• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Highly dispersed CoPx nanoparticles supported on carbon cloth for the enhanced catalytic performance of methanol electro-oxidation

    2022-12-07 12:29:10ZHANGJianyuanXINGShuangfengZHAOShichaoXIONGMiZHANGBianqinTONGXiliQINYongGAOZhe
    燃料化學(xué)學(xué)報(bào) 2022年10期

    ZHANG Jian-yuan,XING Shuang-feng,ZHAO Shi-chao,XIONG Mi,ZHANG Bian-qin,TONG Xi-li,QIN Yong,GAO Zhe,*

    (1. State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China;2. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China)

    Abstract: Direct methanol fuel cell (DMFC) is a potential commercial fuel cell technology that is presently hindered by the expensive noble metal materials of the anode. Developing a method to obtain a uniformly dispersed metal phosphide catalyst with narrow size distribution is still a challenge. In this work,cobalt oxide was deposited on carbon cloth (CC) through atomic layer deposition (ALD),then cobalt phosphide was obtained after the phosphorization process. By changing the number of ALD-based ozone pulses (ALD-O3) for CC,the nucleation and growth modes of cobalt oxide (ALD-CoOx) on the CC were regulated,and CoPx nanoparticles with small particle size and uniform distribution were obtained. The optimized CoPx-based catalyst with 40 cycles of ALD-O3 treatment (CoPx/40-CC) exhibits excellent activity (153 mA/cm2) toward methanol electrocatalytic oxidation reaction in the alkaline solution,which is higher than the catalyst prepared by impregnation (Imp-CoPx/CC),although the CoPx loading of CoPx/40-CC is lower than that of Imp-CoPx/CC. The results indicate that the enhanced activity benefits from the small particle size and the uniform CoPx distribution,which promote the electron-transfer and mass transport kinetics of the methanol electro-oxidation process.

    Key words: atomic layer deposition;cobalt phosphide nanoparticles;methanol electrocatalytic oxidation reaction

    Considering the energy crisis and global warming caused by fossil fuel usage,direct methanol fuel cells(DMFCs) may serve as a potential green energy conversion technology,because methanol can be easily obtained,stored,and transported[1,2]. However,commercial catalysts such as platinum-based noble metal catalysts are expensive and easy to poison by CO,which considerably hinders the applications of DMFCs[3-7]. Therefore,it is essential to design high efficiency and low-cost electrocatalysts with long-term stability for the methanol electrocatalytic oxidation reaction (MOR) for the largescale commercialization of DMFCs in the future.

    Non-noble metal catalysts,such as oxides and alloys provide certain advantages because of the inexpensiveness and relatively non-toxicity,however,they are limited by their low activity[8-11]. Non-noble metal phosphide performance for the MOR offers promising electrocatalytic activity,owing to their specific electronic structure,long-term stability,and wide pH application range[8,12-16]. Recently,several methods have been reported for the fabrication of various nanostructures metal phosphides,such as nanoarrays,nanowall arrays,and hollow porous nanostructures to obtain a large surface area and potential electrocatalytic activity[17-19]. However,it is still a challenge to synthesize small and uniformly dispersed metal phosphide nanoparticles for high methanol electro-oxidation activity.

    Owning to the precisely control of the size/thickness and perfect uniformity[20-23],atomic layer deposition (ALD) is a powerful technique for depositing single atoms,nanoparticles,thin films,as well as catalytic materials at the atomic level[23-26]. In this work,ALD was introduced to synthesize CoOxnanoparticles on carbon cloth (CC),and then NaH2PO2was used as a phosphorization reactant to obtain CoPxnanoparticles.By controlling the number of ALD-O3pulses in the pretreatment process,the defect sites on the CC surface were modified. As a result,the nucleation and growth of the nanoparticles during ALD-CoOxsynthesis were tuned. For the MOR reaction,the CoPx-based catalyst with 40 cycles of ALD-O3treatment (CoPx/40-CC)presents the highest current density (153 mA/cm2)among all the catalysts prepared by ALD and impregnation. Catalytic activities also change with the number of ALD-O3pulses,resulting in volcano-like behavior. Detailed analyses suggest that the enhanced activity benefits from the small particle size and the uniform CoPxdistribution,which promote the electrontransfer and mass transport kinetics of the methanol electro-oxidation process.

    1 Experimental section

    1.1 Chemicals

    The ALD precursor of bis (cyclopentadienyl)cobalt (Cp2Co,98%) was obtained from Alfa Aesar,and the O3precursor was obtained by an ozone generator. The CC (WOS1011) was purchased from Cetech Co.,Ltd.,NaH2PO2was acquired from Shanghai Aladdin Bio-Chem Technology Co.,Ltd.,and cobaltous nitrate hexahydrate (Co(NO3)2·6H2O) was obtained from Sinopharm Chemical Reagent Co. ,Ltd.All chemical reagents were used as received,and all aqueous solutions were prepared using deionized water,which was produced by an ultrapure water system.

    1.2 Catalyst synthesis

    Before ALD,the raw CC was cut into 1 cm × 4 cm pieces and was then cleaned by ultrasonication for 30 min. Afterward,the samples were washed with deionized water and anhydrous ethanol three times,respectively. Finally,the CC pieces were dried in an oven at 80 °C for 1 h.

    The ALD process was carried out in a hot wall and closed chamber. In the first step,several cycles of O3pulses were used to treat the CC at 250 °C,with pulse,exposure,and purge times of 1,15 and 27 s,respectively. The samples were denoted asn-CC (nrefers to the number of ALD-O3cycles)[27]. Then,the CoOxnanoparticles were deposited onto the CC with the Cp2Co and O3precursors,which were denoted as CoOx/n-CC[28]. The reaction equation to form CoOxis as follows[29]:

    During the reaction process,the temperature of Cp2Co was maintained at 70 °C,accompanied by valving the parameters of pulse,exposure,and purge times of 0.5,16 and 25 s,respectively. In addition,the time for the corresponding O3precursor treatment was 0.1,12 and 30 s,respectively. Afterward,the CoOx/n-CC samples were added into the combustion boat with 0.5 g of NaH2PO2·H2O,then the temperature was increased from room temperature to 300 °C at 2 °C/min in the tubular furnace in an Ar atmosphere and finally maintained for 120 min. In the end,the samples were washed with deionized water and ethanol three times and dried in an oven at 80 °C for 30 min.

    Synthesis process for the impregnated sample,denoted as Imp-CoPx/CC,was as follows. The clean CC was soaked with 5.5% cobalt nitrate ethanol solution in a beaker and stirred for 30 min. Then,the sample was dried in the oven for 30 min and placed in a furnace,with a programmed heating rate of 2 °C/min from room temperature to 300 °C. Then the temperature was maintained for 180 min at 300 °C to obtain Imp-CoOx/CC. Finally,the Imp-CoOx/CC sample was used for the same phosphide process as the ALD samples.

    1.3 Materials characterization

    Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) images were collected using a JEOL-2100F microscope. For TEM analysis,the samples were physically crushed with scissors and a mortar,and then dispersed in ethanol solution to prepare a highly dispersed suspension. A small amount of liquid was dropped onto the microgrid and allowed to dry naturally at room temperature. X-ray diffraction(XRD) patterns were obtained using a Bruker D8 Advance X-ray diffractometer with CuKα radiation(λ= 1.540 nm),and 2θwas ranging from 5° to 90°. The X-ray photoelectron spectra (XPS) were obtained by an ES-300 photoelectron spectrometer (KRATOS Analytical) with AlKα excitation (1486.6 eV). Co and P content in the samples were determined by inductively coupled plasma optical emission spectrometry (ICP-OES) analysis (Thermo ICAP 6300),and the samples were annealed at 800 °C to remove the CC before ICP-OES analysis.

    1.4 Electrochemical measurements

    All electrochemical measurements were performed on a CHI760D electrochemical workstation(Shanghai,China). The conventional three-electrode system was equipped with a graphite rod electrode as the counter electrode and a saturated calomel electrode(SCE,saturated KCl solution with a salt bridge) as the reference electrode. For the self-supporting electrode,CoPx/n-CC or Imp-CoPx/CC on a glassy carbon electrode clip was used as the working electrode(0.50 cm × 1.0 cm). Cyclic voltammetry (CV) and chronoamperometric measurements were conducted in 1 mol/L methanol + 1 mol/L KOH solution to study the activity and stability of catalyst. Linear sweep voltammetry (LSV) measurements were performed in 1 mol/L KOH solution with or without the addition of 1 mol/L methanol to evaluate the MOR and the oxygen evolution reaction (OER). Electrochemical impedance spectroscopy (EIS) was measured at a potential of 1.48 V(vs RHE) in 1 mol/L methanol + 1 mol/L KOH solution in a frequency range from 10 kHz to 0.1 Hz.Additionally,all experiments were tested at (25 ± 2) °C,and the solutions were exposed to the air. The current densities are given in terms of geometrical area(mA/cm2).

    2 Results and discussion

    2.1 Characterization of catalysts

    Figure 1 shows a schematic of CoPx/n-CC preparation by ALD. The CC was treated with different cycles of O3pulses by ALD to achieven-CC,where n indicates the number of O3pulses. Then,then-CC samples were deposited through 200 ALD cycles of CoOxto obtain CoOx/n-CC. The CoOx/n-CC samples were further treated with NaH2PO2to synthesize CoPx/n-CC.

    The morphology and microstructure of the CoOx/n-CC catalysts were examined by TEM and HRTEM. As shown in Figure 2(a)-(c),the particle sizes of CoOx/10-CC,CoOx/40-CC,and CoOx/75-CC are 5.1,3.3 and 1.9 nm,respectively. The particle size of CoOxdecreases with an increasing number of ALDO3cycles. Additionally,the distribution of CoOxchanges with the number of ALD-O3cycles. The CoOxof CoOx/10-CC and CoOx/40-CC consist of particle films,while CoOxof CoOx/75-CC consists of dispersed particles. The measured lattice distances of CoOxin CoOx/40-CC are 0.209,0.286 and 0.246 nm (Figure 2(d)),which correspond with the (400),(220) and (311)planes of Co3O4,respectively.

    After the phosphorization reaction,CoPx/10-CC,CoPx/40-CC and CoPx/75-CC were synthesized,and the morphologies of these samples are shown in Figure 2(e)-(g). The particle sizes of CoPx/10-CC,CoPx/40-CC and CoPx/75-CC are 10.0,5.2 and 8.2 nm,respectively. The size of CoPxof CoPx/n-CC is larger than the corresponding cobalt oxide sample (CoOx/n-CC).CoOx/75-CC has the smallest CoOxparticle size among CoOx/10-CC,CoOx/40-CC and CoOx/75-CC,while CoPx/40-CC possesses the smallest particle size among CoPx/10-CC,CoPx/40-CC and CoPx/75-CC. The smallest CoOxparticles do not produce the smallest CoPxparticles after phosphorization. Additionally,CoPx/40-CC exhibits the most uniform dispersion and narrow size distribution among these catalysts. ICPOES analysis indicates that the loading amounts of CoPxin CoPx/10-CC,CoPx/40-CC and CoPx/75-CC are 0.79%,0.76% and 0.6%,respectively. Figure 2(h)presents the HRTEM of CoPx/40-CC,which shows that the measured lattice distances of CoPxare 0.247 and 0.254 nm,which correspond to the (111) and (200)CoP planes,respectively.

    The morphologies of the samples prepared by the impregnation method are shown in Figure 3(a) and (b).The CoOxsize of Imp-CoOx/CC is 10.7 nm,while the CoPxsize of Imp-CoPx/CC is 18.9 nm. No uniform nanoparticle distribution and morphology are observed in Imp-CoOx/CC and Imp-CoPx/CC and ICP-OES analysis indicates that the loading amount of CoPxis 3.2% for Imp-CoPx/CC.

    Figure 4 shows the X-ray crystal diffraction(XRD) spectra of CoPx/10-CC,CoPx/40-CC,CoPx/75-CC and Imp-CoPx/CC,where the peaks at 22.8° and 43.2° represent graphite carbon[30]. The peaks of Imp-CoPx/CC at 2θof 31.6° and 48.1° are designated as(011) and (211) facets of CoP (PDF#29-0497)[31].However,there are no obvious CoPxpeaks in the samples prepared by ALD (CoPx/10-CC,CoPx/40-CC,and CoPx/75-CC),owing to low content and/or high dispersion of CoPx.

    XPS was performed to analyze the surface chemical states of CoPx/10-CC,CoPx/40-CC,CoPx/75-CC,and Imp-CoPx/CC. For all samples,the peaks locate at 779.0 and 794.0 eV in the high-resolution spectrum(Figure 5(a)) are assigned to metallic Co 2p3/2and 2p1/2of CoPx,respectively[31,32]. An obvious peak at 781.4 eV is attributed to Co2+2p3/2of Imp-CoPx/CC;however,it is inconspicuous in CoPx/10-CC,CoPx/40-CC,and CoPx/75-CC[31]. This indicates that Imp-CoPx/CC contains more Co2+than the other samples. The high-resolution P 2pspectra are shown in Figure 5(b).The CoPx/10-CC,CoPx/40-CC,CoPx/75-CC and Imp-CoPx/CC have prominent peaks at 130.4,130.5,130.2 and 130.4 eV,which are ascribed to phosphide P 2p3/2,and the peaks at 131.0,131.3,131.0 and 131.2 eV are attributed to P 2p1/2[32]. P in CoPx/40-CC shows the highest binding energy of all the ALD samples. In all of the samples,the weak peak around 134 eV is assigned to the contamination of phosphate P on the catalyst surfaces[33].

    2.2 Electrochemical activity of the catalysts

    The electrocatalytic performances of the asprepared catalysts (CoPx/n-CC and Imp-CoPx/CC) for MOR were tested in 1 mol/L methanol + 1 mol/L KOH solution. The electrocatalytic activities of CoPx/n-CC(n= 0,10,20,30,40,50 and 75) and Imp-CoPx/CC were first studied by CV at a scan rate of 100 mV/s within a potential range of 1.068-1.868 (V vs RHE) in the 1 mol/L KOH and 1 mol/L methanol electrolyte. CoPx/40-CC shows the highest current density (153 mA/cm2at 1.7 V vs RHE) and the lowest overpotential (1.39 V at 10 mA/cm2) among all catalysts,revealing the highest electrooxidation activity of MOR (Figure 6(a)). Also,the current densities of the electrocatalysts at 1.7 V (vs RHE) in the positive sweep of the CV curves are summarized in Figure 6(b). With increasing ALD-O3cycles,the catalytic activities of CoPx/n-CC exhibit a volcano-like trend. In addition,CoPx/40-CC exhibits higher electroactivity than Imp-CoPx/CC (107 mA/cm2),although the CoPxloading of CoPx/40-CC (0.76%) is lower than that of Imp-CoPx/CC (3.2%). And CoPx/40-CC shows the excellent MOR electroactivity compared to other catalysts reported in the literatures (Table 1).

    Table 1 Comparison of the MOR performance of CoPx/40-CC with those of other catalysts reported in the literatures.

    For MOR kinetics,the electrochemical impedance spectroscopy (EIS) results of the MOR on the CoPx/n-CC and Imp-CoPx/CC electrodes are shown in Figure 6(c).The electron-transfer resistance of the MOR decreases when the ALD-O3cycle increases from 0 to 40 and then increases when the ALD-O3cycle increases from 40 to 75,which is consistent with the CV results shown above. CoPx/40-CC shows the lowest electron-transfer resistance,suggesting the best improvement of electron-transfer kinetics in all the electro-catalysts.CoPx/10-CC,CoPx/40-CC,CoPx/75-CC,and Imp-CoPx/CC were selected for Tafel analysis. As shown in Figure 6(d),the CoPx/40-CC electrode exhibits the lowest Tafel slope (163 mV/dec),indicating that CoPx/40-CC has low electron and mass transport barriers in the MOR process.

    To further investigate the catalytic performance of CoPx/40-CC,linear sweep voltammograms (LSVs)were measured at a scanning rate of 5 mV/s (Figure 6(e))in the absence/presence of 1 mol/L methanol in 1 mol/L KOH. CoPx/40-CC shows approximately 200 mV negative potential of MOR compared to the oxygen evolution reaction,revealing the favorable electrochemical response of CoPx/40-CC for the MOR and the increase of current is due to the addition of methanol. Furthermore,Figure 6(f) is CV curves of CoPx/40-CC at different scanning rates. The inset of Figure 6(f) shows that CoPx/40-CC exhibits a linear relationship between the current densities values at 1.7 V vs RHE and the square root of the potential scan rates,indicating that the MOR on the surface of this catalyst is a diffusion-controlled process.

    To investigate the stability of the four catalysts,CoPx/10-CC,CoPx/40-CC,CoPx/75-CC,and Imp-CoPx/CC,chronoamperometric (CA) measurements were conducted in 1 mol/L KOH and 1 mol/L methanol at 1.57 V (vs RHE) for a duration of 10000 s. The results are displayed in Figure 6(g). CoPx/40-CC exhibits the highest catalytic activity after 10000s among four samples.

    Finally,the electrocatalytic activities ofmCoPx/40-CC (mrefers to the number of ALD-CoOxcycles,m= 0,50,100,150,200,250 and 300) were studied by CV under the same conditions to investigate optimal Co loading. The CV curves (Figure 6(h)) and bar graph(Figure 6(i)) suggest that CoPx/40-CC (200 cycles of CoOx) is the best electrocatalyst for MOR,and the activities of these catalysts show volcano-like behavior.

    2.3 Discussion

    The results show that enhanced MOR catalytic performance of CoPx/n-CC can be obtained by changing ALD-O3cycles in CC pretreatment. The high catalytic activity of CoPx/40-CC nanocatalyst benefits from the small particle size and the uniform CoPxdistribution. The ALD-O3pretreatment produces oxygen containing functional groups on CC,which act as the nucleation sites of CoOx[37]. When the number of ALD-O3pulses is only 10,the nucleation sites on CC are insufficient. CoOxnanoparticles grow larger at these nucleation sites. With the increase of ALD-O3cycles,more nucleation sites on CC are obtained. The size of CoOxnanoparticles is decreased and the dispersion of CoOxnanoparticles on support is improved. During the phosphorization process,CoOxnanoparticles are transformed into CoPxnanoparticles,and the particles grow up. Due to the optimal dispersion of as-prepared CoOxparticles and the suitable interaction between the particles and support,after phosphorization,the CoPxnanoparticles of CoPx/40-CC exhibit small particle size and uniform distribution,which promote the electron-transfer and mass transport kinetics of MOR reaction.

    3 Conclusions

    In summary,ALD was used to pretreat CC with O3pulses and to deposit CoOxnanoparticles on CC. By optimizing the number of ALD-O3pulses,the nucleation and growth modes of CoOxwere regulated.After phosphorization,CoPxnanoparticles on CC with uniform dispersion and narrow size distribution were successfully prepared. The results show that the CoPx/40-CC nanocatalyst corresponds to an average CoPxnanoparticle size of 5.3 nm,and exhibits the best catalytic activity (153 mA/cm2at 1.7 V vs RHE) among all of the CoPx/n-CC and Imp-CoPx/CC synthesized in this work. The current density of the catalysts changes as a function of the ALD-O3pulse number and exhibits volcano-like behavior. Overall,ALD could provide an alternative approach for non-noble catalysts to enhance the catalytic performance of the MOR.

    男女国产视频网站| 你懂的网址亚洲精品在线观看| 久久精品久久久久久久性| 黄色视频在线播放观看不卡| 狂野欧美激情性bbbbbb| 下体分泌物呈黄色| 男人爽女人下面视频在线观看| 夜夜骑夜夜射夜夜干| 国产精品熟女久久久久浪| 成年人午夜在线观看视频| 中文乱码字字幕精品一区二区三区| 老司机在亚洲福利影院| 搡老岳熟女国产| 性高湖久久久久久久久免费观看| 一区在线观看完整版| 久久久久精品国产欧美久久久 | 最近最新中文字幕大全免费视频 | 国产成人a∨麻豆精品| 丰满饥渴人妻一区二区三| 亚洲国产看品久久| av.在线天堂| 亚洲欧美成人综合另类久久久| 制服人妻中文乱码| 五月天丁香电影| 十八禁高潮呻吟视频| 亚洲精品美女久久av网站| 电影成人av| 18禁裸乳无遮挡动漫免费视频| 亚洲 欧美一区二区三区| 最近的中文字幕免费完整| 亚洲第一av免费看| 亚洲国产精品一区二区三区在线| √禁漫天堂资源中文www| 老司机亚洲免费影院| 免费黄频网站在线观看国产| 久久99一区二区三区| 操美女的视频在线观看| 嫩草影院入口| 高清在线视频一区二区三区| 国产熟女欧美一区二区| 各种免费的搞黄视频| 丝袜美足系列| 男女午夜视频在线观看| 欧美激情高清一区二区三区 | 少妇精品久久久久久久| 国产成人精品在线电影| 免费在线观看黄色视频的| 精品一区二区三区av网在线观看 | 久久天躁狠狠躁夜夜2o2o | 亚洲欧美一区二区三区国产| 国产成人一区二区在线| 99精品久久久久人妻精品| 色视频在线一区二区三区| 亚洲精品在线美女| 岛国毛片在线播放| 又大又黄又爽视频免费| 一本大道久久a久久精品| 男女午夜视频在线观看| 成年美女黄网站色视频大全免费| av又黄又爽大尺度在线免费看| 国产在视频线精品| 国产免费又黄又爽又色| 亚洲精品视频女| av一本久久久久| 丝袜脚勾引网站| 美女中出高潮动态图| 在线看a的网站| 国产精品人妻久久久影院| 欧美人与性动交α欧美软件| 日韩一区二区视频免费看| 欧美在线一区亚洲| 青春草亚洲视频在线观看| 欧美成人午夜精品| 美女高潮到喷水免费观看| 日韩精品有码人妻一区| 我要看黄色一级片免费的| 日本91视频免费播放| av.在线天堂| 自拍欧美九色日韩亚洲蝌蚪91| 卡戴珊不雅视频在线播放| 黄色怎么调成土黄色| 中文字幕另类日韩欧美亚洲嫩草| 国产不卡av网站在线观看| 国产亚洲av片在线观看秒播厂| 亚洲av国产av综合av卡| 国产欧美亚洲国产| 欧美黄色片欧美黄色片| 午夜免费男女啪啪视频观看| 人人妻人人澡人人爽人人夜夜| 国产伦理片在线播放av一区| 欧美黄色片欧美黄色片| 久久亚洲国产成人精品v| 国产不卡av网站在线观看| 亚洲人成网站在线观看播放| 深夜精品福利| 巨乳人妻的诱惑在线观看| 国产免费又黄又爽又色| 狠狠婷婷综合久久久久久88av| 在线观看免费午夜福利视频| 久久青草综合色| 热re99久久精品国产66热6| 中文字幕亚洲精品专区| 国产成人精品久久久久久| 欧美日韩一级在线毛片| 国产精品女同一区二区软件| 热re99久久精品国产66热6| 久久鲁丝午夜福利片| 亚洲一区二区三区欧美精品| 黄片播放在线免费| 麻豆乱淫一区二区| 欧美亚洲日本最大视频资源| 亚洲精品自拍成人| 欧美黑人精品巨大| 国产精品国产三级国产专区5o| 亚洲五月色婷婷综合| 国产精品久久久久久精品古装| 激情五月婷婷亚洲| 亚洲欧洲日产国产| 看免费av毛片| 国产精品女同一区二区软件| 色视频在线一区二区三区| 观看美女的网站| 男女高潮啪啪啪动态图| 久久久久精品国产欧美久久久 | 晚上一个人看的免费电影| 99热全是精品| 日本欧美视频一区| 色94色欧美一区二区| 又大又爽又粗| 久久久久视频综合| 一本久久精品| 97人妻天天添夜夜摸| 国产日韩欧美视频二区| 国产深夜福利视频在线观看| 成人免费观看视频高清| 国产精品一国产av| 中文字幕最新亚洲高清| 国产精品一二三区在线看| 国产精品久久久av美女十八| 亚洲第一区二区三区不卡| 人成视频在线观看免费观看| 中国国产av一级| 老司机在亚洲福利影院| 午夜福利一区二区在线看| 欧美日韩亚洲综合一区二区三区_| 91aial.com中文字幕在线观看| av网站在线播放免费| 黄色毛片三级朝国网站| 伊人久久大香线蕉亚洲五| 国产毛片在线视频| 黄频高清免费视频| 亚洲av成人精品一二三区| 久久ye,这里只有精品| 超碰成人久久| 精品一区二区三卡| 亚洲av日韩在线播放| 午夜老司机福利片| 午夜福利视频精品| 啦啦啦啦在线视频资源| 天天躁狠狠躁夜夜躁狠狠躁| 91aial.com中文字幕在线观看| 久久久精品94久久精品| 一二三四在线观看免费中文在| 日本91视频免费播放| 成人免费观看视频高清| 一级毛片 在线播放| 看免费av毛片| 欧美 亚洲 国产 日韩一| 建设人人有责人人尽责人人享有的| 精品亚洲成国产av| 男女之事视频高清在线观看 | 免费人妻精品一区二区三区视频| 一级片'在线观看视频| 欧美乱码精品一区二区三区| 久久国产精品男人的天堂亚洲| 国产黄频视频在线观看| 中国国产av一级| 国产精品一区二区精品视频观看| 精品一品国产午夜福利视频| 麻豆av在线久日| 又粗又硬又长又爽又黄的视频| 日韩欧美精品免费久久| 亚洲精品一区蜜桃| 精品国产一区二区三区久久久樱花| 免费久久久久久久精品成人欧美视频| 亚洲欧美一区二区三区国产| 午夜免费男女啪啪视频观看| 中文欧美无线码| www.熟女人妻精品国产| a 毛片基地| 国产成人系列免费观看| 午夜福利网站1000一区二区三区| 日日摸夜夜添夜夜爱| 亚洲精品在线美女| 宅男免费午夜| 亚洲精品久久久久久婷婷小说| 国产成人免费无遮挡视频| 妹子高潮喷水视频| 五月开心婷婷网| 1024视频免费在线观看| 汤姆久久久久久久影院中文字幕| 黄频高清免费视频| 少妇猛男粗大的猛烈进出视频| 人成视频在线观看免费观看| 各种免费的搞黄视频| 精品卡一卡二卡四卡免费| 中文字幕亚洲精品专区| 丝袜美腿诱惑在线| 国产精品亚洲av一区麻豆 | 精品国产一区二区三区四区第35| 一级片免费观看大全| 亚洲综合色网址| 亚洲av综合色区一区| 捣出白浆h1v1| 色吧在线观看| a 毛片基地| 亚洲精品一二三| 欧美日韩视频精品一区| 各种免费的搞黄视频| 亚洲av综合色区一区| 国产精品二区激情视频| 国产精品一国产av| 嫩草影院入口| 日韩电影二区| 高清黄色对白视频在线免费看| 国产成人欧美在线观看 | 国产男人的电影天堂91| 亚洲一区中文字幕在线| 97在线人人人人妻| 亚洲,欧美精品.| 最近中文字幕高清免费大全6| xxxhd国产人妻xxx| 欧美久久黑人一区二区| 丰满少妇做爰视频| 日本欧美国产在线视频| 青春草亚洲视频在线观看| 国产成人免费无遮挡视频| 嫩草影视91久久| 国产成人精品在线电影| 少妇人妻 视频| 多毛熟女@视频| 在线观看国产h片| 男女国产视频网站| 国精品久久久久久国模美| 高清欧美精品videossex| 成年动漫av网址| 男的添女的下面高潮视频| 七月丁香在线播放| 少妇 在线观看| 亚洲av在线观看美女高潮| avwww免费| 深夜精品福利| 亚洲av欧美aⅴ国产| 精品国产乱码久久久久久小说| 波多野结衣一区麻豆| av免费观看日本| 一边亲一边摸免费视频| 9色porny在线观看| 国产99久久九九免费精品| 老司机影院成人| 婷婷色av中文字幕| 男人添女人高潮全过程视频| 大香蕉久久网| 90打野战视频偷拍视频| 美女主播在线视频| 精品久久久精品久久久| 久久精品aⅴ一区二区三区四区| 午夜福利网站1000一区二区三区| 国产精品人妻久久久影院| 无限看片的www在线观看| 欧美在线黄色| 国产黄色免费在线视频| 观看美女的网站| 国产爽快片一区二区三区| 色网站视频免费| 国产精品成人在线| 2021少妇久久久久久久久久久| 午夜免费观看性视频| 十八禁人妻一区二区| 看免费av毛片| 国产探花极品一区二区| 91老司机精品| 国产不卡av网站在线观看| 观看av在线不卡| 久久久久网色| 91精品三级在线观看| 久久久久精品久久久久真实原创| 国产精品久久久久久精品电影小说| 18禁国产床啪视频网站| 欧美日韩一级在线毛片| 国产免费一区二区三区四区乱码| 成人亚洲精品一区在线观看| 高清av免费在线| 最近的中文字幕免费完整| 亚洲精品美女久久av网站| 99热网站在线观看| 侵犯人妻中文字幕一二三四区| av视频免费观看在线观看| 亚洲精品自拍成人| av国产久精品久网站免费入址| 成年动漫av网址| 亚洲精品,欧美精品| 嫩草影院入口| 热99久久久久精品小说推荐| 菩萨蛮人人尽说江南好唐韦庄| 亚洲一区中文字幕在线| 亚洲在久久综合| 日本wwww免费看| 欧美国产精品va在线观看不卡| 欧美变态另类bdsm刘玥| 高清黄色对白视频在线免费看| 日本猛色少妇xxxxx猛交久久| 涩涩av久久男人的天堂| 国产精品国产三级专区第一集| 啦啦啦中文免费视频观看日本| av在线老鸭窝| 91国产中文字幕| 91精品伊人久久大香线蕉| 国产xxxxx性猛交| 欧美日韩一区二区视频在线观看视频在线| av.在线天堂| 伦理电影免费视频| 天天躁夜夜躁狠狠躁躁| 中文天堂在线官网| 啦啦啦视频在线资源免费观看| 韩国精品一区二区三区| 欧美精品一区二区大全| 91精品伊人久久大香线蕉| 日韩,欧美,国产一区二区三区| 国产精品 欧美亚洲| 亚洲精品国产区一区二| 精品福利永久在线观看| 热re99久久国产66热| 天天躁夜夜躁狠狠躁躁| av免费观看日本| 久久精品亚洲熟妇少妇任你| 肉色欧美久久久久久久蜜桃| 国产高清国产精品国产三级| 亚洲视频免费观看视频| 成人影院久久| 日韩视频在线欧美| 91国产中文字幕| 国产精品国产三级国产专区5o| 久久久久久久久久久免费av| 亚洲成国产人片在线观看| videos熟女内射| 亚洲精品视频女| 一二三四中文在线观看免费高清| 亚洲专区中文字幕在线 | 国精品久久久久久国模美| 美女午夜性视频免费| 街头女战士在线观看网站| 国产成人a∨麻豆精品| 久热这里只有精品99| 国产国语露脸激情在线看| 国产av国产精品国产| 日韩,欧美,国产一区二区三区| 日日撸夜夜添| 欧美成人午夜精品| 欧美激情高清一区二区三区 | 晚上一个人看的免费电影| 91aial.com中文字幕在线观看| 中文字幕精品免费在线观看视频| 国产精品国产av在线观看| 99香蕉大伊视频| 又黄又粗又硬又大视频| 捣出白浆h1v1| 熟女少妇亚洲综合色aaa.| 搡老岳熟女国产| 中文欧美无线码| 国精品久久久久久国模美| 国产爽快片一区二区三区| 青春草视频在线免费观看| 亚洲国产精品成人久久小说| 18禁动态无遮挡网站| 黄色一级大片看看| 街头女战士在线观看网站| 极品人妻少妇av视频| 久久99热这里只频精品6学生| 韩国高清视频一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 精品国产乱码久久久久久男人| 亚洲色图 男人天堂 中文字幕| 无限看片的www在线观看| 免费在线观看完整版高清| 久久天躁狠狠躁夜夜2o2o | 欧美日韩亚洲国产一区二区在线观看 | 午夜激情av网站| 老汉色av国产亚洲站长工具| 中文精品一卡2卡3卡4更新| 国产日韩欧美在线精品| 日韩制服骚丝袜av| 黑人巨大精品欧美一区二区蜜桃| 丝袜人妻中文字幕| 久久精品久久久久久久性| 在线看a的网站| 不卡av一区二区三区| videosex国产| 一级毛片电影观看| 黄片小视频在线播放| 国产97色在线日韩免费| 韩国高清视频一区二区三区| 欧美在线一区亚洲| 精品国产国语对白av| 在线天堂最新版资源| 啦啦啦中文免费视频观看日本| 日韩欧美一区视频在线观看| 美女扒开内裤让男人捅视频| 亚洲国产精品国产精品| 日本av免费视频播放| 99久久99久久久精品蜜桃| 天天添夜夜摸| 校园人妻丝袜中文字幕| 看十八女毛片水多多多| 黄色怎么调成土黄色| 黄色 视频免费看| 最黄视频免费看| 午夜激情av网站| 欧美日韩成人在线一区二区| 丝袜脚勾引网站| 男女边摸边吃奶| 婷婷色综合www| 捣出白浆h1v1| 精品卡一卡二卡四卡免费| 亚洲,欧美,日韩| 国产日韩一区二区三区精品不卡| 国产精品久久久人人做人人爽| 亚洲伊人久久精品综合| 高清不卡的av网站| 日韩精品免费视频一区二区三区| 国产高清国产精品国产三级| 免费少妇av软件| 欧美精品一区二区免费开放| 亚洲欧美日韩另类电影网站| 国产熟女欧美一区二区| 黄色视频在线播放观看不卡| 成年美女黄网站色视频大全免费| 黄片播放在线免费| 国产成人午夜福利电影在线观看| 可以免费在线观看a视频的电影网站 | 少妇 在线观看| 尾随美女入室| 青春草视频在线免费观看| 青春草视频在线免费观看| 国产男女超爽视频在线观看| 国产精品秋霞免费鲁丝片| 日韩免费高清中文字幕av| 国产精品国产av在线观看| 免费观看a级毛片全部| 狂野欧美激情性xxxx| 日韩 亚洲 欧美在线| 伊人久久国产一区二区| av网站免费在线观看视频| 精品少妇久久久久久888优播| 在线观看人妻少妇| 欧美日韩成人在线一区二区| 亚洲国产欧美网| 飞空精品影院首页| 波野结衣二区三区在线| 激情五月婷婷亚洲| 国产精品免费大片| 青青草视频在线视频观看| av在线app专区| 久久精品亚洲av国产电影网| 99久久综合免费| 午夜免费男女啪啪视频观看| 少妇人妻久久综合中文| 亚洲欧美精品综合一区二区三区| 99精国产麻豆久久婷婷| 男女国产视频网站| 精品亚洲成国产av| 久久久亚洲精品成人影院| 啦啦啦视频在线资源免费观看| avwww免费| 亚洲欧洲国产日韩| 纯流量卡能插随身wifi吗| 一级毛片黄色毛片免费观看视频| 国产成人a∨麻豆精品| 久热这里只有精品99| 亚洲av男天堂| 蜜桃国产av成人99| 精品一品国产午夜福利视频| 亚洲欧美成人综合另类久久久| 久久久久精品性色| 久久久久精品人妻al黑| 精品久久久久久电影网| 欧美日韩精品网址| 欧美黑人欧美精品刺激| 各种免费的搞黄视频| 激情视频va一区二区三区| 欧美日韩综合久久久久久| 在线观看三级黄色| 久久精品久久久久久久性| av有码第一页| 成人国产av品久久久| 中文字幕av电影在线播放| 在线亚洲精品国产二区图片欧美| 国产男女超爽视频在线观看| 啦啦啦在线观看免费高清www| 一边摸一边做爽爽视频免费| 尾随美女入室| 亚洲第一区二区三区不卡| 亚洲国产精品一区三区| 久久久久久久大尺度免费视频| 99国产综合亚洲精品| 十分钟在线观看高清视频www| 中文乱码字字幕精品一区二区三区| 高清欧美精品videossex| 亚洲视频免费观看视频| 丝袜人妻中文字幕| 久久久久视频综合| 日本91视频免费播放| 精品酒店卫生间| 午夜日本视频在线| 亚洲,欧美,日韩| 香蕉国产在线看| 午夜福利视频精品| 亚洲国产毛片av蜜桃av| 天天操日日干夜夜撸| 亚洲av男天堂| 综合色丁香网| 中文字幕精品免费在线观看视频| 精品人妻在线不人妻| 香蕉国产在线看| 无限看片的www在线观看| 成年动漫av网址| 你懂的网址亚洲精品在线观看| 别揉我奶头~嗯~啊~动态视频 | 又黄又粗又硬又大视频| 午夜福利一区二区在线看| 亚洲av成人精品一二三区| 午夜激情av网站| 啦啦啦 在线观看视频| 亚洲情色 制服丝袜| 久久精品aⅴ一区二区三区四区| 国产亚洲欧美精品永久| 少妇精品久久久久久久| 爱豆传媒免费全集在线观看| 免费黄频网站在线观看国产| 一本—道久久a久久精品蜜桃钙片| 热re99久久国产66热| 久久精品国产亚洲av涩爱| 久久综合国产亚洲精品| tube8黄色片| 亚洲国产欧美在线一区| 亚洲国产精品成人久久小说| 久久久亚洲精品成人影院| 秋霞在线观看毛片| 亚洲国产精品999| 国产成人欧美在线观看 | 久久久国产精品麻豆| 男女边吃奶边做爰视频| 女人精品久久久久毛片| 亚洲精品久久久久久婷婷小说| 99久久综合免费| 午夜福利一区二区在线看| 日韩精品有码人妻一区| 国产精品嫩草影院av在线观看| 欧美黑人欧美精品刺激| 国产97色在线日韩免费| 韩国av在线不卡| 免费观看av网站的网址| 亚洲自偷自拍图片 自拍| 亚洲第一区二区三区不卡| 免费黄色在线免费观看| 国产精品无大码| 欧美日韩亚洲高清精品| 国产一区二区在线观看av| videos熟女内射| 最新的欧美精品一区二区| 亚洲 欧美一区二区三区| 日韩 亚洲 欧美在线| 午夜福利免费观看在线| 啦啦啦在线观看免费高清www| 久久人人97超碰香蕉20202| 你懂的网址亚洲精品在线观看| 国产人伦9x9x在线观看| 男女床上黄色一级片免费看| 免费观看性生交大片5| 最近中文字幕2019免费版| 建设人人有责人人尽责人人享有的| 中文字幕色久视频| 国产成人精品福利久久| 精品少妇一区二区三区视频日本电影 | 欧美人与性动交α欧美精品济南到| 成年动漫av网址| 精品国产国语对白av| 香蕉国产在线看| 成年动漫av网址| 99九九在线精品视频| 日本av免费视频播放| 亚洲精品久久成人aⅴ小说| 毛片一级片免费看久久久久| 欧美亚洲 丝袜 人妻 在线| 国产又爽黄色视频| 色综合欧美亚洲国产小说| 99久久人妻综合| 日韩制服骚丝袜av| 免费在线观看完整版高清| 久久99热这里只频精品6学生| 五月开心婷婷网| 嫩草影院入口| 午夜福利,免费看| 在线观看三级黄色| 亚洲精品自拍成人| 精品卡一卡二卡四卡免费| 男人操女人黄网站| 成年人午夜在线观看视频| 成人亚洲欧美一区二区av| 日本爱情动作片www.在线观看| 80岁老熟妇乱子伦牲交| 亚洲天堂av无毛| 综合色丁香网| 国产成人系列免费观看| bbb黄色大片|