• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    工業(yè)副產(chǎn)石膏熱分解脫硫的研究進(jìn)展

    2017-02-17 12:55:03孟令佳吉忠海陳津
    化工進(jìn)展 2017年2期
    關(guān)鍵詞:硫酸鈣氣氛石膏

    孟令佳,吉忠海,陳津

    (太原理工大學(xué)材料科學(xué)與工程學(xué)院,山西 太原 030024)

    工業(yè)副產(chǎn)石膏熱分解脫硫的研究進(jìn)展

    孟令佳,吉忠海,陳津

    (太原理工大學(xué)材料科學(xué)與工程學(xué)院,山西 太原 030024)

    熱分解工業(yè)副產(chǎn)石膏回收利用SO2和固體剩余物是一種有效資源化利用工業(yè)副產(chǎn)石膏的方式,但普遍存在利用成本高、能耗高、效率低等缺點(diǎn),嚴(yán)重限制其循環(huán)利用的發(fā)展。本文介紹了近年來(lái)熱分解工業(yè)副產(chǎn)石膏的研究進(jìn)展。從氣氛條件、還原劑與CaSO4的配比、添加劑或雜質(zhì)的促進(jìn)作用,加熱溫度等方面回顧了不同條件對(duì)工業(yè)副產(chǎn)石膏分解率和脫硫率的影響,對(duì)比研究了微波加熱相對(duì)于常規(guī)加熱還原分解工業(yè)副產(chǎn)石膏的優(yōu)勢(shì),分析了不同反應(yīng)條件下CaSO4與C/CO的反應(yīng)機(jī)理模型。同時(shí)對(duì)工業(yè)副產(chǎn)石膏熱分解的發(fā)展方向和趨勢(shì)進(jìn)行了展望。通過(guò)優(yōu)化反應(yīng)條件能夠有效提高工業(yè)副產(chǎn)石膏的熱分解效率和脫硫率,但成本依舊較高。指出微波加熱分解工業(yè)副產(chǎn)石膏可能成為未來(lái)工業(yè)化的一個(gè)重要方向。

    工業(yè)副產(chǎn)石膏;脫硫;微波加熱

    我國(guó)是一個(gè)燃煤大國(guó),每年煤炭的使用量占一次性能源消費(fèi)總量的65%,煤炭消耗量占世界煤炭消耗量的50%[1]。燃煤過(guò)程中會(huì)產(chǎn)生大量含SO2的煙氣。煙氣脫硫石膏(簡(jiǎn)稱脫硫石膏)是工業(yè)煙氣濕法脫除SO2的副產(chǎn)物,每脫除1t的SO2會(huì)產(chǎn)生2.7t左右的脫硫石膏。隨著我國(guó)工業(yè)化的發(fā)展和環(huán)境保護(hù)的要求,脫硫石膏的產(chǎn)量呈噴發(fā)式增加[2],預(yù)計(jì)到2020年,我國(guó)脫硫石膏的年排放量將達(dá)到8.5×107t[3]。

    工業(yè)副產(chǎn)石膏的利用途徑很廣泛,主要用作水泥緩凝劑、堿度水泥、建筑石膏、紙面石膏板、硫酸鈣晶須及晶須造紙、硫酸銨肥料、改造鹽堿地、輔助水泥加固軟土地基用于道路建設(shè)等方面[4-11]。但是,由于我國(guó)天然石膏資源豐富,分布廣泛,作為一種用量大、價(jià)格便宜的礦產(chǎn),其運(yùn)輸費(fèi)用遠(yuǎn)高于其本身價(jià)格。因而,相較于天然石膏,脫硫石膏又具有運(yùn)輸成本高、雜質(zhì)高、成分不穩(wěn)定等劣勢(shì)[12]。粉碎后的天然石膏粒度在140μm左右,而工業(yè)副產(chǎn)石膏的顆粒過(guò)細(xì),帶來(lái)流動(dòng)性和觸變性的問(wèn)題,并且由于工業(yè)副產(chǎn)石膏含水量高、黏度大,在裝載、提升、輸送等生產(chǎn)過(guò)程中,極易黏附在設(shè)備上,積料堵塞,影響正常生產(chǎn)過(guò)程。因此,工業(yè)上缺少用工業(yè)副產(chǎn)石膏替換天然石膏進(jìn)行生產(chǎn)的積極性。隨著我國(guó)經(jīng)濟(jì)和工業(yè)的高速發(fā)展,工業(yè)副產(chǎn)石膏增速很快,而消納速度相對(duì)滯后,綜合利用率僅為70%左右。每年尚有2×107t脫硫石膏未能得到綜合利用,截止2010年底,累計(jì)庫(kù)存超過(guò)8×107t[13]。工業(yè)副產(chǎn)石膏堆放在渣場(chǎng),占用大量土地資源,對(duì)土壤和地下水源造成污染,形成二次固體污染源。

    為了減少工業(yè)副產(chǎn)石膏的堆積和對(duì)環(huán)境造成的破壞,增加工業(yè)副產(chǎn)石膏的利用途徑,循環(huán)回收利用Ca和S等資源,國(guó)內(nèi)外學(xué)者對(duì)石膏熱分解脫硫進(jìn)行了廣泛的研究,國(guó)內(nèi)企業(yè)也對(duì)石膏熱分解脫硫制取硫酸聯(lián)產(chǎn)水泥工藝進(jìn)行了探索[14-16]。但普遍存在能耗高、效率低、硫酸及水泥生產(chǎn)成本高等問(wèn)題[17-18],嚴(yán)重限制了石膏分解循環(huán)利用工業(yè)的發(fā)展。而且,目前的研究重點(diǎn)集中在:①添加催化劑以降低石膏的分解溫度[19-20];②探究多氣氛碳熱還原分解石膏的機(jī)理[21-23];③尋求石膏和高硫煤的最佳配比,提高收集器中二氧化硫的濃度[24-25]。鮮有論文對(duì)工業(yè)副產(chǎn)石膏熱分解脫硫進(jìn)行系統(tǒng)全面的論述。本文從5個(gè)方面綜述了近年來(lái)石膏熱分解脫硫的研究,分別是氣氛條件、還原劑、添加劑、常溫加熱和微波場(chǎng)加熱下溫度對(duì)石膏脫硫的影響以及石膏脫硫反應(yīng)過(guò)程及機(jī)理模型,為今后研究熱分解工業(yè)副產(chǎn)石膏提供必要的依據(jù)和參考。

    1 氣氛條件對(duì)石膏分解率和脫硫率的影響

    空氣是一個(gè)復(fù)雜的混合氣體體系,按體積分?jǐn)?shù)計(jì)算,空氣中氧氣(O2)含量約為21%,氮?dú)猓∟2)含量約為78%,稀有氣體約占0.939%,二氧化碳(CO2)約占0.031%。因此,研究不同氣氛對(duì)石膏的分解率和脫硫率的影響至關(guān)重要。國(guó)內(nèi)外學(xué)者對(duì)不同氣氛下CaSO4的分解反應(yīng)進(jìn)行了探究。

    肖海平等[26]研究在不同氣氛下CaSO4的分解特性時(shí)發(fā)現(xiàn),在空氣氣氛下,純CaSO4的起始分解溫度為1246℃,終止溫度為1395℃。當(dāng)有O2存在時(shí),CaSO4更趨于穩(wěn)定,CaSO4的分解受到抑制。不同O2濃度下,CaSO4的分解反應(yīng)特性略有不同,主要表現(xiàn)為:隨著O2濃度的增加CaSO4熱分解反應(yīng)發(fā)生滯后、分解速率降低、起始和分解溫度均有所提高,但最終轉(zhuǎn)化率基本相同,維持在92%左右。根據(jù)在非還原性氣氛中CaSO4熱穩(wěn)定性劃分,從大到小依次為O2/CO2氣氛、O2/N2氣氛、CO2氣氛和N2氣氛。而在還原性氣氛CO中,CaSO4的分解溫度顯著降低,CO的存在促進(jìn)了CaSO4的分解反應(yīng)的進(jìn)行。陳升[27]和張雪梅[28]等指出,在還原性氣氛H2/CH4中,CaSO4的分解溫度較空氣氣氛中的分解溫度低,但用H2/CH4混合氣氛輔助分解CaSO4,經(jīng)濟(jì)性不高,無(wú)法滿足工業(yè)生產(chǎn)的要求。因此,從經(jīng)濟(jì)和實(shí)用性方面考慮,當(dāng)前主要選用CO氣氛進(jìn)行石膏分解的研究。

    劉家祥等[29]研究了氟石膏分解特性,通過(guò)控制爐內(nèi)加煤量和氣氛調(diào)節(jié),在1300℃保溫2h,得到不同氣氛條件下氟石膏的分解率和脫硫率,如表1所示。結(jié)果表明,氣氛是影響石膏分解的關(guān)鍵因素,為促進(jìn)石膏完全分解脫硫,必須保證微還原氣氛。

    苗竹等[21]通過(guò)TGA試驗(yàn)結(jié)果發(fā)現(xiàn),在CO氣氛中,石膏的起始分解溫度降低到800℃左右。并且隨著CO濃度的提高,石膏的分解速率加快,CaS的含量也越高。為了生成CaO,提高石膏的脫硫率,最佳CO的濃度為2%。

    表1 不同氣氛條件下石膏的分解率和脫硫率

    2 還原劑對(duì)石膏脫硫率的影響

    還原氣氛可以明顯的降低硫酸鈣的分解溫度[26],分解產(chǎn)物以CaS和CaO為主。反應(yīng)式見式(1)~式(3)。由式(1)~式(3)可知:通過(guò)調(diào)節(jié)溫度和還原劑用量可以生成純度較高的CaO。同時(shí)熱重實(shí)驗(yàn)表明:焦炭和硫酸鈣按碳硫摩爾比(nC∶nS)0.6∶1在不同升溫速率下(2.5~15K/min)加熱,其反應(yīng)開始溫度在1250~1350K(977~1077℃)之間,最終產(chǎn)物為CaO,硫酸鈣的脫硫率為99.35%。

    鄭達(dá)等[31]在差熱分析儀中研究無(wú)煙煤輔助加熱脫硫石膏的分解機(jī)理時(shí)發(fā)現(xiàn),N2氣氛下,n(C)/n(CaSO4)從0到2變化,坩堝中無(wú)煙煤和脫硫石膏混合物料質(zhì)量為20mg。隨著n(C)/n(CaSO4)的增加,生成CaO的產(chǎn)量先增加后減少。當(dāng)n(C)/n(CaSO4)為0.5時(shí),生成的CaO量最多。然而,在管式爐中,N2氣氛下,混合物料的質(zhì)量為200mg,n(C)/n(CaSO4)為1.2時(shí),生成的CaO量最大。

    馬林轉(zhuǎn)等[31]研究了高硫煤對(duì)磷石膏的影響。在管式爐中,N2氣氛下,加入10g不同n(C)/n(CaSO4)的高硫煤與磷石膏混合物料,n(C)/n(CaSO4)為0.7~0.8時(shí),混合物料的脫硫率最大。方祖國(guó)等[32]采用高硫煤與煤矸石制備復(fù)合還原劑還原分解磷石膏,在管式爐中,加入混合物料10g,將物料加熱到1000℃。當(dāng)高硫煤和煤矸石組成的復(fù)合還原劑與磷石膏的n(C)/n(CaSO4)為0.7時(shí),磷石膏的脫硫率最高為90%。鄭紹聰?shù)萚33]用高硫煤做還原劑還原分解磷石膏發(fā)現(xiàn),在管式爐中,N2氣氛下,加入15g不同n(C)/n(CaSO4)的高硫煤與磷石膏混合物料,加熱到1000℃,n(C)/n(CaSO4)為1.18時(shí)磷石膏的脫硫率最高,最大為95.16%。

    對(duì)比石膏分解熱重實(shí)驗(yàn)和管式爐實(shí)驗(yàn)發(fā)現(xiàn),熱重實(shí)驗(yàn)時(shí)坩堝中物料較少,石膏與煤的反應(yīng)滿足熱力學(xué)關(guān)系,最佳n(C)/n(CaSO4)為0.5,在管式爐中,隨著反應(yīng)器中反應(yīng)物料質(zhì)量的增加和反應(yīng)條件的變化,獲得最大脫硫率時(shí)實(shí)際n(C)/n(CaSO4)偏離理想n(C)/n(CaSO4)較大,最佳n(C)/n(CaSO4)在0~2之間變化。本文作者課題組[34]為了更深入地探究物料較多時(shí)脫硫石膏分解脫硫的條件,將1kg配加10%磁鐵礦和8%無(wú)煙煤的脫硫石膏混合物料放入微波加熱爐中熱分解脫硫,最終脫硫率可達(dá)93.86%,為工業(yè)化高效、環(huán)?;厥绽妹摿蚴嗵峁┝酥匾膶?shí)驗(yàn)基礎(chǔ)。

    3 添加劑對(duì)石膏脫硫率的影響

    1915年,MULLER首先提出以焦炭作還原劑,添加SiO2、Al2O3和Fe2O3來(lái)進(jìn)一步降低CaSO4分解溫度,減少中間工序,利用石膏制硫酸聯(lián)產(chǎn)水泥。此后,為了探究添加劑對(duì)石膏脫硫率的影響,國(guó)內(nèi)外學(xué)者進(jìn)行了大量卓有成效的研究。

    鄭紹聰?shù)萚35]研究了不同氣氛條件下磷石膏熱分解的分解特性,在同步熱分析儀中分別對(duì)磷石膏和純石膏進(jìn)行了熱分解對(duì)比實(shí)驗(yàn)。在空氣氣氛中,純石膏的起始分解溫度為1250℃,終止溫度為1405℃,而磷石膏熱分解的起始溫度為1000℃,終止溫度為1370℃,磷石膏中的雜質(zhì)降低了CaSO4的分解溫度,促進(jìn)了磷石膏的分解。

    徐仁偉[36]探究焦炭中的雜質(zhì)(Fe2O3、SiO2、CaO)對(duì)硫酸鈣還原分解反應(yīng)的影響時(shí)指出,F(xiàn)e2O3的加入會(huì)促進(jìn)硫酸鈣分解;SiO2的加入,前期由于硫酸鈣與SiO2反應(yīng)而促進(jìn)反應(yīng)進(jìn)行,后期由于生成熔融硅酸鈣包裹在硫酸鈣上,阻礙了反應(yīng)進(jìn)行;CaO的加入阻礙了硫酸鈣的分解,但阻礙作用不大。

    VAN DER MERWE等[37]報(bào)道稱,作為催化劑,純Fe2O3的加入能顯著降低CaSO4的分解溫度。在N2氣氛下,在CaSO4中添加5%的Fe2O3,CaSO4與石墨的還原分解溫度降低到873℃。

    MIHARA等[38]探究了在2%CO、30%CO2和N2氣氛中,添加劑SiO2、Al2O3和Fe2O3分別對(duì)石膏還原分解的作用。實(shí)驗(yàn)結(jié)果表明,SiO2和Al2O3的添加對(duì)CaS沒(méi)有抑制作用,而添加5%(摩爾比)Fe2O3后,抑制了CaS的生成,降低了石膏的分解溫度,而且生成低共熔物鐵酸鈣,促進(jìn)了脫硫率的提高。

    鄧少剛等[39]采用TGA方法分析,研究N2氣氛下純FeS對(duì)二水石膏熱分解特性的影響和分解動(dòng)力學(xué)。隨著FeS與石膏摩爾比從1∶22到3∶22的增加,石膏的分解活化能顯著降低,而分解反應(yīng)開始溫度從1350℃降低到998℃,促進(jìn)了石膏的分解。

    YAN等[19]在CO氣氛下,研究純FeCl3與磷石膏的反應(yīng)機(jī)理時(shí)指出,F(xiàn)eCl3改變了石膏還原分解反應(yīng)的選擇性,降低了石膏的分解溫度,促進(jìn)石膏的分解,更有利于SO2的形成。

    參照以上研究發(fā)現(xiàn),鐵離子(Fe2+/Fe3+)化合物對(duì)石膏的分解具有明顯的促進(jìn)作用。從經(jīng)濟(jì)層面和微波加熱效率方面考慮,本文作者課題組[40]選用工業(yè)級(jí)磁鐵礦(Fe3O4)作為吸波劑和反應(yīng)促進(jìn)劑配加入脫硫石膏中發(fā)現(xiàn),F(xiàn)e3O4能明顯降低脫硫石膏反應(yīng)溫度,反應(yīng)分解渣可以作為高爐燒結(jié)礦的熔劑配料來(lái)使用,配加5 %分解渣的燒結(jié)礦化學(xué)成分與太鋼燒結(jié)礦的化學(xué)成分無(wú)顯著區(qū)別。

    4 溫度對(duì)石膏脫硫率的影響

    4.1 常規(guī)加熱條件下溫度對(duì)石膏脫硫率的影響

    溫度是影響石膏脫硫率的另一個(gè)重要因素。YAN等[41]應(yīng)用FactSage 6.1軟件進(jìn)行熱力學(xué)計(jì)算時(shí)發(fā)現(xiàn),磷石膏的分解是強(qiáng)吸熱反應(yīng)。在CO氣氛下,CaSO4在較低溫度下(800~1000℃)反應(yīng),S6+更容易還原成S2?,生成CaS。隨著溫度的升高,石膏的分解率迅速上升。加熱到1100℃以上時(shí),S6+主要還原成S4+,生成CaO和SO2,促進(jìn)脫硫率的上升。VAN DER MERWE等[37]指出,碳還原分解CaSO4生成CaO的中間產(chǎn)物是CaS,且在700~1100℃之間均有中間產(chǎn)物CaS的形成。

    KATO等[42]在N2氣氛下,碳還原分解石膏時(shí)發(fā)現(xiàn),溫度在700~1000℃時(shí),隨著溫度的升高,CaO的生成量增加。n(C)/n(CaSO4)為0.5時(shí),加熱到800℃以上時(shí),開始生成CaO,加熱到950℃左右時(shí),CaO的量迅速增加,繼續(xù)加熱到1000℃,保溫1h后,CaO的轉(zhuǎn)化率為90%。

    鄭紹聰?shù)萚24]探究溫度對(duì)SO2的生成量的影響。在N2氣氛下,將磷石膏與高硫煤的混合物料分別加熱到950℃、1000℃、1050℃和1100℃。隨著溫度的升高,SO2的生成濃度增高,生成量增加。在950℃時(shí)SO2的濃度很低,只有2.3%。在1000℃時(shí)SO2的最大濃度為7.6%,持續(xù)時(shí)間為9min。在1050℃時(shí)SO2的最大生成濃度不變,持續(xù)時(shí)間增加到10min。但在1100℃時(shí),樣品融化,磷石膏被液相包裹,無(wú)法反應(yīng)完全,SO2的最大生成濃度持續(xù)時(shí)間僅為3min。

    MONTAGNA等[43]在硫化床上還原分解硫酸鈣時(shí)發(fā)現(xiàn),反應(yīng)溫度從1010℃到1095℃時(shí),物料的反應(yīng)完成時(shí)間由30min減少到18min,分解反應(yīng)速率上升,CaO的生成量由21%升高到89%,硫化床氣氛中SO2的含量由0.8%升高到7.3%。溫度高于1095℃時(shí),顆粒黏結(jié)在一起,SO2的濃度減少15%左右。

    通過(guò)以上研究得出,低溫下,石膏與C/CO發(fā)生還原分解反應(yīng)更易于生成CaS。在800~1100℃范圍內(nèi),隨著溫度的升高,有利于CaO和SO2的產(chǎn)生。溫度高于1100℃,樣品融化包裹未反應(yīng)石膏,不利于分解反應(yīng)的進(jìn)行。而且,常規(guī)加熱主要通過(guò)傳導(dǎo)、對(duì)流、輻射的方式進(jìn)行物料加熱,溫度由外及內(nèi)依次降低,存在加熱效率低、能耗高、冷中心等問(wèn)題,隨著反應(yīng)溫度的升高,物料黏結(jié),反應(yīng)后回轉(zhuǎn)窯出現(xiàn)結(jié)圈現(xiàn)象,對(duì)回轉(zhuǎn)窯的安全連續(xù)使用造成損害,嚴(yán)重限制了脫硫石膏的分解利用[44-46]。

    4.2 微波加熱條件下溫度對(duì)石膏脫硫率的影響

    相比于常規(guī)加熱,在微波場(chǎng)中,物料中介電物質(zhì)的分子或原子耦合極化,并隨著電磁場(chǎng)轉(zhuǎn)向、排列,克服原來(lái)的熱運(yùn)動(dòng)和分子間引力作用,將介電損耗轉(zhuǎn)化為熱能,使物料升溫[47-48]。

    為了探究常規(guī)加熱與微波場(chǎng)中加熱溫度對(duì)脫硫率的影響,對(duì)微波加熱與常規(guī)加熱進(jìn)行了對(duì)比。微波加熱場(chǎng)中選取的試樣為:配加10%磁鐵礦和8%無(wú)煙煤的脫硫石膏混合物料。圖1(a)和圖1(b)為實(shí)驗(yàn)中測(cè)得的實(shí)際散點(diǎn)數(shù)據(jù),通過(guò)線性擬合可以得出,隨著溫度的升高,石膏的脫硫率呈單調(diào)直線遞增。由實(shí)驗(yàn)所得數(shù)據(jù)求斜率可知,微波場(chǎng)加熱下物料的脫硫率斜率明顯高于常規(guī)加熱下的斜率,說(shuō)明隨著溫度的增加,微波加熱條件下的脫硫率比常規(guī)加熱下的脫硫率增長(zhǎng)的更快,具有更好的脫硫效果。同時(shí),同溫度下兩種加熱方式的脫硫率也明顯的不同,微波加熱1000℃時(shí)物料的脫硫率為56.82%(常規(guī)加熱1000℃時(shí)物料的脫硫率為38.17%),而常規(guī)加熱到1200℃時(shí),物料的脫硫率僅為46.97%(同脫硫率對(duì)應(yīng)的微波加熱場(chǎng)溫度為960℃左右),說(shuō)明隨著物料溫度的升高,微波加熱比常規(guī)加熱對(duì)脫硫率的影響更大,且具有更低的分解溫度。微波加熱下脫硫率的增強(qiáng)應(yīng)該歸因于微波的選擇性加熱。無(wú)煙煤和磁鐵礦是良好的微波吸收劑,在微波場(chǎng)中被選擇性加熱,吸收大量的微波能,形成熱點(diǎn),熱點(diǎn)附近的脫硫石膏溫度高于物料的觀測(cè)溫度,這使得微波條件下物料的分解溫度相比于常規(guī)加熱有所降低[40]。

    圖1 微波加熱與常規(guī)加熱不同溫度下混合物料的脫硫率及擬合曲線

    并且,微波加熱為體加熱,溫度梯度由內(nèi)向外,物料反應(yīng)也由內(nèi)向外進(jìn)行。在反應(yīng)的過(guò)程中,雖然也產(chǎn)生了液相,但液相由內(nèi)向外擴(kuò)展,最外部物料黏結(jié)現(xiàn)象較少,避免了物料結(jié)圈現(xiàn)象的發(fā)生[52]。

    5 石膏脫硫反應(yīng)過(guò)程及機(jī)理模型

    CaSO4與C/CO的反應(yīng)機(jī)制隨反應(yīng)溫度和C/CO含量的不同而不同。

    KATO等[42]在研究碳還原分解石膏時(shí)發(fā)現(xiàn),當(dāng)n(C)/n(CaSO4)為0.25時(shí),在800~900℃條件下生成CaS,900℃度的條件下,CaSO4、CaS、CaO三者共存,而在1000℃時(shí),殘余物中CaS消失,僅含有CaSO4和CaO。據(jù)此,KATO等認(rèn)為CaSO4與C的反應(yīng)為兩步反應(yīng):第一步,通過(guò)反應(yīng)式(1)生成CaS;第二步,生成的CaS與CaSO4發(fā)生反應(yīng)生成CaO,即反應(yīng)式(2)。反應(yīng)過(guò)程中,CaO由CaS和CaSO4反應(yīng)生成,CaSO4與C無(wú)法直接生成CaO。而且,隨著碳含量的增加,反應(yīng)式(2)被抑制,最終的反應(yīng)產(chǎn)物以CaS為主。

    TURKDOGAN和VINTERS[50]在回轉(zhuǎn)窯中溫度區(qū)間為900~1100℃時(shí)對(duì)CaSO4與不同碳材料的反應(yīng)機(jī)理進(jìn)行探究。研究表明,CaSO4與C反應(yīng)的中間產(chǎn)物為CaS。反應(yīng)式(1)可在較低溫度下進(jìn)行,生成CaS,隨著溫度的增加,反應(yīng)式(3)開始生成CaO,CaSO4與C的反應(yīng)滿足平行競(jìng)爭(zhēng)反應(yīng)機(jī)理。

    肖海平等[51]采用熱重等溫實(shí)驗(yàn)研究在不同CO體積分?jǐn)?shù)下CaSO4的分解反應(yīng),實(shí)驗(yàn)溫度分別為950℃、1000℃、1040℃、1080℃,并利用紅外光譜儀實(shí)時(shí)分析對(duì)比反應(yīng)析出的氣體成分。在0.5%CO氣氛下,CaSO4的分解產(chǎn)物主要以CaO為主;而在4%CO氣氛下,反應(yīng)初期,CaSO4的分解產(chǎn)物以CaO為主,隨著反應(yīng)的進(jìn)行,CaSO4的分解產(chǎn)物以CaS為主,隨著溫度的升高,CaS的最終生成量降低。在2% CO氣氛下,CaSO4與CO發(fā)生平行競(jìng)爭(zhēng)反應(yīng)生成CaO與CaS,在1000℃以下以生成CaS為主,1000℃以上以生成CaO為主。

    CaSO4與C/CO的反應(yīng)模型也存在著爭(zhēng)議,目前討論較多的是CaO成核生長(zhǎng)模型和縮核模型。

    SUYADAL等[52]探究了在流化床中磷石膏與油頁(yè)巖的反應(yīng)動(dòng)力學(xué),在1000℃磷石膏與油頁(yè)巖中的C反應(yīng),隨著反應(yīng)時(shí)間的變化,脫硫率呈S形曲線增加,符合Avrami成核生長(zhǎng)模型的特點(diǎn)。ZHENG等[53]在化學(xué)鏈燃燒CO還原分解CaSO4時(shí),應(yīng)用成核生長(zhǎng)模型解釋CaSO4與CO生成CaO和CaS的平行競(jìng)爭(zhēng)反應(yīng),擬合度較高。

    JAE等[54]通過(guò)CaSO4熱重實(shí)驗(yàn),研究CaSO4與CO還原反應(yīng)機(jī)理時(shí)發(fā)現(xiàn),在1150℃、5%CO/20%CO2/5%SO2氣氛下,CaSO4與CO首先發(fā)生反應(yīng),生成CaO,反應(yīng)時(shí)間為0~30min時(shí),隨著反應(yīng)時(shí)間的延長(zhǎng),反應(yīng)物重量變化經(jīng)歷3個(gè)反應(yīng)階段:①誘導(dǎo)階段,反應(yīng)速率較慢,質(zhì)量緩慢減少;②加速階段,質(zhì)量快速降低;③平穩(wěn)階段,質(zhì)量逐漸保持不變。在誘導(dǎo)階段,反應(yīng)速率受CaO形核速率的影響,隨著CaO形核量的增多,晶核長(zhǎng)大,反應(yīng)進(jìn)入加速階段。在1150℃,CaSO4與CO還原分解的模型為CaO成核生長(zhǎng)模型。由于反應(yīng)氣氛中CO過(guò)量,且生成的SO2未能及時(shí)排出,發(fā)生如式(4)反應(yīng),重新生成CaS。

    反應(yīng)殘留物的電子顯微圖顯示,物料顆粒燒結(jié)熔融在一起。CO與燒結(jié)反應(yīng)燒結(jié)產(chǎn)物中的CaO發(fā)生氣固反應(yīng),生成CaS的厚度隨著反應(yīng)時(shí)間的延長(zhǎng)而增加,反應(yīng)模型為縮核模型。而YAN等[41]在管式爐中,CO氣氛下,F(xiàn)e離子催化磷石膏反應(yīng)機(jī)理中提到,磷石膏反應(yīng)模型為收縮核模型,但并未作出進(jìn)一步解釋。

    KAMPHUIS等[55]認(rèn)為,在827℃左右,CaSO4與CaS先形成液態(tài)共熔體,在液相共熔體中,CaSO4與CaS被離子化,SO42–與S2–發(fā)生氧化還原反應(yīng)生成SO2,反應(yīng)速率被大大加快。DAVIES等[56]采用SEM和EDAX對(duì)CaSO4與CaS反應(yīng)殘余物進(jìn)行分析,證實(shí)液相共熔體的存在。肖海平等[57]利用熱重分析儀研究CaSO4與CaS的反應(yīng)時(shí)發(fā)現(xiàn),反應(yīng)后試樣顆粒間板結(jié)成塊,試樣顆粒黏結(jié)在坩堝壁上,說(shuō)明反應(yīng)過(guò)程中有液相的存在。KOSTYLKOV等[58]研究表明,還原分解CaSO4生成的液相依賴于金屬氧化物雜質(zhì)的存在。MIHARA等[38]采用XRD和SEM對(duì)CO氣氛下,CaSO4與Fe2O3、SiO2、Al2O3反應(yīng)剩余物進(jìn)行檢測(cè)分析,證實(shí)Ca2Fe2O5、Ca2SiO4、Ca3Al2O6等化合物的存在,MIHARA認(rèn)為在Fe2O3、SiO2、Al2O3存在的情況下,CaSO4與其分解產(chǎn)物形成低熔點(diǎn)共熔物,促進(jìn)了CaSO4還原分解反應(yīng)的進(jìn)行和脫硫率的提高。

    據(jù)此,本文作者判斷,在1000℃以上,石膏與C/CO還原分解的模型為CaO成核生長(zhǎng)模型。常規(guī)加熱下,固定床中存在由外向內(nèi)的溫度梯度,石膏的分解反應(yīng)由外向內(nèi)進(jìn)行,在過(guò)程中有液相產(chǎn)生,反應(yīng)模型為成核生長(zhǎng)模型,而反應(yīng)進(jìn)行的過(guò)程為縮核模型。而流化床中,物料顆粒溫度均勻,分散性好,石膏分解的模型仍表現(xiàn)為成核生長(zhǎng)模型。本文作者課題組[49]通過(guò)微波加熱下脫硫石膏的反應(yīng)模型同樣得出,脫硫石膏分解的模型為成核生長(zhǎng)模型。

    6 展望

    隨著環(huán)境、能源和資源的問(wèn)題越來(lái)越突出,走可持續(xù)發(fā)展的道路已經(jīng)迫在眉睫。以熱分解工業(yè)副產(chǎn)石膏回收利用二氧化硫和固體剩余物為代表的方法能夠很大程度上解決這個(gè)問(wèn)題。然而實(shí)踐中存在大量問(wèn)題,諸如:實(shí)驗(yàn)室內(nèi)精確的條件控制和實(shí)際工廠生產(chǎn)的不匹配;傳統(tǒng)回轉(zhuǎn)窯用焦炭還原分解工業(yè)副產(chǎn)石膏效率低下,運(yùn)行溫度高,耗能大;流化床中反應(yīng)物料堆積嚴(yán)重,有效的傳熱和傳質(zhì)很低。通過(guò)優(yōu)化反應(yīng)條件能夠很大程度上解決這些問(wèn)題,但是設(shè)備運(yùn)行成本依舊很高,有效控制成本成為工業(yè)副產(chǎn)石膏回收利用的重要一環(huán)。近年來(lái),新興的微波加熱以其特有的體加熱、選擇性加熱、安全環(huán)保、加熱速度快、成本低等優(yōu)勢(shì)引起廣泛的重視,可能成為未來(lái)高效熱分解工業(yè)副產(chǎn)石膏的有效方式。

    [1] 張娟,艾華. 我國(guó)火電廠煙氣脫硫工藝現(xiàn)狀及發(fā)展綜述[J]. 環(huán)境節(jié)約與環(huán)保,2016(4):22-27. ZHANG J,AI H. Discussion on heat recovery and utilization in sulfuric acid engineering[J]. Resources Economization & Environmental Protection,2016(4):22-27.

    [2] JIANG G M,WANG H,CHEN Q S,et al. Preparation of alpha-calcium sulfate hemihydrate from FGD gypsum in chloride-free Ca(NO3)2solution under mild conditions[J]. Fuel,2016,174:235-241.

    [3] 韓靈翠,王永昌. 節(jié)能減排與綜合利用并重是化學(xué)產(chǎn)業(yè)發(fā)展方向[J]. 磷肥與復(fù)肥,2010,25(6):11-13. HAN L C,WANG Y C. Development of chemical gypsum industry depends on the integration of energy saving and emission reduction with comprehensive utilization[J]. Phosphate & Compound Fertilizer,2010,25(6):11-13.

    [4] LEIVA C,ARENAS C G,VILCHES L F,et al. Use of FGD gypsum in fire resistant panels[J]. Waste Management,2010,30(6):1123-9.

    [5] TZOUVALAS G,RANTIS G,TSIMAS S. Alternative calcium-sulfate-bearing materials as cement retarders: Part Ⅱ. FGD gypsum[J]. Cement & Concrete Research,2004,34(11):2119-2125.

    [6] TELESCA A,MARROCCOLI M,CALABRESE D,et al. Flue gas desulfurization gypsum and coal fly ash as basic components of prefabricated building materials[J]. Waste Management,2013,33(3):628-633.

    [7] LI X P,MAO Y M,LIU X C. Flue gas desulfurization gypsum application for enhancing the desalination of reclaimed tidal lands[J]. Ecological Engineering,2015,82:566-570.

    [8] LI J,ZHUANG X G,LEIVA C,et al. Potential utilization of FGD gypsum and fly ash from a Chinese power plant for manufacturing fire-resistant panels[J]. Construction & Building Materials,2015,95:910-921.

    [9] 郝繼斌,龐仁杰. 磷石膏制酸聯(lián)產(chǎn)水泥的生產(chǎn)與操作[J]. 磷肥與復(fù)肥,1998(6):57-63. HAO J B,PANG R J. Operation and production of cement and acid from phosphogypsum[J]. Phosphate & Compound Fertilizer,1998(6):57-63.

    [10] 呂鵬飛,費(fèi)德君,黨亞固. Fe3+對(duì)水熱合成硫酸鈣晶須性能的影響[J]. 化工進(jìn)展,2014,33(1):165-168. Lü P F,F(xiàn)EI D J,DANG Y G. Influence of Fe3+on calcium sulfate whisker by hydrothermal synthesis[J]. Chemical Industry and Engineering Progress,2014,33(1):165-168.

    [11] 呂鵬飛,費(fèi)德君,黨亞固. 磷石膏制備硫酸鈣晶須及晶須造紙應(yīng)用的研究進(jìn)展[J]. 化工進(jìn)展,2013,32(4):842-847. Lü P F,F(xiàn)EI D J,DANG Y G. Preparation of calcium sulfate whisker from phosphogypsum and its application[J]. Chemical Industry and Engineering Progress,2013,32(4):842-847.

    [12] 鐘世云,陳維燈,賀鴻珠. 脫硫石膏應(yīng)用技術(shù)現(xiàn)狀及其發(fā)展趨勢(shì)[J].粉煤灰,2009,21(6):35-37. ZHONG S Y,CHEN W D,HE H Z. The state-of-the-art of applied technology for FGD gypsum and its developing tedency[J]. Coal Ash,2009,21(6):35-37.

    [13] 鄭達(dá). 脫硫石膏還原分解特性及反應(yīng)機(jī)理研究[D]. 南京:南京理工大學(xué),2013. ZHENG D. Reductive decomposition and reaction mechanism of FGD gypsum[D]. Nanjing:Nanjing University of Science & Technology,2013.

    [14] 曾亞平,黨亞固,費(fèi)德君. 制備高品質(zhì)磷石膏的濕法磷酸新工藝的開發(fā)[J]. 化工進(jìn)展,2015,34(s1):167-172. ZENG Y P,DANG Y G,F(xiàn)EI D J. Development of the new wet phosphoric process of preparing high-quality phosphogypsum[J]. Chemical Industry and Engineering Progress,2015,34(s1):167-172.

    [15] 趙建國(guó),李曉強(qiáng),楊妍慧. 磷石膏制硫酸聯(lián)產(chǎn)水泥(或熟料)技術(shù)進(jìn)展評(píng)述[J]. 云南化工,2007,34(s2):6-12. ZHAO J G,LI X Q,YANG Y H. Discussion on technology advance for the combined production of cement and sulfuric acid from phosphogypsum[J]. Yunnan Chemical Technology,2007,34(s2):6-12.

    [16] 劉少文,張茜,吳元欣,等. 熱分析在磷石膏制酸反應(yīng)研究中的應(yīng)用[J]. 化工進(jìn)展,2008,27(5):761-764. LIU S W,ZHANG Q,WU Y X,et al. Thermal analysis and itsapplication in the investigation of reaction process for sulfuric acid production from phosphogypsum[J]. Chemical Industry and Engineering Progress,2008,27(5):761-764.

    [17] 王艷梅,劉梅堂,孫華,等. 磷石膏轉(zhuǎn)氨法制硫酸技術(shù)原理與過(guò)程評(píng)價(jià)[J]. 化工進(jìn)展,2015,34(s1):196-201. WANG Y M,LIU M T,SUN H,et al. Preparation of sulfuric acid from phosphogypsum by ammonium-transferred method:technical principle and process evalution[J]. Chemical Industry and Engineering Progress,2015,34(s1):196-201.

    [18] 鮑樹濤. 魯北大型磷石膏制硫酸聯(lián)產(chǎn)水泥裝置運(yùn)行及其技術(shù)、經(jīng)濟(jì)綜述[C]//全國(guó)磷肥、硫酸行業(yè)年會(huì),2008. BAO S T. Discussion on technology advance for the combined production of cement and sulfuric acid from phosphogypsum in Lubei[C]//The Sulfuric Acid Phosphate Fertilizer Industry Convention,2008.

    [19] YAN B,MA L P,MA J,et al. Mechanism analysis of Ca,S transformation in phosphogypsum decomposition with Fe catalyst[J]. Industrial & Engineering Chemistry Research,2014,53(18):7648-7654.

    [20] SONG T,ZHENG M,SHEN L H,et al. Mechanism investigation of enhancing reaction performance with CaSO4/Fe2O3oxygen carrier in chemical-looping combustion of coal[J]. Industrial & Engineering Chemistry Research,2013,52(11):4059-4071.

    [21] MIAO Z,YANG H R,WU Y X,et al. Experimental studies on decomposing properties of desulfurization gypsum in a thermogravimetric analyzer and multiatmosphere fluidized beds[J]. Industrial & Engineering Chemistry Research,2012,51:5419-5423.

    [22] MA L,DU Y L,NIU X K,et al. Thermal and kinetic analysis of the process of thermochemical decomposition of phosphogypsum with CO and additives[J]. Industrial & Engineering Chemistry Research,2012,51(19):6680-6685.

    [23] ZHANG X M,SONG X F,SUN Z,et al. Density functional theory study on the mechanism of calcium sulfate reductive decomposition by carbon monoxide[J]. Industrial & Engineering Chemistry Research,2012,110(18):204-211.

    [24] ZHENG S C,NING P,MA L P,et al. Reductive decomposition of phosphogypsum with high-sulfur-concentration coal to SO2,in an inert atmosphere[J]. Chemical Engineering Research & Design,2011,89(12A):2736-2741.

    [25] 方祖國(guó),寧平,楊月紅,等. 復(fù)合還原劑還原分解磷石膏的影響因素[J]. 化工進(jìn)展,2009,28(3):522-527. FANG Z G,NING P,YANG Y H,et al. Influence factors of deoxidizing phosphogypsum by compound reducing agent[J]. Chemical Industry and Engineering Progress,2009,28(3):522-527.

    [26] 肖海平,周俊虎,曹欣玉,等. CaSO4在不同氣氛下分解特性的實(shí)驗(yàn)研究[J]. 動(dòng)力工程學(xué)報(bào),2004,24(6):889-892. XIAO H P,ZHOU J H,CAO X Y,et al. Experimental study of decomposition behavior of CaSO4in different atmospheres[J]. Power Engineering,2004,24(6):889-892.

    [27] 陳升,劉少文. 氫氣還原分解硫酸鈣的熱力學(xué)研究[J]. 化學(xué)工業(yè)與工程技術(shù),2012,33(5):7-11. CHEN S,LIU S W. Thermodynamic study on reductive decomposition of calcium sulfate with hydrogen[J]. Journal of Chemical Industry & Engineering,2012,33(5):7-11.

    [28] 張雪梅,徐仁偉,孫淑英,等. 硫酸鈣的還原熱分解特性研究[J]. 環(huán)境科學(xué)與技術(shù),2010(s2):144-148. ZHANG X M,XU R W,SUN S Y,et al. Study on the character of calcium sulfate reducing decomposition[J]. Environmental Science & Technology,2010(s2):144-148.

    [29] 劉家祥,吳華夏. 氟石膏分解特性的實(shí)驗(yàn)研究[J]. 北京化工大學(xué)學(xué)報(bào)(自然科學(xué)版),2003,30(6):36-40. LIU J X,WU H X. Experimental research on fluorgypsum decomposition characters[J]. Journal of Beijing University of Chemical Technology,(Natural Science Edition)2003,30(6):36-40.

    [30] ZHENG D,LU H L,SUN X Y,et al. Reaction mechanism of reductive decomposition of FGD gypsum with anthracite[J]. Thermochimica Acta,2013,559(2):23-31.

    [31] MA L Z,NING P,QING S. Study on influence factors between high sulfur coal and phosphogypsum[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2009,48(2):85-89.

    [32] 方祖國(guó),寧平,楊月紅,等. 復(fù)合還原劑還原分解磷石膏制取高濃度二氧化硫[J]. 無(wú)機(jī)鹽工業(yè),2009,41(1):48-50. FANG Z G,NING P,YANG Y H,et al. Preparation of high-concentration sulfur dioxide from deoxidizing phosphogypsum with compound reducing agent[J]. Inorganic Chemicals Industry,2009,41(1):48-50.

    [33] 鄭紹聰,寧平,馬麗萍,等. 高硫煤還原磷石膏制SO2[J]. 化學(xué)工程,2010,38(8):35-38. ZHENG S C,NING P,MA L P,et al. Reduction of phosphogypsm to sulfur dioxide with high sulfur coal[J]. Chemical Engineering(China),2010,38(8):35-38.

    [34] JI Z H,CHEN J,GUO Y,et al. Magnetite and anthracite assisted microwave heating flue gas desulfurization gypsum[J]. Chemical Engineering & Processing Process Intensification,2016,105:73-78.

    [35] 鄭紹聰,寧平,馬麗萍,等. 不同氣氛下磷石膏熱分解的反應(yīng)特性[J]. 武漢理工大學(xué)學(xué)報(bào)(交通科學(xué)與工程版),2010,34(3):580-583. ZHENG S C,NING P,MA L P,et al. Reaction properties of thermal decomposition of phosphogypsum in different atmospheres[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering),2010,34(3):580-583.

    [36] 徐仁偉. 焦炭及其雜質(zhì)對(duì)硫酸鈣熱解過(guò)程影響的研究[D]. 上海:華東理工大學(xué),2011. XU R W. Study on the influence of cake and its impurities on pyrolysis process of calcium sulfate[D]. Shanghai:East China University of Science and Technology,2011.

    [37] VAN DER MERWE E M,STYDOM C A,POTGIETER J H. Thermogravimetric analysis of the reaction between carbon and CaSO4·2H2O,gypsum and phosphogypsum in an inert atmosphere[J]. Thermochimica Acta,1999,S340/341(7):431-437.

    [38] MIHARA N,KUCHAR D,KOJIMA Y,et al. Reductive decomposition of waste gypsum with SiO2,Al2O3,and Fe2O3additives[J]. Journal of Material Cycles & Waste Management,2007,9(1):21-26.

    [39] 鄧少剛,王俊哲,黃鵬輝,等. FeS還原CaSO4的熱分解動(dòng)力學(xué)研究[J]. 磷肥與復(fù)肥,2015,30(3):5-10. DENG S G,WANG J Z,HUANG P H,et al. Study on thermal decomposition kinetics of CaSO4reduced with FeS[J]. Phosphate & Compound Fertilizer,2015,30(3):5-10.

    [40] 吉忠海,陳津,郭宇,等. 微波加熱分解脫硫石膏生產(chǎn)燒結(jié)礦研究[J]. 化工進(jìn)展,2016,35(7):2251-2258.JI Z H,CHEN J,GUO Y,et al. Decomposition of flue gas desulfurization(FGD) gypsum under microwave heating to produce sinter ore[J]. Chemical Industry and Engineering Progress,2016,35(7):2251-2258.

    [41] YAN B,MA L P,XIE L G,et al. Reaction mechanism for iron catalyst in the process of phosphogypsum decomposition[J]. Industrial & Engineering Chemistry Research,2013,52(49):17383-17389.

    [42] KATO T,MURAKAMI K,SUGAWARA K. Carbon reduction of gypsum produced from flue gas desulfurization[J]. Archiv Für Klinische Und Experimentelle Dermatologie,2012,29(1):805-810.

    [43] MONTAGNA J C,LENC J F,VOGEL G J,et al. Regeneration of sulfated dolomite from a coal-fired FBC process by reductive decomposition of calcium sulfate in a fluidized bed[J]. Industrial & Engineering Chemistry Process Design & Development,1977,16(2):230-236.

    [44] 孫宏飛,陳津,張猛,等. 微波場(chǎng)中高碳錳鐵粉及固相脫碳物料的電磁性能[J]. 鋼鐵研究學(xué)報(bào),2012,24(8):12-15. SUN H F,CHEN J,ZHANG M,et al. Electromagnetic properties of solid phase decarburization of high carbon ferromanganese powders[J]. Journal of Iron and Steel Research,2012,24(8):12-15.

    [45] 鄺焯榮,吳笑梅,樊粵明,等. 預(yù)分解窯結(jié)皮與窯皮的X射線衍射分析[J]. 水泥,2011(6):26-28. KUANG Z R,WU X M,F(xiàn)AN Y M,et al. The XRD analysis of curst and coating in PC kiln[J]. Cement,2011(6):26-28.

    [46] 張杭,馬麗萍,胡建紅,等. 不同分解工藝下磷石膏分解制水泥熟料的LCA研究[J]. 材料導(dǎo)報(bào):2013,27(1):302-305. ZHANG H,MA L P,HU J H,et al. LCA study on the preparation of cement clinker by the phosphogypsum decomposition under different decomposition process[J]. Materials Review,2013,27(1):302-305.

    [47] THOSTENSON E T,CHOU T W. Microwave processing: fundamentals and applications[J]. Composites Part A Applied Science & Manufacturing,1999,30(9):1055-1071.

    [48] ZHAO X Q,WANG W L,LIU H Z,et al. Temperature rise and weight loss characteristics of wheat straw under microwave heating[J]. Journal of Analytical & Applied Pyrolysis,2014,107(9):59-66.

    [49] JI Z H,GUO Y,CHEN J,et al. Microwave-assisted decomposition of FGD gypsum in the presence of magnetite and anthracite [J]. Chemical Papers,2016,70:1-9.

    [50] TURKDOGAN E T,VINTERS J V. Reduction of calcium sulphate by carbon[J]. Trans. Inst. Mining Metall,1976,85:C117-Cl23.

    [51] 肖海平,周俊虎,曹欣玉,等. CaSO4在CO氣氛下的平行競(jìng)爭(zhēng)反應(yīng)實(shí)驗(yàn)與模型研究[J]. 燃料化學(xué)學(xué)報(bào),2005,33(2):150-154. XIAO H P,ZHOU J H,CAO X Y,et al. Experiments and model of the decomposition of CaSO4under CO atmosphere[J]. Journal of Fuel Chemistry and Technology,2005,33(2):150-154.

    [52] SUYADAL Y,?ZTURK A,OGUZ H,et al. Thermochemical decomposition of phosphogypsum with oil shale in a fluidized-bed reactor:a kinetic study[J]. Industrial & Engineering Chemistry Research,1997,36(7):2849-2854.

    [53] ZHENG M,SHEN L,F(xiàn)ENG X Q,et al. Kinetic model for parallel reactions of CaSO4with CO in chemical-looping combustion[J]. Ind. Eng. Chem. Res.,2011,50(9):5414-5427.

    [54] JAE O S,WHEELOCK T D. Reductive decomposition of calcium sulfate with carbon monoxide: reaction mechanism[J]. Industrial & Engineering Chemistry Research,2002,29(4):544-550.

    [55] KAMPHUIS B,POTMA A W,PRINS W,et al. The reductive decomposition of calcium sulphate—Ⅰ. Kinetics of the apparent solid-solid reaction[J]. Chemical Engineering Science,1992,48(1):105-116.

    [56] DAVIES N H,HAYHURST A N. On the formation of liquid melts of CaSO4and CaSO4and their importance in the absorption of SO2by CaO[J]. Combustion & Flame,1996,106(3):359-362..

    [57] 肖海平,周俊虎,劉建忠,等. CaSO4與CaS在N2氣氛下反應(yīng)動(dòng)力學(xué)[J]. 化工學(xué)報(bào),2005,56(7):1322-1326. XIAO H P,ZHOU J H,LIU J Z,et al. Kinetics of reaction between CaS and CaSO4under N2atmosphere[J]. Journa of Chemical Industry and Engineering(China),2005,56(7):1322-1326.

    [58] KOSTYLKOV I G,NOSOV V N. Mechanism of the reduction of calcium sulfate[J]. Zh. Prik. Khim,1982,55:1925-1930.

    Advance of the thermal decomposition of industrial by-product gypsum

    MENG Lingjia,JI Zhonghai,CHEN Jin
    (College of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030024,Shanxi,China)

    Thermal decomposition of industrial by-product gypsum is one of the most effective ways to recycle SO2and the corresponding solid residues. The high cost,high energy-consuming,and low efficiency,seriously limit the reutilization of industrial by-product gypsum. This paper reviewed the recent advances on the research of thermal decomposition of industrial by-product gypsum. Based on the influence of atmospheric conditions,the ratio of reductant to CaSO4,the facilitation of addictive or impurity,and heating temperatures,the decomposition and desulfurization degree were analyzed. The advantages of microwave heating method were highlighted compared to conventional heating,and the decomposition mechanisms of CaSO4with C/CO were also summarized under different conditions. The research trend for thermal decomposition of industrial by-product gypsum in the future was discussed as well. The decomposition and desulfurization degree of industrial by-product gypsum can be effectively improved by optimizing reaction condition to reduce the high cost. The results showed that microwave assisted heating desulphurization of industrial by-product gypsum will be a promising direction for industry in the future.

    industrial by-product gypsum;desulphurization;microwave heating

    TF044

    :A

    :1000–6613(2017)02–0626–08

    10.16085/j.issn.1000-6613.2017.02.031

    2016-06-26;修改稿日期:2016-10-08。

    鋼鐵聯(lián)合研究基金——國(guó)家自然科學(xué)基金委員會(huì)與上海寶山鋼鐵集團(tuán)公司聯(lián)合資助項(xiàng)目(51174252)。

    孟令佳(1989—),男,碩士研究生。聯(lián)系人:陳津,教授,博士生導(dǎo)師,研究方向?yàn)槲⒉ㄒ苯稹-mail:chenjin2013815@126. com。

    猜你喜歡
    硫酸鈣氣氛石膏
    2023.06六月羽壇:奧運(yùn)積分賽的氣氛終于來(lái)了
    羽毛球(2023年6期)2023-06-08 06:07:11
    國(guó)內(nèi)外磷石膏綜合利用現(xiàn)狀
    云南化工(2021年11期)2022-01-12 06:06:06
    孔伯華與石膏
    CREATINGAN ATMOSPHERE
    硫酸鈣轉(zhuǎn)晶行為的研究進(jìn)展
    石膏之魂
    西部論叢(2019年17期)2019-10-14 11:09:40
    寫出畫面的氣氛
    磷石膏“變廢為寶”迫在眉睫
    鈦酸鉀晶須和硫酸鈣晶須增強(qiáng)PA66/PVDF的摩擦學(xué)行為研究
    提鹽廢鹵制備硫酸鈣晶須
    91久久精品国产一区二区三区| 精品久久国产蜜桃| 国产国拍精品亚洲av在线观看| 在线观看免费高清a一片| 亚洲av免费高清在线观看| 99久久人妻综合| 赤兔流量卡办理| 麻豆久久精品国产亚洲av| 男人舔女人下体高潮全视频| 久久午夜福利片| 亚洲精品国产av蜜桃| 欧美+日韩+精品| 午夜日本视频在线| 国产欧美另类精品又又久久亚洲欧美| 国产在视频线精品| 久久久久久久久久久丰满| 久久久久久久久久成人| 天天一区二区日本电影三级| 日韩精品青青久久久久久| 中文精品一卡2卡3卡4更新| 欧美性猛交╳xxx乱大交人| 熟女人妻精品中文字幕| 成人一区二区视频在线观看| 日韩精品青青久久久久久| 久久久久久久午夜电影| 一级黄片播放器| 成人午夜精彩视频在线观看| 2022亚洲国产成人精品| 精品一区在线观看国产| 国产精品一区www在线观看| 国产 一区 欧美 日韩| 国产精品麻豆人妻色哟哟久久 | 国内揄拍国产精品人妻在线| 国产精品爽爽va在线观看网站| 国产精品久久久久久精品电影小说 | 国产欧美另类精品又又久久亚洲欧美| 简卡轻食公司| 97超碰精品成人国产| 亚洲精品乱码久久久久久按摩| 床上黄色一级片| 春色校园在线视频观看| 99久久精品一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 亚洲av国产av综合av卡| 日韩强制内射视频| 亚洲一区高清亚洲精品| 久久久久国产网址| 亚洲综合色惰| 美女cb高潮喷水在线观看| 99久久人妻综合| 国产精品一区二区在线观看99 | 国产69精品久久久久777片| 日韩在线高清观看一区二区三区| 免费观看a级毛片全部| 欧美一区二区亚洲| 久久久久久久大尺度免费视频| av在线亚洲专区| 男女啪啪激烈高潮av片| 午夜亚洲福利在线播放| 成年免费大片在线观看| 久久久久国产网址| 免费电影在线观看免费观看| 久久久久精品性色| 色5月婷婷丁香| 蜜臀久久99精品久久宅男| 国产视频首页在线观看| 女人被狂操c到高潮| av在线亚洲专区| 国产一区二区三区av在线| 国产精品女同一区二区软件| 国产精品伦人一区二区| 亚洲欧美日韩东京热| 日韩欧美精品v在线| 久久综合国产亚洲精品| 免费黄网站久久成人精品| 久久久久久久久久久免费av| 国产精品一及| 好男人在线观看高清免费视频| 99热这里只有是精品50| 免费大片黄手机在线观看| 精品人妻偷拍中文字幕| 日韩不卡一区二区三区视频在线| 亚洲人成网站高清观看| 久久99热6这里只有精品| 午夜福利成人在线免费观看| 99热这里只有是精品50| 中国美白少妇内射xxxbb| 欧美区成人在线视频| 亚洲欧美精品专区久久| 99久久精品热视频| 搡老乐熟女国产| 欧美日韩国产mv在线观看视频 | 国产成人91sexporn| 亚洲欧洲日产国产| 女人十人毛片免费观看3o分钟| 国产片特级美女逼逼视频| 亚洲精品国产av蜜桃| 日韩欧美一区视频在线观看 | 国产一区二区在线观看日韩| 性色avwww在线观看| 国产色婷婷99| 欧美日韩在线观看h| 午夜亚洲福利在线播放| 最近最新中文字幕大全电影3| 肉色欧美久久久久久久蜜桃 | 亚洲国产精品成人久久小说| 日韩欧美一区视频在线观看 | 国产大屁股一区二区在线视频| 九九在线视频观看精品| 久久精品综合一区二区三区| 久久草成人影院| h日本视频在线播放| 亚洲国产精品专区欧美| 亚洲欧美中文字幕日韩二区| 特级一级黄色大片| 国产成人免费观看mmmm| 最近2019中文字幕mv第一页| 成人高潮视频无遮挡免费网站| 日韩精品有码人妻一区| 日本欧美国产在线视频| 18+在线观看网站| 亚洲成人精品中文字幕电影| 国产精品久久久久久av不卡| 中文字幕久久专区| av国产免费在线观看| 国产成人a∨麻豆精品| av在线老鸭窝| 久久久午夜欧美精品| 超碰av人人做人人爽久久| 国产精品久久久久久久久免| 夜夜看夜夜爽夜夜摸| 色哟哟·www| 成年免费大片在线观看| 亚洲av二区三区四区| 亚洲自偷自拍三级| 亚洲一区高清亚洲精品| 精品熟女少妇av免费看| 亚洲av电影在线观看一区二区三区 | 亚洲图色成人| 日韩人妻高清精品专区| 最近中文字幕高清免费大全6| 蜜桃久久精品国产亚洲av| 亚洲国产高清在线一区二区三| 亚洲内射少妇av| 最近的中文字幕免费完整| av在线亚洲专区| 国内揄拍国产精品人妻在线| 国产麻豆成人av免费视频| 麻豆成人av视频| 精品国产三级普通话版| 久久久久网色| 少妇高潮的动态图| 夫妻午夜视频| 亚洲精品乱码久久久v下载方式| 在线天堂最新版资源| 国产成人福利小说| 亚洲av在线观看美女高潮| 寂寞人妻少妇视频99o| 激情五月婷婷亚洲| 别揉我奶头 嗯啊视频| 午夜福利网站1000一区二区三区| 久久精品久久精品一区二区三区| 美女被艹到高潮喷水动态| 自拍偷自拍亚洲精品老妇| 久久6这里有精品| 在线观看人妻少妇| 黄片无遮挡物在线观看| 2021少妇久久久久久久久久久| 国产精品人妻久久久久久| 国产不卡一卡二| 美女cb高潮喷水在线观看| 亚洲精华国产精华液的使用体验| 我的女老师完整版在线观看| 国产黄色视频一区二区在线观看| 网址你懂的国产日韩在线| 国产一区亚洲一区在线观看| 久久精品国产亚洲网站| 大话2 男鬼变身卡| 欧美激情在线99| 国产成人精品一,二区| 只有这里有精品99| 日本一二三区视频观看| 黄色配什么色好看| 夫妻午夜视频| 最近最新中文字幕大全电影3| 午夜福利在线在线| 国产精品熟女久久久久浪| 亚洲精华国产精华液的使用体验| 国产一区亚洲一区在线观看| 免费黄网站久久成人精品| 中文天堂在线官网| 性色avwww在线观看| 人人妻人人看人人澡| 成人国产麻豆网| 国产精品久久久久久精品电影小说 | 免费看av在线观看网站| 亚洲成人av在线免费| 亚洲欧洲日产国产| 亚洲美女搞黄在线观看| 免费看a级黄色片| 亚洲高清免费不卡视频| 91狼人影院| 国产精品一及| 成人亚洲精品av一区二区| 国产成人精品久久久久久| 一级二级三级毛片免费看| 伊人久久国产一区二区| 国产精品无大码| 亚洲四区av| 麻豆成人av视频| 亚洲av免费在线观看| 青春草国产在线视频| 人人妻人人澡人人爽人人夜夜 | 亚洲国产色片| 亚洲精品国产av蜜桃| 国产男人的电影天堂91| 2018国产大陆天天弄谢| 国产高清国产精品国产三级 | 男的添女的下面高潮视频| 精华霜和精华液先用哪个| 国产精品精品国产色婷婷| 能在线免费观看的黄片| 成年女人在线观看亚洲视频 | 美女主播在线视频| 青青草视频在线视频观看| 国产成人aa在线观看| 国产在线男女| 精品一区二区三区人妻视频| 亚洲内射少妇av| 五月天丁香电影| 看免费成人av毛片| 偷拍熟女少妇极品色| 国产 一区 欧美 日韩| 国产一区二区三区av在线| 精品欧美国产一区二区三| www.av在线官网国产| 精品久久国产蜜桃| 亚洲av成人精品一区久久| 97人妻精品一区二区三区麻豆| 中文乱码字字幕精品一区二区三区 | 国产男人的电影天堂91| 国产在视频线在精品| av在线观看视频网站免费| 精品久久久精品久久久| 日日摸夜夜添夜夜添av毛片| 国产成人精品婷婷| 国产乱人偷精品视频| 国产av在哪里看| 99久久精品国产国产毛片| 久久久久国产网址| 国产精品精品国产色婷婷| 成人美女网站在线观看视频| 99久久精品热视频| 狠狠精品人妻久久久久久综合| 国产爱豆传媒在线观看| 高清欧美精品videossex| 十八禁网站网址无遮挡 | 伊人久久精品亚洲午夜| 有码 亚洲区| av黄色大香蕉| 美女主播在线视频| 少妇人妻精品综合一区二区| 国产精品一区二区性色av| 欧美激情在线99| 国产亚洲精品av在线| 亚洲av成人av| 又黄又爽又刺激的免费视频.| 免费观看a级毛片全部| 97精品久久久久久久久久精品| 国产高清不卡午夜福利| 啦啦啦中文免费视频观看日本| 美女被艹到高潮喷水动态| 七月丁香在线播放| 亚洲av不卡在线观看| 神马国产精品三级电影在线观看| 国产片特级美女逼逼视频| 久久久久久久久久人人人人人人| 国产高清有码在线观看视频| 赤兔流量卡办理| av又黄又爽大尺度在线免费看| 嘟嘟电影网在线观看| 中文字幕av成人在线电影| 午夜福利在线观看吧| 日本熟妇午夜| 久久99热这里只频精品6学生| 一级毛片aaaaaa免费看小| 亚洲美女视频黄频| 特大巨黑吊av在线直播| 免费观看a级毛片全部| 秋霞在线观看毛片| 22中文网久久字幕| 能在线免费观看的黄片| 亚洲精品aⅴ在线观看| 亚洲高清免费不卡视频| 国内精品一区二区在线观看| 搡老乐熟女国产| 欧美潮喷喷水| 中文精品一卡2卡3卡4更新| 亚洲国产最新在线播放| 欧美日本视频| 亚洲精品国产成人久久av| 亚洲精品中文字幕在线视频 | 国产高清有码在线观看视频| 十八禁网站网址无遮挡 | 精品国产一区二区三区久久久樱花 | kizo精华| 亚洲国产精品专区欧美| 插阴视频在线观看视频| 久久精品久久精品一区二区三区| 亚洲高清免费不卡视频| 嘟嘟电影网在线观看| 精品国产露脸久久av麻豆 | 久久久精品94久久精品| 男人狂女人下面高潮的视频| 亚洲在久久综合| 免费av毛片视频| 亚洲精品国产成人久久av| 亚洲精品影视一区二区三区av| 最近最新中文字幕大全电影3| 亚洲欧美日韩无卡精品| 97热精品久久久久久| 免费少妇av软件| eeuss影院久久| 国产成人aa在线观看| 国产熟女欧美一区二区| 欧美日韩视频高清一区二区三区二| 久久人人97超碰香蕉20202| 午夜福利在线观看免费完整高清在| 最黄视频免费看| 日韩一区二区三区影片| 大香蕉久久网| 欧美中文综合在线视频| 超碰97精品在线观看| 国产白丝娇喘喷水9色精品| xxx大片免费视频| 秋霞在线观看毛片| 黑丝袜美女国产一区| 精品午夜福利在线看| 性色av一级| 中文字幕另类日韩欧美亚洲嫩草| 久久人人爽av亚洲精品天堂| 天天影视国产精品| 国产一区二区三区av在线| 丰满少妇做爰视频| 午夜福利一区二区在线看| 一区二区av电影网| 国产日韩欧美视频二区| 精品人妻熟女毛片av久久网站| 国产成人免费观看mmmm| 少妇 在线观看| 亚洲久久久国产精品| 精品久久久久久电影网| 久久久久网色| 高清av免费在线| 欧美成人午夜精品| 亚洲精品美女久久av网站| 少妇的丰满在线观看| 亚洲欧美精品综合一区二区三区 | 电影成人av| 热re99久久国产66热| 国产xxxxx性猛交| 午夜av观看不卡| 一本久久精品| 99re6热这里在线精品视频| 七月丁香在线播放| 丰满饥渴人妻一区二区三| 日本免费在线观看一区| 国产片内射在线| 久热久热在线精品观看| 一级a爱视频在线免费观看| 亚洲三级黄色毛片| 成人黄色视频免费在线看| 国产精品嫩草影院av在线观看| 国产日韩欧美在线精品| 午夜av观看不卡| 夜夜骑夜夜射夜夜干| 亚洲精华国产精华液的使用体验| 美女国产视频在线观看| 一级黄片播放器| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产欧美在线一区| 亚洲精品在线美女| 女人久久www免费人成看片| 777米奇影视久久| 欧美成人午夜精品| 黑丝袜美女国产一区| 丰满迷人的少妇在线观看| 高清在线视频一区二区三区| 久久免费观看电影| 啦啦啦视频在线资源免费观看| 日韩电影二区| 人人妻人人澡人人看| 亚洲一区中文字幕在线| 亚洲精品美女久久久久99蜜臀 | 赤兔流量卡办理| 中文字幕最新亚洲高清| 欧美+日韩+精品| 久久精品久久精品一区二区三区| www.av在线官网国产| av卡一久久| 人人妻人人澡人人爽人人夜夜| 午夜91福利影院| 中文字幕人妻丝袜制服| 人妻少妇偷人精品九色| 日韩av不卡免费在线播放| 亚洲精品成人av观看孕妇| 国产精品成人在线| 免费黄网站久久成人精品| 日本vs欧美在线观看视频| 极品少妇高潮喷水抽搐| 2018国产大陆天天弄谢| 亚洲,欧美精品.| 免费观看性生交大片5| 老汉色av国产亚洲站长工具| videossex国产| 波野结衣二区三区在线| 国产精品熟女久久久久浪| 伊人亚洲综合成人网| 国产日韩欧美视频二区| 欧美bdsm另类| 亚洲国产毛片av蜜桃av| 老鸭窝网址在线观看| 黄网站色视频无遮挡免费观看| 欧美亚洲 丝袜 人妻 在线| 婷婷成人精品国产| 婷婷色综合大香蕉| 日韩制服丝袜自拍偷拍| 七月丁香在线播放| 久热这里只有精品99| 亚洲精品国产色婷婷电影| 成人午夜精彩视频在线观看| 色视频在线一区二区三区| 亚洲男人天堂网一区| 啦啦啦视频在线资源免费观看| 亚洲成人av在线免费| 老司机亚洲免费影院| 亚洲精品视频女| 久久精品久久久久久久性| 又大又黄又爽视频免费| 老女人水多毛片| 亚洲成国产人片在线观看| 国产xxxxx性猛交| 亚洲欧洲精品一区二区精品久久久 | 波多野结衣av一区二区av| 日韩中文字幕视频在线看片| 1024香蕉在线观看| 一二三四中文在线观看免费高清| 看免费成人av毛片| 国产亚洲最大av| 91在线精品国自产拍蜜月| 国产精品久久久久久精品电影小说| 免费看不卡的av| 制服诱惑二区| 国产乱来视频区| 91午夜精品亚洲一区二区三区| 一级毛片我不卡| 水蜜桃什么品种好| 熟女电影av网| 久久99热这里只频精品6学生| 欧美在线黄色| 久久99精品国语久久久| 老司机影院成人| videosex国产| 国产精品欧美亚洲77777| 伊人久久国产一区二区| 成人黄色视频免费在线看| 日韩 亚洲 欧美在线| 你懂的网址亚洲精品在线观看| 精品少妇久久久久久888优播| 少妇被粗大的猛进出69影院| 又大又黄又爽视频免费| 亚洲精品在线美女| 男女下面插进去视频免费观看| 精品久久久精品久久久| 大香蕉久久网| 欧美日韩视频高清一区二区三区二| 午夜免费观看性视频| 自拍欧美九色日韩亚洲蝌蚪91| 国产亚洲精品第一综合不卡| 国产精品偷伦视频观看了| 久久久久久久大尺度免费视频| 极品人妻少妇av视频| 美女中出高潮动态图| 两个人看的免费小视频| 捣出白浆h1v1| 国产在视频线精品| 亚洲欧美一区二区三区黑人 | 亚洲中文av在线| 人妻人人澡人人爽人人| 日韩av在线免费看完整版不卡| 性色av一级| 少妇人妻 视频| 伊人久久国产一区二区| 色哟哟·www| 免费在线观看完整版高清| 国产1区2区3区精品| 欧美日韩一区二区视频在线观看视频在线| 欧美国产精品va在线观看不卡| 午夜日本视频在线| 丝袜在线中文字幕| 亚洲综合色惰| 少妇被粗大的猛进出69影院| 久久精品久久精品一区二区三区| 人体艺术视频欧美日本| 最近的中文字幕免费完整| 看非洲黑人一级黄片| 国产欧美日韩一区二区三区在线| 久久精品亚洲av国产电影网| 水蜜桃什么品种好| 欧美人与善性xxx| 在线看a的网站| 卡戴珊不雅视频在线播放| 久久午夜福利片| 在线天堂中文资源库| 我的亚洲天堂| 国产视频首页在线观看| 国产精品一二三区在线看| 91午夜精品亚洲一区二区三区| 色婷婷久久久亚洲欧美| 人人妻人人澡人人爽人人夜夜| xxxhd国产人妻xxx| 午夜福利,免费看| 美女xxoo啪啪120秒动态图| 亚洲国产毛片av蜜桃av| 精品午夜福利在线看| 欧美国产精品va在线观看不卡| 99国产综合亚洲精品| 精品卡一卡二卡四卡免费| 黑丝袜美女国产一区| 一本久久精品| 日本免费在线观看一区| 亚洲四区av| 纵有疾风起免费观看全集完整版| 春色校园在线视频观看| 亚洲欧美精品自产自拍| 亚洲精品日本国产第一区| 日韩一本色道免费dvd| 国产老妇伦熟女老妇高清| 久久人妻熟女aⅴ| 夜夜骑夜夜射夜夜干| 亚洲av日韩在线播放| 女性被躁到高潮视频| 久久久亚洲精品成人影院| 下体分泌物呈黄色| 老鸭窝网址在线观看| 午夜福利视频精品| 欧美日本中文国产一区发布| 亚洲内射少妇av| 18+在线观看网站| 青青草视频在线视频观看| 国产一区二区激情短视频 | 国产亚洲欧美精品永久| 亚洲国产看品久久| www.熟女人妻精品国产| 两个人免费观看高清视频| 男女高潮啪啪啪动态图| 亚洲男人天堂网一区| 久久97久久精品| 国产高清不卡午夜福利| 日本欧美国产在线视频| 男女啪啪激烈高潮av片| 国产精品99久久99久久久不卡 | 免费在线观看黄色视频的| 天天躁夜夜躁狠狠躁躁| 成人国产av品久久久| 免费观看无遮挡的男女| 大陆偷拍与自拍| 免费日韩欧美在线观看| 国产极品天堂在线| 欧美成人精品欧美一级黄| 亚洲av男天堂| 巨乳人妻的诱惑在线观看| 97在线视频观看| 大陆偷拍与自拍| 婷婷色av中文字幕| 成人国语在线视频| 深夜精品福利| 下体分泌物呈黄色| 亚洲av男天堂| 高清视频免费观看一区二区| 成年人午夜在线观看视频| 日韩不卡一区二区三区视频在线| 日韩在线高清观看一区二区三区| 免费在线观看视频国产中文字幕亚洲 | 一二三四中文在线观看免费高清| 麻豆av在线久日| 久久久久久人妻| 国产成人精品婷婷| 国产精品一区二区在线观看99| 建设人人有责人人尽责人人享有的| 国产精品人妻久久久影院| 亚洲精品一二三| 久久人人爽av亚洲精品天堂| 亚洲经典国产精华液单| 亚洲综合色惰| 在线免费观看不下载黄p国产| 寂寞人妻少妇视频99o| 国产日韩欧美视频二区| 欧美人与性动交α欧美精品济南到 | 丝袜在线中文字幕| 久久精品久久久久久噜噜老黄| 亚洲伊人色综图| 大码成人一级视频| 久久这里有精品视频免费| 天美传媒精品一区二区| 人妻一区二区av| 黑人猛操日本美女一级片| 在线天堂中文资源库| av电影中文网址| 2022亚洲国产成人精品| 久久人人97超碰香蕉20202| 一级片'在线观看视频| 深夜精品福利| 一本大道久久a久久精品| 国产极品天堂在线|