,S.H.Sci.Rep.-UK2012,2,613.doi:10.1038/srep00613

    (36)Xin,G.;Yao,T.;Sun,H.;Scott,S.M.;Shao,D.;Wang,G.; Lian,J.Science2015,349(6252),1083.doi:10.1126/science. aaa6502

    (37)Lota,K.;Khomenko,V.;Frackowiak,E.J.Phys.Chem.Solids2004,65(2),295.doi:10.1016/j.jpcs.2003.10.051

    (38)Wang,K.;Meng,Q.;Zhang,Y.;Wei,Z.;Miao,M.Adv.Mater.2013,25(10),1494.doi:10.1002/adma.201204598

    (39)Liu,N.;Ma,W.;Tao,J.;Zhang,X.;Su,J.;Li,L.;Yang,C.; Gao,Y.;Golberg,D.;Bando,Y.Adv.Mater.2013,25(35), 4925.doi:10.1002/adma.201301311

    (40)Frackowiak,E.Phys.Chem.Chem.Phys.2007,9(15),1774. doi:10.1039/B618139M

    (41)Stoller,M.D.;Park,S.;Zhu,Y.;An,J.;Ruoff,R.S.Nano Lett.2008,8(10),3498.doi:10.1021/nl802558y.

    (42)Peng,C.;Zhang,S.;Jewell,D.;Chen,G.Z.Prog.Nat.Sci.2008,18(7),777.doi:10.1016/j.pnsc.2008.03.002

    (43)Wei,W.;Cui,X.;Chen,W.;Ivey,D.G.Chem.Soc.Rev.2011,40(3),1697.doi:10.1039/C0CS00127A

    (44)Chang,K.W.;Lim,Z.Y.;Du,F.Y.;Yang,Y.L.;Chang,C.H.; Hu,C.C.;Lin,H.P.Diam.Relat.Mater.2009,18(2),448. doi:10.1016/j.diamond.2008.10.003

    (45)Hussain,A.;Kumar,A.J.Power Sources2006,161(2),1486. doi:10.1016/j.jpowsour.2006.05.051

    (46)Huang,H.S.;Chang,K.H.;Suzuki,N.;Yamauchi,Y.;Hu,C. C.;Wu,K.C.W.Small2013,9(15),2520.doi:10.1002/ smll.201202786

    (47)Li,S.M.;Wang,Y.S.;Yang,S.Y.;Liu,C.H.;Chang,K.H.; Tien,H.W.;Wen,N.T.;Ma,C.C.M.;Hu,C.C.J.Power Sources2013,225,347.doi 10.1016/j.jpowsour.2012.10.037

    (48)Hu,C.C.;Wang,C.W.;Wu,T.H.;Chang,K.H.Electrochim. Acta2012,85,90.doi:10.1016/j.electacta.2012.07.123

    (49)Hsu,C.T.;Hu,C.C.J.Power Sources2013,242,662. doi:10.1016/j.jpowsour.2013.05.130

    (50)Chen,Y.C.;Hsu,Y.K.;Lin,Y.G.;Lin,Y.K.;Horng,Y.Y.; Chen,L.C.;Chen,K.H.Electrochim.Acta2011,56(20), 7124.doi:10.1016/j.electacta.2011.05.090

    (51)Wang,S.;Pei,B.;Zhao,X.;Dryfe,R.A.Nano Energy2013,2(4),530.doi:10.1016/j.nanoen.2012.12.005

    (52)Zhang,Y.;Feng,H.;Wu,X.;Wang,L.;Zhang,A.;Xia,T.; Dong,H.;Li,X.;Zhang,L.Int.J.Hydrog.Energy2009,34(11),4889.doi:10.1016/j.ijhydene.2009.04.005

    (53)Rahy,A.;Yang,D.J.Mater.Lett.2008,62(28),4311. doi:10.1016/j.matlet.2008.06.057.

    (54)Yang,J.E.;Jang,I.;Kim,M.;Baeck,S.H.;Hwang,S.;Shim, S.E.Electrochim.Acta2013,111,136.doi:10.1016/j. electacta.2013.07.183

    (55)Ryu,K.S.;Lee,Y.G.;Kim,K.M.;Park,Y.J.;Hong,Y.S.; Wu,X.;Kang,M.G.;Park,N.G.;Song,R.Y.;Ko,J.M.Synth.Met.2005,153(1),89.doi:10.1016/j. synthmet.2005.07.167

    (56)Jang,J.;Bae,J.;Choi,M.;Yoon,S.H.Carbon2005,43(13), 2730.doi:10.1016/j.carbon.2005.05.039

    (57)Peng,C.;Hu,D.;Chen,G.Z.Chem.Commun.2011,47(14), 4105.doi:10.1039/C1CC10675A

    (58)Liu,J.;Lin,Y.;Liang,L.;Voigt,J.A.;Huber,D.L.;Tian,Z. R.;Coker,E.;Mckenzie,B.;Mcdermott,M.J.Chem.-Eur.J.2003,9(3),604.doi:10.1002/chem.200390064

    (59)Meng,C.;Liu,C.;Chen,L.;Hu,C.;Fan,S.Nano Lett.2010,10(10),4025.doi:10.1021/nl1019672

    (60)Cheng,Q.;Tang,J.;Ma,J.;Zhang,H.;Shinya,N.;Qin,L.C.J.Phys.Chem.C2011,115(47),23584.doi:10.1021/ jp203852p

    (61)Pan,S.;Lin,H.;Deng,J.;Chen,P.;Chen,X.;Yang,Z.;Peng, H.Adv.Energy Mater.2015,5(4),1401438.doi:10.1002/ aenm.201401438

    (62)Su,F.;Miao,M.;Niu,H.;Wei,Z.ACS Appl.Mater.Interfaces2014,6(4),2553.doi:10.1021/am404967x

    (63)Wang,K.;Wu,H.;Meng,Y.;Wei,Z.Small2014,10(1),14. doi:10.1002/smll.201301991

    (64)Zhou,Y.;Qin,Z.Y.;Li,L.;Zhang,Y.;Wei,Y.L.;Wang,L.F.; Zhu,M.F.Electrochim.Acta2010,55(12),3904.doi:10.1016/ j.electacta.2010.02.022

    (65)Lin,H.;Li,L.;Ren,J.;Cai,Z.;Qiu,L.;Yang,Z.;Peng,H.Sci. Rep.-UK2013,3,1353.doi:10.1038/srep01353

    (66)Sultana,I.;Rahman,M.;Li,S.;Wang,J.;Wang,C.;Wallace, G.G.;Liu,H.K.Electrochim.Acta2012,60,201. doi:10.1016/j.electacta.2011.11.037

    (67)Wang,J.;Xu,Y.;Wang,J.;Du,X.Synth.Met.2011,161(11), 1141.doi:10.1016/j.synthmet.2011.01.011

    (68)Wang,B.;Fang,X.;Sun,H.;He,S.;Ren,J.;Zhang,Y.;Peng, H.Adv.Mater.2015,27(47),7854.doi:10.1002/ adma.201503441

    (69)Guo,F.;Xu,R.;Cui,X.;Zhang,L.;Wang,K.;Yao,Y.;Wei,J.J.Mater.Chem.A2016,4(23),9311.doi:10.1039/ C6TA02437H

    (70)Kim,J.H.;Sharma,A.K.;Lee,Y.S.Mater.Lett.2006,60(13),1697.doi:10.1016/j.matlet.2005.12.002

    (71)Davoglio,R.A.;Biaggio,S.R.;Bocchi,N.;Rocha-Filho,R. C.Electrochim.Acta2013,93,93.doi:10.1016/j. electacta.2013.01.062

    (72)Yu,G.;Hu,L.;Liu,N.;Wang,H.;Vosgueritchian,M.;Yang, Y.;Cui,Y.;Bao,Z.Nano Lett.2011,11(10),4438. doi:10.1021/nl2026635

    (73)Zhao,Y.;Liu,J.;Hu,Y.;Cheng,H.;Hu,C.;Jiang,C.;Jiang, L.;Cao,A.;Qu,L.Adv.Mater.2013,25(4),591.doi:0.1002/ adma.201203578

    (74)Shang,Y.;Wang,C.;He,X.;Li,J.;Peng,Q.;Shi,E.;Wang, R.;Du,S.;Cao,A.;Li,Y.Nano Energy2015,12,401. doi:10.1016/j.nanoen.2014.11.048

    (75)Huang,Y.;Huang,Y.;Zhu,M.;Meng,W.;Pei,Z.;Liu,C.;Hu, H.;Zhi,C.ACS Nano2015,9(6),6242.doi:10.1021/ acsnano.5b01602

    (76)Wang,Z.;Carlsson,D.O.;Tammela,P.;Hua,K.;Zhang,P.; Nyholm,L.;Stromme,M.ACS Nano2015,9(7),7563. doi:10.1021/acsnano.5b02846

    (77)Xu,J.;Wang,D.;Fan,L.;Yuan,Y.;Wei,W.;Liu,R.;Gu,S.; Xu,W.Org.Electron.2015,26,292.doi:10.1016/j. orgel.2015.07.054

    (78)Xie,Y.;Wang,D.J.Alloy.Compd.2016,665,323. doi:10.1016/j.jallcom.2016.01.089.

    (79)Li,W.;Chen,J.;Zhao,J.;Zhang,J.;Zhu,J.Mater.Lett.2005,59(7),800.doi:10.1016/j.matlet.2004.11.024

    (80)Yuan,D.;Li,B.;Cheng,J.;Guan,Q.;Wang,Z.;Ni,W.;Li,C.; Liu,H.;Wang,B.J.Mater.Chem.A2016,4(30),11616. doi:10.1039/C6TA04081K

    (81)Liu,K.;Hu,Z.;Xue,R.;Zhang,J.;Zhu,J.J.Power Sources2008,179(2),858.doi:10.1016/j.jpowsour.2008.01.024

    (82)Lee,J.A.;Shin,M.K.;Kim,S.H.;Cho,H.U.;Spinks,G.M.; Wallace,G.G.;Lima,M.D.;Lepró,X.;Kozlov,M.E.; Baughman,R.H.Nat.Commun.2013,4(3),1970. doi:10.1038/ncomms2970

    (83)D′Arcy,J.M.;El-Kady,M.F.;Khine,P.P.;Zhang,L.;Lee,S. H.;Davis,N.R.;Liu,D.S.;Yeung,M.T.;Kim,S.Y.;Turner, C.L.ACS Nano.2014,8(2),1500.doi:10.1021/nn405595r.

    (84)Chu,C.Y.;Tsai,J.T.;Sun,C.L.Int.J.Hydrog.Energy2012,37(18),13880.doi:10.1016/j.ijhydene.2012.05.017

    (85)Su,F.;Miao,M.Electrochim.Acta2014,127,433. doi:10.1016/j.electacta.2014.02.064.

    (86)Duay,J.;Gillette,E.;Liu,R.;Lee,S.B.Phys.Chem.Chem. Phys.2012,14(10),3329.doi:10.1039/C2CP00019A

    (87)Cheng,X.L.;Zhang,J.;Ren,J.;Liu,N.;Chen,P.;Zhang,Y.; Deng,J.;Wang,Y.G.;Peng,H.J.Phys.Chem.C2016,120(18),9685.doi:10.1021/acs.jpcc.6b02794

    (88)Mirvakili,S.M.;Mirvakili,M.N.;Englezos,P.;Madden,J. D.;Hunter,I.W.ACS Appl.Mater.Interfaces2015,7(25), 13882.doi:10.1021/acsami.5b02327

    (89)Baps,B.;Eberkoyuncu,M.;Koyuncu,M.Key Engineering Mater.2001,206-213,937.doi:10.4028/www.scientific.net/ KEM.206-213.937

    (90)Liu,J.;Namboothiry,M.A.;Carroll,D.L.Appl.Phys.Lett.2007,90(6),063501.doi:10.1063/1.2435988

    (91)O′Connor,B.;Pipe,K.P.;Shtein,M.Appl.Phys.Lett.2008,92(19),193306.doi:10.1063/1.2927533

    (92)Liu,D.;Zhao,M.;Li,Y.;Bian,Z.;Zhang,L.;Shang,Y.;Xia, X.;Zhang,S.;Yun,D.;Liu,Z.ACS Nano2012,6(12),11027. doi:10.1021/nn304638z

    (93)Liu,D.;Li,Y.;Zhao,S.;Cao,A.;Zhang,C.;Liu,Z.;Bian,Z.; Liu,Z.;Huang,C.RSC Adv.2013,3(33),13720.doi:10.1039/ C3RA40710A

    (94)Liu,J.;Namboothiry,M.A.;Carroll,D.L.Appl.Phys.Lett.2007,90(13),133515.doi:10.1063/1.2716864

    (95)Chen,X.;Sun,H.;Yang,Z.;Guan,G.;Zhang,Z.;Qiu,L.; Peng,H.J.Mater.Chem.A2014,2(6),1897.doi:10.1039/ C3TA13712K

    (96)Bedeloglu,A.C.;Demir,A.;Bozkurt,Y.;Sariciftci,N.S.Text Res.J.2010,80(11),1065.doi:10.1177/0040517509352520

    (97)Bae,J.;Park,Y.J.;Lee,M.;Cha,S.N.;Choi,Y.J.;Lee,C.S.; Kim,J.M.;Wang,Z.L.Adv.Mater.2011,23(30),3446. doi:10.1002/adma.201101345

    (98)Fu,Y.;Wu,H.;Ye,S.;Cai,X.;Yu,X.;Hou,S.;Kafafy,H.; Zou,D.Energy Environ.Sci.2013,6(3),805.doi:10.1039/ C3EE23970E

    (99)Guo,W.;Xue,X.;Wang,S.;Lin,C.;Wang,Z.L.Nano Lett.2012,12(5),2520.doi:10.1021/nl3007159

    (100)Yang,Z.;Deng,J.;Sun,H.;Ren,J.;Pan,S.;Peng,H.Adv. Mater.2014,26(41),7038.doi:10.1002/adma.201401972

    (101)Sun,H.;Jiang,Y.;Xie,S.;Zhang,Y.;Ren,J.;Ali,A.;Doo,S. G.;Son,I.H.;Huang,X.;Peng,H.J.Mater.Chem.A2016,4, 7601.doi:10.1039/C6TA01514J

    (102)Liu,Y.;Che,R.;Chen,G.;Fan,J.;Sun,Z.;Wu,Z.;Wang,M.; Li,B.;Wei,J.;Wei,Y.;Wang,G.;Guan,G.;Elzatahry,A.A.; Abdulaziz,A.B.;Abdullah M.A.;Deng,Y.;Peng,H.;Zhao, D.Sci.Adv.2015,1(4),e1500166.doi:10.1126/ sciadv.1500166

    (103)Liu,Y.;Luo,Y.;Elzatahry,A.A.;Luo,W.;Che,R.;Fan,J.; Lan,K.;Al-Enizi,A.M.;Sun,Z.;Li,B.ACS Cent.Sci.2015,1(7),400.doi:10.1021/acscentsci.5b00256

    Progress in Conductive Polymers in Fibrous Energy Devices

    LIAO Chun-Rong1,2XIONG Feng1,2LI Xian-Jun3WU Yi-Qiang3LUO Yong-Feng1,2,*
    (1College of Science,Central South University of Forestry and Technology,Changsha 410018,P.R.China;2State Key Laboratory of Molecular Engineering of Polymers and Laboratory of Advanced Materials,Fudan University,Shanghai 200438,P.R.China;3College of Material Science and Engineering,Central South University of Forestry and Technology,Changsha 410018,P.R.China)

    Conductive polymers implemented in fibrous energy devices have drawn considerable attention because of their economic importance,good environmental stability,and electrical conductivity.Conductive polymers demonstrate interesting mechanical,electronic,and optical properties,controllable chemical and electrochemical behavior,and facile processability.This review elaborates on the latest research in conductive polymers in fibrous energy devices,such as fibrous supercapacitors,fibrous solar cells,and fibrous integrated energy devices.The performance requirements of these fibrous energy devices,with specific reference to related materials,fabrication techniques,fiber structure,and electronic transport as well as mechanical functionality, are also reviewed in this paper.

    Conductive polymer;Fiber;Supercapacitor;Solar cell;Fibrous energy device

    .Email:yfluo@csuft.edu.cn;Tel:+86-731-85623352.

    The project was supported by the National Natural Science Foundation of China(31530009).

    國家自然科學(xué)基金(31530009)資助項目? Editorial office of Acta Physico-Chimica Sinica

    O646

    10.3866/PKU.WHXB201611072

    Received:September 29,2016;Revised:November 7,2016;Published online:November 7,2016.*

    猜你喜歡
    纖維狀中南物理化學(xué)
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    2017年我國木漿及其他纖維狀纖維素漿,回收(廢碎)紙或紙板,紙、紙板及其制品進口數(shù)據(jù)統(tǒng)計
    天津造紙(2018年2期)2019-01-21 03:02:36
    Chemical Concepts from Density Functional Theory
    《中南醫(yī)學(xué)科學(xué)雜志》稿約
    中南醫(yī)學(xué)科學(xué)雜志
    可穿戴的纖維狀能源器件
    科學(xué)(2016年2期)2016-05-30 05:02:51
    纖維狀聚合物發(fā)光電化學(xué)池問世
    化工進展(2015年5期)2015-03-23 15:12:42
    采用碳化-沉淀法制備纖維狀納米Mg(OH)2的研究
    中南聯(lián)席會議召開2014年度秘書長擴大會
    一a级毛片在线观看| 亚洲av不卡在线观看| 国产精品无大码| 久久久久久久久久成人| 欧美日韩亚洲国产一区二区在线观看| 他把我摸到了高潮在线观看| av.在线天堂| 人妻丰满熟妇av一区二区三区| 日本a在线网址| 欧美+亚洲+日韩+国产| 免费看光身美女| 亚洲欧美激情综合另类| 久久久久久久午夜电影| 午夜福利18| 日本 欧美在线| 精品人妻偷拍中文字幕| 十八禁国产超污无遮挡网站| 免费在线观看成人毛片| 99久久精品国产国产毛片| 国产亚洲91精品色在线| 亚洲成人精品中文字幕电影| av天堂中文字幕网| 久久人妻av系列| 中文字幕精品亚洲无线码一区| 一个人免费在线观看电影| 久久精品国产亚洲av香蕉五月| 一区二区三区激情视频| 亚洲成人久久性| 网址你懂的国产日韩在线| 99精品在免费线老司机午夜| 1024手机看黄色片| 91在线精品国自产拍蜜月| 国产91精品成人一区二区三区| 亚洲成人久久性| 免费在线观看成人毛片| 观看美女的网站| 久久99热这里只有精品18| 最好的美女福利视频网| 在线观看66精品国产| 午夜久久久久精精品| 又爽又黄无遮挡网站| 午夜精品在线福利| 欧美一区二区国产精品久久精品| 色在线成人网| 女同久久另类99精品国产91| 久久人妻av系列| 亚洲人与动物交配视频| 91久久精品国产一区二区成人| 草草在线视频免费看| 婷婷精品国产亚洲av| 日本爱情动作片www.在线观看 | 精品日产1卡2卡| 国产精华一区二区三区| 天堂√8在线中文| 99久久久亚洲精品蜜臀av| 国产一区二区三区视频了| 又黄又爽又刺激的免费视频.| 精品欧美国产一区二区三| 一区二区三区四区激情视频 | 啪啪无遮挡十八禁网站| 深夜精品福利| 免费高清视频大片| 无遮挡黄片免费观看| 在线观看66精品国产| 成人欧美大片| 在线播放国产精品三级| 久久亚洲真实| 久久久久久国产a免费观看| 自拍偷自拍亚洲精品老妇| 99视频精品全部免费 在线| 国产白丝娇喘喷水9色精品| 直男gayav资源| 久99久视频精品免费| 深爱激情五月婷婷| 国产黄a三级三级三级人| 亚洲成人中文字幕在线播放| 极品教师在线视频| 国产高清视频在线播放一区| 观看免费一级毛片| 性欧美人与动物交配| 久久午夜亚洲精品久久| 琪琪午夜伦伦电影理论片6080| 日韩精品有码人妻一区| 亚洲中文字幕一区二区三区有码在线看| 国产精品电影一区二区三区| 日韩欧美在线二视频| 亚洲人成伊人成综合网2020| 夜夜爽天天搞| 91在线精品国自产拍蜜月| 亚洲狠狠婷婷综合久久图片| 亚洲av成人av| 婷婷六月久久综合丁香| www日本黄色视频网| 男女做爰动态图高潮gif福利片| 亚洲一区二区三区色噜噜| 日本熟妇午夜| 国产精品亚洲美女久久久| 伦精品一区二区三区| 中出人妻视频一区二区| 亚洲av一区综合| 亚洲无线在线观看| av天堂在线播放| 亚洲人成网站在线播放欧美日韩| 亚洲欧美清纯卡通| 女人十人毛片免费观看3o分钟| 精品久久久久久久久av| АⅤ资源中文在线天堂| 国产精品国产三级国产av玫瑰| 97超视频在线观看视频| 中文资源天堂在线| 欧美一级a爱片免费观看看| 国内久久婷婷六月综合欲色啪| bbb黄色大片| 欧美精品啪啪一区二区三区| av在线老鸭窝| 在线播放国产精品三级| 国产亚洲欧美98| 国产中年淑女户外野战色| 日本撒尿小便嘘嘘汇集6| 亚洲av免费高清在线观看| 免费不卡的大黄色大毛片视频在线观看 | 中文在线观看免费www的网站| 麻豆精品久久久久久蜜桃| 人妻少妇偷人精品九色| 男人和女人高潮做爰伦理| 亚洲精华国产精华精| 久久久精品欧美日韩精品| 亚洲av日韩精品久久久久久密| 香蕉av资源在线| 久久精品夜夜夜夜夜久久蜜豆| 人人妻人人澡欧美一区二区| 亚洲美女视频黄频| av中文乱码字幕在线| 亚洲人成网站在线播放欧美日韩| 麻豆成人av在线观看| 亚洲中文字幕一区二区三区有码在线看| 熟妇人妻久久中文字幕3abv| 欧美绝顶高潮抽搐喷水| 国产午夜精品论理片| 亚洲午夜理论影院| 国产午夜精品论理片| 91狼人影院| 日韩,欧美,国产一区二区三区 | 国产精品永久免费网站| 亚洲人与动物交配视频| 亚洲美女黄片视频| 精品福利观看| 久久精品国产亚洲av涩爱 | 日韩中字成人| 草草在线视频免费看| 九九久久精品国产亚洲av麻豆| 久久久久久久久大av| 一a级毛片在线观看| 最新中文字幕久久久久| 少妇丰满av| 久久精品夜夜夜夜夜久久蜜豆| 一区福利在线观看| 午夜福利高清视频| 日本黄大片高清| 国产精品一区二区性色av| 女同久久另类99精品国产91| 成人精品一区二区免费| 淫妇啪啪啪对白视频| 国产aⅴ精品一区二区三区波| 99热这里只有精品一区| 蜜桃久久精品国产亚洲av| 校园春色视频在线观看| 日本黄色片子视频| 又爽又黄无遮挡网站| 蜜桃亚洲精品一区二区三区| 婷婷丁香在线五月| 精品久久久久久久久久久久久| 国内久久婷婷六月综合欲色啪| 麻豆精品久久久久久蜜桃| 欧美色欧美亚洲另类二区| 中文字幕精品亚洲无线码一区| 国产美女午夜福利| 亚洲精品久久国产高清桃花| 亚洲性夜色夜夜综合| 午夜亚洲福利在线播放| 欧美性猛交╳xxx乱大交人| 搡老妇女老女人老熟妇| 亚洲av免费高清在线观看| 亚洲黑人精品在线| 观看美女的网站| 少妇猛男粗大的猛烈进出视频 | 日韩欧美三级三区| 久久中文看片网| 精品午夜福利在线看| 综合色av麻豆| 日韩av在线大香蕉| 日韩欧美精品免费久久| 欧美成人免费av一区二区三区| 亚洲avbb在线观看| 亚洲欧美精品综合久久99| 国产色爽女视频免费观看| 波多野结衣巨乳人妻| 亚洲最大成人中文| 三级男女做爰猛烈吃奶摸视频| 久久久久国产精品人妻aⅴ院| 老熟妇仑乱视频hdxx| 亚洲真实伦在线观看| 最好的美女福利视频网| avwww免费| 国产精品,欧美在线| 国产av不卡久久| 日韩欧美免费精品| 免费看美女性在线毛片视频| 欧美在线一区亚洲| bbb黄色大片| 在线看三级毛片| 九九爱精品视频在线观看| 又爽又黄a免费视频| 国产精品野战在线观看| 国产黄片美女视频| 99视频精品全部免费 在线| 日本与韩国留学比较| 婷婷六月久久综合丁香| 国产精品三级大全| 欧美成人性av电影在线观看| 男插女下体视频免费在线播放| 春色校园在线视频观看| 婷婷丁香在线五月| 欧美一级a爱片免费观看看| 波野结衣二区三区在线| 免费在线观看影片大全网站| 久久国产乱子免费精品| 三级国产精品欧美在线观看| 在线a可以看的网站| 波野结衣二区三区在线| 欧美三级亚洲精品| 国产精品久久久久久亚洲av鲁大| 午夜影院日韩av| 最新中文字幕久久久久| 嫩草影院精品99| 女人十人毛片免费观看3o分钟| 少妇猛男粗大的猛烈进出视频 | 免费高清视频大片| 俄罗斯特黄特色一大片| 狠狠狠狠99中文字幕| 色精品久久人妻99蜜桃| 久久久久精品国产欧美久久久| 欧美一级a爱片免费观看看| 18+在线观看网站| 亚洲国产精品合色在线| 变态另类成人亚洲欧美熟女| 国产爱豆传媒在线观看| 18禁黄网站禁片免费观看直播| 午夜a级毛片| 久久精品影院6| 欧美日韩乱码在线| 国模一区二区三区四区视频| 国产成人aa在线观看| 亚洲三级黄色毛片| 小说图片视频综合网站| 国产男靠女视频免费网站| 婷婷六月久久综合丁香| 丰满乱子伦码专区| 亚洲精华国产精华精| av女优亚洲男人天堂| 人妻久久中文字幕网| 精品人妻一区二区三区麻豆 | 性插视频无遮挡在线免费观看| 午夜免费激情av| 干丝袜人妻中文字幕| 99热这里只有是精品50| 人妻制服诱惑在线中文字幕| 99国产极品粉嫩在线观看| 欧美日韩精品成人综合77777| 五月伊人婷婷丁香| 国产高清视频在线观看网站| 日本a在线网址| 在现免费观看毛片| 成熟少妇高潮喷水视频| 精品久久久久久久久久免费视频| 午夜视频国产福利| 国语自产精品视频在线第100页| 欧美三级亚洲精品| 美女大奶头视频| 国产精品免费一区二区三区在线| a级毛片a级免费在线| 97热精品久久久久久| 三级毛片av免费| 一本精品99久久精品77| 国产白丝娇喘喷水9色精品| 国产乱人视频| 久久精品国产清高在天天线| 深爱激情五月婷婷| 日韩亚洲欧美综合| 中文字幕人妻熟人妻熟丝袜美| 国产欧美日韩精品一区二区| av福利片在线观看| 久久久久久久久久黄片| 国产高清有码在线观看视频| 亚洲成人久久爱视频| 99久久成人亚洲精品观看| 欧美+日韩+精品| 91久久精品电影网| a级毛片a级免费在线| 狂野欧美白嫩少妇大欣赏| 日韩大尺度精品在线看网址| 久久精品人妻少妇| 亚洲自偷自拍三级| 亚洲欧美日韩卡通动漫| 精品99又大又爽又粗少妇毛片 | 午夜免费成人在线视频| 国产免费av片在线观看野外av| 国产精品女同一区二区软件 | 欧美日韩乱码在线| 男人和女人高潮做爰伦理| 国产精品一区二区免费欧美| 伊人久久精品亚洲午夜| 亚洲自拍偷在线| 国产黄a三级三级三级人| 亚洲av免费高清在线观看| 欧美最黄视频在线播放免费| 女同久久另类99精品国产91| av天堂在线播放| 色哟哟·www| 久久久色成人| 亚洲在线自拍视频| 国产精品98久久久久久宅男小说| 色在线成人网| 亚洲精品国产成人久久av| 精品欧美国产一区二区三| 国产aⅴ精品一区二区三区波| 成人高潮视频无遮挡免费网站| 身体一侧抽搐| 色在线成人网| 少妇的逼好多水| 99久久精品国产国产毛片| 亚洲avbb在线观看| 国产精品不卡视频一区二区| 国产精品综合久久久久久久免费| 国产精品一区二区三区四区久久| 免费人成视频x8x8入口观看| 亚洲一区高清亚洲精品| 99久久精品一区二区三区| 悠悠久久av| 丰满人妻一区二区三区视频av| 啪啪无遮挡十八禁网站| 男插女下体视频免费在线播放| 精品久久久久久成人av| 国产乱人伦免费视频| 精品人妻视频免费看| 日日干狠狠操夜夜爽| 欧美成人免费av一区二区三区| 尾随美女入室| 国产主播在线观看一区二区| 国产成人福利小说| 亚洲成人久久爱视频| 国产在线男女| 久久久午夜欧美精品| 69人妻影院| 内地一区二区视频在线| 亚洲av二区三区四区| 女生性感内裤真人,穿戴方法视频| 免费看av在线观看网站| 欧美激情国产日韩精品一区| 国产精品久久久久久亚洲av鲁大| 九九热线精品视视频播放| 韩国av在线不卡| 伊人久久精品亚洲午夜| 亚洲美女视频黄频| 中国美女看黄片| 九九爱精品视频在线观看| 国产熟女欧美一区二区| 日日撸夜夜添| 成人av在线播放网站| 亚洲中文日韩欧美视频| 亚洲第一区二区三区不卡| 国产精品国产三级国产av玫瑰| 日本一二三区视频观看| 国产探花在线观看一区二区| 91久久精品电影网| a级毛片a级免费在线| 久久精品国产99精品国产亚洲性色| 久久久久久久久中文| 国产精品福利在线免费观看| 日日干狠狠操夜夜爽| 日韩大尺度精品在线看网址| 免费观看在线日韩| 精品午夜福利在线看| 1024手机看黄色片| 麻豆一二三区av精品| 国产精品久久久久久亚洲av鲁大| 亚洲av成人av| 午夜免费激情av| 国产成人a区在线观看| 亚洲人成网站在线播放欧美日韩| 精品国产三级普通话版| 日韩欧美精品免费久久| 精品日产1卡2卡| 免费观看精品视频网站| 成人精品一区二区免费| 国产亚洲精品av在线| 婷婷精品国产亚洲av| 成人毛片a级毛片在线播放| 精品人妻视频免费看| 久久精品国产清高在天天线| 深夜精品福利| 天天躁日日操中文字幕| 在线观看午夜福利视频| 国产真实乱freesex| 亚洲人成网站在线播| 欧美一级a爱片免费观看看| 欧美激情国产日韩精品一区| 色哟哟哟哟哟哟| 悠悠久久av| 五月伊人婷婷丁香| 免费不卡的大黄色大毛片视频在线观看 | 亚洲欧美激情综合另类| 国产不卡一卡二| 99精品久久久久人妻精品| av福利片在线观看| 偷拍熟女少妇极品色| 在线播放国产精品三级| 嫩草影视91久久| 偷拍熟女少妇极品色| 国产探花在线观看一区二区| 亚洲av美国av| 欧美xxxx性猛交bbbb| h日本视频在线播放| 最近中文字幕高清免费大全6 | 在线a可以看的网站| 床上黄色一级片| 人妻久久中文字幕网| 91久久精品电影网| av在线天堂中文字幕| 一本精品99久久精品77| av国产免费在线观看| 日韩亚洲欧美综合| 老司机深夜福利视频在线观看| 深夜精品福利| 欧美日韩亚洲国产一区二区在线观看| 国产一级毛片七仙女欲春2| 午夜亚洲福利在线播放| 国产在线精品亚洲第一网站| 欧美日本亚洲视频在线播放| 男人和女人高潮做爰伦理| 成人高潮视频无遮挡免费网站| 亚洲熟妇中文字幕五十中出| 亚洲男人的天堂狠狠| 精品人妻1区二区| 最后的刺客免费高清国语| 搞女人的毛片| 国产成人福利小说| 国产av一区在线观看免费| 村上凉子中文字幕在线| 男人和女人高潮做爰伦理| 成年版毛片免费区| 成年女人永久免费观看视频| 午夜久久久久精精品| 人人妻人人澡欧美一区二区| 99久久精品国产国产毛片| 亚洲国产精品合色在线| 日韩欧美三级三区| 97超级碰碰碰精品色视频在线观看| 不卡视频在线观看欧美| 亚洲av日韩精品久久久久久密| 亚洲天堂国产精品一区在线| 蜜桃亚洲精品一区二区三区| 22中文网久久字幕| 美女cb高潮喷水在线观看| 伦理电影大哥的女人| 亚洲国产欧美人成| 中文在线观看免费www的网站| av天堂在线播放| 人妻少妇偷人精品九色| 日本黄色视频三级网站网址| 免费搜索国产男女视频| 久久国产精品人妻蜜桃| 亚洲专区中文字幕在线| 欧美成人性av电影在线观看| 亚洲精华国产精华液的使用体验 | 国产精品一区二区免费欧美| 日日啪夜夜撸| 乱系列少妇在线播放| 女同久久另类99精品国产91| 欧美性猛交黑人性爽| 欧美潮喷喷水| 男人舔女人下体高潮全视频| 欧美色欧美亚洲另类二区| 精品一区二区三区视频在线观看免费| 国国产精品蜜臀av免费| 免费黄网站久久成人精品| 91午夜精品亚洲一区二区三区 | 亚洲性久久影院| 亚洲av日韩精品久久久久久密| 色尼玛亚洲综合影院| 欧美+亚洲+日韩+国产| videossex国产| 欧美人与善性xxx| 麻豆国产97在线/欧美| 99热这里只有精品一区| 精品人妻1区二区| 久久久久久国产a免费观看| 国产色爽女视频免费观看| 深夜a级毛片| 午夜精品久久久久久毛片777| 欧美激情国产日韩精品一区| 久久精品综合一区二区三区| 真实男女啪啪啪动态图| 美女免费视频网站| 国产中年淑女户外野战色| 国产乱人视频| 99精品久久久久人妻精品| ponron亚洲| 嫁个100分男人电影在线观看| 淫妇啪啪啪对白视频| www.色视频.com| 日本在线视频免费播放| 成人国产麻豆网| 男人狂女人下面高潮的视频| 日日啪夜夜撸| 18禁黄网站禁片午夜丰满| av天堂中文字幕网| 观看美女的网站| 韩国av一区二区三区四区| 女生性感内裤真人,穿戴方法视频| 老师上课跳d突然被开到最大视频| 日韩欧美精品v在线| 国产麻豆成人av免费视频| 亚洲人成网站在线播放欧美日韩| 欧美性感艳星| 国产在线精品亚洲第一网站| 国产一区二区在线观看日韩| 久久精品国产亚洲网站| 精品人妻偷拍中文字幕| 国产真实乱freesex| 又紧又爽又黄一区二区| 我要搜黄色片| 看黄色毛片网站| 国产精品国产三级国产av玫瑰| 亚洲一区高清亚洲精品| 国产极品精品免费视频能看的| av视频在线观看入口| 日韩在线高清观看一区二区三区 | 亚洲av一区综合| 日韩大尺度精品在线看网址| 国产精品一区二区三区四区久久| 国产精品久久久久久久久免| 97碰自拍视频| 在线免费观看不下载黄p国产 | 国产高清有码在线观看视频| 色综合婷婷激情| 天堂动漫精品| 一本精品99久久精品77| 美女黄网站色视频| 精品久久久噜噜| 久久人人爽人人爽人人片va| 国产精品电影一区二区三区| 欧美一区二区国产精品久久精品| 日本三级黄在线观看| 日韩精品有码人妻一区| 成人鲁丝片一二三区免费| 国产男靠女视频免费网站| 给我免费播放毛片高清在线观看| 久久久久久久久久成人| 日韩强制内射视频| 中文字幕av在线有码专区| 噜噜噜噜噜久久久久久91| 国产伦在线观看视频一区| 我要搜黄色片| 欧美又色又爽又黄视频| 午夜老司机福利剧场| 亚洲经典国产精华液单| 亚洲国产精品成人综合色| 日本熟妇午夜| 最近中文字幕高清免费大全6 | 动漫黄色视频在线观看| 69av精品久久久久久| 色5月婷婷丁香| 亚洲av熟女| 国内精品一区二区在线观看| 免费看美女性在线毛片视频| 色5月婷婷丁香| 少妇裸体淫交视频免费看高清| 欧美潮喷喷水| 国产一区二区亚洲精品在线观看| 亚洲三级黄色毛片| 国产精品一区二区三区四区久久| 级片在线观看| 国产男人的电影天堂91| 国产在线男女| 俄罗斯特黄特色一大片| 国产激情偷乱视频一区二区| 久久中文看片网| 亚洲第一电影网av| 日韩欧美一区二区三区在线观看| 欧美另类亚洲清纯唯美| 18禁黄网站禁片免费观看直播| 两人在一起打扑克的视频| 国产三级中文精品| 99热6这里只有精品| ponron亚洲| 1024手机看黄色片| 久久热精品热| 在线免费观看不下载黄p国产 | 日日干狠狠操夜夜爽| 人妻制服诱惑在线中文字幕| 日本a在线网址| 国产精品99久久久久久久久| 亚洲国产色片| 91久久精品电影网| 熟女人妻精品中文字幕| 又粗又爽又猛毛片免费看| 无人区码免费观看不卡| 国产爱豆传媒在线观看| 国产欧美日韩一区二区精品| 日韩中文字幕欧美一区二区| 欧美成人a在线观看| 成年版毛片免费区| 日本a在线网址| 精品国内亚洲2022精品成人|