• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Antibiotic Resistance Evaluation and Resistance Gene Profile of Epibiotic Lactic Acid Bacteria on Red Bell Peppers Used for Sichuan Pickle Fermentation

    2017-02-08 07:42:31CAITingLUQianwenXIANGWenliangZHANGQingZHANGQishengCHENGongCAIYimin
    食品科學 2017年2期
    關(guān)鍵詞:泡菜乳酸菌耐藥性

    CAI Ting, LU Qianwen, XIANG Wenliang,*, ZHANG Qing, ZHANG Qisheng, CHEN Gong, CAI Yimin

    (1. Provincial Key Laboratory of Food Biotechnology of Sichuan, Institute of Ancient Brewing Technology, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; 2. Sichuan Academy of Food and Fermentation Industries, Chengdu 611130, China; 3. International Research Center for Agricultural Sciences of Japan, Tsukuba 30528686, Japan)

    Antibiotic Resistance Evaluation and Resistance Gene Profile of Epibiotic Lactic Acid Bacteria on Red Bell Peppers Used for Sichuan Pickle Fermentation

    CAI Ting1, LU Qianwen1, XIANG Wenliang1,*, ZHANG Qing1, ZHANG Qisheng2, CHEN Gong2, CAI Yimin3

    (1. Provincial Key Laboratory of Food Biotechnology of Sichuan, Institute of Ancient Brewing Technology, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; 2. Sichuan Academy of Food and Fermentation Industries, Chengdu 611130, China; 3. International Research Center for Agricultural Sciences of Japan, Tsukuba 30528686, Japan)

    For formulating reasonable measures for the prevention and control of bacterial antibiotic resistance to ensure food safety, penicillin (PEN), erythromycin (ERY), tetracycline (TET), streptomycin (STR) and chloramphenicol (CHL) resistance of lactic acid bacteria (LABs) and the corresponding resistance genes were evaluated, including Enterococcus mundtii (n = 5), Enterococcus faecalis (n = 2), Enterococcus hirae (n = 2), Lactococcus lactis (n = 7), Leuconostoc mesenteroides (n = 2), Leuconostoc holzapfelii (n = 3) and Weissella cibaria (n = 79) from fresh red bell peppers used for Sichuan pickle fermentation. All of the isolated strains were susceptible to PEN or ERY, but they had solo, double or triplicate resistance to TET, STR and CHL. All the isolates of L. mesenteroides as well as some strains of E. hirae, E. faecalis and L. holzapfelii showed solo STR resistance. Some strains of E. faecalis, E. hirae, L. lactis and W. cibaria had double resistance to STR and TET, as well as STR and CHL. However, isolates with triplicate resistances to STR, TET and CHL were only found in W. cibaria. It was found that except norA, sepA, tet(A), tet(O) and aac(6’)-aph(2’) genes, all antibiotic resistance genes were harbored by the resistant isolates partly or completely. The multiple-drug resistance efflux pump genes efrA, tolC, norC, sugE and mdfA showed higher positive rates (which were 49%, 41%, 48%, 41% and 47%, respectively) than the ribosomal protection protein genes and the enzymatic modification genes in the corresponding polymerase chain reaction (PCR). Even though the dissemination of these antibiotic resistances needs to be further studied, such results demonstrated that food safety concerns will be partly focused on antibiotic resistance of LABs on fresh red bell peppers according to Qualified Presumption of Safety criteria.

    red bell peppers; lactic acid bacteria; food safety; antibiotic resistance; antibiotic resistance genes

    Sichuan pickle is the typical representative of Chinese traditional vegetable fermentation. It normally serves as a key flavor for Sichuan cuisine or is used as an appetizer because of its unique flavor in many regions of China. Like the kimchi, Sichuan pickle also has various beneficial properties on general health for the consumers, including anti-oxidative activity, antiaging effects, antimutagenic, antigenotoxic and antitumor activities, antimicrobial activity, immune stimulation, weight-controlling, lipidlowering, and anti-atherogenic activities[1]. The material basis of beneficial properties is closely linked to fermentation process dominated by strains of Lactobacillus, Leuconostoc, Weissella and Pediococcus genera from the old salt brine and the fresh vegetable materials. In the last years, the lactic acid bacteria (LAB) genera which are involved in traditional lactic fermentation, were generally considered to be safe for human according to the “Generally Recognized as Safe (GRAS)”principles and the “Qualitative Presumption of Safety (QPS)”risk assessment approach based on a long history of safe use[2]. However, in the recent years, along with antibiotic resistance genes (ARGs) polluting intensively, several antibiotic resistance genes have already been found in the Sichuan pickle[3]. This gives a new challenge to the traditional GRAS and QPS state of Sichuan pickle, more specifically to those without heat-treated before consumption.

    The antibiotic resistance genes (ARGs), as emerging contaminants, were first proposed in 2006[4]. They fleetly became a new research topic in the food safety and environmental science because their health risks resulted from spreading among different hosts were often greater than the harm caused by antibiotics themselves. In 2000, the World Health Organization (WHO) report focused on antibiotic resistance as one of the most critical human health challenges of the next century and heralded the need for “a global strategy to contain resistance”. The food chain was considered as the main route of transmission of antibiotic resistance[5]. The development of antibiotic resistance among bacteria introduced in the food chain is of great novel concern in the food safety[6]. Recently, several spontaneously fermented foods have been considered as important potential transmission vehicles of ARGs from environment to human gastrointestinal tract[7-9], moreover the transfer of ARGs in the commensal or bacteria may be also induced by low pH, high salt concentration, antimicrobial compounds and the high number of living bacteria. And thus the European Food Safety Authority (EFSA) requires that bacteria which are to be introduced into the food chain should lack acquired or transferable ARGs to prevent their spread among different bacteria[10]. Unfortunately, with the aggravation of pollution of ARGs in the environment, the bacteria with transferable ARGs would be inevitably introduced into food produce chains[11-12].

    Bell pepper, a vegetable of nightshade (Solanaceae) family, is one of the best vegetable to serve in a cruditéplatter because of its bright color, thick flesh, great favor, crunchy high texture capsorubin and high vitamin content[13]. In the southwest of China, it is also usually used to make the Sichuan pickle for the flavor refreshments to stimulate the appetite before the meal, or to relieve oleaginous taste after the meal in the summer. However, in the recent years, LABs with ARGs were often found in the Sichuan pickle fermentation system after the bell peppers were introduced to the old salt brine[3], which would make the GRAS and QPS state of Sichuan pickle worse if the transfer of ARGs took place between different LABs. Therefore, it is necessary to evaluate antibiotic resistance and ARGs of epibiotic LABs from the fresh red bell peppers. In current study, we have investigated their resistance to 5 important antibiotics including penicillin (PEN), erythromycin (ERY), tetracycline (TET), streptomycin (STR) and chloramphenicol (CHL), and their ARGs were also detected by polymerase chain reaction (PCR). This study would be very significant to food safety of epibiotic LABs on the fresh red bell peppers used for the Sichuan pickle.

    1 Materials and Methoddss

    1.1 LABs and growth condition

    In the present study, 100 LAB strains were previously obtained from the fresh red bell peppers used for the Sichuan pickle fermentation. They were identified according to the methods described by Pan Lu et al[14]and then stored as frozen stocks at -20 ℃ in de Man Rogosa and Sharpe (MRS) broth containing 20% (V/V) glycerol for long term storage. They were routinely propagated at 30 ℃ in MRS broth (Fluka, Madrid, Spain) or agar slants under aerobic conditions for 24-48 h.

    1.2 Antimicrobial susceptibility testing

    Antimicrobial susceptibility tests were performed by broth micro-dilution method[15]. Brief y, a 96-well plate was inoculated with 2 μL of fresh LAB cultures and 198 μL of MRS broth with serial two-fold dilutions of antibiotics (0.125-64.000 μg/mL PEN, 0.25-128.00 μg/mL ERY, 1-512 μg/mL TET, 2-1 024 μg/mL STR, 0.5-256.0 μg/mL CHL). LABs were f rst cultured in 2 mL of MRS for 24 h at 30 ℃and subsequently diluted in 0.85 g/100 mL physiological saline to the concentration of approximately 1×105CFU/mL. LABs inoculated in MRS were used as positive control, and a LAB-free well as negative. Plates were incubated under anaerobic conditions at 30 ℃ for 48 h.

    The minimal inhibitory concentration (MIC) of each antibiotic was visually evaluated as the lowest concentration at which no growth was observed. All the tests were repeated at least thrice. In duplicate experiments, the differences of MIC for independent sample never exceeded 1 order of dilution. Interpretation for susceptibility status was based on the threshold X defined also as Extended Common Object File Forma (ECOFF) according to the EFSA (2012)[16-17]and the European Committee on Antimicrobial Susceptibility Testing (EUCAST, http://www.eucast.org). When MIC ≤ECOFF value, the strain was sensitive to the antibiotic; on the contrary, it was resistant.

    1.3 Detection of ARGs

    The temple DNA for PCR was prepared as methods by Xiang et al[18]. The genes associated with resistance to chloramphenicol acetyltransferase gene (cat)[14,19], TET (tet(A), tet(B), tet(C), tet(D), tet(G), tet(H), tet(K), tet(M), tet(O), tet(S), tet(W) and tet(X))[19-20], and STR (strA, strB, aadA, aad6, aph(3’)-Ⅲa and aac(6’)-aph(2’)) were detected by PCR amplification[19]. The efflux pump genes mediating antibiotic resistance eff ux were also investigated according to the PCR methods described by Swick et al[21]for acrA, acrB, tolC, mdfA and norE; He et al[22]for sugE; Noguchi et al[23]for smr; Lee et al[24]for efrA and efrB; Patel et al[25]for mdeA, mepA, norA, norB, norC, sdrM and sepA. The PCR primers were listed in Table 1.

    All the amplified ARGs were respectively cloned into the pGEM-T plasmid vector (Promega, Madison, WI, USA) and transformed into the chemically competent E. coli DH5α cells for sequencing. Then the antibiotic resistance genes were further verified by sequence BLASTx program in the National Center for Biotechnology Information (NCBI).

    Table1 PCR primers for antibiotic resistance genes

    Table1 continued

    1.4 Statistical analysis

    The MIC distribution of 5 antibiotics was statistically analyzed using Excel 2010 (Microsoft, Redmond, Washington, USA). Distribution of antibiotic susceptibility and antibiotic resistance genes were performed using SPSS version 17.0 (IBM, Armonk, New York, USA).

    2 Results and Analysis

    2.1 Antibiotic susceptibility

    Antibiotics had been spread in the environment when used as growth promoters in livestock years ago, leading to the selection of antibiotic resistant bacteria[26]. These resistant bacteria may inhabitat in or on fruits, vegetables and animal feeds, and may further disseminate during the food fermentation[27-28]. Therefore, it is important to evaluate the antibiotic resistance incidences of bacteria in fermented vegetables[29]. A total of one hundred isolates were initially identified as LAB by 16S rRNA sequence analysis, and these LABs were further verified by physiological and biochemical methods. They were turned out to be seventy-nine strains of Weissella cibaria, five strains of Enterococcus mundtii, two strains of Enterococcus faecalis, two strains of Enterococcus hirae, two strains of Leuconostoc mesenteroides, three strains of Leuconostoc holzapfelii and seven strains of Lactococcus lactis (Table 2).

    Table2 Microbial classification of LABs isolated from red bell peppers using 16S rRNA gene sequence analysis

    Table3 MIC distribution of 5 antibiotics for LABs isolated from red peppers used for Sichuan pickle production

    The susceptibility determination was performed with epibiotic LABs to PEN, ERY, TET, STR and CHL. The results indicated that the MICs to PEN and ERY did not exceed the ECOFF values posed by the EFSA 2012 for E. mundtii, E. faecalis, E. hirae, L. mesenteroides, L. holzapfelii, L. lactis and W. cibaria (Table 3). It suggested that all epibiotic LABs on the fresh red bell peppers are sensitive to PEN and ERY. Conversely, except L. holzapfelii, most of them displayed resistance to the STR (84 strains LABs), with 100% of E. hirae and L. mesenteroides, 60% of E. mundtii, 50% of E. faecalis, 85.7% L. lactis and 88.6% W. cibaria (Table 3), and these resistant LABs showed high MIC values as previously reported by Elkins et al[30]. For TET, all strains of E. mundtii, L. mesenteroides and L. holzapfelii showed susceptibility, while 50% of E. faecalis, 100% of E. hirae and 28.6% of L. lactis strains had higher MIC than their corresponding ECOFF values, suggesting resistance to TET (Table 3). In the CHL, only 3.8% of W. cibaria strains had obtained resistance, the other species and 96.2% of W. cibaria strains were sensitive to CHL (Table 3).

    2.2 Antibiotic resistance phenotype and distribution

    Statistical analysis showed that none of strains were resistant to PEN and ERY, but there were some strains with solo, or double or triplicate resistance to TET, STR and CHL. As one of the most widespread agricultural antibiotics, the use of STR has lead STR resistance bacteria to grow in the environment, and thus unavoidably gathered at the surface of the vegetable. Therefore, STR resistant bacteria were often found on the surface of the vegetables[5]. It was also verified by our results that 84% of LAB isolates were resistant to STR, and the strains with solo resistance to STR almost existed in all species except E. hirae and E. faecalis (Fig. 1). All the strains of L. mesenteroides only showed solo STR resistance. In E. faecalis, E. hirae, L. lactis and W. cibaria, some isolates have double resistance to STR and TET or STR and CHL. However, the triplicate resistant strain was found only in W. cibaria, and it was against STR, TET and CHL (Fig. 1). Two E. hirae strains both displayed STR and TET double resistance. In two E. faecalis strains, one was sensitive to antibiotics tested, the other with TET and STR double resistance. In five E. mundtii strains, which have two strains with susceptibility to all testing antibiotics, three solo STR resistant. Among seven L. lactis strains, four strains were found to be with solo STR resistance, two strains with TET and STR double resistance, and one strain with susceptibility to all testing antibiotics. Among seventy nine W. cibaria strains, only one W. cibaria strain with triplicate resistance to TET, STR and CHL was observed. Furthermore, there were nine susceptibility isolates, fifty-eight solo STR resistant isolates, nine TET and STR double resistant isolates and two STR and CHL double resistant isolates.

    Fig. 1 Distribution of antibiotic susceptibility and resistant LAB isolates

    2.3 Antibiotic resistance genes

    The overuse and misuse of antibiotics have created a tremendous selective pressure toward antibiotic resistant bacteria[30]. Different mechanisms for the resistance to various antibiotics have been found in bacteria, including antibiotic degrading, pump efflux, altering and metabolism in cell[31]. The emergence of antibiotic resistance is a global threat because it reduces the efficiency of the antibiotic therapy, which is getting worse by the horizontal transfer of ARGs between bacteria[32-33]. Fermentative materials have been considered as potential vehicles of resistant genes from environment to products[5].

    To identify resistant determinants responsible for the resistance phenotypes observed, all the strains were screened by PCR for the presence of resistant genes as described above. In current investigation, these genes served the antibiotic resistance were detected and displayed in Fig. 2. Except the efflux genes norA and sepA, TET resistance genes tet(A) and tet(O), STR resistance gene aac(6’)-aph(2’), the other resistant genes were harbored by resistance isolates partly or completely. The multiple-drug resistant efflux pump genes, including efrA, tolC, norC, sugE and mdfA, showed higher positive ratios than the others in the corresponding PCR reactions, in which their detected ratios were 49, 41, 48, 41 and 47%, respectively. The results were similar to the eff ux pump genes in the LAB described by del Carmen et al[19]. The STR and TET double resistant W. cibaria CT023 carried most resistant genes, including seven drug eff ux pump genes efrA, efrB, acrB, sugE, norC, mdfA and mepA, three TET efflux genes tet(B), tet(C) and tet(K), two ribosomal protection protein genes tet(S) and tet(W), one enzymatic modif cationgene tet(X), and three STR resistance genes strB, aad6 and aph(3’)-Ⅲa. While, E. mundtii CT080, CT081, W. cibaria CT012, CT014, CT098 and CT206 have only possessed one resistance gene, norE for CT080, mdfA for CT081, strB for CT012 and CT206, acrA for CT014 and CT098. And all of them were positive for solo STR resistance. The detection of ARGs in fermentative vegetable materials implies that there is a potential food safety risk when ARGs spread to other microorganisms during the fermentation by horizontal gene transfer.

    Fig. 2 Distribution of ARGs in different antibiotic resistance LAB isolates

    3 Conclusions

    Traditionally fermented vegetables play an important role in the food systems in China. However, no investigation has been conducted to assess the antibiotic resistance incidences and ARGs of LAB. In current investigation, all the LAB isolates from the fresh red bell peppers were susceptible to PEN and ERY. Concerning TET, STR and CHL, all the strains of L. mesenteroides showed solo STR resistance. In E. faecalis, E. hirae, L. lactis and W. cibaria, some isolates had double resistance to STR and TET or STR and CHL. However, the triplicate resistance was found only in W. cibaria. Except for norA, sepA, tet(A), tet(O) and aac(6’)-aph(2’), the other resistance genes were harbored by resistant isolates partly or completely. The genes efrA, tolC, norC,

    sugE and mdfA showed higher positive ratios, which were 49%, 41%, 48%, 41% and 47% respectively. Even though the dissemination of these ARGs during vegetable fermentation need to be further studied, such studies will be conducive to safety assessment of fresh red bell peppers when being used as the material for fermentation.

    [1] JI Y, KIM H, PARK H, et al. Functionality and safety of lactic bacterial strains from Korean kimchi[J]. Food Control, 2013, 31(2): 467-473. DOI:10.1016/j.foodcont.2012.10.034.

    [2] ANADóN A, MART?NEZ-LARRA?AGA M R, MART?NEZ M A. Probiotics for animal nutrition in the European Union. regulation and safety assessment[J]. Regulatory Toxicology and Pharmacology, 2006, 45(1): 91-95. DOI:10.1016/j.yrtph.2006.02.004.

    [3] SONG Feifei, XU Gurong, CAI Ting, et al. Detection of streptomycin resistance and resistance genes in lactic acid bacteria from Sichuan Pickle of China[J]. Journal of Food Safety and Quality, 2014, 5(12): 4032-4039.

    [4] PRUDEN A, PEI R, STORTEBOOM H, et al. Antibiotic resistance genes as emerging contaminants: studies in northern Colorado[J]. Environmental Science and Technology, 2006, 40(23): 7445-7450. DOI:10.1021/es060413l.

    [5] VERRAES C, van BOXSTAEL S, van MEERVENNE E, et al. Antimicrobial resistance in the food chain: a review[J]. International Journal of Environmental Research and Public Health, 2013, 10(7): 2643-2669. DOI:10.3390/ijerph10072643.

    [6] WANG H, McENTIRE J C, ZHANG L, et al. The transfer of antibiotic resistance from food to humans: facts, implications and future directions[J]. International Office of Epizootics, 2012, 31(1): 249-260. DOI:10.20506/rst.31.1.2117.

    [7] BAUTISTA-GALLEGO J, ARROYO-L?PEA F N, RANTSIOU K, et al. Screening of lactic acid bacteria isolated from fermented table olives with probiotic potential[J]. Food Research International, 2013, 50(1): 135-142. DOI:10.1016/j.foodres.2012.10.004.

    [8] AHAOTU I, ANYOGU A, NLOKU O H, et al. Molecular identification and safety of Bacillus species involved in the fermentation of African oil beans (Pentaclethra macrophylla Benth) for production of Ugba[J]. International Journal of Food Microbiology, 2013, 162(1): 95-104. DOI:10.1016/j.ijfoodmicro.2013.01.001.

    [9] HUDDLESTON J R. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes[J]. Infecition and Drug Resistance, 2014(7): 167-176. DOI:10.2147/IDR.S48820.

    [10] van REENEN C A, DICKS L M T. Horizontal gene transfer amongst probiotic lactic acid bacteria and other intestinal microbiota: what are the possibilities? a review[J]. Archives of Microbiology, 2011, 193(3): 157-168. DOI:10.1007/s00203-010-0668-3.

    [11] ZHANG Xiangxu, ZHANG Tong, FANG H H P. Antibiotic resistance genes in water environment[J]. Applied Microbiology and Biotechnology, 2009, 82(3): 397-414. DOI:10.1007/s00253-008-1829-z.

    [12] FUENTES M A F, MORENTE E O, ABRIOUEL H, et al. Antimicrobial resistance determinants in antibiotic and biocide resistant gram-negative bacteria from organic foods[J]. Food Control, 2014, 37: 9-14. DOI:10.1016/j.foodcont.2013.08.041.

    [13] OUYANG Jing, TAO Xianglin, LI Ziming, at el. Analysis of changes in the main components and volatile components in fermented pepper with high salt content[J]. Food Science, 2014, 35(4): 174-179. DOI:10.7506/spkx1002-6630-201416038.

    [14] PAN Lu, HU Xiaoqing, WANG Xiaoyuan. Assessment of antibiotic resistance of lactic acid bacteria in Chinese fermented foods[J]. Food Control, 2011, 22(8): 1316-1321. DOI:10.1016/ j.foodcont.2011.02.006.

    [15] KLARE I, KONSTABEL C, M?LLER-BERTLING S, et al. Evaluation of new broth media for microdilution antibiotic susceptibility testing of Lactobacilli, Pediococci, Lactococci, and Bif dobacteria[J]. Applied and Environmental Microbiology, 2005, 71(12): 8982-8986. DOI:10.1128/aem.71.12.8982-8986.2005.

    [16] DANIELSEN M, WIND A. Susceptibility of Lactobacillus spp. to antimicrobial agents[J]. International Journal of Food Microbiology, 2003, 82(1): 1-11. DOI:10.1016/S0168-1605(02)00254-4.

    [17] FLOREZ H, SLIVA E, FERN?NDEZ V, et al. Prevalence and risk factors associated with the metabolic syndrome and dyslipidemia in White, Black, Amerindian and Mixed Hispanics in Zulia State, Venezuela[J]. Diabetes Research and Clinical Practice, 2005, 69(1): 63-77. DOI:10.1016/j.diabres.2004.11.018.

    [18] XIANG Wenliang, LI Ke, LIU Sen, et al. Microbial succession in the traditional Chinese Luzhou-flavor liquor fermentation process as evaluated by SSU rRNA profiles[J]. World Journal of Microbiology and Biotechnology, 2012, 29(3): 559-567. DOI:10.1007/s11274-012-1210-3.

    [19] del CARMEN CASADO MU?OZ M, BENMAR N, LERMA L L, et al. Antibiotic resistance of Lactobacillus pentosus and Leuconostoc pseudomesenteroides isolated from naturally-fermented Alore?a table olives throughout fermentation process[J]. International Journal of Food Microbiology, 2014, 172(17): 110-118. DOI:10.1016/ j.ijfoodmicro.2013.11.025.

    [20] JIA Shuyu, HE Xiwei, BU Yuanqing, et al. Environmental fate of tetracycline resistance genes originating from swine feedlots in river water[J]. Journal of Environmental Science and Health, 2014, 49(8): 624-631. DOI:10.1080/03601234.2014.911594.

    [21] SWICK M C, MORGAN-LINNELL S K, CARLSON K M, et al. Expression of multidrug efflux pump genes acrAB-tolC, mdfA, and norE in Escherichia coli clinical isolates as a function of fluoroquinolone and multidrug resistance[J]. Antimicrobial Agents and Chemotherapy, 2011, 55(2): 921-924. DOI:10.1128/AAC.00996-10.

    [22] HE Guixin, ZHANG Chu, CROW R R, et al. SugE, a new member of the SMR family of transporters, contributes to antimicrobial resistance in Enterobacter cloacae[J]. Antimicrobial Agents and Chemotherapy, 2011, 55(8): 3954-3957. DOI:10.1128/aac.00094-11.

    [23] NOGUCHI N, HASE M, KITTA M, et al. Antiseptic susceptibility and distribution of antiseptic-resistance genes in methicillin-resistant Staphylococcus aureus[J]. FEMS Microbiology Letters, 1999, 172(2): 247-253. DOI:10.1111/j.1574-6968.1999.tb13475.x.

    [24] LEE E W, HUDA M N, KURODA T, et al. EfrAB, an ABC multidrug efflux pump in Enterococcus faecalis[J]. Antimicrobial Agents and Chemotherapy, 2003, 47(12): 3733-3738. DOI:10.1128/ aac.47.12.3733-3738.2003.

    [25] PATEL D, KOSMIDIS C, SEO S M, et al. Ethidium bromide MIC screening for enhanced efflux pump gene expression or efflux activity in Staphylococcus aureus[J]. Antimicrobial Agents and Chemotherapy, 2010, 54(12): 5070-5073. DOI:10.1128/aac.01058-10.

    [26] DEVIRGILIIS C, CARAVELLI A, COPPOIA D, et al. Antibiotic resistance and microbial composition along the manufacturing process of Mozzarella di Bufala Campana[J]. International Journal of Food Microbiology, 2008, 128(2): 378-384. DOI:10.1016/ j.ijfoodmicro.2008.09.021.

    [27] ZHANG Hongmei, HUANG Shaosong, ZHOU Hanji, et al. Two kinds of antibiotics resistance of lactic acid bacteria isolated from yogurt[J]. Chinese Journal of Public Health, 2010, 26(4): 511-512. DOI:10.11847/zgggws2010-26-04-73.

    [28] LIN Kai, CAI Ting, XU Gurong, et al. Antibiotic resistance of epibiotic lactic acid bacteria on the surface of organic white radish[J]. Food Science, 2015, 36(11): 145-149. DOI:10.7506/spkx1002-6630-201511028.

    [29] FU Mingchun, XI Huiping, LIU Yanzhao. Current antibiotic residues and control countermeasures of milk and meat[J]. Chinese Journal of Animal Quarantine, 2008, 25(6): 20-22. DOI:10.3969/j.issn.1005-944X.2008.06.010.

    [30] ELKINS C A, MULLIS L B. Bile-mediated aminoglycoside sensibility in Lactobacillus species likely results from increased membrane permeability attributable to cholic acid[J]. Applied and Environmental Microbiology, 2004, 70(12): 7200-7209. DOI:10.1128/ aem.70.12.7200-7209.2004.

    [31] SHARMA P, TOMAR S K, GOSWAMI P, et al. Antibiotic resistance among commercially available probiotics[J]. Food Research International, 2014, 57(1): 176-195. DOI:10.1016/ j.foodres.2014.01.025.

    [32] NAWAZ M, WANG Juan, ZHOU Aiping, et al. Characterization and transfer of antibiotic resistance in lactic acid bacteria from fermented food products[J]. Current Microbiology, 2011, 62(3): 1081-1089. DOI:10.1007/s00284-010-9856-2.

    [33] TOOMEY N, BOLTON D, FANNING S. Characterisation and transferability of antibiotic resistance genes from lactic acid bacteria isolated from Irish pork and beef abattoirs[J]. Research in Microbiology, 2010, 161(2): 127-135. DOI:10.1016/ j.resmic.2009.12.010.

    四川泡菜發(fā)酵原料-燈籠辣椒附生乳酸菌的抗生素耐藥性評估與耐藥基因分析

    蔡 婷1,盧倩文1,向文良1,*,張 慶1,張其圣2,陳 功2,蔡義民3

    (1.西華大學食品與生物工程學院,四川省食品生物技術(shù)重點實驗室,古法發(fā)酵(釀造)生物技術(shù)研究所,四川 成都 610039;2. 四川省食品發(fā)酵工業(yè)研究設計院,四川 成都 611130;3.日本國際農(nóng)業(yè)科學研究中心,日本 筑波 30528686)

    以四川泡菜蔬菜原料——新鮮燈籠辣椒為對象,分析其表面附生乳酸菌Enterococcus mundtii(5 株)、Enterococcus faecalis(2 株)、Enterococcus hirae(5 株)、Lactococcus lactis(7 株)、Leuconostoc mesenteroides(2 株)、Leuconostoc holzapfelii(3 株)和Weissella cibaria(79 株)對青霉素(penicillin,PEN)、紅霉素(erythromycin,ERY)、四環(huán)素(tetracycline,TET)、鏈霉素(streptomycin,STR)和氯霉素(chloramphenicol,CHL)的抗生素耐藥性和耐藥基因分布,為制定合理的食品安全防控措施提供科學依據(jù)。研究表明:所有分離菌株均無PEN和ERY耐藥性,其他種屬部分菌株對TET、STR和CHL表現(xiàn)出單一、二重或三重耐藥性。除E. hirae、E. faecalis和L. holzapfelii部分菌株對STR表現(xiàn)出單一耐藥性外,所有L. mesenteroide菌株只表現(xiàn)出了STR單一耐藥性;STR和TET、STR和CHL二重耐藥菌株在E. faecalis、E. hirae、L. lactis和W. cibaria分離菌株中都有發(fā)現(xiàn),但是STR、TET、CHL三重耐藥菌株僅在W. cibaria中發(fā)現(xiàn)。聚合酶鏈式反應檢測發(fā)現(xiàn):除基因norA、sepA、tet(A)、tet(O)和aac(6’)-aph(2’)未被檢出外,其他耐藥菌株都有相應1 個或多個耐藥基因被檢出。多重耐藥外排泵基因efrA、tolC、norC、sugE和mdfA較核糖體蛋白質(zhì)保護和酶修飾基因檢出率高,分別達到了49%、41%、48%、41%和47%。雖然辣椒表面附生乳酸菌的抗生素耐藥基因在四川泡菜發(fā)酵過程中的擴散行為需要進一步研究,但根據(jù)食品加工過程安全規(guī)范標準,也應關(guān)注其表面附生的乳酸菌抗生素耐藥性存在的潛在食品安全問題。

    燈籠辣椒;乳酸菌;食品安全;抗生素耐藥性;抗生素耐藥性基因

    TS201.3

    A

    1002-6630(2017)02-0027-07

    nces

    2016-03-11

    國家自然科學基金面上項目(31571935);教育部春暉計劃項目(Z2014061);四川省應用基礎項目(2014JY0045);四川省教育廳重點項目(14ZA0110)

    蔡婷(1991—),女,碩士研究生,主要從事食品微生物分子生態(tài)研究。E-mail:caiting1124@sina.com

    10.7506/spkx1002-6630-201702005

    *通信作者:向文良(1973—),男,教授,博士,主要從事中國西南地區(qū)特色發(fā)酵食品微生物分子生態(tài)與生物過程學研究。

    E-mail:biounicom@mail.xhu.edu.cn

    CAI Ting, LU Qianwen, XIANG Wenliang, et al. Antibiotic resistance evaluation and resistance gene profile of epibiotic lactic acid bacteria on red bell peppers used for Sichuan pickle fermentation[J]. 食品科學, 2017, 38(2): 27-33.

    10.7506/ spkx1002-6630-201702005. http://www.spkx.net.cn

    CAI Ting, LU Qianwen, XIANG Wenliang, et al. Antibiotic resistance evaluation and resistance gene profile of epibiotic lactic acid bacteria on red bell peppers used for Sichuan pickle fermentation[J]. Food Science, 2017, 38(2): 27-33. DOI:10.7506/spkx1002-6630-201702005. http://www.spkx.net.cn

    猜你喜歡
    泡菜乳酸菌耐藥性
    韓國泡菜,不僅僅是辣白菜
    長絲鱸潰爛癥病原分離鑒定和耐藥性分析
    禽用乳酸菌SR1的分離鑒定
    雪花泡菜
    嬰幼兒感染中的耐藥菌分布及耐藥性分析
    WHO:HIV耐藥性危機升級,普及耐藥性檢測意義重大
    我只是想吃一碗泡菜
    乳酸菌成乳品市場新寵 年增速近40%
    乳飲品中耐胃酸乳酸菌的分離鑒定與篩選
    中國釀造(2014年9期)2014-03-11 20:21:04
    產(chǎn)γ-氨基丁酸乳酸菌的篩選及誘變育種
    食品科學(2013年23期)2013-03-11 18:30:09
    午夜久久久久精精品| 亚洲国产精品久久男人天堂| 女人十人毛片免费观看3o分钟| 在线免费观看的www视频| 亚洲美女视频黄频| 国内揄拍国产精品人妻在线| 亚洲国产精品sss在线观看| 免费看a级黄色片| 亚洲精品在线观看二区| 男人舔奶头视频| 亚洲乱码一区二区免费版| 99国产极品粉嫩在线观看| 成人国产一区最新在线观看| 亚洲 国产 在线| 在线a可以看的网站| 日韩欧美 国产精品| 天堂√8在线中文| 美女xxoo啪啪120秒动态图| 免费观看的影片在线观看| 91麻豆av在线| h日本视频在线播放| 精华霜和精华液先用哪个| 黄色视频,在线免费观看| 国产成人aa在线观看| 国产色爽女视频免费观看| 欧美不卡视频在线免费观看| 日韩中字成人| 一区二区三区四区激情视频 | 18禁在线播放成人免费| 亚洲人与动物交配视频| 91在线观看av| 美女免费视频网站| 我要搜黄色片| 欧美3d第一页| 又黄又爽又免费观看的视频| 97人妻精品一区二区三区麻豆| 听说在线观看完整版免费高清| 18禁黄网站禁片午夜丰满| 成人欧美大片| 国产av在哪里看| 丰满乱子伦码专区| 成年免费大片在线观看| 日本熟妇午夜| 在线观看一区二区三区| 欧美成人a在线观看| 欧美日韩亚洲国产一区二区在线观看| 欧美精品啪啪一区二区三区| 男女做爰动态图高潮gif福利片| 亚洲aⅴ乱码一区二区在线播放| 精品日产1卡2卡| 亚洲va日本ⅴa欧美va伊人久久| 亚洲乱码一区二区免费版| 99九九线精品视频在线观看视频| 两人在一起打扑克的视频| 99久久精品一区二区三区| 成人毛片a级毛片在线播放| 十八禁网站免费在线| 成年人黄色毛片网站| 最近最新中文字幕大全电影3| av福利片在线观看| 亚洲国产欧洲综合997久久,| 男人和女人高潮做爰伦理| 成人美女网站在线观看视频| 99国产极品粉嫩在线观看| 露出奶头的视频| 亚洲人成伊人成综合网2020| 在线播放无遮挡| 亚洲真实伦在线观看| av在线天堂中文字幕| 亚洲欧美激情综合另类| 国产毛片a区久久久久| 美女免费视频网站| 欧美成人一区二区免费高清观看| 精品久久久噜噜| 久久精品91蜜桃| 香蕉av资源在线| 亚洲五月天丁香| 别揉我奶头 嗯啊视频| av福利片在线观看| 女生性感内裤真人,穿戴方法视频| 精品欧美国产一区二区三| 亚洲av成人精品一区久久| 精品一区二区三区视频在线观看免费| 综合色av麻豆| 男人狂女人下面高潮的视频| 黄色日韩在线| 波多野结衣高清作品| 一本一本综合久久| 中文字幕高清在线视频| 日韩人妻高清精品专区| 黄片wwwwww| 无遮挡黄片免费观看| 午夜影院日韩av| 欧美日本亚洲视频在线播放| 亚洲一级一片aⅴ在线观看| 欧美性猛交╳xxx乱大交人| 毛片一级片免费看久久久久 | 可以在线观看毛片的网站| 欧美日韩瑟瑟在线播放| 男人舔奶头视频| 免费不卡的大黄色大毛片视频在线观看 | 亚洲人成伊人成综合网2020| 精品日产1卡2卡| 国产aⅴ精品一区二区三区波| 麻豆一二三区av精品| 黄色一级大片看看| 久久香蕉精品热| 男女啪啪激烈高潮av片| 色综合亚洲欧美另类图片| 亚洲黑人精品在线| 日韩大尺度精品在线看网址| 精品久久久久久,| 91久久精品国产一区二区成人| 在线播放国产精品三级| 久久久久久九九精品二区国产| 久久久久久国产a免费观看| 在线看三级毛片| 伊人久久精品亚洲午夜| 他把我摸到了高潮在线观看| 久久九九热精品免费| 国产探花在线观看一区二区| 欧美又色又爽又黄视频| 国产精品久久视频播放| 99久久精品一区二区三区| 人人妻人人澡欧美一区二区| 一边摸一边抽搐一进一小说| 久久久久久久久中文| 精品人妻视频免费看| 少妇猛男粗大的猛烈进出视频 | or卡值多少钱| 最近视频中文字幕2019在线8| 偷拍熟女少妇极品色| 国产亚洲av嫩草精品影院| 一卡2卡三卡四卡精品乱码亚洲| 欧美潮喷喷水| 999久久久精品免费观看国产| 精品久久久久久久久亚洲 | 一个人观看的视频www高清免费观看| 国产亚洲精品久久久com| 欧洲精品卡2卡3卡4卡5卡区| 天堂av国产一区二区熟女人妻| 一个人看视频在线观看www免费| 99视频精品全部免费 在线| 国产三级在线视频| 亚洲av.av天堂| 国产一区二区亚洲精品在线观看| 亚洲七黄色美女视频| 国内精品宾馆在线| 久久精品国产亚洲av天美| 少妇的逼水好多| 色综合色国产| 22中文网久久字幕| 日日撸夜夜添| 久久久精品欧美日韩精品| 性色avwww在线观看| 麻豆精品久久久久久蜜桃| 可以在线观看毛片的网站| 国产精品福利在线免费观看| 美女xxoo啪啪120秒动态图| xxxwww97欧美| 欧美3d第一页| 真实男女啪啪啪动态图| netflix在线观看网站| 我的老师免费观看完整版| 99久久中文字幕三级久久日本| 精品免费久久久久久久清纯| 亚洲成人久久爱视频| 成人欧美大片| 一级黄色大片毛片| 永久网站在线| 欧美+亚洲+日韩+国产| 亚洲精品亚洲一区二区| 亚州av有码| 亚洲av第一区精品v没综合| 高清毛片免费观看视频网站| 淫妇啪啪啪对白视频| 亚洲真实伦在线观看| 中亚洲国语对白在线视频| 美女被艹到高潮喷水动态| 亚洲自拍偷在线| 国产精品久久视频播放| 国产精品99久久久久久久久| 长腿黑丝高跟| 高清在线国产一区| 国产 一区精品| 男插女下体视频免费在线播放| 色综合婷婷激情| 婷婷六月久久综合丁香| 国产69精品久久久久777片| 亚洲专区国产一区二区| 亚洲av日韩精品久久久久久密| 极品教师在线视频| 男女啪啪激烈高潮av片| 国产精华一区二区三区| 国产成人一区二区在线| 久久久久久久久久黄片| 特大巨黑吊av在线直播| 中文字幕av成人在线电影| 色播亚洲综合网| 欧美最黄视频在线播放免费| 最新中文字幕久久久久| 一级黄片播放器| 色综合色国产| 丰满的人妻完整版| 亚洲五月天丁香| 国产成人影院久久av| 免费在线观看成人毛片| 欧美日本视频| 国产三级中文精品| 九九热线精品视视频播放| 国产亚洲精品久久久com| 中文在线观看免费www的网站| 小说图片视频综合网站| 99久久精品热视频| 一区二区三区四区激情视频 | ponron亚洲| 日本 av在线| 黄色视频,在线免费观看| 精品欧美国产一区二区三| 91麻豆av在线| 欧美高清成人免费视频www| 国产高清不卡午夜福利| 欧美又色又爽又黄视频| 免费高清视频大片| 色播亚洲综合网| 特大巨黑吊av在线直播| 欧美潮喷喷水| 亚洲专区国产一区二区| 免费电影在线观看免费观看| 性欧美人与动物交配| 一区二区三区激情视频| 国产精品精品国产色婷婷| 午夜久久久久精精品| 亚洲美女黄片视频| 热99re8久久精品国产| 亚洲专区国产一区二区| 一个人免费在线观看电影| 精品久久久噜噜| 色噜噜av男人的天堂激情| 噜噜噜噜噜久久久久久91| 亚洲欧美日韩高清专用| 老司机福利观看| 黄色丝袜av网址大全| 亚洲va日本ⅴa欧美va伊人久久| av中文乱码字幕在线| 舔av片在线| 性欧美人与动物交配| 欧美最黄视频在线播放免费| 神马国产精品三级电影在线观看| 国产黄色小视频在线观看| 内地一区二区视频在线| 亚洲欧美日韩东京热| 五月伊人婷婷丁香| 一夜夜www| 极品教师在线视频| av在线亚洲专区| 精品人妻1区二区| 性色avwww在线观看| 国产免费男女视频| 狂野欧美激情性xxxx在线观看| 国产综合懂色| 国产蜜桃级精品一区二区三区| 国内精品久久久久久久电影| 99久久久亚洲精品蜜臀av| 啪啪无遮挡十八禁网站| 看免费成人av毛片| 欧美日韩中文字幕国产精品一区二区三区| 久久久久久久亚洲中文字幕| 国产精品一及| 在线播放国产精品三级| 久久久久国产精品人妻aⅴ院| 成人国产麻豆网| 无人区码免费观看不卡| av.在线天堂| 69人妻影院| 日韩欧美在线乱码| 床上黄色一级片| 黄色丝袜av网址大全| 日本色播在线视频| 国产单亲对白刺激| 亚洲成人精品中文字幕电影| 99热这里只有是精品在线观看| 亚洲成人久久性| 97热精品久久久久久| 日韩,欧美,国产一区二区三区 | 精品国产三级普通话版| 国产精品三级大全| 亚洲人与动物交配视频| 亚洲欧美日韩东京热| 久久亚洲精品不卡| 亚洲精品影视一区二区三区av| 国产色婷婷99| 成人三级黄色视频| 男插女下体视频免费在线播放| 看片在线看免费视频| 国产高清视频在线播放一区| 成年女人永久免费观看视频| 欧美色欧美亚洲另类二区| 久久久久久久久久成人| 国产一区二区三区av在线 | 天堂av国产一区二区熟女人妻| 99久久久亚洲精品蜜臀av| 色综合站精品国产| 国产成人av教育| 亚洲,欧美,日韩| 91av网一区二区| 嫩草影院新地址| 内地一区二区视频在线| 婷婷精品国产亚洲av| 日韩欧美三级三区| 在线免费十八禁| 国产毛片a区久久久久| 俄罗斯特黄特色一大片| 麻豆一二三区av精品| 久久人人爽人人爽人人片va| 老女人水多毛片| 国产主播在线观看一区二区| 亚洲人成网站在线播| 搡老岳熟女国产| 99精品久久久久人妻精品| 看免费成人av毛片| 亚洲综合色惰| 一本一本综合久久| 亚洲av中文字字幕乱码综合| 日本免费一区二区三区高清不卡| 天美传媒精品一区二区| 亚洲天堂国产精品一区在线| 免费观看在线日韩| 国产一区二区在线av高清观看| 成熟少妇高潮喷水视频| 国产高清视频在线播放一区| 欧美在线一区亚洲| 国产aⅴ精品一区二区三区波| 国产高潮美女av| 欧美性猛交╳xxx乱大交人| 老司机福利观看| 变态另类成人亚洲欧美熟女| 国产精品一及| 国产亚洲欧美98| 嫩草影视91久久| 精品人妻熟女av久视频| 91午夜精品亚洲一区二区三区 | 国产午夜精品久久久久久一区二区三区 | 毛片一级片免费看久久久久 | 欧美一区二区亚洲| 国产成人一区二区在线| 男女之事视频高清在线观看| 欧美精品啪啪一区二区三区| 少妇猛男粗大的猛烈进出视频 | 久久久久久久久久成人| 精品免费久久久久久久清纯| 国产精品国产高清国产av| 欧美成人性av电影在线观看| 国产精品99久久久久久久久| 免费大片18禁| 亚洲欧美日韩东京热| 一个人免费在线观看电影| 国产午夜精品论理片| 国产成年人精品一区二区| 国产精品伦人一区二区| 色综合色国产| 亚洲av成人av| 成年女人毛片免费观看观看9| 国产毛片a区久久久久| 亚洲av美国av| 一级av片app| 全区人妻精品视频| 在线观看美女被高潮喷水网站| 亚洲在线自拍视频| 男女下面进入的视频免费午夜| 别揉我奶头~嗯~啊~动态视频| 两性午夜刺激爽爽歪歪视频在线观看| 高清日韩中文字幕在线| 日本撒尿小便嘘嘘汇集6| 小说图片视频综合网站| 欧美日韩中文字幕国产精品一区二区三区| 欧美3d第一页| 永久网站在线| 啪啪无遮挡十八禁网站| 在线a可以看的网站| www.www免费av| 国产老妇女一区| 午夜免费激情av| 动漫黄色视频在线观看| 简卡轻食公司| av在线观看视频网站免费| 国产亚洲欧美98| 亚洲成人精品中文字幕电影| 欧美极品一区二区三区四区| 99久久精品热视频| 精品久久久久久久久久免费视频| 精品久久国产蜜桃| 韩国av一区二区三区四区| 一级毛片久久久久久久久女| 欧美不卡视频在线免费观看| 18禁裸乳无遮挡免费网站照片| 亚洲国产高清在线一区二区三| 男人的好看免费观看在线视频| 久久精品91蜜桃| 最近在线观看免费完整版| 91久久精品电影网| 午夜激情福利司机影院| 成人三级黄色视频| 国产精品永久免费网站| 在线免费观看的www视频| 十八禁国产超污无遮挡网站| 色哟哟·www| 国产欧美日韩精品一区二区| 精品乱码久久久久久99久播| 成年女人毛片免费观看观看9| 亚洲成人免费电影在线观看| АⅤ资源中文在线天堂| xxxwww97欧美| 三级国产精品欧美在线观看| 啪啪无遮挡十八禁网站| 亚洲精华国产精华液的使用体验 | 日日摸夜夜添夜夜添小说| 99热网站在线观看| 国产成人av教育| 在线观看免费视频日本深夜| 午夜亚洲福利在线播放| 欧美潮喷喷水| 日韩中字成人| 真人一进一出gif抽搐免费| 白带黄色成豆腐渣| 亚洲性夜色夜夜综合| 亚洲美女搞黄在线观看 | 麻豆久久精品国产亚洲av| 夜夜爽天天搞| 欧美激情国产日韩精品一区| 国产黄a三级三级三级人| 乱码一卡2卡4卡精品| 欧美bdsm另类| 免费在线观看成人毛片| 人妻夜夜爽99麻豆av| 性插视频无遮挡在线免费观看| av专区在线播放| 亚洲无线在线观看| 成人高潮视频无遮挡免费网站| 中亚洲国语对白在线视频| 动漫黄色视频在线观看| 中文字幕精品亚洲无线码一区| 免费看a级黄色片| 亚洲av电影不卡..在线观看| 高清日韩中文字幕在线| 精品久久久久久久人妻蜜臀av| 国产精品自产拍在线观看55亚洲| 看免费成人av毛片| 国产精华一区二区三区| 国产精品久久久久久亚洲av鲁大| 欧美成人免费av一区二区三区| 99热网站在线观看| 天堂av国产一区二区熟女人妻| 免费看美女性在线毛片视频| 一级黄色大片毛片| 人妻少妇偷人精品九色| 精品人妻偷拍中文字幕| 日韩亚洲欧美综合| 久久香蕉精品热| 日本爱情动作片www.在线观看 | 日日夜夜操网爽| 99久久精品国产国产毛片| 久久精品国产亚洲av天美| 在线观看av片永久免费下载| 麻豆国产av国片精品| 网址你懂的国产日韩在线| 亚洲最大成人av| 啦啦啦韩国在线观看视频| 久久婷婷人人爽人人干人人爱| 老司机午夜福利在线观看视频| 日日啪夜夜撸| 久久久国产成人免费| 日本-黄色视频高清免费观看| 午夜老司机福利剧场| 国语自产精品视频在线第100页| 岛国在线免费视频观看| 中国美白少妇内射xxxbb| 中文字幕熟女人妻在线| 免费一级毛片在线播放高清视频| 国产av不卡久久| 啦啦啦观看免费观看视频高清| 亚洲av美国av| 国产综合懂色| 国产精品国产三级国产av玫瑰| 国产大屁股一区二区在线视频| 亚洲av.av天堂| 蜜桃亚洲精品一区二区三区| 亚洲欧美日韩高清在线视频| 亚洲av五月六月丁香网| 免费搜索国产男女视频| 久久精品国产亚洲av天美| 色噜噜av男人的天堂激情| 99热这里只有精品一区| 色噜噜av男人的天堂激情| 亚洲av电影不卡..在线观看| eeuss影院久久| 极品教师在线视频| 亚洲真实伦在线观看| 蜜桃亚洲精品一区二区三区| 搡老岳熟女国产| 亚洲av不卡在线观看| 亚洲精品成人久久久久久| 免费看av在线观看网站| 人人妻,人人澡人人爽秒播| 日韩 亚洲 欧美在线| 国产免费一级a男人的天堂| 日本一二三区视频观看| 熟女电影av网| 一边摸一边抽搐一进一小说| 波野结衣二区三区在线| 亚洲精华国产精华精| 黄色配什么色好看| 99九九线精品视频在线观看视频| 午夜视频国产福利| 国产av不卡久久| av专区在线播放| 欧美一区二区国产精品久久精品| 国产伦精品一区二区三区四那| 亚洲国产欧美人成| 国产欧美日韩精品一区二区| АⅤ资源中文在线天堂| 中文字幕久久专区| 精品午夜福利在线看| 淫妇啪啪啪对白视频| 国产精品人妻久久久影院| 欧美一级a爱片免费观看看| 97超视频在线观看视频| 天堂影院成人在线观看| 婷婷六月久久综合丁香| 中文字幕免费在线视频6| 美女免费视频网站| 男人狂女人下面高潮的视频| 国产 一区精品| 91精品国产九色| 自拍偷自拍亚洲精品老妇| 亚洲欧美激情综合另类| 波多野结衣高清无吗| 日本撒尿小便嘘嘘汇集6| 国产av在哪里看| 久久99热6这里只有精品| 亚洲欧美日韩无卡精品| 成人二区视频| 97人妻精品一区二区三区麻豆| 女人被狂操c到高潮| 国产真实伦视频高清在线观看 | 天天一区二区日本电影三级| 国产精品精品国产色婷婷| netflix在线观看网站| 成人特级av手机在线观看| 看黄色毛片网站| 99九九线精品视频在线观看视频| 成人一区二区视频在线观看| 日韩欧美一区二区三区在线观看| 亚洲图色成人| 国产精品一及| 国产成人a区在线观看| 国产高清视频在线观看网站| 国产精品一区二区免费欧美| 免费高清视频大片| 窝窝影院91人妻| 精品午夜福利在线看| 大又大粗又爽又黄少妇毛片口| 亚洲精品色激情综合| 十八禁国产超污无遮挡网站| 亚洲av成人av| 国产精品野战在线观看| 欧美性猛交黑人性爽| 亚洲午夜理论影院| 俄罗斯特黄特色一大片| 欧美+日韩+精品| 69人妻影院| 久久久久国产精品人妻aⅴ院| 岛国在线免费视频观看| 一个人看的www免费观看视频| 欧美激情在线99| 日韩精品中文字幕看吧| 色精品久久人妻99蜜桃| 日本成人三级电影网站| 俺也久久电影网| 色哟哟哟哟哟哟| 国产美女午夜福利| 国产不卡一卡二| 亚洲av成人精品一区久久| 久久久久久久午夜电影| 亚洲,欧美,日韩| 欧美黑人巨大hd| 日本成人三级电影网站| 久久九九热精品免费| 国产精品一区二区性色av| 麻豆成人午夜福利视频| 亚洲精品亚洲一区二区| 性欧美人与动物交配| 亚洲国产精品sss在线观看| 久久精品国产99精品国产亚洲性色| 精品久久久久久久久亚洲 | 自拍偷自拍亚洲精品老妇| 欧美中文日本在线观看视频| 97人妻精品一区二区三区麻豆| 性欧美人与动物交配| 精品国产三级普通话版| 搞女人的毛片| 欧美性感艳星| 亚洲国产精品合色在线| 亚洲精品影视一区二区三区av| 亚洲第一区二区三区不卡| 一级黄片播放器| 色在线成人网| 久久草成人影院| 高清日韩中文字幕在线| 精品久久久噜噜| 国产一区二区在线av高清观看| 国产av麻豆久久久久久久| 国国产精品蜜臀av免费| 内射极品少妇av片p| 啪啪无遮挡十八禁网站|