張志仙,何道根,朱長(zhǎng)志,檀國(guó)印,高 旭
(臺(tái)州市農(nóng)業(yè)科學(xué)研究院,浙江 臨海 317000)
青花菜種質(zhì)資源遺傳多樣性的SSR分析
張志仙,何道根*,朱長(zhǎng)志,檀國(guó)印,高 旭
(臺(tái)州市農(nóng)業(yè)科學(xué)研究院,浙江 臨海 317000)
采用SSR分子標(biāo)記技術(shù),從50對(duì)引物中篩選出14對(duì)條帶清晰、穩(wěn)定性好的多態(tài)性引物分析了28份青花菜種質(zhì)資源的遺傳多樣性。結(jié)果表明,14對(duì)引物在28份材料中共擴(kuò)增出94條條帶,多肽信息量為0.20~0.91。供試的28份材料的遺傳相似系數(shù)為0.585 1~0.904 3,平均遺傳相似系數(shù)為0.728 9。其中TN12和TN14親緣關(guān)系最近(相似系數(shù)為0.904 3),TN503和TN597親緣關(guān)系最遠(yuǎn)(相似系數(shù)為0.585 1)。聚類分析表明,在遺傳相似系數(shù)0.688處,28份青花菜材料可分為2大類。第一大類(Ⅰ)包括TN501、TN526等26份材料,第二類(Ⅱ)由TN539和TN597兩個(gè)材料組成。同時(shí),從主成分分析二維圖結(jié)果來看, 28份材料分成4個(gè)組,第一組由TN539和TN597構(gòu)成,第二組由TN55、TN591等6個(gè)材料組成,第三組由TN671等6個(gè)材料組成,第四組由14份材料組成。兩種分類方法都得出TN539和TN597與其他26份材料親緣關(guān)系較遠(yuǎn)的結(jié)果。結(jié)果表明,這28份青花菜種質(zhì)資源總體遺傳多樣性較低,但部分材料存在較大遺傳差異,為供試材料的利用和雜交親本選配提供了參考。
青花菜;SSR;聚類分析;主成分分析;遺傳多樣性
青花菜(BrassicaoleraceaL. var.italica)是蕓薹屬重要的蔬菜作物之一。近年來,隨著國(guó)內(nèi)青花菜消費(fèi)市場(chǎng)和種植面積的穩(wěn)步提升,從事青花菜研究的機(jī)構(gòu)也越來越多,并在品種選育方面取得了一些成果[1-3]。然而,青花菜起源于地中海沿岸,國(guó)內(nèi)可利用資源少,且隨著種子市場(chǎng)不育系品種的增加,收集新資源困難增大,再加上青花菜生長(zhǎng)生殖周期長(zhǎng),因此,在育種研究中,充分合理鑒定、利用現(xiàn)有種質(zhì)資源顯得尤為重要。傳統(tǒng)資源鑒定方法依賴于田間形態(tài)學(xué)觀察鑒定,但易受環(huán)境和主觀因素影響;而依靠田間大量的雜交組合試驗(yàn)通過F1的農(nóng)藝性狀表現(xiàn)來評(píng)價(jià),工作量大,且具有一定的盲目性。利用分子標(biāo)記技術(shù)同時(shí)結(jié)合田間考察可以簡(jiǎn)便、快速地系統(tǒng)區(qū)分優(yōu)質(zhì)種質(zhì)資源,指導(dǎo)雜交組配,減少工作量[4-5]。
SSR標(biāo)記以2~5個(gè)核苷酸為基本單位的串聯(lián)重復(fù)序列,廣泛存在于基因組中,為共顯性遺傳,重復(fù)性好,并且能在近緣種屬之間通用[6]。荊贊革等[7]利用9個(gè)引物對(duì)20個(gè)青花菜基因型進(jìn)行分子鑒定,共獲得51個(gè)基因位點(diǎn),多引物組合可鑒別出所有青花菜基因型。孫繼峰[8]利用EST-SSR和gSSR標(biāo)記對(duì)青花菜DH群體進(jìn)行遺傳多樣性分析,結(jié)果顯示,79對(duì)EST-SSR引物共擴(kuò)增出285個(gè)條帶,平均每對(duì)引物擴(kuò)增3.61條,多態(tài)性比例85.96%,為DH群體利用提供了理論基礎(chǔ)。這些研究表明了SSR在青花菜種質(zhì)資源研究中的可行性。本課題組從事青花菜育種十余年,收集并純化了大量青花菜種質(zhì)材料。在此基礎(chǔ)上,本試驗(yàn)采用SSR技術(shù)對(duì)28份經(jīng)多年自交純化、整齊度較高的青花菜種質(zhì)材料進(jìn)行遺傳多樣性和遺傳關(guān)系分析,為青花菜雜交親本的選配提供理論參考。
1.1 材料
供試材料為28份經(jīng)多年自交純化、整齊度較高的青花菜種質(zhì)材料(表1)。2014年9月13日在浙江省臺(tái)州市農(nóng)業(yè)科學(xué)研究院實(shí)驗(yàn)農(nóng)場(chǎng)播種育苗,1個(gè)月后定植于大棚,常規(guī)栽培管理。全生育期觀察植株長(zhǎng)勢(shì)、主要營(yíng)養(yǎng)器官等特征,去除異株,以保證每份自交系材料的純度。
1.2 青花菜自交系的遺傳多樣性和親緣關(guān)系分析
1.2.1 DNA提取
采用CTAB法[9]提取植株幼嫩葉片總DNA,略改進(jìn)。提取的DNA用0.8%瓊脂糖凝膠電泳檢測(cè),超微量分光光度計(jì)(Quawell,美國(guó))測(cè)定其濃度和質(zhì)量,-20 ℃保存?zhèn)溆谩?/p>
1.2.2 PCR擴(kuò)增與毛細(xì)管電泳
選用50對(duì)SSR引物進(jìn)行PCR分析,其中14對(duì)為本實(shí)驗(yàn)室根據(jù)NCBI數(shù)據(jù)庫中青花菜EST和mRNA數(shù)據(jù)篩選設(shè)計(jì)的EST-SSR引物,另外36對(duì)引物選自用于甘藍(lán)屬植物分析的論文。
SSR-PCR反應(yīng)體系為15 μL,包括1.5 μL 10倍PCR緩沖液,25 mmol·L-1Mg2+0.3 μL,20 ng·μL-1模板DNA 1 μL,10 μmol·L-1引物 0.9 μL,10 mmol·L-1dNTPs 0.3 μL和5 U·μL-1Taq酶 (上海生工生物技術(shù)工程有限公司) 0.15 μL。PCR擴(kuò)增程序:94 ℃預(yù)變性4 min;94 ℃變性30 s,Tm退火30 s,72 ℃延伸30 s,35個(gè)循環(huán);72 ℃保溫10 min;4 ℃保存。
PCR擴(kuò)增產(chǎn)物在2%瓊脂糖凝膠上檢測(cè)篩選,保持電泳儀電壓120 V,電泳30 min。將在瓊脂糖凝膠上能形成清晰條帶的PCR產(chǎn)物經(jīng)過DNF-900-K0500 Reagent Kit試劑盒稀釋處理后,采用Fragment AnalyzerTM通量SSR分析系統(tǒng)(AATI,美國(guó))分離檢測(cè),PROSize 2.0分析軟件收集數(shù)據(jù)并分析結(jié)果。
1.2.3 數(shù)據(jù)統(tǒng)計(jì)與分析
用PROSize2.0軟件對(duì)Fragment AnalyzerTM高通量SSR分析系統(tǒng)收集的數(shù)據(jù)進(jìn)行分析,結(jié)合人工分析與軟件統(tǒng)計(jì)得出不同SSR引物對(duì)不同青花菜材料擴(kuò)增得到的SSR標(biāo)記片段,將SSR標(biāo)記片段與Genescan-500分子量標(biāo)準(zhǔn)品比較得到不同片段長(zhǎng)度大小,將有條帶的記為“1”,無條帶的記為“0”,將數(shù)據(jù)輸入Excel 2007表格中,構(gòu)建(0,1)原始矩陣。
表1 青花菜自交系的植物學(xué)性狀
Table 1 Description of botanical traits of broccoli inbred lines
名稱Name代數(shù)Generations現(xiàn)蕾期Squaringstage株型Planttype葉色Leafcolor葉形Leafshape葉面蠟粉Leafwax花球形態(tài)Curdmorphology蕾粒AlabastrumsizeTN501F82014-12-06半直立Semi-erect綠Green圓Round中Intermediate平Flat粗LargeTN503F82014-12-06半直立Semi-erect深綠Drakgreen圓Round多Much高圓Highspherical粗LargeTN505F82014-12-09平坦Spreading深綠Drakgreen圓Round多Much高圓Highspherical中細(xì)Medium-fineTN526F82014-12-10半直立Semi-erect綠Green圓Round中Intermediate平Flat中粗MediumTN539F82014-12-06半直立Semi-erect深綠Drakgreen橢圓Elliptic多Much圓整Sphericalandround粗LargeTN549F82014-11-29半直立Semi-erect深綠Drakgreen圓Round中Intermediate高圓Highspherical細(xì)LittleTN591F92015-01-04平坦Spreading深綠Drakgreen橢圓Elliptic少Little塊狀Rough細(xì)LittleTN597F102014-12-12半直立Semi-erect深綠Drakgreen橢圓Elliptic中Intermediate圓整Sphericalandround中IntermediateTN659F102015-01-07半直立Semi-erect深綠Drakgreen橢圓Elliptic多Much平Flat不均UnevenTN671F102014-12-29平坦Spreading綠Green橢圓Elliptic中Intermediate塊狀Rough細(xì)LittleTN677F102015-01-04平坦Spreading綠Green橢圓Elliptic中Intermediate塊狀Rough細(xì)LittleTN705F72015-01-01直立Erect深綠Drakgreen近圓Ovatetoround多Much圓整Sphericalandround細(xì)LittleTN710F72015-12-25半直立Semi-erect綠Green圓Round中Intermediate平Flat細(xì)LittleTN715F62014-12-15半直立Semi-erect深綠Drakgreen橢圓Elliptic多Much高圓Highspherical細(xì)LittleTN727F62014-12-17半直立Semi-erect綠Green長(zhǎng)橢圓Longelliptic中Intermediate塊狀Rough細(xì)LittleTN764F62014-12-23半直立Semi-erect深綠Drakgreen橢圓Elliptic中Intermediate高圓Highspherical細(xì)LittleTN771F62014-01-21半直立Semi-erect深綠Drakgreen橢圓Elliptic中Intermediate塊狀Rough中IntermediateTN783F62014-01-20平坦Spreading深綠Drakgreen橢圓Elliptic中Intermediate邊緣稍塊Rough細(xì)LittleTN810F52014-01-17半直立Semi-erect深綠Drakgreen近圓Ovatetoround多Much高圓Highspherical中細(xì)Medium-fineTN856F52015-01-01半直立Semi-erect綠Green長(zhǎng)橢圓Longelliptic少Little中圓Spherical中粗MediumTN903F42014-12-24半直立Semi-erect深綠Drakgreen橢圓Elliptic多Much高圓Highspherical中細(xì)Medium-fineTN199F62014-12-26直立Erect深綠Drakgreen橢圓Elliptic中Intermediate平Flat細(xì)LittleTN212F102015-01-23直立Erect深綠Drakgreen橢圓Elliptic中Intermediate塊狀Rough細(xì)LittleTN12F102014-12-15平坦Spreading深綠Drakgreen圓Round中Intermediate圓整Sphericalandround中IntermediateTN14F102014-12-16平坦Spreading深綠Drakgreen圓Round中Intermediate圓整Sphericalandround中細(xì)Medium-fineTN20F102014-12-21平坦Spreading深綠Drakgreen圓Round中Intermediate圓整Sphericalandround中細(xì)Medium-fineTN48F102014-11-29半直立Semi-erect深綠Drakgreen長(zhǎng)橢圓Longelliptic中Intermediate圓整Sphericalandround中細(xì)Medium-fineTN55F102014-12-13半直立Semi-erect深綠Drakgreen長(zhǎng)橢圓Longelliptic中Intermediate圓整Sphericalandround中細(xì)Medium-fine
利用GenAlEx6.502和Excel 2007計(jì)算各引物的多態(tài)信息含量(polymorphism information content,PIC)[10]。采用NTSYS-pc 2.10軟件Qualitative data程序進(jìn)行相似性系數(shù)計(jì)算,用非加權(quán)組平均法(unweighted pair group method using arithmetic average,UPGMA)生成聚類分析圖;同時(shí)基于相似性系數(shù)進(jìn)行主成分分析,構(gòu)建二維分析圖。
2.1 SSR標(biāo)記多態(tài)性分析
用50對(duì)SSR引物對(duì)青花菜種質(zhì)資源材料的多樣性進(jìn)行分析,其中14對(duì)能夠得到清晰且多樣性豐富的條帶(表2、圖1)。結(jié)果表明,14對(duì)SSR引物一共得到94個(gè)擴(kuò)增條帶,每對(duì)引物擴(kuò)增數(shù)為3~14個(gè),平均6.71個(gè),擴(kuò)增產(chǎn)物長(zhǎng)度為98~372 bp。14對(duì)SSR引物多肽信息量PIC為0.20~0.91,平均為0.68(表2)。
2.2 親緣關(guān)系分析
對(duì)28份青花菜種質(zhì)資源的相似性研究結(jié)果顯示(圖2),378對(duì)材料之間相似系數(shù)介于0.585 1~0.904 3,平均值為0.728 9,介于0.585 1~0.600 0的有4對(duì)(TN539和TN501、TN597和TN503、TN597和TN705、TN505和TN710);介于0.600 1~0.700 0和0.700 1~0.800 0之間的分別有109和224個(gè);介于0.800 1~0.904 3的41個(gè),材料之間親緣關(guān)系相對(duì)較近。其中TN503和TN597親緣關(guān)系最遠(yuǎn)(相似系數(shù)為0.585 1),TN12和TN14相似系數(shù)為0.904 3,親緣關(guān)系最近。
表2 SSR引物基本信息
Table 2 Primers used for SSR analysis
編號(hào)No.名稱Name引物序列PrimersequencesTm基序Repeat條帶數(shù)BandnumberPIC引物來源ReferencesE2Br-est2-1AGATAAAGAAAGCAGACGG/TTGGTTAAAGCGAAAGTG50AGA30.36本實(shí)驗(yàn)室OurlabE11Br-est14-1CCAGAGGAGCAACCAA/CAACACGAGCATCTTACACTA50TCC40.71本實(shí)驗(yàn)室OurlabE12Br-est15-1AAGAAGAAATAACCCACGAGTACAAATAGGAATGGCAGA50CC30.20本實(shí)驗(yàn)室OurlabS1BN83B1GCCTTTCTTCACAACTGAT-AGCTAATCAGGTGCCTCGTTGAGTTC60(GA)11(AAG)490.85Szewc-McFaddenetal.,1996[11]S3BRMS042GGATCAGTTATCTGCACCACAATCGGAATTGGATAAGAATTCAA55(AAT)4,(CT)4(T)2(CT)440.57Suwabeetal.,2002[12]S4BRMS071CAAAGCGAGAAAGTGCAGTT-GAGAGTCCACGAAACTACTGCAGATT-GAAA6090.84Suwabeetal.,2002[12]S6FIT0284AGCAATAAGCCAGAAACTTGGTTCATCATCACAACTCTAACCT5590.79Iniguez-Luyetal.,2008[13]S9Na12C08GCAAACGATTTGTTTACCCGCGTGTAGGGTGATCTAGATGGG55CT140.91Loweetal.,2004[14]S12Ra2G09ACAGCAAGGATGTGTTGACGGATGAGCCTCTGGTTCAAGC55CT50.71Loweetal.,2004[14]S20OL10D08TCCGAACACTCTAAGTTAGCTCCGAGCTGTATGTCTCCCGTGC60CT90.83Loweetal.,2004[14]S24OL12G04CGAACATCTTAGGCCGAATCGGTTAACCTGCGGGATATTG55TC90.79Loweetal.,2004[14]S25Ra2E12TGTCAGTGTGTCCACTTCGCAAGAGAAACCCAATAAAG-TAGAACC60GA70.67Loweetal.,2004[14]S26Sn3734CCCCTTCCGGTTAAACAAATAAAACAGACTTTGCCCGTTG5340.60Walleyetal.,2012[15]S29BoCAM1GCTGATGTTGATGGTGATGGGCCGAAGCAGACAAATAAAAC55GA50.76Louarnetal.,2007[16]總和Sum94平均Average6.710.68
M,梯度DNA;A,引物S24對(duì)青花菜自交系TN549、TN591等11個(gè)模板的擴(kuò)增條帶圖;B,引物E2對(duì)青花菜自交系TN677、TN705等11個(gè)模板的擴(kuò)增條帶圖M, DNA ladder marker; Figure A and B represented the electrophoretograms of amplified by primers S24 and E2, respectively圖1 引物S24(A)和E2(B)對(duì)部分材料的SSR電泳結(jié)果Fig.1 Electrophoretograms of products amplified by primers S24 (A) and E2 (B)
2.3 聚類分析
根據(jù)相似系數(shù)對(duì)這28份青花菜材料進(jìn)行聚類分析,并構(gòu)建聚類圖(圖3-A)。以遺傳相似系數(shù)0.688為閾值,可將28份材料分為2個(gè)組群。第一類(Ⅰ)由TN501、TN526等26份材料組成,第二類(Ⅱ)由TN539和TN597兩個(gè)材料組成。以0.735為閾值,可以將第一類(Ⅰ)分為6個(gè)亞類,Ⅰ-1由TN501和TN526兩個(gè)青花菜材料組成;Ⅰ-2、Ⅰ-5、Ⅰ-6分別由TN526、TN20和TN771組成,Ⅰ-3和Ⅰ-4分別包含7個(gè)和14個(gè)成員。其中,Ⅰ-1類材料株型為半直立,花球平,蕾粒中粗,現(xiàn)蕾期為12月上旬,屬早中熟類型;Ⅰ-2類株型半直立,花球平,蕾粒細(xì),現(xiàn)蕾期為12月下旬,中晚熟類型;Ⅰ-3類花球圓整,蕾粒中細(xì),現(xiàn)蕾期在12月中下旬,主要為中晚熟類型;Ⅰ-4類種質(zhì)材料株型直立或平坦,蕾粒中細(xì),現(xiàn)蕾期在12月中旬到1月下旬,偏中晚、晚熟類型;Ⅰ-5類株型半直立,花球塊狀,蕾粒中,現(xiàn)蕾期為1月21日,為晚熟材料;Ⅰ-6平坦,花球高圓,蕾粒中細(xì),12月9日,偏早中熟材料。第二類(Ⅱ)青花菜材料主要特征為株型半直立,花球圓整,蕾粒中或粗,現(xiàn)蕾期為12月上旬,屬早中熟材料。
利用NTSYSpc2.1軟件對(duì)所有材料進(jìn)行主成分分析,同時(shí)構(gòu)建主成分分析二維圖(圖3-B)。根據(jù)材料在圖中的位置分布, 28份材料被分成了4個(gè)組。第一組(Ⅰ)由TN539和TN597構(gòu)成;第二組(Ⅱ)由TN55、TN591等6個(gè)材料組成,其材料基本特征為株型半直立或平坦,花球高圓或塊狀,蕾粒細(xì),多屬于中晚熟類型;第三組(Ⅲ)由TN671等6個(gè)材料組成,其特征多為:株型半直立或平坦,花球多圓整或平,蕾粒中細(xì)或細(xì),現(xiàn)蕾期跨度大;第四組(Ⅳ)由14份材料構(gòu)成,花球圓整,蕾粒細(xì)或中細(xì),現(xiàn)蕾期跨度大。主成分分析從不同的角度更直觀地對(duì)28份材料進(jìn)行了親緣關(guān)系分析,該結(jié)果與聚類分析均表明,TN539和TN597與其他26份材料親緣關(guān)系較遠(yuǎn)。
在品種選育過程中,決定雜交組配成功的關(guān)鍵是親本的選擇,從雜種優(yōu)勢(shì)利用的角度看,通過適當(dāng)選擇群體遺傳多樣性豐富的親本,更有助于我們培育出雜種優(yōu)勢(shì)明顯的后代。因此對(duì)種質(zhì)資源親緣關(guān)系分析,與田間鑒定相配合,對(duì)指導(dǎo)種質(zhì)鑒定、青花菜育種和未來的青花菜研究工作具有重要的意義。本研究利用篩選出的14對(duì)SSR引物對(duì)28份青花菜材料的遺傳多樣性進(jìn)行了研究,一共得到94個(gè)擴(kuò)增條帶,每對(duì)引物平均6.71條,PIC在0.20~0.91之間,平均為0.68。利用不同的電泳方法對(duì)青花菜進(jìn)行遺傳分析的結(jié)果是有差異的。與李昕珈等[17]、孫繼峰[8]的研究相比,本研究中每對(duì)SSR引物擴(kuò)增的條帶數(shù)較多,表明毛細(xì)管電泳檢測(cè)SSR靈敏度、分辨率均比普通聚丙烯酰胺凝膠電泳效果好,還易于定量和自動(dòng)化檢測(cè),目前已有研究將毛細(xì)管電泳和分子標(biāo)記相結(jié)合進(jìn)行作物的遺傳分析[18-19]。但由于毛細(xì)管電泳對(duì)儀器要求和電泳成本均較高,應(yīng)當(dāng)根據(jù)實(shí)際實(shí)驗(yàn)需求來理性選擇。
圖2 青花菜378對(duì)材料相似系數(shù)矩陣Fig.2 Matrix of the similarity coeffcient among 378 pairs of broccoli inbred lines
圖3 青花菜自交系的聚類分析(A)和主成分分析二維圖(B)Fig.3 Dendrogram of cluster analysis (A) and principal component analysis (B) of broccoli inbred lines
相似系數(shù)是判斷種質(zhì)資源親緣關(guān)系的標(biāo)準(zhǔn)之一。在植物親緣關(guān)系研究中,相似系數(shù)越低則親緣關(guān)系遠(yuǎn),材料之間差異越大。王嵐等[20]利用15條ISSR引物對(duì)33個(gè)來自國(guó)內(nèi)外的青花菜種質(zhì)進(jìn)行了遺傳多樣性研究,33個(gè)青花菜品種的平均遺傳距離為0.28。Lu等[21]利用74個(gè)RAPD和8個(gè)SSR引物研究發(fā)現(xiàn),18個(gè)青花菜材料的相似距離為0.842 1~0.933 0。本研究中28個(gè)材料之間的相似系數(shù)為0.585 1~0.904 3,平均值為0.728 9,這些研究都表明青花菜種質(zhì)資源的遺傳基礎(chǔ)相對(duì)狹窄。在378對(duì)材料中,TN12和TN14、TN727和TN764、TN856和TN48三組親緣關(guān)系最近,相似系數(shù)分別達(dá)到0.904 3、0.872 3和0.872 3,這些相似系數(shù)高的材料極可能具有相同的遺傳背景,而它們的植物學(xué)特性也表現(xiàn)出高度的相似性,比如TN12和TN14均株型平坦,葉色深綠,葉圓,蠟粉中,花球圓整。雜交親本配組時(shí),在保證花球優(yōu)勢(shì)性狀的同時(shí),應(yīng)當(dāng)盡量避免高相似系數(shù)材料組合的選擇,保證雜種優(yōu)勢(shì)的最大化。
UPGMA法聚類分析和主成分分析二維圖結(jié)果分別將這28份材料分為2和4類。聚類結(jié)果的不同主要是由其原理決定的。UPGMA法假設(shè)各分類群的進(jìn)化速率相同,按照順序依次將距離最小的兩個(gè)材料(或材料組合)聚在一起直到所有的材料都聚到一個(gè)完整的系統(tǒng)發(fā)生樹中。而主成分分析二維圖是通過降維的統(tǒng)計(jì)方法,把多個(gè)指標(biāo)轉(zhuǎn)化為少數(shù)幾個(gè)綜合指標(biāo),降低觀測(cè)的空間維數(shù),獲取最主要的信息,通過直觀圖像距離遠(yuǎn)近獲取材料之間相關(guān)性的分析方法[22]。兩種方法從不同角度對(duì)28個(gè)材料進(jìn)行聚類,分類結(jié)果可以相互補(bǔ)充說明,兩種聚類方法都證明TN539和TN597與其他26份材料的親緣關(guān)系較遠(yuǎn),利用這兩個(gè)材料與其他材料雜交,更有可能獲得突出的雜種優(yōu)勢(shì)。綜上,本研究結(jié)果表明,這28份青花菜種質(zhì)資源總體遺傳多樣性較低,但部分材料存在較大的遺傳多樣性,本試驗(yàn)為供試材料在雜交親本選配利用方面提供了參考。
[1] 顧宏輝, 虞慧芳, 許映君,等. 青花菜新品種‘海綠’[J]. 園藝學(xué)報(bào), 2014, 41(2):391-392. GU H H, YU H F, XU Y J, et al. A new broccoli cultivar‘Hailü'[J].ActaHorticulturaeSinica, 2014, 41(2):391-392. (in Chinese with English abstract)
[2] 宋立曉, 曾愛松, 高兵,等. 青花菜新品種蘇青3號(hào)的選育[J]. 江蘇農(nóng)業(yè)科學(xué), 2014(12):216-218. SONG L X, ZENG A S, GAO B, et al. A new broccoli cultivar ‘Suqing 3’[J].JiangsuAgriculturalSciences, 2014(12):216-218. (in Chinese)
[3] 何道根, 何賢彪, 陳銀龍,等. 青花菜新品種’臺(tái)綠1號(hào)’[J]. 園藝學(xué)報(bào), 2012, 39(7):1415-1416. HE D G, HE X B, CHEN Y L, et al. A new broccoli hybrid ‘Tailü 1’[J].ActaHorticulturaeSinica, 2012, 39(7):1415-1416. (in Chinese with English abstract)
[4] 趙振卿, 虞慧芳, 張曉輝,等. 花椰菜與青花菜DNA標(biāo)記研究進(jìn)展[J]. 浙江農(nóng)業(yè)學(xué)報(bào), 2010, 22(2):258-262. ZHAO Z Q, YU H F, ZHANG X H, et al. Advances in DNA markers of cauliflower (Brassicaoleraceavar.botrytisL.) and broccoli (Brassicaoleraceavar.italicaL.)[J].ActaAgriculturaeZhejiangensis, 2010, 22(2):258-262. (in Chinese with English abstract)
[5] JING Z, TANG Z, ZHANG X, et al. Mature and origin as a marker of genetic diversity in early-mid broccoli (Brassica oleracea var.italica) based on SRAP analysis[J].AfricanJournalofAgriculturalResearch, 2011, 6(2): 296-299.
[6] 張?jiān)龃洌?侯喜林. SSR分子標(biāo)記開發(fā)策略及評(píng)價(jià)[J]. 遺傳, 2004, 26(5):763-768. ZHANG Z C, HOU X L. Strategies for development of SSR molecular markers [J].Hereditas, 2004, 26(5):763-768. (in Chinese with English abstract)
[7] 荊贊革, 唐征, 羅天寬,等. 甘藍(lán)SSR標(biāo)記在近緣種青花菜的通用性及其應(yīng)用[J]. 基因組學(xué)與應(yīng)用生物學(xué), 2010, 29(4):685-690. JING Z G, TANG Z, LUO T K, et al. The transferability of SSR from cabbage to broccoli and its application[J].Genomics&AppliedBiology, 2010, 29(4):685-690. (in Chinese with English abstract)
[8] 孫繼峰. 一個(gè)青花菜DH群體的遺傳結(jié)構(gòu)和遺傳多樣性分析[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院, 2010. SUN J F. Gentetic structure and diversity analysis in a DH poplulation of broccoli (Brassicaoleracervar.italica) [D]. Beijing: Chinese academy of agricultural sciences, 2010. (in Chinese with English abstract)
[9] 曹家樹,曹壽椿,易清明.白菜及其相鄰類群基因組DNA的RAPD 分析[J].園藝學(xué)報(bào),1995,22(1):47-52. CAO J S, CAO S C, YI Q M. RAPD analysis on genomic DNA of Chinese cabbage and the other groups of Brassica[J].ActaHorticulturaeSinica, 1995,22(1):47-52. (in Chinese with English abstract)
[10] SUN Q B, LI L F, YONG L, et al. SSR and AFLP markers reveal low genetic diversity in the biofuel plant jatropha curcas in China[J].CropScience, 2008, 48(5):1865-1871.
[11] SZEWCMCFADDEN A K, KRESOVICH S, BLIEK S M, et al. Identification of polymorphic, conserved simple sequence repeats (SSRs) in cultivatedBrassicaspecies[J].Theoretical&AppliedGenetics, 1996, 93(4):534-538.
[12] SUWABE K, IKETANI H, NUNOME T, et al. Isolation and characterization of microsatellites inBrassicarapaL. [J].Theoretical&AppliedGenetics, 2002,104: 1092-1098.
[13] INIGUEZ-LUY F L, VOORT A V, OSBORN T C. Development of a set of public SSR markers derived from geomic sequence of a rapid cyclingBrassicaoleraceaL. genotype[J].Theoretical&AppliedGenetics, 2008, 117(6):977-985.
[14] LOWE A J, MOULE C, TRICK M, et al. Efficient large-scale development of microsatellites for marker and mapping applications inBrassicacrop species[J].Theoretical&AppliedGenetics, 2004, 108(6):1103-1112.
[15] WALLEYP G, CARDER J, SKIPPER E, et al. A new broccoli×broccoli immortal mapping population and framework genetic map: tools for breeders and complex trait analysis[J].Theoretical&AppliedGenetics, 2012, 124(3):467-484.
[16] LOUARN S, TORP A M, HOLME I B, et al. Database derived microsatellite markers (SSRs) for cultivar differentiation inBrassicaoleracea[J].GeneticResourcesandCropEvolution, 2007,54(8):1717-1725.
[17] 李昕珈, 吳明根, 潘剛. 8個(gè)青花菜栽培品種的ISSR和SSR的遺傳多樣性分析[J]. 長(zhǎng)江大學(xué)學(xué)報(bào)(自科版)農(nóng)學(xué)卷, 2010, 7(1):53-55. LI X J, WU M G, PAN G. Genetic diversity in cultivated broccoli revealed by ISSR and SSR markers[J].JournalofYangtzeUniversity(NaturalScienceEdition), 2010, 7(1):53-55. (in Chinese with English abstract)
[18] 龔亞明, 胡齊贊, 毛偉華,等. EST-SSR熒光標(biāo)記毛細(xì)管電泳檢測(cè)法在豌豆上的應(yīng)用及評(píng)價(jià)[J]. 浙江農(nóng)業(yè)學(xué)報(bào), 2009, 21(6):540-543. GONG Y M, HU Q Z, MAO W H, et al. Application and evalution of fluorescent EST-SSR markers detection technique with capillary electrophoresis in pea[J].ActaAgriculturaeZhejiangensis, 2009, 21(6):540-543. (in Chinese with English abstract)
[19] 韓晴, 王義發(fā), 潘春丹,等. 毛細(xì)管電泳檢測(cè)技術(shù)在糯玉米品種真實(shí)性鑒定上的應(yīng)用[J]. 上海農(nóng)業(yè)學(xué)報(bào), 2015(3):31-34. HAN Q, WANG Y F, PAN C D, et al. Application of capillary electrophoresis to authenticity evalution of waxy corn varieties [J].ActaAgriculturaeShanghai, 2015(3):31-34. (in Chinese with English abstract)
[20] 王嵐, 朱熠鵬, 蔣明,等. 青花菜種質(zhì)資源遺傳多樣性的 ISSR分析[J]. 浙江農(nóng)業(yè)學(xué)報(bào), 2014, 26(4):915-919. WANG L, ZHU Y P, JIANG M, et al. Genetic diversity ofBrassicaoleraceavar.italicagermplasm resources revealed by ISSR analysis[J].ActaAgriculturaeZhejiangensis, 2014, 26(4):915-919. (in Chinese with English abstract)
[21] LU X,LIU L,GONG Y,et al.Cultivar identification and genetic diversity analysis of broccoli and its related species with RAPD and ISSR markers[J].ScientiaHorticulturae, 2009, 122(4): 645-648.
[22] JOLLIFFE I T. Principal component analysis[M]. New York: Springer-Verlag, 1986.
(責(zé)任編輯 張 韻)
Genetic diversity analysis ofBrassicaoleraceaL. var.italicawith SSR markers
ZHANG Zhixian, HE Daogen*, ZHU Changzhi, TAN Guoyin, GAO Xu
(TaizhouAcademyofAgriculturalSciences,Linhai317000,China)
Simple sequence repeat (SSR) markers were used to analyze genetic diversity among 28 broccoli (BrassicaoleraceaL. var.italica) materials. Fourteen pairs of SSR marker primers selected from 50 pairs of SSR primers generated 94 polymorphic bands among these 28 materials. The polymorphism information content (PIC) ranged from 0.20 to 0.91. The overall genetic similarity values ranged from 0.585 1 to 0.904 3 with an average value of 0.728 9. Among them, TN12 and TN14 were the most similar while TN503 and TN597 were the most distant ones with genetic similarity values of 0.904 3 and 0.585 1, respectively. The cluster analysis divided the 28 broccoli materials into two clades (Ⅰand Ⅱ). Clade Ⅰ was constituted of 26 broccoli inbred lines and clade Ⅱ were formed by TN539 and TN597. While the result of principal coordinates analysis showed that all 28 materials were grouped into 4 clades, which consist of 2, 6, 6, 14 broccoli germplasm materials, respectively. Both of the two methods showed that TN539 and TN597 had a low genetic similarity with other 26 germplasm materials. These results revealed that 28 broccoli materials had a narrow genetic base while part of them had wide variations, which provide information for their use and the hybrid parents choice.
broccoli; SSR; cluster analysis; principal coordinates analysis; genetic diversity
10.3969/j.issn.1004-1524.2017.02.08
2016-10-18
浙江省重點(diǎn)創(chuàng)新團(tuán)隊(duì)項(xiàng)目(2013TD05);浙江省重大科技專項(xiàng)(2014C02006);臺(tái)州市農(nóng)業(yè)重大專項(xiàng)(14ZD05);臺(tái)州市重點(diǎn)科技創(chuàng)新團(tuán)隊(duì)(2014-1); 臺(tái)州市院地合作科技項(xiàng)目(TYD-001-2);浙江省農(nóng)業(yè)新品種選育重大科技專項(xiàng)(2012C12903-3-2)
張志仙(1988—),女,山西古交人,碩士,農(nóng)藝師,主要從事青花菜遺傳育種。E-mail: yyybdzzxoh@163.com
*通信作者,何道根, E-mail: daogenhe@163.com
S635.3
A
1004-1524(2017)02-0228-08