• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Antibiotic Resistance Evaluation and Resistance Gene Profile of Epibiotic Lactic Acid Bacteria on Red Bell Peppers Used for Sichuan Pickle Fermentation

    2017-02-08 07:42:31CAITingLUQianwenXIANGWenliangZHANGQingZHANGQishengCHENGongCAIYimin
    食品科學 2017年2期
    關(guān)鍵詞:泡菜乳酸菌耐藥性

    CAI Ting, LU Qianwen, XIANG Wenliang,*, ZHANG Qing, ZHANG Qisheng, CHEN Gong, CAI Yimin

    (1. Provincial Key Laboratory of Food Biotechnology of Sichuan, Institute of Ancient Brewing Technology, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; 2. Sichuan Academy of Food and Fermentation Industries, Chengdu 611130, China; 3. International Research Center for Agricultural Sciences of Japan, Tsukuba 30528686, Japan)

    Antibiotic Resistance Evaluation and Resistance Gene Profile of Epibiotic Lactic Acid Bacteria on Red Bell Peppers Used for Sichuan Pickle Fermentation

    CAI Ting1, LU Qianwen1, XIANG Wenliang1,*, ZHANG Qing1, ZHANG Qisheng2, CHEN Gong2, CAI Yimin3

    (1. Provincial Key Laboratory of Food Biotechnology of Sichuan, Institute of Ancient Brewing Technology, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; 2. Sichuan Academy of Food and Fermentation Industries, Chengdu 611130, China; 3. International Research Center for Agricultural Sciences of Japan, Tsukuba 30528686, Japan)

    For formulating reasonable measures for the prevention and control of bacterial antibiotic resistance to ensure food safety, penicillin (PEN), erythromycin (ERY), tetracycline (TET), streptomycin (STR) and chloramphenicol (CHL) resistance of lactic acid bacteria (LABs) and the corresponding resistance genes were evaluated, including Enterococcus mundtii (n = 5), Enterococcus faecalis (n = 2), Enterococcus hirae (n = 2), Lactococcus lactis (n = 7), Leuconostoc mesenteroides (n = 2), Leuconostoc holzapfelii (n = 3) and Weissella cibaria (n = 79) from fresh red bell peppers used for Sichuan pickle fermentation. All of the isolated strains were susceptible to PEN or ERY, but they had solo, double or triplicate resistance to TET, STR and CHL. All the isolates of L. mesenteroides as well as some strains of E. hirae, E. faecalis and L. holzapfelii showed solo STR resistance. Some strains of E. faecalis, E. hirae, L. lactis and W. cibaria had double resistance to STR and TET, as well as STR and CHL. However, isolates with triplicate resistances to STR, TET and CHL were only found in W. cibaria. It was found that except norA, sepA, tet(A), tet(O) and aac(6’)-aph(2’) genes, all antibiotic resistance genes were harbored by the resistant isolates partly or completely. The multiple-drug resistance efflux pump genes efrA, tolC, norC, sugE and mdfA showed higher positive rates (which were 49%, 41%, 48%, 41% and 47%, respectively) than the ribosomal protection protein genes and the enzymatic modification genes in the corresponding polymerase chain reaction (PCR). Even though the dissemination of these antibiotic resistances needs to be further studied, such results demonstrated that food safety concerns will be partly focused on antibiotic resistance of LABs on fresh red bell peppers according to Qualified Presumption of Safety criteria.

    red bell peppers; lactic acid bacteria; food safety; antibiotic resistance; antibiotic resistance genes

    Sichuan pickle is the typical representative of Chinese traditional vegetable fermentation. It normally serves as a key flavor for Sichuan cuisine or is used as an appetizer because of its unique flavor in many regions of China. Like the kimchi, Sichuan pickle also has various beneficial properties on general health for the consumers, including anti-oxidative activity, antiaging effects, antimutagenic, antigenotoxic and antitumor activities, antimicrobial activity, immune stimulation, weight-controlling, lipidlowering, and anti-atherogenic activities[1]. The material basis of beneficial properties is closely linked to fermentation process dominated by strains of Lactobacillus, Leuconostoc, Weissella and Pediococcus genera from the old salt brine and the fresh vegetable materials. In the last years, the lactic acid bacteria (LAB) genera which are involved in traditional lactic fermentation, were generally considered to be safe for human according to the “Generally Recognized as Safe (GRAS)”principles and the “Qualitative Presumption of Safety (QPS)”risk assessment approach based on a long history of safe use[2]. However, in the recent years, along with antibiotic resistance genes (ARGs) polluting intensively, several antibiotic resistance genes have already been found in the Sichuan pickle[3]. This gives a new challenge to the traditional GRAS and QPS state of Sichuan pickle, more specifically to those without heat-treated before consumption.

    The antibiotic resistance genes (ARGs), as emerging contaminants, were first proposed in 2006[4]. They fleetly became a new research topic in the food safety and environmental science because their health risks resulted from spreading among different hosts were often greater than the harm caused by antibiotics themselves. In 2000, the World Health Organization (WHO) report focused on antibiotic resistance as one of the most critical human health challenges of the next century and heralded the need for “a global strategy to contain resistance”. The food chain was considered as the main route of transmission of antibiotic resistance[5]. The development of antibiotic resistance among bacteria introduced in the food chain is of great novel concern in the food safety[6]. Recently, several spontaneously fermented foods have been considered as important potential transmission vehicles of ARGs from environment to human gastrointestinal tract[7-9], moreover the transfer of ARGs in the commensal or bacteria may be also induced by low pH, high salt concentration, antimicrobial compounds and the high number of living bacteria. And thus the European Food Safety Authority (EFSA) requires that bacteria which are to be introduced into the food chain should lack acquired or transferable ARGs to prevent their spread among different bacteria[10]. Unfortunately, with the aggravation of pollution of ARGs in the environment, the bacteria with transferable ARGs would be inevitably introduced into food produce chains[11-12].

    Bell pepper, a vegetable of nightshade (Solanaceae) family, is one of the best vegetable to serve in a cruditéplatter because of its bright color, thick flesh, great favor, crunchy high texture capsorubin and high vitamin content[13]. In the southwest of China, it is also usually used to make the Sichuan pickle for the flavor refreshments to stimulate the appetite before the meal, or to relieve oleaginous taste after the meal in the summer. However, in the recent years, LABs with ARGs were often found in the Sichuan pickle fermentation system after the bell peppers were introduced to the old salt brine[3], which would make the GRAS and QPS state of Sichuan pickle worse if the transfer of ARGs took place between different LABs. Therefore, it is necessary to evaluate antibiotic resistance and ARGs of epibiotic LABs from the fresh red bell peppers. In current study, we have investigated their resistance to 5 important antibiotics including penicillin (PEN), erythromycin (ERY), tetracycline (TET), streptomycin (STR) and chloramphenicol (CHL), and their ARGs were also detected by polymerase chain reaction (PCR). This study would be very significant to food safety of epibiotic LABs on the fresh red bell peppers used for the Sichuan pickle.

    1 Materials and Methoddss

    1.1 LABs and growth condition

    In the present study, 100 LAB strains were previously obtained from the fresh red bell peppers used for the Sichuan pickle fermentation. They were identified according to the methods described by Pan Lu et al[14]and then stored as frozen stocks at -20 ℃ in de Man Rogosa and Sharpe (MRS) broth containing 20% (V/V) glycerol for long term storage. They were routinely propagated at 30 ℃ in MRS broth (Fluka, Madrid, Spain) or agar slants under aerobic conditions for 24-48 h.

    1.2 Antimicrobial susceptibility testing

    Antimicrobial susceptibility tests were performed by broth micro-dilution method[15]. Brief y, a 96-well plate was inoculated with 2 μL of fresh LAB cultures and 198 μL of MRS broth with serial two-fold dilutions of antibiotics (0.125-64.000 μg/mL PEN, 0.25-128.00 μg/mL ERY, 1-512 μg/mL TET, 2-1 024 μg/mL STR, 0.5-256.0 μg/mL CHL). LABs were f rst cultured in 2 mL of MRS for 24 h at 30 ℃and subsequently diluted in 0.85 g/100 mL physiological saline to the concentration of approximately 1×105CFU/mL. LABs inoculated in MRS were used as positive control, and a LAB-free well as negative. Plates were incubated under anaerobic conditions at 30 ℃ for 48 h.

    The minimal inhibitory concentration (MIC) of each antibiotic was visually evaluated as the lowest concentration at which no growth was observed. All the tests were repeated at least thrice. In duplicate experiments, the differences of MIC for independent sample never exceeded 1 order of dilution. Interpretation for susceptibility status was based on the threshold X defined also as Extended Common Object File Forma (ECOFF) according to the EFSA (2012)[16-17]and the European Committee on Antimicrobial Susceptibility Testing (EUCAST, http://www.eucast.org). When MIC ≤ECOFF value, the strain was sensitive to the antibiotic; on the contrary, it was resistant.

    1.3 Detection of ARGs

    The temple DNA for PCR was prepared as methods by Xiang et al[18]. The genes associated with resistance to chloramphenicol acetyltransferase gene (cat)[14,19], TET (tet(A), tet(B), tet(C), tet(D), tet(G), tet(H), tet(K), tet(M), tet(O), tet(S), tet(W) and tet(X))[19-20], and STR (strA, strB, aadA, aad6, aph(3’)-Ⅲa and aac(6’)-aph(2’)) were detected by PCR amplification[19]. The efflux pump genes mediating antibiotic resistance eff ux were also investigated according to the PCR methods described by Swick et al[21]for acrA, acrB, tolC, mdfA and norE; He et al[22]for sugE; Noguchi et al[23]for smr; Lee et al[24]for efrA and efrB; Patel et al[25]for mdeA, mepA, norA, norB, norC, sdrM and sepA. The PCR primers were listed in Table 1.

    All the amplified ARGs were respectively cloned into the pGEM-T plasmid vector (Promega, Madison, WI, USA) and transformed into the chemically competent E. coli DH5α cells for sequencing. Then the antibiotic resistance genes were further verified by sequence BLASTx program in the National Center for Biotechnology Information (NCBI).

    Table1 PCR primers for antibiotic resistance genes

    Table1 continued

    1.4 Statistical analysis

    The MIC distribution of 5 antibiotics was statistically analyzed using Excel 2010 (Microsoft, Redmond, Washington, USA). Distribution of antibiotic susceptibility and antibiotic resistance genes were performed using SPSS version 17.0 (IBM, Armonk, New York, USA).

    2 Results and Analysis

    2.1 Antibiotic susceptibility

    Antibiotics had been spread in the environment when used as growth promoters in livestock years ago, leading to the selection of antibiotic resistant bacteria[26]. These resistant bacteria may inhabitat in or on fruits, vegetables and animal feeds, and may further disseminate during the food fermentation[27-28]. Therefore, it is important to evaluate the antibiotic resistance incidences of bacteria in fermented vegetables[29]. A total of one hundred isolates were initially identified as LAB by 16S rRNA sequence analysis, and these LABs were further verified by physiological and biochemical methods. They were turned out to be seventy-nine strains of Weissella cibaria, five strains of Enterococcus mundtii, two strains of Enterococcus faecalis, two strains of Enterococcus hirae, two strains of Leuconostoc mesenteroides, three strains of Leuconostoc holzapfelii and seven strains of Lactococcus lactis (Table 2).

    Table2 Microbial classification of LABs isolated from red bell peppers using 16S rRNA gene sequence analysis

    Table3 MIC distribution of 5 antibiotics for LABs isolated from red peppers used for Sichuan pickle production

    The susceptibility determination was performed with epibiotic LABs to PEN, ERY, TET, STR and CHL. The results indicated that the MICs to PEN and ERY did not exceed the ECOFF values posed by the EFSA 2012 for E. mundtii, E. faecalis, E. hirae, L. mesenteroides, L. holzapfelii, L. lactis and W. cibaria (Table 3). It suggested that all epibiotic LABs on the fresh red bell peppers are sensitive to PEN and ERY. Conversely, except L. holzapfelii, most of them displayed resistance to the STR (84 strains LABs), with 100% of E. hirae and L. mesenteroides, 60% of E. mundtii, 50% of E. faecalis, 85.7% L. lactis and 88.6% W. cibaria (Table 3), and these resistant LABs showed high MIC values as previously reported by Elkins et al[30]. For TET, all strains of E. mundtii, L. mesenteroides and L. holzapfelii showed susceptibility, while 50% of E. faecalis, 100% of E. hirae and 28.6% of L. lactis strains had higher MIC than their corresponding ECOFF values, suggesting resistance to TET (Table 3). In the CHL, only 3.8% of W. cibaria strains had obtained resistance, the other species and 96.2% of W. cibaria strains were sensitive to CHL (Table 3).

    2.2 Antibiotic resistance phenotype and distribution

    Statistical analysis showed that none of strains were resistant to PEN and ERY, but there were some strains with solo, or double or triplicate resistance to TET, STR and CHL. As one of the most widespread agricultural antibiotics, the use of STR has lead STR resistance bacteria to grow in the environment, and thus unavoidably gathered at the surface of the vegetable. Therefore, STR resistant bacteria were often found on the surface of the vegetables[5]. It was also verified by our results that 84% of LAB isolates were resistant to STR, and the strains with solo resistance to STR almost existed in all species except E. hirae and E. faecalis (Fig. 1). All the strains of L. mesenteroides only showed solo STR resistance. In E. faecalis, E. hirae, L. lactis and W. cibaria, some isolates have double resistance to STR and TET or STR and CHL. However, the triplicate resistant strain was found only in W. cibaria, and it was against STR, TET and CHL (Fig. 1). Two E. hirae strains both displayed STR and TET double resistance. In two E. faecalis strains, one was sensitive to antibiotics tested, the other with TET and STR double resistance. In five E. mundtii strains, which have two strains with susceptibility to all testing antibiotics, three solo STR resistant. Among seven L. lactis strains, four strains were found to be with solo STR resistance, two strains with TET and STR double resistance, and one strain with susceptibility to all testing antibiotics. Among seventy nine W. cibaria strains, only one W. cibaria strain with triplicate resistance to TET, STR and CHL was observed. Furthermore, there were nine susceptibility isolates, fifty-eight solo STR resistant isolates, nine TET and STR double resistant isolates and two STR and CHL double resistant isolates.

    Fig. 1 Distribution of antibiotic susceptibility and resistant LAB isolates

    2.3 Antibiotic resistance genes

    The overuse and misuse of antibiotics have created a tremendous selective pressure toward antibiotic resistant bacteria[30]. Different mechanisms for the resistance to various antibiotics have been found in bacteria, including antibiotic degrading, pump efflux, altering and metabolism in cell[31]. The emergence of antibiotic resistance is a global threat because it reduces the efficiency of the antibiotic therapy, which is getting worse by the horizontal transfer of ARGs between bacteria[32-33]. Fermentative materials have been considered as potential vehicles of resistant genes from environment to products[5].

    To identify resistant determinants responsible for the resistance phenotypes observed, all the strains were screened by PCR for the presence of resistant genes as described above. In current investigation, these genes served the antibiotic resistance were detected and displayed in Fig. 2. Except the efflux genes norA and sepA, TET resistance genes tet(A) and tet(O), STR resistance gene aac(6’)-aph(2’), the other resistant genes were harbored by resistance isolates partly or completely. The multiple-drug resistant efflux pump genes, including efrA, tolC, norC, sugE and mdfA, showed higher positive ratios than the others in the corresponding PCR reactions, in which their detected ratios were 49, 41, 48, 41 and 47%, respectively. The results were similar to the eff ux pump genes in the LAB described by del Carmen et al[19]. The STR and TET double resistant W. cibaria CT023 carried most resistant genes, including seven drug eff ux pump genes efrA, efrB, acrB, sugE, norC, mdfA and mepA, three TET efflux genes tet(B), tet(C) and tet(K), two ribosomal protection protein genes tet(S) and tet(W), one enzymatic modif cationgene tet(X), and three STR resistance genes strB, aad6 and aph(3’)-Ⅲa. While, E. mundtii CT080, CT081, W. cibaria CT012, CT014, CT098 and CT206 have only possessed one resistance gene, norE for CT080, mdfA for CT081, strB for CT012 and CT206, acrA for CT014 and CT098. And all of them were positive for solo STR resistance. The detection of ARGs in fermentative vegetable materials implies that there is a potential food safety risk when ARGs spread to other microorganisms during the fermentation by horizontal gene transfer.

    Fig. 2 Distribution of ARGs in different antibiotic resistance LAB isolates

    3 Conclusions

    Traditionally fermented vegetables play an important role in the food systems in China. However, no investigation has been conducted to assess the antibiotic resistance incidences and ARGs of LAB. In current investigation, all the LAB isolates from the fresh red bell peppers were susceptible to PEN and ERY. Concerning TET, STR and CHL, all the strains of L. mesenteroides showed solo STR resistance. In E. faecalis, E. hirae, L. lactis and W. cibaria, some isolates had double resistance to STR and TET or STR and CHL. However, the triplicate resistance was found only in W. cibaria. Except for norA, sepA, tet(A), tet(O) and aac(6’)-aph(2’), the other resistance genes were harbored by resistant isolates partly or completely. The genes efrA, tolC, norC,

    sugE and mdfA showed higher positive ratios, which were 49%, 41%, 48%, 41% and 47% respectively. Even though the dissemination of these ARGs during vegetable fermentation need to be further studied, such studies will be conducive to safety assessment of fresh red bell peppers when being used as the material for fermentation.

    [1] JI Y, KIM H, PARK H, et al. Functionality and safety of lactic bacterial strains from Korean kimchi[J]. Food Control, 2013, 31(2): 467-473. DOI:10.1016/j.foodcont.2012.10.034.

    [2] ANADóN A, MART?NEZ-LARRA?AGA M R, MART?NEZ M A. Probiotics for animal nutrition in the European Union. regulation and safety assessment[J]. Regulatory Toxicology and Pharmacology, 2006, 45(1): 91-95. DOI:10.1016/j.yrtph.2006.02.004.

    [3] SONG Feifei, XU Gurong, CAI Ting, et al. Detection of streptomycin resistance and resistance genes in lactic acid bacteria from Sichuan Pickle of China[J]. Journal of Food Safety and Quality, 2014, 5(12): 4032-4039.

    [4] PRUDEN A, PEI R, STORTEBOOM H, et al. Antibiotic resistance genes as emerging contaminants: studies in northern Colorado[J]. Environmental Science and Technology, 2006, 40(23): 7445-7450. DOI:10.1021/es060413l.

    [5] VERRAES C, van BOXSTAEL S, van MEERVENNE E, et al. Antimicrobial resistance in the food chain: a review[J]. International Journal of Environmental Research and Public Health, 2013, 10(7): 2643-2669. DOI:10.3390/ijerph10072643.

    [6] WANG H, McENTIRE J C, ZHANG L, et al. The transfer of antibiotic resistance from food to humans: facts, implications and future directions[J]. International Office of Epizootics, 2012, 31(1): 249-260. DOI:10.20506/rst.31.1.2117.

    [7] BAUTISTA-GALLEGO J, ARROYO-L?PEA F N, RANTSIOU K, et al. Screening of lactic acid bacteria isolated from fermented table olives with probiotic potential[J]. Food Research International, 2013, 50(1): 135-142. DOI:10.1016/j.foodres.2012.10.004.

    [8] AHAOTU I, ANYOGU A, NLOKU O H, et al. Molecular identification and safety of Bacillus species involved in the fermentation of African oil beans (Pentaclethra macrophylla Benth) for production of Ugba[J]. International Journal of Food Microbiology, 2013, 162(1): 95-104. DOI:10.1016/j.ijfoodmicro.2013.01.001.

    [9] HUDDLESTON J R. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes[J]. Infecition and Drug Resistance, 2014(7): 167-176. DOI:10.2147/IDR.S48820.

    [10] van REENEN C A, DICKS L M T. Horizontal gene transfer amongst probiotic lactic acid bacteria and other intestinal microbiota: what are the possibilities? a review[J]. Archives of Microbiology, 2011, 193(3): 157-168. DOI:10.1007/s00203-010-0668-3.

    [11] ZHANG Xiangxu, ZHANG Tong, FANG H H P. Antibiotic resistance genes in water environment[J]. Applied Microbiology and Biotechnology, 2009, 82(3): 397-414. DOI:10.1007/s00253-008-1829-z.

    [12] FUENTES M A F, MORENTE E O, ABRIOUEL H, et al. Antimicrobial resistance determinants in antibiotic and biocide resistant gram-negative bacteria from organic foods[J]. Food Control, 2014, 37: 9-14. DOI:10.1016/j.foodcont.2013.08.041.

    [13] OUYANG Jing, TAO Xianglin, LI Ziming, at el. Analysis of changes in the main components and volatile components in fermented pepper with high salt content[J]. Food Science, 2014, 35(4): 174-179. DOI:10.7506/spkx1002-6630-201416038.

    [14] PAN Lu, HU Xiaoqing, WANG Xiaoyuan. Assessment of antibiotic resistance of lactic acid bacteria in Chinese fermented foods[J]. Food Control, 2011, 22(8): 1316-1321. DOI:10.1016/ j.foodcont.2011.02.006.

    [15] KLARE I, KONSTABEL C, M?LLER-BERTLING S, et al. Evaluation of new broth media for microdilution antibiotic susceptibility testing of Lactobacilli, Pediococci, Lactococci, and Bif dobacteria[J]. Applied and Environmental Microbiology, 2005, 71(12): 8982-8986. DOI:10.1128/aem.71.12.8982-8986.2005.

    [16] DANIELSEN M, WIND A. Susceptibility of Lactobacillus spp. to antimicrobial agents[J]. International Journal of Food Microbiology, 2003, 82(1): 1-11. DOI:10.1016/S0168-1605(02)00254-4.

    [17] FLOREZ H, SLIVA E, FERN?NDEZ V, et al. Prevalence and risk factors associated with the metabolic syndrome and dyslipidemia in White, Black, Amerindian and Mixed Hispanics in Zulia State, Venezuela[J]. Diabetes Research and Clinical Practice, 2005, 69(1): 63-77. DOI:10.1016/j.diabres.2004.11.018.

    [18] XIANG Wenliang, LI Ke, LIU Sen, et al. Microbial succession in the traditional Chinese Luzhou-flavor liquor fermentation process as evaluated by SSU rRNA profiles[J]. World Journal of Microbiology and Biotechnology, 2012, 29(3): 559-567. DOI:10.1007/s11274-012-1210-3.

    [19] del CARMEN CASADO MU?OZ M, BENMAR N, LERMA L L, et al. Antibiotic resistance of Lactobacillus pentosus and Leuconostoc pseudomesenteroides isolated from naturally-fermented Alore?a table olives throughout fermentation process[J]. International Journal of Food Microbiology, 2014, 172(17): 110-118. DOI:10.1016/ j.ijfoodmicro.2013.11.025.

    [20] JIA Shuyu, HE Xiwei, BU Yuanqing, et al. Environmental fate of tetracycline resistance genes originating from swine feedlots in river water[J]. Journal of Environmental Science and Health, 2014, 49(8): 624-631. DOI:10.1080/03601234.2014.911594.

    [21] SWICK M C, MORGAN-LINNELL S K, CARLSON K M, et al. Expression of multidrug efflux pump genes acrAB-tolC, mdfA, and norE in Escherichia coli clinical isolates as a function of fluoroquinolone and multidrug resistance[J]. Antimicrobial Agents and Chemotherapy, 2011, 55(2): 921-924. DOI:10.1128/AAC.00996-10.

    [22] HE Guixin, ZHANG Chu, CROW R R, et al. SugE, a new member of the SMR family of transporters, contributes to antimicrobial resistance in Enterobacter cloacae[J]. Antimicrobial Agents and Chemotherapy, 2011, 55(8): 3954-3957. DOI:10.1128/aac.00094-11.

    [23] NOGUCHI N, HASE M, KITTA M, et al. Antiseptic susceptibility and distribution of antiseptic-resistance genes in methicillin-resistant Staphylococcus aureus[J]. FEMS Microbiology Letters, 1999, 172(2): 247-253. DOI:10.1111/j.1574-6968.1999.tb13475.x.

    [24] LEE E W, HUDA M N, KURODA T, et al. EfrAB, an ABC multidrug efflux pump in Enterococcus faecalis[J]. Antimicrobial Agents and Chemotherapy, 2003, 47(12): 3733-3738. DOI:10.1128/ aac.47.12.3733-3738.2003.

    [25] PATEL D, KOSMIDIS C, SEO S M, et al. Ethidium bromide MIC screening for enhanced efflux pump gene expression or efflux activity in Staphylococcus aureus[J]. Antimicrobial Agents and Chemotherapy, 2010, 54(12): 5070-5073. DOI:10.1128/aac.01058-10.

    [26] DEVIRGILIIS C, CARAVELLI A, COPPOIA D, et al. Antibiotic resistance and microbial composition along the manufacturing process of Mozzarella di Bufala Campana[J]. International Journal of Food Microbiology, 2008, 128(2): 378-384. DOI:10.1016/ j.ijfoodmicro.2008.09.021.

    [27] ZHANG Hongmei, HUANG Shaosong, ZHOU Hanji, et al. Two kinds of antibiotics resistance of lactic acid bacteria isolated from yogurt[J]. Chinese Journal of Public Health, 2010, 26(4): 511-512. DOI:10.11847/zgggws2010-26-04-73.

    [28] LIN Kai, CAI Ting, XU Gurong, et al. Antibiotic resistance of epibiotic lactic acid bacteria on the surface of organic white radish[J]. Food Science, 2015, 36(11): 145-149. DOI:10.7506/spkx1002-6630-201511028.

    [29] FU Mingchun, XI Huiping, LIU Yanzhao. Current antibiotic residues and control countermeasures of milk and meat[J]. Chinese Journal of Animal Quarantine, 2008, 25(6): 20-22. DOI:10.3969/j.issn.1005-944X.2008.06.010.

    [30] ELKINS C A, MULLIS L B. Bile-mediated aminoglycoside sensibility in Lactobacillus species likely results from increased membrane permeability attributable to cholic acid[J]. Applied and Environmental Microbiology, 2004, 70(12): 7200-7209. DOI:10.1128/ aem.70.12.7200-7209.2004.

    [31] SHARMA P, TOMAR S K, GOSWAMI P, et al. Antibiotic resistance among commercially available probiotics[J]. Food Research International, 2014, 57(1): 176-195. DOI:10.1016/ j.foodres.2014.01.025.

    [32] NAWAZ M, WANG Juan, ZHOU Aiping, et al. Characterization and transfer of antibiotic resistance in lactic acid bacteria from fermented food products[J]. Current Microbiology, 2011, 62(3): 1081-1089. DOI:10.1007/s00284-010-9856-2.

    [33] TOOMEY N, BOLTON D, FANNING S. Characterisation and transferability of antibiotic resistance genes from lactic acid bacteria isolated from Irish pork and beef abattoirs[J]. Research in Microbiology, 2010, 161(2): 127-135. DOI:10.1016/ j.resmic.2009.12.010.

    四川泡菜發(fā)酵原料-燈籠辣椒附生乳酸菌的抗生素耐藥性評估與耐藥基因分析

    蔡 婷1,盧倩文1,向文良1,*,張 慶1,張其圣2,陳 功2,蔡義民3

    (1.西華大學食品與生物工程學院,四川省食品生物技術(shù)重點實驗室,古法發(fā)酵(釀造)生物技術(shù)研究所,四川 成都 610039;2. 四川省食品發(fā)酵工業(yè)研究設計院,四川 成都 611130;3.日本國際農(nóng)業(yè)科學研究中心,日本 筑波 30528686)

    以四川泡菜蔬菜原料——新鮮燈籠辣椒為對象,分析其表面附生乳酸菌Enterococcus mundtii(5 株)、Enterococcus faecalis(2 株)、Enterococcus hirae(5 株)、Lactococcus lactis(7 株)、Leuconostoc mesenteroides(2 株)、Leuconostoc holzapfelii(3 株)和Weissella cibaria(79 株)對青霉素(penicillin,PEN)、紅霉素(erythromycin,ERY)、四環(huán)素(tetracycline,TET)、鏈霉素(streptomycin,STR)和氯霉素(chloramphenicol,CHL)的抗生素耐藥性和耐藥基因分布,為制定合理的食品安全防控措施提供科學依據(jù)。研究表明:所有分離菌株均無PEN和ERY耐藥性,其他種屬部分菌株對TET、STR和CHL表現(xiàn)出單一、二重或三重耐藥性。除E. hirae、E. faecalis和L. holzapfelii部分菌株對STR表現(xiàn)出單一耐藥性外,所有L. mesenteroide菌株只表現(xiàn)出了STR單一耐藥性;STR和TET、STR和CHL二重耐藥菌株在E. faecalis、E. hirae、L. lactis和W. cibaria分離菌株中都有發(fā)現(xiàn),但是STR、TET、CHL三重耐藥菌株僅在W. cibaria中發(fā)現(xiàn)。聚合酶鏈式反應檢測發(fā)現(xiàn):除基因norA、sepA、tet(A)、tet(O)和aac(6’)-aph(2’)未被檢出外,其他耐藥菌株都有相應1 個或多個耐藥基因被檢出。多重耐藥外排泵基因efrA、tolC、norC、sugE和mdfA較核糖體蛋白質(zhì)保護和酶修飾基因檢出率高,分別達到了49%、41%、48%、41%和47%。雖然辣椒表面附生乳酸菌的抗生素耐藥基因在四川泡菜發(fā)酵過程中的擴散行為需要進一步研究,但根據(jù)食品加工過程安全規(guī)范標準,也應關(guān)注其表面附生的乳酸菌抗生素耐藥性存在的潛在食品安全問題。

    燈籠辣椒;乳酸菌;食品安全;抗生素耐藥性;抗生素耐藥性基因

    TS201.3

    A

    1002-6630(2017)02-0027-07

    nces

    2016-03-11

    國家自然科學基金面上項目(31571935);教育部春暉計劃項目(Z2014061);四川省應用基礎項目(2014JY0045);四川省教育廳重點項目(14ZA0110)

    蔡婷(1991—),女,碩士研究生,主要從事食品微生物分子生態(tài)研究。E-mail:caiting1124@sina.com

    10.7506/spkx1002-6630-201702005

    *通信作者:向文良(1973—),男,教授,博士,主要從事中國西南地區(qū)特色發(fā)酵食品微生物分子生態(tài)與生物過程學研究。

    E-mail:biounicom@mail.xhu.edu.cn

    CAI Ting, LU Qianwen, XIANG Wenliang, et al. Antibiotic resistance evaluation and resistance gene profile of epibiotic lactic acid bacteria on red bell peppers used for Sichuan pickle fermentation[J]. 食品科學, 2017, 38(2): 27-33.

    10.7506/ spkx1002-6630-201702005. http://www.spkx.net.cn

    CAI Ting, LU Qianwen, XIANG Wenliang, et al. Antibiotic resistance evaluation and resistance gene profile of epibiotic lactic acid bacteria on red bell peppers used for Sichuan pickle fermentation[J]. Food Science, 2017, 38(2): 27-33. DOI:10.7506/spkx1002-6630-201702005. http://www.spkx.net.cn

    猜你喜歡
    泡菜乳酸菌耐藥性
    韓國泡菜,不僅僅是辣白菜
    長絲鱸潰爛癥病原分離鑒定和耐藥性分析
    禽用乳酸菌SR1的分離鑒定
    雪花泡菜
    嬰幼兒感染中的耐藥菌分布及耐藥性分析
    WHO:HIV耐藥性危機升級,普及耐藥性檢測意義重大
    我只是想吃一碗泡菜
    乳酸菌成乳品市場新寵 年增速近40%
    乳飲品中耐胃酸乳酸菌的分離鑒定與篩選
    中國釀造(2014年9期)2014-03-11 20:21:04
    產(chǎn)γ-氨基丁酸乳酸菌的篩選及誘變育種
    食品科學(2013年23期)2013-03-11 18:30:09
    两个人视频免费观看高清| 高清在线视频一区二区三区 | 国产亚洲91精品色在线| 国产伦理片在线播放av一区| 久久人人爽人人片av| 七月丁香在线播放| 国产综合懂色| 黑人高潮一二区| 欧美97在线视频| 最近最新中文字幕免费大全7| 老女人水多毛片| 精品午夜福利在线看| 亚洲美女搞黄在线观看| 久久婷婷人人爽人人干人人爱| 精品久久久久久成人av| 久久久久精品久久久久真实原创| 久久久久久久国产电影| 日韩av在线免费看完整版不卡| 午夜爱爱视频在线播放| 高清午夜精品一区二区三区| 成人无遮挡网站| 国产精品.久久久| 日韩欧美精品免费久久| av.在线天堂| 水蜜桃什么品种好| 午夜日本视频在线| 欧美3d第一页| 在线观看一区二区三区| 久久久久久久久久久丰满| 七月丁香在线播放| 亚洲三级黄色毛片| 91久久精品国产一区二区三区| 国产成人午夜福利电影在线观看| av在线天堂中文字幕| 内射极品少妇av片p| 91久久精品国产一区二区成人| 网址你懂的国产日韩在线| 日韩高清综合在线| 三级国产精品欧美在线观看| 一级黄片播放器| 成人毛片a级毛片在线播放| 久99久视频精品免费| 国产精品国产三级专区第一集| 色视频www国产| 午夜a级毛片| 国产 一区 欧美 日韩| 亚洲av福利一区| 久久久久久久久中文| 免费看美女性在线毛片视频| 亚洲国产精品合色在线| 97热精品久久久久久| 永久免费av网站大全| 日韩一区二区三区影片| 在线观看一区二区三区| 国产一区有黄有色的免费视频 | 中国国产av一级| 国产精品日韩av在线免费观看| ponron亚洲| 成人三级黄色视频| 长腿黑丝高跟| 午夜老司机福利剧场| 欧美3d第一页| 亚洲精华国产精华液的使用体验| 寂寞人妻少妇视频99o| 亚洲av成人精品一二三区| 欧美一区二区亚洲| 国产成人a∨麻豆精品| 国产精品国产三级国产专区5o | 亚洲自拍偷在线| 欧美精品国产亚洲| 午夜老司机福利剧场| 中文字幕制服av| 人人妻人人看人人澡| 欧美最新免费一区二区三区| 国产精品一区二区性色av| 国产极品天堂在线| 一区二区三区高清视频在线| 亚洲av二区三区四区| 看十八女毛片水多多多| av在线观看视频网站免费| 亚洲av男天堂| 亚洲一级一片aⅴ在线观看| 一级毛片我不卡| 久久精品人妻少妇| 欧美成人午夜免费资源| 欧美一区二区国产精品久久精品| 国内精品一区二区在线观看| 久久久色成人| 欧美日韩精品成人综合77777| 国产日韩欧美在线精品| 午夜亚洲福利在线播放| 午夜福利在线观看免费完整高清在| 桃色一区二区三区在线观看| 最近最新中文字幕免费大全7| 中国美白少妇内射xxxbb| 欧美极品一区二区三区四区| 天堂av国产一区二区熟女人妻| 人妻少妇偷人精品九色| 亚洲欧洲国产日韩| 亚洲av中文字字幕乱码综合| av卡一久久| 婷婷色麻豆天堂久久 | 人人妻人人澡人人爽人人夜夜 | 日本与韩国留学比较| 丝袜喷水一区| 女人十人毛片免费观看3o分钟| 中文天堂在线官网| 午夜福利在线在线| 国产一区亚洲一区在线观看| 久久这里只有精品中国| 波多野结衣高清无吗| av.在线天堂| 亚洲成色77777| 久久久亚洲精品成人影院| 国产精品麻豆人妻色哟哟久久 | 又粗又硬又长又爽又黄的视频| 久久久久久久久久久免费av| 色视频www国产| 丰满乱子伦码专区| av在线蜜桃| 少妇人妻一区二区三区视频| 天堂av国产一区二区熟女人妻| 亚洲综合精品二区| 亚洲国产精品成人久久小说| 日韩 亚洲 欧美在线| 国产精品熟女久久久久浪| 色播亚洲综合网| 免费看美女性在线毛片视频| 淫秽高清视频在线观看| 日本猛色少妇xxxxx猛交久久| 你懂的网址亚洲精品在线观看 | 日韩一本色道免费dvd| 成人美女网站在线观看视频| 亚洲va在线va天堂va国产| 男人舔女人下体高潮全视频| 精品少妇黑人巨大在线播放 | 国产精品一区二区在线观看99 | 久久久久久伊人网av| 人妻制服诱惑在线中文字幕| 99热这里只有是精品在线观看| 丰满乱子伦码专区| 日韩一本色道免费dvd| 青春草视频在线免费观看| 亚洲最大成人手机在线| 亚洲av成人精品一二三区| 99久久九九国产精品国产免费| 91精品国产九色| 欧美一区二区亚洲| 国产精品福利在线免费观看| 中文字幕av在线有码专区| 亚洲成人久久爱视频| 长腿黑丝高跟| 青春草视频在线免费观看| 乱人视频在线观看| 亚洲av日韩在线播放| 精品久久久噜噜| 久久国内精品自在自线图片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 中文字幕av在线有码专区| 午夜爱爱视频在线播放| 国产成人福利小说| 日本免费一区二区三区高清不卡| 一级毛片aaaaaa免费看小| 国产片特级美女逼逼视频| 国产男人的电影天堂91| 日本-黄色视频高清免费观看| 国产高清三级在线| 免费观看的影片在线观看| 国产成人免费观看mmmm| 在线天堂最新版资源| 国产在视频线在精品| 日韩高清综合在线| 国产欧美另类精品又又久久亚洲欧美| 成年女人看的毛片在线观看| 国产精品麻豆人妻色哟哟久久 | 小说图片视频综合网站| 午夜精品国产一区二区电影 | 久久精品91蜜桃| 国内精品美女久久久久久| 最新中文字幕久久久久| 99久久精品国产国产毛片| videos熟女内射| 插逼视频在线观看| 欧美性感艳星| 国产在视频线在精品| 午夜福利在线观看免费完整高清在| 男女国产视频网站| 免费观看性生交大片5| 久久精品久久精品一区二区三区| 婷婷色综合大香蕉| 亚洲最大成人av| 亚洲国产精品成人久久小说| 国产色爽女视频免费观看| 一个人看视频在线观看www免费| 色综合色国产| 蜜臀久久99精品久久宅男| 在线观看一区二区三区| 美女xxoo啪啪120秒动态图| 欧美又色又爽又黄视频| 日韩精品有码人妻一区| 久久久久久久午夜电影| 美女内射精品一级片tv| 非洲黑人性xxxx精品又粗又长| 老司机福利观看| 国产又黄又爽又无遮挡在线| 亚洲人成网站在线观看播放| 成人亚洲欧美一区二区av| 国产三级中文精品| 身体一侧抽搐| 久久99蜜桃精品久久| 久久久久久九九精品二区国产| 2021天堂中文幕一二区在线观| 国产伦理片在线播放av一区| 黄色日韩在线| 亚洲av中文av极速乱| 国产成人免费观看mmmm| 少妇裸体淫交视频免费看高清| 嫩草影院入口| 99热这里只有是精品在线观看| 丝袜喷水一区| 亚洲欧美日韩东京热| 1000部很黄的大片| 两个人的视频大全免费| 亚洲一级一片aⅴ在线观看| 国产麻豆成人av免费视频| www.av在线官网国产| 国产一区亚洲一区在线观看| 老司机福利观看| 国产一级毛片七仙女欲春2| 免费看美女性在线毛片视频| 亚洲三级黄色毛片| 亚洲伊人久久精品综合 | 精品久久久久久久人妻蜜臀av| 亚洲精品日韩av片在线观看| 在线免费十八禁| 女人久久www免费人成看片 | 少妇熟女aⅴ在线视频| 高清日韩中文字幕在线| 免费看日本二区| 大话2 男鬼变身卡| 一个人观看的视频www高清免费观看| 亚洲在线观看片| 哪个播放器可以免费观看大片| 禁无遮挡网站| 亚洲色图av天堂| 成年女人永久免费观看视频| 亚洲天堂国产精品一区在线| eeuss影院久久| 国产精品嫩草影院av在线观看| 国产免费男女视频| 亚洲最大成人av| 级片在线观看| eeuss影院久久| 热99re8久久精品国产| .国产精品久久| 欧美一区二区亚洲| 可以在线观看毛片的网站| 26uuu在线亚洲综合色| 熟女人妻精品中文字幕| 免费观看在线日韩| 18禁在线无遮挡免费观看视频| 国产成人午夜福利电影在线观看| 国产高清视频在线观看网站| 久久精品国产鲁丝片午夜精品| 日日啪夜夜撸| 人妻少妇偷人精品九色| 夜夜看夜夜爽夜夜摸| 国产黄片视频在线免费观看| 亚洲欧美成人精品一区二区| 床上黄色一级片| 欧美成人午夜免费资源| 国产 一区精品| 精品久久久久久久末码| 黄色一级大片看看| 青春草亚洲视频在线观看| 直男gayav资源| 精品人妻偷拍中文字幕| 午夜精品在线福利| 国产精品1区2区在线观看.| a级毛片免费高清观看在线播放| 色尼玛亚洲综合影院| 国产午夜精品久久久久久一区二区三区| 一区二区三区乱码不卡18| 色5月婷婷丁香| 中文精品一卡2卡3卡4更新| 国产一级毛片在线| 蜜臀久久99精品久久宅男| 午夜福利视频1000在线观看| 美女脱内裤让男人舔精品视频| 午夜亚洲福利在线播放| 亚洲精品乱码久久久v下载方式| 日本熟妇午夜| 欧美极品一区二区三区四区| 日韩成人伦理影院| 国产三级在线视频| 校园人妻丝袜中文字幕| 一级黄片播放器| 日日摸夜夜添夜夜添av毛片| 神马国产精品三级电影在线观看| 中文精品一卡2卡3卡4更新| 国产成人a∨麻豆精品| 午夜福利成人在线免费观看| 日韩国内少妇激情av| 婷婷色麻豆天堂久久 | 精品久久久久久成人av| 内射极品少妇av片p| 91aial.com中文字幕在线观看| 淫秽高清视频在线观看| 国产麻豆成人av免费视频| 国产午夜精品一二区理论片| 在线观看av片永久免费下载| 久久久久久大精品| 三级国产精品片| 国产精品99久久久久久久久| 久久久成人免费电影| 99久国产av精品国产电影| 国产精品电影一区二区三区| 五月玫瑰六月丁香| 又黄又爽又刺激的免费视频.| 婷婷色综合大香蕉| 亚洲av不卡在线观看| 国产三级中文精品| 精品无人区乱码1区二区| av.在线天堂| 久久午夜福利片| 亚洲无线观看免费| 欧美一区二区亚洲| 色5月婷婷丁香| 九九热线精品视视频播放| 亚洲人成网站高清观看| 日韩三级伦理在线观看| 中文字幕人妻熟人妻熟丝袜美| 看非洲黑人一级黄片| 国产精品国产三级国产专区5o | 国产精品久久久久久久久免| 2021天堂中文幕一二区在线观| 久99久视频精品免费| 亚洲第一区二区三区不卡| 亚洲高清免费不卡视频| 亚洲经典国产精华液单| 六月丁香七月| 国产白丝娇喘喷水9色精品| 搡老妇女老女人老熟妇| 天天一区二区日本电影三级| 精品免费久久久久久久清纯| 成人高潮视频无遮挡免费网站| 国产高清国产精品国产三级 | 国产黄片视频在线免费观看| 特级一级黄色大片| 天美传媒精品一区二区| 亚洲欧美日韩东京热| 18禁在线播放成人免费| 精品少妇黑人巨大在线播放 | 久久久久久久久久久免费av| 亚洲av一区综合| 97超碰精品成人国产| 日本猛色少妇xxxxx猛交久久| 国产一区有黄有色的免费视频 | 久久久久久国产a免费观看| 又黄又爽又刺激的免费视频.| 亚洲国产精品专区欧美| 成年av动漫网址| 久久热精品热| av又黄又爽大尺度在线免费看 | 乱人视频在线观看| 亚洲成av人片在线播放无| 久久久久久国产a免费观看| 久久精品国产亚洲av天美| 亚洲国产高清在线一区二区三| 国产私拍福利视频在线观看| www.色视频.com| 欧美xxxx黑人xx丫x性爽| 黄色欧美视频在线观看| 日本免费一区二区三区高清不卡| 国产一区二区在线av高清观看| 亚洲欧美精品综合久久99| 日本熟妇午夜| 九九久久精品国产亚洲av麻豆| 欧美xxxx性猛交bbbb| 国产午夜精品论理片| 九九久久精品国产亚洲av麻豆| 亚洲婷婷狠狠爱综合网| 亚洲成人久久爱视频| 亚洲国产精品合色在线| 亚洲精品乱久久久久久| 亚洲成人久久爱视频| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久久久久黄片| 亚洲国产色片| 精品久久久久久久人妻蜜臀av| 免费播放大片免费观看视频在线观看 | 人人妻人人澡人人爽人人夜夜 | 久久热精品热| 听说在线观看完整版免费高清| 国产精品久久久久久久久免| 国产女主播在线喷水免费视频网站 | 日产精品乱码卡一卡2卡三| 99九九线精品视频在线观看视频| 成人鲁丝片一二三区免费| 免费无遮挡裸体视频| 中文精品一卡2卡3卡4更新| 久久国内精品自在自线图片| 国产日韩欧美在线精品| 国产精品综合久久久久久久免费| 久久久久久久久久黄片| 午夜精品在线福利| kizo精华| 亚洲精品乱久久久久久| 久久精品国产亚洲网站| 欧美不卡视频在线免费观看| 亚洲欧美成人综合另类久久久 | 亚洲最大成人中文| 高清日韩中文字幕在线| 国产亚洲一区二区精品| 网址你懂的国产日韩在线| 国产亚洲91精品色在线| 国产亚洲av嫩草精品影院| 中文字幕av在线有码专区| 汤姆久久久久久久影院中文字幕 | 久久久久久伊人网av| 亚洲国产色片| 久久久久国产网址| 国产精品,欧美在线| 免费看av在线观看网站| 精品酒店卫生间| 床上黄色一级片| 日韩在线高清观看一区二区三区| 天堂√8在线中文| 亚洲美女搞黄在线观看| 亚洲精品,欧美精品| 国产人妻一区二区三区在| 午夜福利高清视频| 色视频www国产| 国产一区二区在线观看日韩| 尤物成人国产欧美一区二区三区| 精品午夜福利在线看| 成人一区二区视频在线观看| 国产高清国产精品国产三级 | 欧美成人一区二区免费高清观看| 成年女人看的毛片在线观看| 51国产日韩欧美| 大香蕉久久网| 我要搜黄色片| 赤兔流量卡办理| 国产欧美另类精品又又久久亚洲欧美| 日韩欧美国产在线观看| 黄片无遮挡物在线观看| 国产精品熟女久久久久浪| 波野结衣二区三区在线| 最近手机中文字幕大全| 男的添女的下面高潮视频| 久久99热6这里只有精品| 精品人妻视频免费看| 亚洲不卡免费看| 国产精品,欧美在线| 久久这里有精品视频免费| 综合色av麻豆| 高清毛片免费看| 最新中文字幕久久久久| 国产在线一区二区三区精 | 特大巨黑吊av在线直播| 九九久久精品国产亚洲av麻豆| 国产成人a区在线观看| 国产国拍精品亚洲av在线观看| 麻豆一二三区av精品| 欧美性猛交╳xxx乱大交人| 人妻制服诱惑在线中文字幕| 精品久久久久久久末码| 国产爱豆传媒在线观看| 韩国高清视频一区二区三区| 草草在线视频免费看| 国产日韩欧美在线精品| 亚洲av电影在线观看一区二区三区 | 国产成人aa在线观看| 欧美又色又爽又黄视频| 成年av动漫网址| 日韩欧美三级三区| 免费av观看视频| 狠狠狠狠99中文字幕| 欧美日韩综合久久久久久| 简卡轻食公司| 亚洲精品日韩av片在线观看| 十八禁国产超污无遮挡网站| 一级毛片电影观看 | 日韩强制内射视频| 黄色一级大片看看| 99久国产av精品国产电影| 2022亚洲国产成人精品| 亚洲久久久久久中文字幕| 爱豆传媒免费全集在线观看| 日日摸夜夜添夜夜添av毛片| 亚洲五月天丁香| av在线蜜桃| 秋霞在线观看毛片| 婷婷六月久久综合丁香| 天堂网av新在线| 免费大片18禁| 你懂的网址亚洲精品在线观看 | 在线观看一区二区三区| 亚洲在线观看片| 超碰av人人做人人爽久久| 搞女人的毛片| 免费观看的影片在线观看| 汤姆久久久久久久影院中文字幕 | 亚洲三级黄色毛片| 午夜亚洲福利在线播放| 插逼视频在线观看| 午夜福利成人在线免费观看| 长腿黑丝高跟| 人妻制服诱惑在线中文字幕| 亚洲欧美日韩高清专用| 中文欧美无线码| 国产乱人偷精品视频| 欧美性猛交黑人性爽| 亚洲欧美日韩东京热| 国内精品宾馆在线| 亚洲精品久久久久久婷婷小说 | 美女大奶头视频| 国产大屁股一区二区在线视频| 国产视频首页在线观看| 国产黄片美女视频| 狂野欧美白嫩少妇大欣赏| 精品久久久久久久久亚洲| 久久久a久久爽久久v久久| 中国国产av一级| 亚洲成人av在线免费| 亚洲人与动物交配视频| 99久久精品热视频| 国产又色又爽无遮挡免| 99国产精品一区二区蜜桃av| ponron亚洲| 如何舔出高潮| 国产成人福利小说| 三级经典国产精品| 亚洲成人久久爱视频| 久久久久精品久久久久真实原创| 国产探花在线观看一区二区| 91在线精品国自产拍蜜月| 国产一级毛片七仙女欲春2| 国产亚洲一区二区精品| 亚洲av免费在线观看| 91精品一卡2卡3卡4卡| av国产久精品久网站免费入址| 日本免费一区二区三区高清不卡| 亚洲美女搞黄在线观看| 淫秽高清视频在线观看| 一级黄色大片毛片| 韩国高清视频一区二区三区| 久久久久久久久久黄片| 欧美人与善性xxx| 亚洲av免费高清在线观看| 日韩欧美精品v在线| 欧美一级a爱片免费观看看| 久久精品久久精品一区二区三区| 国产免费福利视频在线观看| 亚洲av不卡在线观看| 少妇的逼好多水| 网址你懂的国产日韩在线| 免费黄色在线免费观看| 亚洲欧美成人综合另类久久久 | 99热网站在线观看| 成人二区视频| 成人美女网站在线观看视频| 久久久久久久久大av| av在线老鸭窝| 亚洲伊人久久精品综合 | 国产探花在线观看一区二区| 国产高清国产精品国产三级 | 国产精品三级大全| 99久久精品一区二区三区| 一区二区三区四区激情视频| 成人亚洲欧美一区二区av| 国产精品美女特级片免费视频播放器| 国产三级在线视频| 在线播放国产精品三级| 国产一区二区在线av高清观看| 国产伦一二天堂av在线观看| 午夜老司机福利剧场| 永久免费av网站大全| 国产精品国产三级国产专区5o | 欧美高清性xxxxhd video| 亚洲精品乱久久久久久| 国产精品人妻久久久久久| 99国产精品一区二区蜜桃av| 你懂的网址亚洲精品在线观看 | ponron亚洲| 久久99热6这里只有精品| 男人舔女人下体高潮全视频| 蜜桃久久精品国产亚洲av| 日本wwww免费看| 99久久人妻综合| 美女黄网站色视频| 国产伦精品一区二区三区四那| 长腿黑丝高跟| 久久亚洲国产成人精品v| 免费看美女性在线毛片视频| 免费无遮挡裸体视频| 国产亚洲精品久久久com| 日本免费一区二区三区高清不卡| 美女高潮的动态| 亚洲美女视频黄频| 亚洲精品456在线播放app| 亚洲乱码一区二区免费版| 亚洲国产成人一精品久久久| 久久久成人免费电影| 久久人妻av系列| 精品久久久久久久久av| 久久久久免费精品人妻一区二区| 99久久中文字幕三级久久日本| 欧美另类亚洲清纯唯美| 亚洲一级一片aⅴ在线观看| 亚洲三级黄色毛片| 国产精品国产三级国产av玫瑰| 国产精品永久免费网站| 免费不卡的大黄色大毛片视频在线观看 |