付劍鋒,林平,馮鐵山,程冬,張權(quán),夏慶友,程廷才
西南大學(xué) 家蠶基因組生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室,重慶 400715
家蠶氨肽酶 (BmAPN5) 與黑胸?cái)⊙挎邨U菌伴孢晶體 (PC) 毒素相互作用
付劍鋒,林平,馮鐵山,程冬,張權(quán),夏慶友,程廷才
西南大學(xué) 家蠶基因組生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室,重慶 400715
氨肽酶N (APN) 屬于鋅金屬肽酶M1 (Peptidase_M1) 家族的成員,不僅參與蛋白水解過程,而且也作為毒素受體參與病原微生物的致病過程。家蠶氨肽酶家族含有16個(gè)成員,其中BmAPN4結(jié)合黑胸?cái)⊙挎邨U菌產(chǎn)生的伴孢晶體 (PC) 毒素,為研究該基因家族其他成員是否與PC毒素結(jié)合,參與其致病過程。本文克隆家蠶中腸特異表達(dá)的氨肽酶家族成員BmAPN5基因,全長3 313 bp,編碼953個(gè)氨基酸,含有1個(gè)鋅金屬肽酶M1和ERAP1_C結(jié)構(gòu)域。構(gòu)建原核表達(dá)載體,表達(dá)和純化獲得可溶性GST-BmAPN5重組蛋白。Far-Western blotting、免疫共沉淀和ELISA等實(shí)驗(yàn)結(jié)果表明BmAPN5和活化的PC毒素相互結(jié)合。通過構(gòu)建BmAPN5細(xì)胞轉(zhuǎn)染載體,轉(zhuǎn)染Sf9細(xì)胞系,與PC毒素共孵育,導(dǎo)致細(xì)胞形態(tài)改變和裂解死亡;同時(shí),乳酸脫氫酶含量測定結(jié)果 (LDH) 表明BmAPN5參與PC毒素致病過程,導(dǎo)致細(xì)胞裂解死亡,使細(xì)胞培養(yǎng)基中的乳酸脫氫酶升高。上述結(jié)果表明BmAPN5作為一種功能性受體,PC毒素與其相互作用,參與了病原物的致病過程,為進(jìn)一步揭示病原微生物黑胸?cái)⊙挎邨U菌與宿主相互作用的致病機(jī)制研究奠定了基礎(chǔ)。
家蠶,黑胸?cái)⊙挎邨U菌,氨肽酶,PC毒素,相互作用
氨肽酶N (APN) 屬于鋅金屬肽酶M1成員,具有從 N端水解蛋白質(zhì)或寡肽的活性[1]。在鱗翅目昆蟲中腸刷狀緣膜上的APN不僅參與蛋白水解過程,也是病原毒素的重要受體之一。昆蟲中腸刷狀緣膜上的APN含量豐富,結(jié)合蘇云金芽孢桿菌 (Bacillus thuringiensis, Bt) 伴孢晶體毒素 (Cry),參與其致病過程[2]。Bt Cry與APN受體特異結(jié)合后,毒素插入細(xì)胞膜形成孔洞,導(dǎo)致膜電壓和離子平衡改變,破壞細(xì)胞,從而在中腸形成孔洞,細(xì)菌及其毒素通過孔洞進(jìn)入血淋巴,最終導(dǎo)致昆蟲死亡[3–4]。
家蠶 Bombyx mori作為典型的鱗翅目模式昆蟲,已被廣泛應(yīng)用于鱗翅目昆蟲與病原微生物相互作用研究,尤其是Bt毒素的致病機(jī)理研究。家蠶基因組含有 16個(gè) APN基因,分為 3個(gè)亞家族,11個(gè)APN基因具有表達(dá)活性,其中有7個(gè)BmAPN在中腸特異表達(dá)或高量表達(dá)[5]。目前,在家蠶中已報(bào)道4個(gè)APN蛋白與Bt的Cry毒素的致病性相關(guān),其中,BmAPN1可結(jié)合Cry1Aa和Cry1Ab蛋白[6–7]。BmAPN2-4分子量介于90-110 kDa之間,它們不直接與Cry1Aa相互作用[8],而位于中腸刷狀緣膜上的BmAPN3可與Cry1Ac相互作用,參與其致病過程[9]。由此可見,并非所有家蠶APNs都可以與Bt的不同類型的Cry直接作用。
黑胸?cái)⊙挎邨U菌 (Bacillus bombysepticus, Bb) 與Bt同屬芽孢桿菌屬,是家蠶細(xì)菌性敗血病的常見病原之一。類似Bt的致病機(jī)制,Bb在形成芽孢的過程中,同樣產(chǎn)生伴孢晶體毒素蛋白 (PC),引發(fā)家蠶細(xì)菌性敗血癥[10]?;虮磉_(dá)譜芯片結(jié)果顯示9個(gè)APN基因誘導(dǎo)表達(dá),例如BmAPN1、BmAPN2和 BmAPN4等[10]。其中,活化的PC毒素對表達(dá)BmAPN4蛋白的昆蟲細(xì)胞具有強(qiáng)烈的毒性,揭示了BmAPN4作為功能性受體參與 PC毒素的致病過程[11]。在此基礎(chǔ)上,本研究采用基因克隆、構(gòu)建重組蛋白表達(dá)載體和轉(zhuǎn)染質(zhì)粒、分離純化Bb伴孢晶體PC毒素、Far-Western blotting、免疫共沉淀 (Co-IP)、酶聯(lián)免疫吸附 (ELISA) 和免疫熒光等方法,研究BmAPN5受體是否與胰蛋白酶活化的PC毒素相互作用,為進(jìn)一步完善家蠶病原菌Bb的致病機(jī)制研究奠定基礎(chǔ)。
1.1 材料
Bb菌株和 Sf9細(xì)胞系由本實(shí)驗(yàn)室保存。pMD19-T Simple和 pSL1180質(zhì)粒載體購于TaKaRa。pGEX-4T-1表達(dá)系統(tǒng)、GSTrapFF純化柱購于 GE。轉(zhuǎn)染試劑 Cellfectin?Ⅱ Reagent購于Invitrogen。Bradford蛋白質(zhì)定量試劑盒、LDH Cytotoxicity Assay Kit購于碧云天。anti-GST和anti-Tubulin購于Sigma。HRP標(biāo)記羊抗兔二抗為北京中衫金橋產(chǎn)品。
1.2 方法
1.2.1 PC毒素純化和活化
PC毒素從Bb菌株分離獲得,并進(jìn)行胰蛋白酶處理活化毒素蛋白,具體方法參考林平等[11]研究。將Bb菌株接種于含有5 mL LB液體培養(yǎng)基 (胰蛋白胨1%,酵母提取物0.5%,NaCl 1%,pH 7.2),30 ℃搖床培養(yǎng),從34 h開始取樣,油鏡觀察到伴孢晶體和芽孢產(chǎn)生后,將菌液于4 ℃、7 000 r/min離心15 min,用預(yù)冷的NaCl溶液洗滌,以除去培養(yǎng)基中的雜蛋白。沉淀中加入 100 mL裂解液 (50 mmol/L Na2CO3,25 mmol/L EDTA,5%巰基乙醇),冰浴輕搖過夜。離心收集上清,加入7 mL 4 mol/L醋酸鈉-醋酸緩沖液 (pH 4.5),靜置于冰上4 h,使蛋白完全沉淀;離心收集沉淀,將所得的沉淀在4 ℃下溶于50 mmol/L Na2CO3(pH 9.5),攪拌至完全溶解,測定純化獲得 PC蛋白濃度。將純化的PC蛋白與胰蛋白酶以質(zhì)量比為 25∶1混合,37 ℃溫育6 h,加入1/10體積4 mol/L醋酸鈉-醋酸緩沖液 (pH 4.5),4 ℃靜置15 min,12 000 r/min離心 10 min,收集沉淀,加入雙蒸水振蕩溶解,重復(fù)該步驟 3次。最后用 50 mmol/L Na2CO3(pH 10.0) 溶解沉淀,得到活化的PC毒素蛋白。
1.2.2 BmAPN5重組表達(dá)和純化
根據(jù) BmAPN5基因 (SilkDB基因編號:BGIBMGA008062) 和表達(dá)序列標(biāo)簽信息,以家蠶中腸cDNA為模板,克隆BmAPN5編碼區(qū)序列,與pMD19-T Simple載體連接,陽性克隆進(jìn)行測序驗(yàn)證。用Nde Ⅰ和Xho Ⅰ進(jìn)行雙酶切,經(jīng)瓊脂糖電泳鑒定并回收BmAPN5酶切片段。同時(shí),用 Nde Ⅰ和 Xho Ⅰ雙酶切 pGEX-4T-1原核表達(dá)載體,獲得pGEX-4T-1載體酶切片段,BmAPN5酶切片段和pGEX-4T-1酶切片段進(jìn)行連接轉(zhuǎn)化,篩選陽性克隆,獲得pGEX-4T-1[GST-BmAPN5]重組質(zhì)粒載體;重組質(zhì)粒 pGEX-4T-1[GST-BmAPN5]轉(zhuǎn)化大腸桿菌BL21感受態(tài)細(xì)胞,加入 IPTG 至終濃度為0.2 mmol/L后在 37 ℃條件下培養(yǎng) 4 h,進(jìn)行BmAPN5蛋白誘導(dǎo)表達(dá),采用 GSTrapFF (GE Healthcare) 純化重組蛋白,進(jìn)行SDS-PAGE電泳檢測和Western blotting分析。
1.2.3 轉(zhuǎn)染載體構(gòu)建和細(xì)胞毒理實(shí)驗(yàn)
以pSL1180載體為骨架質(zhì)粒,將BmAPN5構(gòu)建為pSL1180[hr3-BmAct4-BmAPN5-SV40]轉(zhuǎn)染質(zhì)粒,采用Cellfectin Ⅱ試劑(Invitrogen)轉(zhuǎn)染Sf9細(xì)胞,實(shí)驗(yàn)操作流程參考Cellfectin II試劑的說明書 (Protocol Pub. No. MAN0007821);轉(zhuǎn)染48 h后,收集細(xì)胞,分別提取總RNA和蛋白質(zhì),采用RT-PCR和Western blotting方法檢測BmAPN5基因和蛋白表達(dá)水平。收集轉(zhuǎn)染48 h細(xì)胞,PBS洗滌3次,加入PC毒素,至濃度為50 μg/mL,孵育6 h后,顯微觀察Sf9細(xì)胞生長情況,統(tǒng)計(jì)相同放大倍數(shù)下的細(xì)胞個(gè)數(shù)。乳酸脫氫酶 (LDH) 細(xì)胞毒性檢測使用 LDH Cytotoxicity Assay Kit (碧云天),參照標(biāo)準(zhǔn)實(shí)驗(yàn)步驟,測定LDH活性。
1.2.4 Far-Western blotting
Far-Western blotting參照標(biāo)準(zhǔn)流程[12–13],SDS-PAGE電泳分離活化的PC毒素蛋白,打開轉(zhuǎn)膜板,依次放入海綿、濾紙、蛋白膠、PVDF膜、濾紙、海綿,放于4 ℃冰箱中,恒壓100 V轉(zhuǎn)移1 h;5% BSA的TBST室溫封閉2 h;TBST洗 3次,每次 5 min;加入純化獲得的GST-BmAPN5重組蛋白液,4 ℃孵育過夜;TBST洗3次,每次5 min;加入anti-GST抗體(1∶8 000),室溫孵育1 h;TBST洗3次,每次5 min;加入堿性磷酸酶標(biāo)記的山羊抗兔的二抗(1∶10 000),室溫孵育1 h;TBST洗滌3次;用ECL顯色試劑進(jìn)行顯色反應(yīng)。
1.2.5 免疫共沉淀 (Co-IP)
將100 μg蛋白與相應(yīng)的抗體在室溫下孵育1 h,然后在室溫條件下與 Protein A megnetic bead (Thermo Fisher Scientific) 孵育1 h,之后用BS3 (Thermo Fisher Scientific) 進(jìn)行交聯(lián),洗滌5次,再與PC毒素4 ℃孵育過夜,洗滌5次后進(jìn)行洗脫。
1.2.6 酶聯(lián)免疫吸附 (ELISA)
ELISA實(shí)驗(yàn)流程參照Pacheco等[3]方法,將1 μg純化的重組蛋白 BmAPN5置于 100 mL PBS/孔板,4 ℃孵育過夜,PBS洗滌3次,加入200 μL PBS-M,37 ℃封閉2 h,PBS洗滌3次,加入0.1 nmol/L活化 PC毒素,加入anti-GST抗體和二抗,450 nm 檢測,GraphPad Prism (version 5.0b) 軟件用于數(shù)據(jù)分析。
1.2.7 免疫熒光
將載玻片置于12孔板中,加入Sf9 細(xì)胞后經(jīng)Cellfectin II試劑轉(zhuǎn)染48 h,PBS沖洗3次,4%多聚甲醛固定 5 min,PBS沖洗 3次,加5%BSA封閉液室溫封閉2 h,加BmAPN5一抗稀釋液 (1∶1 000),室溫孵育1 h,PBS沖洗3次,熒光標(biāo)記二抗 (1∶500) 稀釋液于室溫孵育1 h,PBS沖洗3次,顯微觀察。
2.1 BmAPN5重組表達(dá)和純化
BmAPN5基因全長3 313 bp,包括16個(gè)外顯子和15個(gè)內(nèi)含子,ORF全長2 862 bp,起始密碼ATG位于第二外顯子上,終止密碼TAG位于第16外顯子,共編碼953個(gè)氨基酸,含有一個(gè)保守的鋅金屬肽酶 M1和 ERAP1_C結(jié)構(gòu)域(圖1A)。BmANP5基因在中腸特異高量表達(dá)[5],將該基因的編碼序列克隆到pGEX-4T-1載體,構(gòu)建帶有 GST標(biāo)簽的 APN5重組表達(dá)載體(圖1B)。轉(zhuǎn)化大腸桿菌BL21菌株,在37 °C誘導(dǎo)的條件下以可溶形式表達(dá),采用GSTrapFF純化重組蛋白,獲得GST-BmAPN5重組表達(dá)蛋白(圖1C)。
2.2 PC毒素與BmAPN5相互作用
為了研究PC毒素與BmAPN5是否存在相互作用的關(guān)系,參考林平等[11]的研究,從 Bb菌株中分離純化得到了PC毒素,并用胰蛋白酶消化獲得活性毒素。采用far-Western blotting方法,將活性PC毒素蛋白轉(zhuǎn)移至PVDF膜,加入純化獲得的GST-BmAPN5重組表達(dá)蛋白,過夜孵育,其中 GST標(biāo)簽蛋白和牛血清蛋白 (BSA) 作為陰性對照;結(jié)果顯示PC與GST-BmAPN5相結(jié)合 (圖2A)。同時(shí),采用Co-IP方法,將重組蛋白GST-BmAPN5、GST抗體孵育,再與磁珠孵育后,加入活性PC毒素孵育過夜,洗脫蛋白,SDS-PAGE電泳檢查,結(jié)果顯示 PC毒素與BmAPN5結(jié)合(圖2B)。采用ELISA方法,將活性PC與BmAPN5進(jìn)行孵育,在450 nm吸收光值檢查發(fā)現(xiàn),BmAPN5吸收光值顯著高于對照(P<0.01,圖2C)。綜合上述far-Western blotting、Co-IP和ELISA三個(gè)實(shí)驗(yàn)結(jié)果,表明BmAPN5與PC毒素存在相互作用。
圖1 BmAPN5基因結(jié)構(gòu) (A)、表達(dá)載體構(gòu)建 (B) 和重組蛋白表達(dá)純化 (C)Fig. 1 Gene structure of BmAPN5 (A) and in vitro expression vector (B) and purification of GST-BmAPN5 recombinant protein (C). 1: molecular marker; 2: GST-BmAPN5 recombinant protein.
2.3 Sf9細(xì)胞表達(dá)BmAPN5
為了進(jìn)一步驗(yàn)證BmAPN5是否參與PC毒素的致病過程,首先,構(gòu)建轉(zhuǎn)染質(zhì)粒載體pSL1180[hr3-BmAPN5-SV40] (圖 3A),轉(zhuǎn)染 Sf9細(xì)胞48 h后,提取細(xì)胞總RNA和總蛋白,分別采用RT-PCR和Western blotting方法,檢測BmAPN5的表達(dá)情況,結(jié)果顯示,BmAPN5在Sf9細(xì)胞中穩(wěn)定表達(dá) (圖 3B)。采用免疫熒光定位,熒光信號主要位于細(xì)胞質(zhì)和細(xì)胞膜 (圖 3C),結(jié)果表明Sf9細(xì)胞系表達(dá)的BmAPN5能定位于細(xì)胞膜。
圖2 BmAPN5與胰蛋白酶活化的PC毒素相互作用Fig. 2 Binding assays for trypsin-activated PC with BmAPN5. (A) Far-Western blotting analysis of trypsin-activated PC and BmAPN5. (B) A Co-IP assay for trypsin-activated PC and BmAPN5. (C) ELISA binding saturation assays of trypsin-activated PC and BmAPN5. Error bars x±s. Statistically significant differences from the control samples are indicated; **P<0.01.
圖3 BmAPN5在Sf9細(xì)胞表達(dá)和定位Fig. 3 Expression and location of BmAPN5 in Sf9 cell line. (A) Structures of transient expressing vector. (B) RT-PCR and Western blotting analysis of BmAPN5 in a Sf9 cell line. (C) Immunocytochemical analysis of BmAPN5 in Sf9 cells. Signals for Sf9 cells and BmAPN5 were detected under blue and red fluorescence.
2.4 BmAPN5參與PC毒素致病過程
為了驗(yàn)證BmAPN5參與PC毒素的致病過程,在細(xì)胞水平進(jìn)行PC毒素毒理學(xué)實(shí)驗(yàn)。設(shè)置3個(gè)陰性實(shí)驗(yàn)對照組:Sf9細(xì)胞 (圖4Aa)、轉(zhuǎn)染BmAPN5但沒有與PC毒素孵育 (圖4Ab)、Sf9細(xì)胞與PC毒素孵育 (圖4 Ac),結(jié)果顯示細(xì)胞形態(tài)和細(xì)胞數(shù)目并未發(fā)生明顯變化。在實(shí)驗(yàn)組中,PC毒素與轉(zhuǎn)染了BmAPN5的Sf9細(xì)胞孵育,結(jié)果顯示Sf9細(xì)胞形態(tài)改變、細(xì)胞裂解死亡和細(xì)胞數(shù)量顯著減少 (圖4Ad和4B)。根據(jù)細(xì)胞培養(yǎng)基中乳酸脫氫酶含量與細(xì)胞死亡數(shù)目成正比的原理,測定實(shí)驗(yàn)組中的乳酸脫氫酶 (LDH) 活性,PC毒素導(dǎo)致轉(zhuǎn)染BmAPN5的細(xì)胞培養(yǎng)基中的乳酸脫氫酶的含量顯著高于對照 (圖 4C),暗示BmAPN5參與PC毒素蛋白致病過程,導(dǎo)致細(xì)胞裂解死亡,從而使細(xì)胞質(zhì)中的LDH釋放到培養(yǎng)基中。
圖4 細(xì)胞水平檢測PC毒素蛋白的作用Fig. 4 Cytotoxic activity of trypsin-activated PC-induced BmAPN5-expressing Sf9 cells death. (A) The cytotoxic activity of trypsin-activated PC proteins on Sf9 cells transfected with the gene encoding the BmAPN5. Photomicrographs of healthy uninfected cells. (B) The number of cells with such alterations after PC-treated healthy and BmAPN5-expressing Sf9 cells is shown. (C) Trypsin-activated PC-induced cell death was measured based on the extracellular release of LDH activity after incubation for 6 h. Error bars x±s. Statistically significant differences from the control samples are indicated. **P<0.01.
細(xì)菌合成分泌的毒素是其致病的毒力因子[14]。細(xì)菌毒素通過與宿主細(xì)胞的受體蛋白相結(jié)合,使毒素蛋白發(fā)生低聚反應(yīng),形成多聚體,插入細(xì)胞膜上導(dǎo)致細(xì)胞穿孔,導(dǎo)致細(xì)胞裂解死亡[15]。在本文中,我們克隆BmAPN5基因,重組表達(dá)并純化獲得 GST-BmAPN5蛋白。通過 far-Western blotting、Co-IP和 ELISA證明了 BmAPN5與PC毒素存在相互作用。同時(shí),細(xì)胞毒理實(shí)驗(yàn)證實(shí)了BmAPN5作為一種功能性受體,參與PC毒素對Sf9細(xì)胞的致病過程。
昆蟲中腸是抵抗病原微生物入侵的第一道防線,能夠觸發(fā)多種免疫應(yīng)答機(jī)制來抵抗病原菌的侵染。同時(shí),在中腸細(xì)胞上也存在多種病原菌的受體,參與病原菌及其毒素的致病過程,這在病原菌的感染和疾病的發(fā)生過程中起著至關(guān)重要的作用[16]。昆蟲中腸細(xì)胞含有豐富的APN,并且APN是通過GPI-anchor錨定在細(xì)胞膜上[17]。在家蠶中,7個(gè)APN基因在中腸特異表達(dá)或高量表達(dá)[5]。家蠶中腸刷狀緣膜囊泡中存在許多可以與Cry1Aa、Cry1Ab和Cry1Ac結(jié)合的 APN異構(gòu)體,這些異構(gòu)體分子量在 93 kDa到110 kDa之間,分別是93 kDa、96 kDa、100 kDa、105 kDa和110 kDa,其中96 kDa的異構(gòu)體只與Cry1Aa、Cry1Ab和Cry1Ac中的Cry1Ac結(jié)合[9]。細(xì)菌毒素既可與一個(gè)受體蛋白相互作用,也可以與多個(gè)受體蛋白相互作用[18–21]。在家蠶中,已有研究表明BmAPN4和BtR-175也可以與PC毒素相互作用[11]。BmAPN5與BmAPN4結(jié)構(gòu)非常類似,且也可與PC毒素相互作用,參與毒素的致病過程。PC毒素和Bt類毒素通常都有低聚化過程[10],絕大部分中腸刷狀緣膜囊上含有豐富的多種 APN受體都可與毒素類蛋白相互作用,起到富集毒素蛋白而促進(jìn)毒素蛋白發(fā)生低聚反應(yīng)的作用。目前這僅是一種推測,還需進(jìn)一步深入研究。
Bb感染家蠶幼蟲后,電鏡結(jié)果顯示中腸上皮細(xì)胞產(chǎn)生PC毒素積累,上皮細(xì)胞受到破壞,形成大小不一的孔洞[10],這類似于Bt毒素的致病過程[9]。Bt毒素的“pingpong”結(jié)合機(jī)制涉及毒素優(yōu)先與含量豐富但親和力低的APN結(jié)合,之后與含量少但親和力高的鈣粘蛋白結(jié)合[3]。在家蠶中,已報(bào)道受體APN和BtR-175與Bt毒素結(jié)合相關(guān)[22],與BtR-175相結(jié)合后,單體Bt毒素發(fā)生低聚反應(yīng),形成預(yù)穿孔的低聚體結(jié)構(gòu),Bt低聚體與APN結(jié)合,插入膜上,形成孔洞導(dǎo)致宿主死亡[3]。結(jié)合先前家蠶APN4和BtR-175參與PC毒素致病機(jī)制的研究[11],PC毒素被家蠶中腸蛋白酶消化形成有活性的單體毒素,穿過穿透圍食膜,優(yōu)先與中腸上皮細(xì)胞上含量豐富但親和力低的多種APN受體結(jié)合,如APN4和APN5,之后與含量低但親和力高的鈣粘蛋白結(jié)合,使PC毒素蛋白構(gòu)象發(fā)生改變,低聚反應(yīng)形成預(yù)穿孔的低聚體。該低聚體插入膜上形成孔洞,導(dǎo)致膜電壓和離子平衡改變,破壞細(xì)胞,從而在中腸形成孔洞,細(xì)菌及其毒素通過孔洞進(jìn)入血淋巴,導(dǎo)致家蠶中毒性敗血病,引起家蠶死亡[11]。由此可見,毒素與受體相結(jié)合是細(xì)菌毒素致病的關(guān)鍵步驟,就經(jīng)濟(jì)昆蟲家蠶而言,可以通過基因組編輯技術(shù)對靶標(biāo)受體遺傳操作實(shí)現(xiàn)抗性素材創(chuàng)新。
REFERENCES
[1] Pigott CR, Ellar DJ. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol Mol Biol Rev, 2007, 71(2): 255–281.
[2] Griffitts JS, Haslam SM, Yang TL, et al. Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science, 2005, 307(5711): 922–925.
[3] Pacheco S, Gomez I, Arenas I, et al. Domain II loop 3 of Bacillus thuringiensis Cry1Ab toxin is involved in a "ping pong" binding mechanism with Manduca sexta aminopeptidase-N and cadherin receptors. J Biol Chem, 2009, 284(47): 32750–32757.
[4] Vachon V, Laprade R, Schwartz JL. Currentmodels of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: a critical review. J Invertebr Pathol, 2012, 111(1): 1–12.
[5] Lin P, Cheng TC, Jin SK, et al. Structural, evolutionary and functional analysis of APN genes in the Lepidoptera Bombyx mori. Gene, 2014, 535(2): 303–311.
[6] Atsumi S, Mizuno E, Hara H, et al. Location of the Bombyx mori aminopeptidase N type 1 binding site on Bacillus thuringiensis Cry1Aa toxin. Appl Environ Microbiol, 2005, 71(7): 3966–3977.
[7] Ibiza-Palacios MS, Ferré J, Higurashi S, et al. Selective inhibition of binding of Bacillus thuringiensis Cry1Ab toxin to cadherin-like and aminopeptidase proteins in brush-border membranes and dissociated epithelial cells from Bombyx mori. Biochem J, 2008, 409(1): 215–221.
[8] Nakanishi K, Yaoi K, Nagino Y, et al. Aminopeptidase N isoforms from the midgut of Bombyx mori and Plutella xylostella-their classification and the factors that determine their binding specificity to Bacillus thuringiensis Cry1A toxin. FEBS Lett, 2002, 519(1/3): 215–220.
[9] Shitomi Y, Hayakawa T, Hossain DM, et al. A novel 96-kDa aminopeptidase localized on epithelial cell membranes of Bombyx mori midgut, which binds to Cry1Ac toxin of Bacillus thuringiensis. J Biochem, 2006, 139(2): 223–233. [10] Huang LL, Cheng TC, Xu PZ, et al. A genome-wide survey for host response of silkworm, Bombyx mori during pathogen Bacillus bombyseptieus infection. PLoS ONE, 2009, 4(12): e8098.
[11] Lin P, Cheng TC, Jin SK, et al. PC, a novel oral insecticidal toxin from Bacillus bombysepticus involved in host lethality via APN and BtR-175. Sci Rep, 2015, 5: 11101.
[12] Wu YL, Li Q, Chen XZ. Detecting protein-protein interactions by far-Western blotting. Nat Protoc, 2007, 2(12): 3278–3284.
[13] Sato Y, Kameya M, Arai H, et al. Detecting weak protein-protein interactions by modified far-Western blotting. J Biosci Bioeng, 2011, 112(3): 304–307.
[14] Vallet-Gely I, Lemaitre B, Boccard F. Bacterial strategies to overcome insect defences. Nat Rev Microbiol, 2008, 6(4): 302–313.
[15] Gonzalez MR, Bischofberger M, Pernot L, et al. Bacterial pore-forming toxins: the (w)hole story? Cell Mol Life Sci, 2008, 65(3): 493–507.
[16] Soberon M, Fernandez LE, Perez C, et al. Mode of action of mosquitocidal Bacillus thuringiensis toxins. Toxicon, 2007, 49(5): 597–600.
[17] Upadhyay SK, Singh PK. Role of alkaline phosphatase in insecticidal action of Cry1Ac against Helicoverpa armigera larvae. Biotechnol Lett, 2011, 33(10): 2027–2036.
[18] Head GP, Greenplate J. The design and implementation of insect resistance management programs for Bt crops. GM Crops Food, 2012, 3(3): 144–153.
[19] Hasuwa H, Shishido Y, Yamazaki A, et al. CD9 amino acids critical for upregulation of diphtheria toxin binding. Biochem Biophys Res Commun, 2001, 289(4): 782–790.
[20] Scobie HM, Rainey GJA, Bradley KA, et al. Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. Proc Natl Acad Sci USA, 2003, 100(9): 5170–5174.
[21] Abrami L, Fivaz M, Glauser PE, et al. Sensitivity of polarized epithelial cells to the pore-forming toxin aerolysin. Infect Immun, 2003, 71(2): 739–746.
[22] Pardo-López L, Soberón M, Bravo A. Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol Rev, 2013, 37(1): 3–22.
(本文責(zé)編 陳宏宇)
Interaction of aminopeptidase (BmAPN5) and parasporal crystal (PC) toxin isolated from Bacillus bombysepticus
Jianfeng Fu, Ping Lin, Tieshan Feng, Dong Cheng, Quan Zhang, Qingyou Xia, and Tingcai Cheng
State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
Aminopeptidase N (APN) belonging to zinc-dependent metalloproteinase, not only catalyzes protein proteolytic process, but also is involved in the pathogenic process as the receptor of pathogenic toxin. In Bombyx mori, APN gene family consists of 16 members, of which BmAPN4 binds trypsin-activated parasporal crystal (PC) toxin isolated from Bacillus bombysepticus (Bb). In order to verify whether or not other APNs interact with PC toxin during the pathogenesis of Bb, we cloned BmAPN5, a member of aminopeptidase family, from the silkworm midgut. The full length of BmAPN5 is 3313 bp, encoding 953 amino acids, containing a zinc peptidase_M1 and ERAP1_C domains. A recombinant GST-BmAPN5 was purified by a prokaryotic expression system. Far-Western blotting, co-immunoprecipitation and ELISA. Binding saturation assays demonstrated that PC after activated by trypsin could be bound by BmAPN5. Additionally, cytotoxic activity of trypsin-activated PC in Sf9 cells transfected with BmAPN5 showed that cells exhibited dramatic cytological changes, including swelling and lysis, revealing BmAPN5 serves as a functional receptor that participates in Bb and PC pathogenicity. These provide some clues for further exploring the pathogenesis relationships of Bb and host.
Bombyx mori, Bacillus bombysepticus, aminopeptidase, PC toxin, interaction
Tingcai Cheng. Tel: +86-23-6825187; Fax: +86-23-68251128; E-mail: chengtc@swu.edu.cn
10.13345/j.cjb.160211
Received: May 28, 2016; Accepted: July 22, 2016
Supported by: National Basic Research Program of China (973 Program) (No. 2012CB114600), Natural Science Foundation of Chongqing (No. CSTC2014JCYJA80004).
國家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃 (973計(jì)劃) (No. 2012CB114600),重慶市科委自然科學(xué)基金 (No. CSTC2014JCYJA80004) 資助。
付劍鋒, 林平, 馮鐵山, 等. 家蠶氨肽酶 (BmAPN5) 與黑胸?cái)⊙挎邨U菌伴孢晶體 (PC) 毒素相互作用. 生物工程學(xué)報(bào), 2017, 33(1): 90–98.
Fu JF, Lin P, Feng TS, et al. Interaction of aminopeptidase (BmAPN5) and parasporalcrystal (PC) toxin isolated from Bacillus bombysepticus. Chin J Biotech, 2017, 33(1): 90–98.