• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Ta2O5-PMMA Compound Gate Insulator on The Performance of Organic Field Effect Transistors

    2017-02-15 02:37:20SHIXiaodongWANGWeiLIChunjingRENLipengYINQiang
    發(fā)光學(xué)報(bào) 2017年1期
    關(guān)鍵詞:場(chǎng)效應(yīng)絕緣層遷移率

    SHI Xiao-dong, WANG Wei, LI Chun-jing, REN Li-peng, YIN Qiang

    (School of Electronics and Information Engineering, Hebei University of Technology, Tianjin Key Laboratory of Electronic Materials and Device, Tianjin 300401, China)*Corresponding Author, E-mail: wangwei@hebut.edu.cn

    ?

    Effect of Ta2O5-PMMA Compound Gate Insulator on The Performance of Organic Field Effect Transistors

    SHI Xiao-dong, WANG Wei*, LI Chun-jing, REN Li-peng, YIN Qiang

    (SchoolofElectronicsandInformationEngineering,HebeiUniversityofTechnology,
    TianjinKeyLaboratoryofElectronicMaterialsandDevice,Tianjin300401,China)
    *CorrespondingAuthor,E-mail:wangwei@hebut.edu.cn

    This paper reports pentacene field effect transistors (OFETs) with a gate insulator made of compound Ta2O5-PMMA where PMMA (poly (methyl methacrylate)) is spin-coated onto the top of evaporated layer of Ta2O5. A comparison with devices with only Ta2O5is presented. The latter not only shows a high surface roughness but also exhibits very low field-effect mobility. These drawbacks can be overcome by depositing a PMMA layer on Ta2O5. The influence of PMMA thickness in the range 20-60 nm is presented. The results show that when the thickness of PMMA is approximately 40 nm, the electrical performance of OFETs is optimal. Compared with conventional OFETs, the field-effect mobility increases from 4.2×10-2to 0.31 cm2/(V·s), and the on/off current ratio increases from 2.9×102to 2.9×105when the gate voltage increases to -20 V.

    Ta2O5-PMMA; insulator; OFETs; mobility; on/off current ratio

    1 Introduction

    Organic field effect transistors (OFETs), as one of the important organic semiconductor devices, have many advantages such as large area, low cost, lightweight, mechanical flexibility, easy fabrication and environmental friendliness[1-5]. In recent years, the performance of OFETs has been greatly improved, and OFETs have a broad market prospect in driving circuits for future all-organic OLEDs flat panel displays, plastic radio frequency identification circuits, gas sensors and chemical species sensors[5-7]. However, the mobility and on/off current ratio of OFETs are still lower than those of inorganic counterparts. Therefore, further performance improvement for the OFETs is desirable.

    OFETs operate in accumulation regime and most of the modulated charge lies within the first 10 nm layer adjacent to gate insulator[8]. That does mean that the interfacial properties between semiconductor and gate insulator are of tremendous importance on the field effect mobility. Improvement of the gate insulator material and semiconductor/insulator interface would be highly beneficial to the performances of OFETs. Roughness and dielectric constant are crucial parameters. Insulator material can divide into two categories according to its nature: inorganic and organic. Inorganic insulator materials have many advantages, such as stable chemical properties, excellent electrical properties and high temperature resistance[9]. Conventional SiO2and high dielectric constant oxide material (Ta2O5, TiO2, Al2O3,etc.) are commonly used as inorganic insulator materials[10]. Thereinto, Ta2O5has a high dielectric constant (k≈26), a bandgap of around 4.6 eV, with higher refractive index and chemical stability. But the Ta2O5film has a strong polar effect which restricts the carrier transport[11]. Organic insulator materials are mainly composed of polymer insulator materials, including polyvinyl phenol (PVP), polyvinyl benzene (PS), PMMA,etc.[12-14]. The dielectric constant of PMMA is close to 3 and PMMA contains hydrophobic methyl groups which can resist humid environment. What’s more, PMMA not only provides a uniform nonporous non-polarized interface, but also improves the molecular order[11,15]. Hence, PMMA can be used as buffer layer material between organic semiconductor and inorganic gate insulator.

    In order to reconcile the respective advantages of Ta2O5for high dielectric properties and PMMA for a better interface with the organic semiconductor, a compound gate insulator consisting of a Ta2O5film covered with a PMMA film is reported in this paper. The OFET devices with Ta2O5-PMMA compound insulator were prepared to achieve higher field-effect mobility, lower threshold voltage and higher on/off current ratio.

    2 Experiments

    The OFET devices used bottom-gate top-contact structure[16-17], as shown in Fig.1. ITO substrate (50 mm×50 mm) was ultrasonically cleaned with deionized water, acetone and ethanol for 10 min, respectively. ITO gate electrode was obtained by the UV lithography. Ta2O5was deposited by e-beam evaporation on ITO gate electrode. The deposition rate and the thickness were 0.5 nm/s and 140 nm, respectively. For the compound gate insulator, a solution of PMMA in chloroform was spin-coated onto the Ta2O5. The thickness of PMMA is in the range 20-60 nm for a solution in the concentration range 10-20 mg/mL. Then, a 50 nm thick pentacene film was deposited by thermal evaporation at a rate of 0.6 nm/s on the substrate maintained at 80 ℃. The pentacene was used as received without any further purification. The devices were completed by the evaporation of silver source and drain electrodes through a shadow mask. The channel length was 170 nm and the width was 510 nm.

    The surface morphology and roughness of samples were analyzed by Agilent 5600LS Atomic Force Microscopy (AFM). The surface roughness (Sq) value was defined as:

    Fig.1 Schematic cross-sectional structure of OFET

    (1)

    where,z(x,y) represented the residual surface;lx,lyrepresented the length of the sampling region;M,Nrepresented the discrete sampling points ofxandyin the sampling region.

    3 Results and Discussion

    Fig. 2 shows the AFM images andSqvalues of the insulator layer. The surface roughness of Ta2O5film is larger (Sq=0.956 nm). Ta2O5deposited by e-beam evaporation at room temperature may contain several defects: multiphase material, local variation of composition, inhomogeneity, bulk and surface traps. All of these factors increase the surface roughness of Ta2O5film and degrade the electrical characteristics of the OFETs. In comparison to Ta2O5, the surface roughness of Ta2O5-PMMA compound insulator reduces significantly. PMMA, as a kind of high molecular polymer, can effectively reduce defects of Ta2O5film surface and provide a non-polarized insulator surface. What’s more, one major advantage of organic-organic interface is the noninteracting nature of this interface in most cases. That means an abrupt interface without reactive interlayer or dipoles as observed in metal/organic interfaces. The polymer plays an important role in improving OFET performance, the surface of compound insulator may influence growth behavior of pentacene thin films and enhance physical connection between gate insulator and semiconductor channel.

    Fig.2 AFM images andSqvalues of different insulator structure. (a) Ta2O5(140 nm),Sq=0.956 nm. (b) Ta2O5(140 nm)-PMMA (20 nm),Sq=0.733 nm. (c) Ta2O5(140 nm)-PMMA (40 nm),Sq=0.463 nm. (d) Ta2O5(140 nm)-PMMA (60 nm),Sq=0.351 nm.

    Fig.3 shows the output and transfer characteristic curves of three devices with a gate insulator made of 140 nm Ta2O5with spun on layers of PMMA with thicknesses of 20, 40 and 60 nm. Fig.3(a), (c) and (e) show that the prepared OFET devices have typical hole transport properties. When the source drain voltage (Vds) is low, the source drain current (Ids) has a linear growth trend, device operates in the linear region. With the increase ofVds,Idsalmost unchanges and reaches the saturation current. That is to say, the device operates in the saturation region. Under the saturation region, the conductive channel appears to pinch off and the source drain current can be expressed as:

    (2)

    Tab.1 shows electrical performances of OFET devices with different gate insulator. The OFET devices with only Ta2O5have a higher capacitance and lower threshold voltage, but its field-effect mobility and on/off current ratio are only 0.042 cm2/(V·s) and 2.9×102, respectively. The larger insulator capacitance associates to the high dielectric constant of this oxide, which makes the OFET be opened under lower threshold voltage. But surface roughness of Ta2O5film is greater (Sq=0.956 nm), which increases the probability of several defects. What’s more, high dielectric constant insulator has relatively higher interfacial polarity. These factors limit the transport of carriers, thus the field-effect mobility of OFET devices is low.

    Fig.3 Output and transfer characteristics of OFETs with Ta2O5-PMMA as compound gate insulator. PMMA thickness is 20 nm ((a) and (b)), 40 nm ((c) and (d)) and 60 nm ((e) and (f)). Ta2O5thickness is 140 nm.

    Tab.1 Electrical performances of OFETs with Ta2O5 and Ta2O5-PMMA gate insulator

    In comparison to devices with only Ta2O5, the equivalent gate capacitance reduces due to the low dielectric constant of the PMMA layer. The gate capacitance (Ci) decreases to 18 nF/cm2for the 60 nm thick PMMA. From the transfer characteristics, the measured threshold voltage (Vth) is about -3.5 V for the two thinnest PMMA layers andVthincreases up to -8.2 V for the 60 nm thick PMMA. The major improvement brought by PMMA is the strong increase of field effect mobility which reaches 0.31 cm2/(V·s) for 40 nm PMMA, which is about seven times as much as that of the device without PMMA insulator. The on/off current ratio reaches 2.9×105for 40 nm PMMA, which is better than the device with only one Ta2O5insulator layer. All these data point to the beneficial influence of a thin PMMA film on Ta2O5on device performances.

    Based on the above analysis, when the PMMA film thickness is 40 nm, the electrical performance of the device is optimal. Improvement is to be associated with a pentacene/PMMA interface of much better quality than the pentacene/Ta2O5interface in terms of electronic states but also in terms of roughness.

    4 Conclusion

    In this paper, we report a compound gate insulator of Ta2O5-PMMA for OFETs. This insulator design combines the respective advantages of the two materials, say, the high dielectric constant of Ta2O5and an improved PMMA/pentacene interface. It is found that the OFETs with a PMMA modified compound insulator have higher performance than that of the devices without PMMA insulator. When the PMMA film thickness is approximately 40 nm, the electrical performance of the device is optimal, and we obtain the largest field effect mobility, small threshold voltage and large on/off current ratio. They are 0.31 cm2/(V·s), -3.8 V and 2.9×105, respectively. This way can be performed with other organic buffer layer materials, and high-performance OFETs will be realized for the flexible OFETs.

    615 Quality of life of inpatients with lung cancer and related influencing factors

    [1] SEKITANI T, SOMEYA T. Stretchable, large-area organic electronics [J].Adv.Mater., 2010, 22(20):2228-2246.

    [2] ZHOU J L, ZHANG F J. Low voltage n-type OFET based on double insulators [J].Optoelectron.Lett., 2008, 4(5):324-327.

    [3] HOFMOCKEL R, ZSCHIESCHANG U, KRAFT U,etal.. High-mobility organic thin-film transistors based on a small-molecule semiconductor deposited in vacuum and by solution shearing [J].Org.Electron., 2013, 14(12):3213-3221.

    [4] KUMAR B, KAUSHIK B K, NEGI Y S,etal.. Analytical modeling and parameter extraction of top and bottom contact structures of organic thin film transistors [J].Microelectron.J., 2013, 44(9):736-743.

    [5] 白瀟, 程曉曼, 樊劍鋒, 等. PVA柵絕緣層濃度對(duì)P3HT有機(jī)場(chǎng)效應(yīng)晶體管性能的影響 [J]. 發(fā)光學(xué)報(bào), 2014, 35(4):470-475. BAI X, CHENG X M, FAN J F,etal.. Effect of poly(vinyl alcohol) gate dielectric concentration on poly(3-hexylthiophene) based organic field effect transistor [J].Chin.J.Lumin., 2014, 35(4):470-475. (in English)

    [6] MITTAL P, KUMAR B, NEGI Y S,etal.. Channel length variation effect on performance parameters of organic field effect transistors [J].Microelectron.J., 2012, 43(12):985-994.

    [7] MEI J G, KIM D H, AYZNER A L,etal.. Siloxane-terminated solubilizing side chains: bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors [J].J.Am.Chem.Soc., 2011, 133(50):20130-20133.

    [8] 陶春蘭, 董茂軍, 張旭輝, 等. 以聚酰亞胺為絕緣層的并五苯場(chǎng)效應(yīng)晶體管 [J]. 功能材料, 2007, 38(10):1630-1631. TAO C L, DONG M J, ZHANG X H,etal.. Pentacene filed-effect transistors using a polyimide gate dielectric layer [J].J.Funct.Mater., 2007, 38(10):1630-1631. (in Chinese)

    [9] YILDIRIM F A, SCHLIEWE R R, BAUHOFER W,etal.. Gate insulators and interface effects in organic thin-film transistors [J].Org.Electron., 2008, 9(1):70-76.

    [10] IINO Y, INOUE Y, FUJISAKI Y,etal.. Organic thin-film transistors on a plastic substrate with anodically oxidized high-dielectric-constant insulators [J].Jpn.J.Appl.Phys., 2003, 42(1):299-304.

    [11] DIMITRAKOPOULOS C D, MALENFANT P R L. Organic thin film transistors for large area electronics [J].Adv.Mater., 2002, 14(2):99-117.

    [12] MAJEWSKI L A, SCHROEDER R, GRELL M. Organic field-effect transistors with electroplated platinum contacts [J].Appl.Phys.Lett., 2004, 85(16):3620-3622.

    [13] CHOU D W, LIN Y J, WEI-CHIN J H,etal.. Enhancement of electrical properties in pentacene-based thin-film transistors using a lithium fluoride modification layer [J].Solid-StateElectron., 2011, 64(1):1-5.

    [14] MARIUCCI L, SIMEONE D, CIPOLLONI S,etal.. Effect of active layer thickness on electrical characteristics of pentacene TFTs with PMMA buffer layer [J].Solid-StateElectron., 2008, 52(3):412-416.

    [15] UEMURA T, NAKAYAMA K, HIROSE Y,etal.. Band-like transport in solution-crystallized organic transistors [J].Curr.Appl.Phys., 2012, 12:S87-S91.

    [16] HU W, ZHAO Y, MA C S,etal.. Improving the performance of organic thin-film transistor with a doped interlayer [J].Microelectron.J., 2007, 38(4-5):509-512.

    [17] HU W, ZHAO Y, HOU J Y,etal.. Improving the performance of the organic thin-film transistors with thin insulating lithium fluoride buffer layer [J].Microelectron.J., 2007, 38(4-5):632-636.

    [18] LIU X, BAI Y, CHEN L,etal.. Organic thin film transistors with double insulator layers [J].Microelectron.J., 2007, 38(8-9):919-922.

    [19] LIU G, LIU M, SHANG L W,etal.. Active layer self-protection process for organic field-effect transistors [J].J.Semicond., 2009, 30(9):094006-1-4.

    石曉東 (1990-),男,河北晉州人,碩士研究生,2014年于河北工業(yè)大學(xué)獲得學(xué)士學(xué)位,主要從事新型電子材料及器件的研究。

    E-mail: shixiaodong103@163.com王偉(1976-),男,天津人,博士,副教授,2005年于天津大學(xué)獲得博士學(xué)位,主要從事半導(dǎo)體器件與物理、電子功能材料與元器件的研究。

    E-mail: wangwei@hebut.edu.cn

    2016-07-02;

    2016-08-28

    河北省自然科學(xué)基金(F2012202075); 天津市自然科學(xué)基金(15JCYBJC52100)資助項(xiàng)目 Supported by Natural Science Fundation of Hebei Province(F2012202075); Tianjin Natural Science Fundation(15JCYBJC52100)

    Ta2O5-PMMA復(fù)合柵絕緣層對(duì)OFETs性能的影響

    石曉東, 王 偉*, 李春靜, 任利鵬, 尹 強(qiáng)

    (河北工業(yè)大學(xué) 電子信息工程學(xué)院, 天津市電子材料與器件重點(diǎn)實(shí)驗(yàn)室, 天津 300401)

    選用五氧化二鉭(Ta2O5)-聚甲基丙烯酸甲酯(PMMA)復(fù)合材料作為柵絕緣層制備了并五苯有機(jī)場(chǎng)效應(yīng)晶體管(OFETs)。通過在Ta2O5表面旋涂一層PMMA可以降低柵絕緣層的表面粗糙度,增大其場(chǎng)效應(yīng)晶體管的遷移率。研究了厚度在20~60 nm范圍內(nèi)的PMMA對(duì)復(fù)合絕緣層表面形貌、粗糙度以及器件電學(xué)性能的影響。結(jié)果表明,當(dāng)PMMA厚度為40 nm時(shí),器件的電學(xué)性能最佳。與單一的Ta2O5柵絕緣層器件相比,其場(chǎng)效遷移率由4.2×10-2cm2/(V·s)提高到0.31 cm2/(V·s);柵電壓增加到-20 V時(shí),開關(guān)電流比由2.9×102增大到2.9×105。

    Ta2O5-PMMA; 絕緣層; OFETs; 遷移率; 開關(guān)電流比

    1000-7032(2017)01-0070-06

    O47; TN321+.5 Document code: A

    10.3788/fgxb20173801.0070

    猜你喜歡
    場(chǎng)效應(yīng)絕緣層遷移率
    場(chǎng)效應(yīng)晶體管短路失效的數(shù)值模型
    復(fù)合絕緣層漆包線熱老化壽命數(shù)據(jù)的統(tǒng)計(jì)分析
    電線電纜(2018年1期)2018-03-16 02:19:08
    一種水電容式電纜絕緣層缺陷的檢測(cè)方法研究
    電線電纜(2017年4期)2017-07-25 07:49:49
    基于CH3NH3PbI3單晶的Ta2O5頂柵雙極性場(chǎng)效應(yīng)晶體管
    SiC/SiO2界面形貌對(duì)SiC MOS器件溝道遷移率的影響
    濾棒吸阻和濾嘴長(zhǎng)度對(duì)卷煙煙氣中6種元素遷移率的影響
    煙草科技(2015年8期)2015-12-20 08:27:17
    麥加輕軌站臺(tái)2.5 m絕緣層施工技術(shù)
    建筑學(xué)專業(yè)設(shè)計(jì)系列課程“場(chǎng)效應(yīng)”教學(xué)模式探索與實(shí)踐
    高遷移率族蛋白B1對(duì)16HBE細(xì)胞血管內(nèi)皮生長(zhǎng)因子表達(dá)和分泌的影響
    熱老化對(duì)RVV電纜絕緣層內(nèi)部結(jié)構(gòu)與絕緣失效機(jī)理的研究
    美女主播在线视频| 男男h啪啪无遮挡| 少妇人妻久久综合中文| 伊人亚洲综合成人网| 亚洲,欧美,日韩| h视频一区二区三区| 国产成人午夜福利电影在线观看| 在线观看人妻少妇| 视频中文字幕在线观看| 22中文网久久字幕| 中文字幕久久专区| 国产成人免费无遮挡视频| 少妇丰满av| 国产精品一区二区在线观看99| 一级黄片播放器| 国产国拍精品亚洲av在线观看| 国产精品无大码| 国产熟女欧美一区二区| 亚洲欧美成人精品一区二区| 精品亚洲成a人片在线观看| 亚洲欧美日韩卡通动漫| 少妇的逼好多水| 亚洲国产av影院在线观看| 国产又色又爽无遮挡免| 欧美少妇被猛烈插入视频| 欧美精品一区二区大全| 欧美日本中文国产一区发布| 成人综合一区亚洲| 精品一区二区三区视频在线| 久久人人爽av亚洲精品天堂| 日本色播在线视频| 久久久国产一区二区| 人成视频在线观看免费观看| 欧美日本中文国产一区发布| 在线亚洲精品国产二区图片欧美 | 纵有疾风起免费观看全集完整版| av在线老鸭窝| av国产精品久久久久影院| 亚洲精品久久成人aⅴ小说 | 久久久久久人妻| 成人漫画全彩无遮挡| 一级a做视频免费观看| 国产精品成人在线| 亚洲一区二区三区欧美精品| 黄色配什么色好看| 国产在线免费精品| 国产精品久久久久久久电影| 欧美日韩综合久久久久久| 久久鲁丝午夜福利片| av专区在线播放| 久久精品夜色国产| 中文字幕av电影在线播放| 久久影院123| 免费不卡的大黄色大毛片视频在线观看| 日韩不卡一区二区三区视频在线| 久久99精品国语久久久| .国产精品久久| 考比视频在线观看| 在线观看人妻少妇| 精品亚洲成a人片在线观看| 国产成人免费无遮挡视频| 人人妻人人添人人爽欧美一区卜| 桃花免费在线播放| 如日韩欧美国产精品一区二区三区 | 美女xxoo啪啪120秒动态图| 在线观看美女被高潮喷水网站| 国产欧美日韩综合在线一区二区| 国产精品 国内视频| 国产伦理片在线播放av一区| 久久精品国产亚洲av天美| 国产精品熟女久久久久浪| 美女福利国产在线| 91久久精品国产一区二区三区| 十分钟在线观看高清视频www| 欧美日韩视频精品一区| 日韩av不卡免费在线播放| 亚洲精品一二三| 高清在线视频一区二区三区| 美女视频免费永久观看网站| 国产黄色视频一区二区在线观看| 3wmmmm亚洲av在线观看| 一级毛片黄色毛片免费观看视频| 国产白丝娇喘喷水9色精品| 免费看不卡的av| 人妻一区二区av| 丝袜喷水一区| 国产69精品久久久久777片| 51国产日韩欧美| 久久国产亚洲av麻豆专区| 国产成人精品久久久久久| 亚洲精品久久成人aⅴ小说 | 亚洲少妇的诱惑av| 亚洲少妇的诱惑av| 欧美精品高潮呻吟av久久| 成人二区视频| 国内精品宾馆在线| av不卡在线播放| 丝袜美足系列| 亚洲欧洲精品一区二区精品久久久 | 人妻夜夜爽99麻豆av| 国产成人一区二区在线| 国产精品不卡视频一区二区| 亚洲精品国产av蜜桃| 我要看黄色一级片免费的| 亚洲精品aⅴ在线观看| 久久亚洲国产成人精品v| 91精品一卡2卡3卡4卡| 秋霞伦理黄片| 少妇精品久久久久久久| 91在线精品国自产拍蜜月| 丰满乱子伦码专区| 汤姆久久久久久久影院中文字幕| 看十八女毛片水多多多| 在线播放无遮挡| 赤兔流量卡办理| 又黄又爽又刺激的免费视频.| 97精品久久久久久久久久精品| 中文乱码字字幕精品一区二区三区| 日韩免费高清中文字幕av| 亚洲av电影在线观看一区二区三区| 黑人猛操日本美女一级片| 亚洲精品乱码久久久v下载方式| 性色av一级| 秋霞在线观看毛片| 18禁观看日本| 国产亚洲av片在线观看秒播厂| 久久精品熟女亚洲av麻豆精品| 久久狼人影院| 欧美xxxx性猛交bbbb| 黄色毛片三级朝国网站| 久久99热这里只频精品6学生| 在线观看三级黄色| 国产成人免费观看mmmm| 国产男人的电影天堂91| 男女国产视频网站| 美女xxoo啪啪120秒动态图| 日韩伦理黄色片| 欧美人与性动交α欧美精品济南到 | 亚洲三级黄色毛片| 看十八女毛片水多多多| 看非洲黑人一级黄片| 国产片内射在线| 亚洲国产精品成人久久小说| 国产色爽女视频免费观看| 看十八女毛片水多多多| 欧美精品一区二区免费开放| 美女国产视频在线观看| 校园人妻丝袜中文字幕| 水蜜桃什么品种好| 精品少妇久久久久久888优播| 亚洲国产av新网站| 九九久久精品国产亚洲av麻豆| 人成视频在线观看免费观看| 母亲3免费完整高清在线观看 | 亚洲精品亚洲一区二区| 亚洲精品自拍成人| 欧美精品一区二区大全| av网站免费在线观看视频| 久久99一区二区三区| 国产一区二区三区av在线| av福利片在线| 18禁裸乳无遮挡动漫免费视频| 久久久久人妻精品一区果冻| 久久99热这里只频精品6学生| 亚洲国产最新在线播放| 精品一区二区三区视频在线| 少妇熟女欧美另类| 国产爽快片一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 国产深夜福利视频在线观看| 美女中出高潮动态图| 80岁老熟妇乱子伦牲交| av专区在线播放| 女性生殖器流出的白浆| 久久毛片免费看一区二区三区| 久久久久久久国产电影| 一本一本综合久久| 国产精品人妻久久久影院| 看十八女毛片水多多多| 晚上一个人看的免费电影| 色视频在线一区二区三区| 亚洲av男天堂| 男女啪啪激烈高潮av片| 国产精品.久久久| 国产欧美日韩一区二区三区在线 | 99久久精品国产国产毛片| 国产极品天堂在线| 国产成人精品一,二区| 韩国av在线不卡| 一区二区三区免费毛片| 男女边吃奶边做爰视频| 亚洲天堂av无毛| 永久网站在线| 午夜福利视频在线观看免费| 亚洲综合精品二区| 高清欧美精品videossex| 欧美 亚洲 国产 日韩一| 亚洲av免费高清在线观看| 99久国产av精品国产电影| 女性被躁到高潮视频| 水蜜桃什么品种好| 亚洲精品456在线播放app| 特大巨黑吊av在线直播| videos熟女内射| 国产一区有黄有色的免费视频| 国产成人一区二区在线| 国产免费现黄频在线看| 亚洲国产精品一区二区三区在线| 欧美精品一区二区大全| 交换朋友夫妻互换小说| 天天躁夜夜躁狠狠久久av| 亚洲av国产av综合av卡| 亚洲精品自拍成人| 热99久久久久精品小说推荐| 青春草视频在线免费观看| 亚洲国产精品999| 精品国产一区二区三区久久久樱花| 高清黄色对白视频在线免费看| 哪个播放器可以免费观看大片| 最新的欧美精品一区二区| 午夜av观看不卡| 久久精品国产自在天天线| 国产精品免费大片| 最近手机中文字幕大全| a 毛片基地| 中文字幕人妻熟人妻熟丝袜美| av黄色大香蕉| 亚洲av不卡在线观看| 久久精品久久久久久久性| 久久久久国产精品人妻一区二区| 成人二区视频| 日韩电影二区| 国产精品一区二区三区四区免费观看| 久久人妻熟女aⅴ| 美女主播在线视频| √禁漫天堂资源中文www| 在线观看三级黄色| 免费大片18禁| 最后的刺客免费高清国语| 美女cb高潮喷水在线观看| 亚洲国产精品成人久久小说| 国产精品国产三级国产专区5o| 亚洲av综合色区一区| 欧美激情国产日韩精品一区| 久久久久国产网址| av网站免费在线观看视频| 美女主播在线视频| 日本wwww免费看| 啦啦啦在线观看免费高清www| 久久ye,这里只有精品| 美女福利国产在线| 熟女人妻精品中文字幕| 韩国av在线不卡| av线在线观看网站| 青春草视频在线免费观看| 亚洲性久久影院| 国产免费现黄频在线看| 女性生殖器流出的白浆| 国产又色又爽无遮挡免| 久久精品国产亚洲av天美| 狂野欧美白嫩少妇大欣赏| 国精品久久久久久国模美| 亚洲内射少妇av| 五月伊人婷婷丁香| 亚洲av中文av极速乱| 一级,二级,三级黄色视频| 成年美女黄网站色视频大全免费 | 性高湖久久久久久久久免费观看| 欧美日本中文国产一区发布| 国产在线免费精品| 日韩av不卡免费在线播放| 国产免费福利视频在线观看| 久久人妻熟女aⅴ| 天堂中文最新版在线下载| 国产一区二区三区av在线| 国产亚洲最大av| 水蜜桃什么品种好| 国产精品麻豆人妻色哟哟久久| 日韩一区二区视频免费看| 高清午夜精品一区二区三区| 日本av免费视频播放| 日韩不卡一区二区三区视频在线| 人人妻人人添人人爽欧美一区卜| 国内精品宾馆在线| 精品人妻一区二区三区麻豆| 亚洲无线观看免费| 两个人的视频大全免费| 亚州av有码| 中文字幕av电影在线播放| 国产一级毛片在线| 另类亚洲欧美激情| 免费观看av网站的网址| 日韩精品有码人妻一区| 日本猛色少妇xxxxx猛交久久| 在线观看美女被高潮喷水网站| 欧美日韩国产mv在线观看视频| 一边摸一边做爽爽视频免费| 久久久精品免费免费高清| 人人妻人人澡人人爽人人夜夜| 日本午夜av视频| 久久99热这里只频精品6学生| 丰满饥渴人妻一区二区三| 中文字幕免费在线视频6| 97超碰精品成人国产| 国产av码专区亚洲av| 日韩精品有码人妻一区| 久久久久人妻精品一区果冻| 国产精品嫩草影院av在线观看| 亚洲人成网站在线播| 日日摸夜夜添夜夜添av毛片| 国产精品 国内视频| 欧美另类一区| 狂野欧美白嫩少妇大欣赏| 精品人妻在线不人妻| 欧美精品一区二区大全| 久久久久视频综合| 欧美 亚洲 国产 日韩一| 亚洲少妇的诱惑av| 成人亚洲欧美一区二区av| 九九久久精品国产亚洲av麻豆| 国产片内射在线| 久久青草综合色| 女性被躁到高潮视频| 国产亚洲av片在线观看秒播厂| 多毛熟女@视频| 老司机影院成人| av在线老鸭窝| 人妻夜夜爽99麻豆av| 日本猛色少妇xxxxx猛交久久| av卡一久久| 国产欧美日韩一区二区三区在线 | 大话2 男鬼变身卡| 亚洲天堂av无毛| 久久久久人妻精品一区果冻| 亚洲欧美一区二区三区国产| 热99久久久久精品小说推荐| 一级,二级,三级黄色视频| 国国产精品蜜臀av免费| 国产精品一区www在线观看| 欧美老熟妇乱子伦牲交| 寂寞人妻少妇视频99o| 桃花免费在线播放| 国产免费一区二区三区四区乱码| 欧美 日韩 精品 国产| 97超碰精品成人国产| 纵有疾风起免费观看全集完整版| 亚洲综合色惰| 国语对白做爰xxxⅹ性视频网站| 日本91视频免费播放| 国产精品.久久久| 日本av免费视频播放| 精品久久蜜臀av无| 在线 av 中文字幕| 少妇的逼水好多| 在线观看免费日韩欧美大片 | 在线观看人妻少妇| 女性生殖器流出的白浆| 国产欧美另类精品又又久久亚洲欧美| 在线免费观看不下载黄p国产| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日韩av不卡免费在线播放| 亚洲av电影在线观看一区二区三区| 久久精品久久久久久久性| 日本黄色日本黄色录像| 亚洲天堂av无毛| 久久韩国三级中文字幕| 国产乱人偷精品视频| 看十八女毛片水多多多| 99久久中文字幕三级久久日本| 国产精品熟女久久久久浪| 成年女人在线观看亚洲视频| 91午夜精品亚洲一区二区三区| 97在线视频观看| 妹子高潮喷水视频| 国产成人精品在线电影| 最近最新中文字幕免费大全7| 99久久精品国产国产毛片| 在线观看免费视频网站a站| 亚洲精品日韩av片在线观看| 久久久久久久精品精品| 女的被弄到高潮叫床怎么办| 欧美激情极品国产一区二区三区 | 肉色欧美久久久久久久蜜桃| 国产欧美另类精品又又久久亚洲欧美| 亚洲综合精品二区| 国产一区有黄有色的免费视频| 免费观看在线日韩| 国产欧美另类精品又又久久亚洲欧美| 最近手机中文字幕大全| 久久久a久久爽久久v久久| 全区人妻精品视频| 一本—道久久a久久精品蜜桃钙片| 亚洲精品国产av成人精品| 久久久a久久爽久久v久久| 午夜福利在线观看免费完整高清在| 久久久久久久久大av| 日韩欧美精品免费久久| 高清在线视频一区二区三区| 亚洲第一区二区三区不卡| 欧美另类一区| 国产精品久久久久久久久免| 肉色欧美久久久久久久蜜桃| 中文字幕最新亚洲高清| 亚洲美女搞黄在线观看| 日本-黄色视频高清免费观看| 久久人人爽人人爽人人片va| 亚洲五月色婷婷综合| 80岁老熟妇乱子伦牲交| 国产午夜精品久久久久久一区二区三区| 王馨瑶露胸无遮挡在线观看| av在线app专区| 成人毛片60女人毛片免费| 一边亲一边摸免费视频| 亚洲精品第二区| 免费看光身美女| 最近最新中文字幕免费大全7| 亚洲欧美一区二区三区国产| 80岁老熟妇乱子伦牲交| 欧美日韩一区二区视频在线观看视频在线| 欧美日韩精品成人综合77777| 亚洲高清免费不卡视频| 日韩电影二区| 成人黄色视频免费在线看| 99久久综合免费| 一级毛片aaaaaa免费看小| 99热国产这里只有精品6| av有码第一页| 女的被弄到高潮叫床怎么办| 黑丝袜美女国产一区| 日本猛色少妇xxxxx猛交久久| 亚洲av综合色区一区| 成年美女黄网站色视频大全免费 | 超碰97精品在线观看| 免费看光身美女| 色婷婷av一区二区三区视频| 在线 av 中文字幕| 欧美老熟妇乱子伦牲交| 精品久久久久久久久亚洲| 国产成人a∨麻豆精品| av免费观看日本| 99久久综合免费| 天天影视国产精品| 视频在线观看一区二区三区| 久久综合国产亚洲精品| 国产爽快片一区二区三区| 狠狠婷婷综合久久久久久88av| 日本猛色少妇xxxxx猛交久久| 午夜激情福利司机影院| 亚洲精品美女久久av网站| 我的女老师完整版在线观看| 国产成人aa在线观看| 麻豆成人av视频| 99热网站在线观看| 简卡轻食公司| 欧美日本中文国产一区发布| 亚洲一级一片aⅴ在线观看| 国产 精品1| 欧美最新免费一区二区三区| 欧美少妇被猛烈插入视频| 免费黄频网站在线观看国产| 只有这里有精品99| 午夜福利影视在线免费观看| 国产精品人妻久久久久久| 中国三级夫妇交换| 妹子高潮喷水视频| 国产有黄有色有爽视频| av国产精品久久久久影院| 日韩在线高清观看一区二区三区| 亚洲国产欧美在线一区| 久久久久久久久久久丰满| 久久精品久久久久久噜噜老黄| 亚洲成人一二三区av| 久久久午夜欧美精品| av国产久精品久网站免费入址| 97超碰精品成人国产| 日韩大片免费观看网站| 999精品在线视频| 男的添女的下面高潮视频| 91精品国产国语对白视频| 久久久精品免费免费高清| 精品一区二区免费观看| 性色av一级| 国产黄色免费在线视频| 人妻少妇偷人精品九色| 亚洲av日韩在线播放| 毛片一级片免费看久久久久| 精品人妻在线不人妻| 国产精品秋霞免费鲁丝片| 麻豆乱淫一区二区| 免费高清在线观看日韩| 免费观看性生交大片5| 日韩电影二区| 一区二区av电影网| 热re99久久精品国产66热6| 亚洲av欧美aⅴ国产| 最近手机中文字幕大全| 看免费成人av毛片| 精品少妇内射三级| 国产在线视频一区二区| 亚洲精品国产色婷婷电影| 又黄又爽又刺激的免费视频.| av福利片在线| 少妇人妻精品综合一区二区| 在线天堂最新版资源| 天美传媒精品一区二区| 午夜免费观看性视频| 免费不卡的大黄色大毛片视频在线观看| 久久久久久人妻| 亚洲精品乱码久久久久久按摩| 最近手机中文字幕大全| 女性生殖器流出的白浆| 中国国产av一级| 欧美97在线视频| 极品人妻少妇av视频| 久久久久久久大尺度免费视频| 一级,二级,三级黄色视频| 国产在视频线精品| www.av在线官网国产| 一区二区三区精品91| 国产高清有码在线观看视频| 亚洲丝袜综合中文字幕| 男的添女的下面高潮视频| 啦啦啦中文免费视频观看日本| 秋霞伦理黄片| 七月丁香在线播放| 中文字幕制服av| 免费高清在线观看视频在线观看| 亚洲av免费高清在线观看| 国产精品.久久久| 男女国产视频网站| 91成人精品电影| 国产一区二区三区av在线| 美女国产高潮福利片在线看| 国产免费现黄频在线看| 黄色怎么调成土黄色| 欧美老熟妇乱子伦牲交| 男女边吃奶边做爰视频| 日韩一区二区视频免费看| 自拍欧美九色日韩亚洲蝌蚪91| 99久久人妻综合| av福利片在线| 国产乱来视频区| 天天操日日干夜夜撸| 好男人视频免费观看在线| 亚洲av二区三区四区| 美女福利国产在线| 少妇高潮的动态图| 日本av手机在线免费观看| 另类亚洲欧美激情| 青春草亚洲视频在线观看| 久久久欧美国产精品| 激情五月婷婷亚洲| 成年女人在线观看亚洲视频| 2018国产大陆天天弄谢| 欧美97在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 丝瓜视频免费看黄片| 欧美日韩精品成人综合77777| 在线观看www视频免费| 国产极品天堂在线| 最近2019中文字幕mv第一页| 亚洲精品日韩在线中文字幕| 在线 av 中文字幕| 中文字幕人妻丝袜制服| 18禁在线无遮挡免费观看视频| 少妇高潮的动态图| 91久久精品国产一区二区成人| 99国产精品免费福利视频| 国产精品一区二区在线不卡| 亚洲国产精品999| 一级毛片电影观看| 日韩欧美一区视频在线观看| 久久久久视频综合| 亚洲三级黄色毛片| 黑人高潮一二区| 91成人精品电影| 日韩制服骚丝袜av| 99热这里只有精品一区| 精品国产乱码久久久久久小说| av线在线观看网站| 亚洲国产av新网站| 免费黄频网站在线观看国产| 久久久久视频综合| 一级毛片aaaaaa免费看小| 高清av免费在线| 日韩视频在线欧美| 精品久久久久久久久av| 久久毛片免费看一区二区三区| 国产片内射在线| 亚洲国产精品999| 中国国产av一级| 91精品三级在线观看| 美女内射精品一级片tv| 亚洲av二区三区四区| 最后的刺客免费高清国语| 人体艺术视频欧美日本| 婷婷色综合www| 永久免费av网站大全| 丝袜脚勾引网站| 亚洲av国产av综合av卡| 国产精品国产三级国产专区5o| 在线观看免费日韩欧美大片 | 久久鲁丝午夜福利片| 91久久精品国产一区二区成人| 国产高清不卡午夜福利| av卡一久久| 美女脱内裤让男人舔精品视频| 夜夜骑夜夜射夜夜干| 亚洲欧美一区二区三区黑人 | 免费观看av网站的网址| 亚洲四区av| 国产永久视频网站| 秋霞在线观看毛片| 制服诱惑二区| 女人久久www免费人成看片|