• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Antibiotic Resistance Evaluation and Resistance Gene Profile of Epibiotic Lactic Acid Bacteria on Red Bell Peppers Used for Sichuan Pickle Fermentation

    2017-02-08 07:42:31CAITingLUQianwenXIANGWenliangZHANGQingZHANGQishengCHENGongCAIYimin
    食品科學 2017年2期
    關(guān)鍵詞:泡菜乳酸菌耐藥性

    CAI Ting, LU Qianwen, XIANG Wenliang,*, ZHANG Qing, ZHANG Qisheng, CHEN Gong, CAI Yimin

    (1. Provincial Key Laboratory of Food Biotechnology of Sichuan, Institute of Ancient Brewing Technology, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; 2. Sichuan Academy of Food and Fermentation Industries, Chengdu 611130, China; 3. International Research Center for Agricultural Sciences of Japan, Tsukuba 30528686, Japan)

    Antibiotic Resistance Evaluation and Resistance Gene Profile of Epibiotic Lactic Acid Bacteria on Red Bell Peppers Used for Sichuan Pickle Fermentation

    CAI Ting1, LU Qianwen1, XIANG Wenliang1,*, ZHANG Qing1, ZHANG Qisheng2, CHEN Gong2, CAI Yimin3

    (1. Provincial Key Laboratory of Food Biotechnology of Sichuan, Institute of Ancient Brewing Technology, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; 2. Sichuan Academy of Food and Fermentation Industries, Chengdu 611130, China; 3. International Research Center for Agricultural Sciences of Japan, Tsukuba 30528686, Japan)

    For formulating reasonable measures for the prevention and control of bacterial antibiotic resistance to ensure food safety, penicillin (PEN), erythromycin (ERY), tetracycline (TET), streptomycin (STR) and chloramphenicol (CHL) resistance of lactic acid bacteria (LABs) and the corresponding resistance genes were evaluated, including Enterococcus mundtii (n = 5), Enterococcus faecalis (n = 2), Enterococcus hirae (n = 2), Lactococcus lactis (n = 7), Leuconostoc mesenteroides (n = 2), Leuconostoc holzapfelii (n = 3) and Weissella cibaria (n = 79) from fresh red bell peppers used for Sichuan pickle fermentation. All of the isolated strains were susceptible to PEN or ERY, but they had solo, double or triplicate resistance to TET, STR and CHL. All the isolates of L. mesenteroides as well as some strains of E. hirae, E. faecalis and L. holzapfelii showed solo STR resistance. Some strains of E. faecalis, E. hirae, L. lactis and W. cibaria had double resistance to STR and TET, as well as STR and CHL. However, isolates with triplicate resistances to STR, TET and CHL were only found in W. cibaria. It was found that except norA, sepA, tet(A), tet(O) and aac(6’)-aph(2’) genes, all antibiotic resistance genes were harbored by the resistant isolates partly or completely. The multiple-drug resistance efflux pump genes efrA, tolC, norC, sugE and mdfA showed higher positive rates (which were 49%, 41%, 48%, 41% and 47%, respectively) than the ribosomal protection protein genes and the enzymatic modification genes in the corresponding polymerase chain reaction (PCR). Even though the dissemination of these antibiotic resistances needs to be further studied, such results demonstrated that food safety concerns will be partly focused on antibiotic resistance of LABs on fresh red bell peppers according to Qualified Presumption of Safety criteria.

    red bell peppers; lactic acid bacteria; food safety; antibiotic resistance; antibiotic resistance genes

    Sichuan pickle is the typical representative of Chinese traditional vegetable fermentation. It normally serves as a key flavor for Sichuan cuisine or is used as an appetizer because of its unique flavor in many regions of China. Like the kimchi, Sichuan pickle also has various beneficial properties on general health for the consumers, including anti-oxidative activity, antiaging effects, antimutagenic, antigenotoxic and antitumor activities, antimicrobial activity, immune stimulation, weight-controlling, lipidlowering, and anti-atherogenic activities[1]. The material basis of beneficial properties is closely linked to fermentation process dominated by strains of Lactobacillus, Leuconostoc, Weissella and Pediococcus genera from the old salt brine and the fresh vegetable materials. In the last years, the lactic acid bacteria (LAB) genera which are involved in traditional lactic fermentation, were generally considered to be safe for human according to the “Generally Recognized as Safe (GRAS)”principles and the “Qualitative Presumption of Safety (QPS)”risk assessment approach based on a long history of safe use[2]. However, in the recent years, along with antibiotic resistance genes (ARGs) polluting intensively, several antibiotic resistance genes have already been found in the Sichuan pickle[3]. This gives a new challenge to the traditional GRAS and QPS state of Sichuan pickle, more specifically to those without heat-treated before consumption.

    The antibiotic resistance genes (ARGs), as emerging contaminants, were first proposed in 2006[4]. They fleetly became a new research topic in the food safety and environmental science because their health risks resulted from spreading among different hosts were often greater than the harm caused by antibiotics themselves. In 2000, the World Health Organization (WHO) report focused on antibiotic resistance as one of the most critical human health challenges of the next century and heralded the need for “a global strategy to contain resistance”. The food chain was considered as the main route of transmission of antibiotic resistance[5]. The development of antibiotic resistance among bacteria introduced in the food chain is of great novel concern in the food safety[6]. Recently, several spontaneously fermented foods have been considered as important potential transmission vehicles of ARGs from environment to human gastrointestinal tract[7-9], moreover the transfer of ARGs in the commensal or bacteria may be also induced by low pH, high salt concentration, antimicrobial compounds and the high number of living bacteria. And thus the European Food Safety Authority (EFSA) requires that bacteria which are to be introduced into the food chain should lack acquired or transferable ARGs to prevent their spread among different bacteria[10]. Unfortunately, with the aggravation of pollution of ARGs in the environment, the bacteria with transferable ARGs would be inevitably introduced into food produce chains[11-12].

    Bell pepper, a vegetable of nightshade (Solanaceae) family, is one of the best vegetable to serve in a cruditéplatter because of its bright color, thick flesh, great favor, crunchy high texture capsorubin and high vitamin content[13]. In the southwest of China, it is also usually used to make the Sichuan pickle for the flavor refreshments to stimulate the appetite before the meal, or to relieve oleaginous taste after the meal in the summer. However, in the recent years, LABs with ARGs were often found in the Sichuan pickle fermentation system after the bell peppers were introduced to the old salt brine[3], which would make the GRAS and QPS state of Sichuan pickle worse if the transfer of ARGs took place between different LABs. Therefore, it is necessary to evaluate antibiotic resistance and ARGs of epibiotic LABs from the fresh red bell peppers. In current study, we have investigated their resistance to 5 important antibiotics including penicillin (PEN), erythromycin (ERY), tetracycline (TET), streptomycin (STR) and chloramphenicol (CHL), and their ARGs were also detected by polymerase chain reaction (PCR). This study would be very significant to food safety of epibiotic LABs on the fresh red bell peppers used for the Sichuan pickle.

    1 Materials and Methoddss

    1.1 LABs and growth condition

    In the present study, 100 LAB strains were previously obtained from the fresh red bell peppers used for the Sichuan pickle fermentation. They were identified according to the methods described by Pan Lu et al[14]and then stored as frozen stocks at -20 ℃ in de Man Rogosa and Sharpe (MRS) broth containing 20% (V/V) glycerol for long term storage. They were routinely propagated at 30 ℃ in MRS broth (Fluka, Madrid, Spain) or agar slants under aerobic conditions for 24-48 h.

    1.2 Antimicrobial susceptibility testing

    Antimicrobial susceptibility tests were performed by broth micro-dilution method[15]. Brief y, a 96-well plate was inoculated with 2 μL of fresh LAB cultures and 198 μL of MRS broth with serial two-fold dilutions of antibiotics (0.125-64.000 μg/mL PEN, 0.25-128.00 μg/mL ERY, 1-512 μg/mL TET, 2-1 024 μg/mL STR, 0.5-256.0 μg/mL CHL). LABs were f rst cultured in 2 mL of MRS for 24 h at 30 ℃and subsequently diluted in 0.85 g/100 mL physiological saline to the concentration of approximately 1×105CFU/mL. LABs inoculated in MRS were used as positive control, and a LAB-free well as negative. Plates were incubated under anaerobic conditions at 30 ℃ for 48 h.

    The minimal inhibitory concentration (MIC) of each antibiotic was visually evaluated as the lowest concentration at which no growth was observed. All the tests were repeated at least thrice. In duplicate experiments, the differences of MIC for independent sample never exceeded 1 order of dilution. Interpretation for susceptibility status was based on the threshold X defined also as Extended Common Object File Forma (ECOFF) according to the EFSA (2012)[16-17]and the European Committee on Antimicrobial Susceptibility Testing (EUCAST, http://www.eucast.org). When MIC ≤ECOFF value, the strain was sensitive to the antibiotic; on the contrary, it was resistant.

    1.3 Detection of ARGs

    The temple DNA for PCR was prepared as methods by Xiang et al[18]. The genes associated with resistance to chloramphenicol acetyltransferase gene (cat)[14,19], TET (tet(A), tet(B), tet(C), tet(D), tet(G), tet(H), tet(K), tet(M), tet(O), tet(S), tet(W) and tet(X))[19-20], and STR (strA, strB, aadA, aad6, aph(3’)-Ⅲa and aac(6’)-aph(2’)) were detected by PCR amplification[19]. The efflux pump genes mediating antibiotic resistance eff ux were also investigated according to the PCR methods described by Swick et al[21]for acrA, acrB, tolC, mdfA and norE; He et al[22]for sugE; Noguchi et al[23]for smr; Lee et al[24]for efrA and efrB; Patel et al[25]for mdeA, mepA, norA, norB, norC, sdrM and sepA. The PCR primers were listed in Table 1.

    All the amplified ARGs were respectively cloned into the pGEM-T plasmid vector (Promega, Madison, WI, USA) and transformed into the chemically competent E. coli DH5α cells for sequencing. Then the antibiotic resistance genes were further verified by sequence BLASTx program in the National Center for Biotechnology Information (NCBI).

    Table1 PCR primers for antibiotic resistance genes

    Table1 continued

    1.4 Statistical analysis

    The MIC distribution of 5 antibiotics was statistically analyzed using Excel 2010 (Microsoft, Redmond, Washington, USA). Distribution of antibiotic susceptibility and antibiotic resistance genes were performed using SPSS version 17.0 (IBM, Armonk, New York, USA).

    2 Results and Analysis

    2.1 Antibiotic susceptibility

    Antibiotics had been spread in the environment when used as growth promoters in livestock years ago, leading to the selection of antibiotic resistant bacteria[26]. These resistant bacteria may inhabitat in or on fruits, vegetables and animal feeds, and may further disseminate during the food fermentation[27-28]. Therefore, it is important to evaluate the antibiotic resistance incidences of bacteria in fermented vegetables[29]. A total of one hundred isolates were initially identified as LAB by 16S rRNA sequence analysis, and these LABs were further verified by physiological and biochemical methods. They were turned out to be seventy-nine strains of Weissella cibaria, five strains of Enterococcus mundtii, two strains of Enterococcus faecalis, two strains of Enterococcus hirae, two strains of Leuconostoc mesenteroides, three strains of Leuconostoc holzapfelii and seven strains of Lactococcus lactis (Table 2).

    Table2 Microbial classification of LABs isolated from red bell peppers using 16S rRNA gene sequence analysis

    Table3 MIC distribution of 5 antibiotics for LABs isolated from red peppers used for Sichuan pickle production

    The susceptibility determination was performed with epibiotic LABs to PEN, ERY, TET, STR and CHL. The results indicated that the MICs to PEN and ERY did not exceed the ECOFF values posed by the EFSA 2012 for E. mundtii, E. faecalis, E. hirae, L. mesenteroides, L. holzapfelii, L. lactis and W. cibaria (Table 3). It suggested that all epibiotic LABs on the fresh red bell peppers are sensitive to PEN and ERY. Conversely, except L. holzapfelii, most of them displayed resistance to the STR (84 strains LABs), with 100% of E. hirae and L. mesenteroides, 60% of E. mundtii, 50% of E. faecalis, 85.7% L. lactis and 88.6% W. cibaria (Table 3), and these resistant LABs showed high MIC values as previously reported by Elkins et al[30]. For TET, all strains of E. mundtii, L. mesenteroides and L. holzapfelii showed susceptibility, while 50% of E. faecalis, 100% of E. hirae and 28.6% of L. lactis strains had higher MIC than their corresponding ECOFF values, suggesting resistance to TET (Table 3). In the CHL, only 3.8% of W. cibaria strains had obtained resistance, the other species and 96.2% of W. cibaria strains were sensitive to CHL (Table 3).

    2.2 Antibiotic resistance phenotype and distribution

    Statistical analysis showed that none of strains were resistant to PEN and ERY, but there were some strains with solo, or double or triplicate resistance to TET, STR and CHL. As one of the most widespread agricultural antibiotics, the use of STR has lead STR resistance bacteria to grow in the environment, and thus unavoidably gathered at the surface of the vegetable. Therefore, STR resistant bacteria were often found on the surface of the vegetables[5]. It was also verified by our results that 84% of LAB isolates were resistant to STR, and the strains with solo resistance to STR almost existed in all species except E. hirae and E. faecalis (Fig. 1). All the strains of L. mesenteroides only showed solo STR resistance. In E. faecalis, E. hirae, L. lactis and W. cibaria, some isolates have double resistance to STR and TET or STR and CHL. However, the triplicate resistant strain was found only in W. cibaria, and it was against STR, TET and CHL (Fig. 1). Two E. hirae strains both displayed STR and TET double resistance. In two E. faecalis strains, one was sensitive to antibiotics tested, the other with TET and STR double resistance. In five E. mundtii strains, which have two strains with susceptibility to all testing antibiotics, three solo STR resistant. Among seven L. lactis strains, four strains were found to be with solo STR resistance, two strains with TET and STR double resistance, and one strain with susceptibility to all testing antibiotics. Among seventy nine W. cibaria strains, only one W. cibaria strain with triplicate resistance to TET, STR and CHL was observed. Furthermore, there were nine susceptibility isolates, fifty-eight solo STR resistant isolates, nine TET and STR double resistant isolates and two STR and CHL double resistant isolates.

    Fig. 1 Distribution of antibiotic susceptibility and resistant LAB isolates

    2.3 Antibiotic resistance genes

    The overuse and misuse of antibiotics have created a tremendous selective pressure toward antibiotic resistant bacteria[30]. Different mechanisms for the resistance to various antibiotics have been found in bacteria, including antibiotic degrading, pump efflux, altering and metabolism in cell[31]. The emergence of antibiotic resistance is a global threat because it reduces the efficiency of the antibiotic therapy, which is getting worse by the horizontal transfer of ARGs between bacteria[32-33]. Fermentative materials have been considered as potential vehicles of resistant genes from environment to products[5].

    To identify resistant determinants responsible for the resistance phenotypes observed, all the strains were screened by PCR for the presence of resistant genes as described above. In current investigation, these genes served the antibiotic resistance were detected and displayed in Fig. 2. Except the efflux genes norA and sepA, TET resistance genes tet(A) and tet(O), STR resistance gene aac(6’)-aph(2’), the other resistant genes were harbored by resistance isolates partly or completely. The multiple-drug resistant efflux pump genes, including efrA, tolC, norC, sugE and mdfA, showed higher positive ratios than the others in the corresponding PCR reactions, in which their detected ratios were 49, 41, 48, 41 and 47%, respectively. The results were similar to the eff ux pump genes in the LAB described by del Carmen et al[19]. The STR and TET double resistant W. cibaria CT023 carried most resistant genes, including seven drug eff ux pump genes efrA, efrB, acrB, sugE, norC, mdfA and mepA, three TET efflux genes tet(B), tet(C) and tet(K), two ribosomal protection protein genes tet(S) and tet(W), one enzymatic modif cationgene tet(X), and three STR resistance genes strB, aad6 and aph(3’)-Ⅲa. While, E. mundtii CT080, CT081, W. cibaria CT012, CT014, CT098 and CT206 have only possessed one resistance gene, norE for CT080, mdfA for CT081, strB for CT012 and CT206, acrA for CT014 and CT098. And all of them were positive for solo STR resistance. The detection of ARGs in fermentative vegetable materials implies that there is a potential food safety risk when ARGs spread to other microorganisms during the fermentation by horizontal gene transfer.

    Fig. 2 Distribution of ARGs in different antibiotic resistance LAB isolates

    3 Conclusions

    Traditionally fermented vegetables play an important role in the food systems in China. However, no investigation has been conducted to assess the antibiotic resistance incidences and ARGs of LAB. In current investigation, all the LAB isolates from the fresh red bell peppers were susceptible to PEN and ERY. Concerning TET, STR and CHL, all the strains of L. mesenteroides showed solo STR resistance. In E. faecalis, E. hirae, L. lactis and W. cibaria, some isolates had double resistance to STR and TET or STR and CHL. However, the triplicate resistance was found only in W. cibaria. Except for norA, sepA, tet(A), tet(O) and aac(6’)-aph(2’), the other resistance genes were harbored by resistant isolates partly or completely. The genes efrA, tolC, norC,

    sugE and mdfA showed higher positive ratios, which were 49%, 41%, 48%, 41% and 47% respectively. Even though the dissemination of these ARGs during vegetable fermentation need to be further studied, such studies will be conducive to safety assessment of fresh red bell peppers when being used as the material for fermentation.

    [1] JI Y, KIM H, PARK H, et al. Functionality and safety of lactic bacterial strains from Korean kimchi[J]. Food Control, 2013, 31(2): 467-473. DOI:10.1016/j.foodcont.2012.10.034.

    [2] ANADóN A, MART?NEZ-LARRA?AGA M R, MART?NEZ M A. Probiotics for animal nutrition in the European Union. regulation and safety assessment[J]. Regulatory Toxicology and Pharmacology, 2006, 45(1): 91-95. DOI:10.1016/j.yrtph.2006.02.004.

    [3] SONG Feifei, XU Gurong, CAI Ting, et al. Detection of streptomycin resistance and resistance genes in lactic acid bacteria from Sichuan Pickle of China[J]. Journal of Food Safety and Quality, 2014, 5(12): 4032-4039.

    [4] PRUDEN A, PEI R, STORTEBOOM H, et al. Antibiotic resistance genes as emerging contaminants: studies in northern Colorado[J]. Environmental Science and Technology, 2006, 40(23): 7445-7450. DOI:10.1021/es060413l.

    [5] VERRAES C, van BOXSTAEL S, van MEERVENNE E, et al. Antimicrobial resistance in the food chain: a review[J]. International Journal of Environmental Research and Public Health, 2013, 10(7): 2643-2669. DOI:10.3390/ijerph10072643.

    [6] WANG H, McENTIRE J C, ZHANG L, et al. The transfer of antibiotic resistance from food to humans: facts, implications and future directions[J]. International Office of Epizootics, 2012, 31(1): 249-260. DOI:10.20506/rst.31.1.2117.

    [7] BAUTISTA-GALLEGO J, ARROYO-L?PEA F N, RANTSIOU K, et al. Screening of lactic acid bacteria isolated from fermented table olives with probiotic potential[J]. Food Research International, 2013, 50(1): 135-142. DOI:10.1016/j.foodres.2012.10.004.

    [8] AHAOTU I, ANYOGU A, NLOKU O H, et al. Molecular identification and safety of Bacillus species involved in the fermentation of African oil beans (Pentaclethra macrophylla Benth) for production of Ugba[J]. International Journal of Food Microbiology, 2013, 162(1): 95-104. DOI:10.1016/j.ijfoodmicro.2013.01.001.

    [9] HUDDLESTON J R. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes[J]. Infecition and Drug Resistance, 2014(7): 167-176. DOI:10.2147/IDR.S48820.

    [10] van REENEN C A, DICKS L M T. Horizontal gene transfer amongst probiotic lactic acid bacteria and other intestinal microbiota: what are the possibilities? a review[J]. Archives of Microbiology, 2011, 193(3): 157-168. DOI:10.1007/s00203-010-0668-3.

    [11] ZHANG Xiangxu, ZHANG Tong, FANG H H P. Antibiotic resistance genes in water environment[J]. Applied Microbiology and Biotechnology, 2009, 82(3): 397-414. DOI:10.1007/s00253-008-1829-z.

    [12] FUENTES M A F, MORENTE E O, ABRIOUEL H, et al. Antimicrobial resistance determinants in antibiotic and biocide resistant gram-negative bacteria from organic foods[J]. Food Control, 2014, 37: 9-14. DOI:10.1016/j.foodcont.2013.08.041.

    [13] OUYANG Jing, TAO Xianglin, LI Ziming, at el. Analysis of changes in the main components and volatile components in fermented pepper with high salt content[J]. Food Science, 2014, 35(4): 174-179. DOI:10.7506/spkx1002-6630-201416038.

    [14] PAN Lu, HU Xiaoqing, WANG Xiaoyuan. Assessment of antibiotic resistance of lactic acid bacteria in Chinese fermented foods[J]. Food Control, 2011, 22(8): 1316-1321. DOI:10.1016/ j.foodcont.2011.02.006.

    [15] KLARE I, KONSTABEL C, M?LLER-BERTLING S, et al. Evaluation of new broth media for microdilution antibiotic susceptibility testing of Lactobacilli, Pediococci, Lactococci, and Bif dobacteria[J]. Applied and Environmental Microbiology, 2005, 71(12): 8982-8986. DOI:10.1128/aem.71.12.8982-8986.2005.

    [16] DANIELSEN M, WIND A. Susceptibility of Lactobacillus spp. to antimicrobial agents[J]. International Journal of Food Microbiology, 2003, 82(1): 1-11. DOI:10.1016/S0168-1605(02)00254-4.

    [17] FLOREZ H, SLIVA E, FERN?NDEZ V, et al. Prevalence and risk factors associated with the metabolic syndrome and dyslipidemia in White, Black, Amerindian and Mixed Hispanics in Zulia State, Venezuela[J]. Diabetes Research and Clinical Practice, 2005, 69(1): 63-77. DOI:10.1016/j.diabres.2004.11.018.

    [18] XIANG Wenliang, LI Ke, LIU Sen, et al. Microbial succession in the traditional Chinese Luzhou-flavor liquor fermentation process as evaluated by SSU rRNA profiles[J]. World Journal of Microbiology and Biotechnology, 2012, 29(3): 559-567. DOI:10.1007/s11274-012-1210-3.

    [19] del CARMEN CASADO MU?OZ M, BENMAR N, LERMA L L, et al. Antibiotic resistance of Lactobacillus pentosus and Leuconostoc pseudomesenteroides isolated from naturally-fermented Alore?a table olives throughout fermentation process[J]. International Journal of Food Microbiology, 2014, 172(17): 110-118. DOI:10.1016/ j.ijfoodmicro.2013.11.025.

    [20] JIA Shuyu, HE Xiwei, BU Yuanqing, et al. Environmental fate of tetracycline resistance genes originating from swine feedlots in river water[J]. Journal of Environmental Science and Health, 2014, 49(8): 624-631. DOI:10.1080/03601234.2014.911594.

    [21] SWICK M C, MORGAN-LINNELL S K, CARLSON K M, et al. Expression of multidrug efflux pump genes acrAB-tolC, mdfA, and norE in Escherichia coli clinical isolates as a function of fluoroquinolone and multidrug resistance[J]. Antimicrobial Agents and Chemotherapy, 2011, 55(2): 921-924. DOI:10.1128/AAC.00996-10.

    [22] HE Guixin, ZHANG Chu, CROW R R, et al. SugE, a new member of the SMR family of transporters, contributes to antimicrobial resistance in Enterobacter cloacae[J]. Antimicrobial Agents and Chemotherapy, 2011, 55(8): 3954-3957. DOI:10.1128/aac.00094-11.

    [23] NOGUCHI N, HASE M, KITTA M, et al. Antiseptic susceptibility and distribution of antiseptic-resistance genes in methicillin-resistant Staphylococcus aureus[J]. FEMS Microbiology Letters, 1999, 172(2): 247-253. DOI:10.1111/j.1574-6968.1999.tb13475.x.

    [24] LEE E W, HUDA M N, KURODA T, et al. EfrAB, an ABC multidrug efflux pump in Enterococcus faecalis[J]. Antimicrobial Agents and Chemotherapy, 2003, 47(12): 3733-3738. DOI:10.1128/ aac.47.12.3733-3738.2003.

    [25] PATEL D, KOSMIDIS C, SEO S M, et al. Ethidium bromide MIC screening for enhanced efflux pump gene expression or efflux activity in Staphylococcus aureus[J]. Antimicrobial Agents and Chemotherapy, 2010, 54(12): 5070-5073. DOI:10.1128/aac.01058-10.

    [26] DEVIRGILIIS C, CARAVELLI A, COPPOIA D, et al. Antibiotic resistance and microbial composition along the manufacturing process of Mozzarella di Bufala Campana[J]. International Journal of Food Microbiology, 2008, 128(2): 378-384. DOI:10.1016/ j.ijfoodmicro.2008.09.021.

    [27] ZHANG Hongmei, HUANG Shaosong, ZHOU Hanji, et al. Two kinds of antibiotics resistance of lactic acid bacteria isolated from yogurt[J]. Chinese Journal of Public Health, 2010, 26(4): 511-512. DOI:10.11847/zgggws2010-26-04-73.

    [28] LIN Kai, CAI Ting, XU Gurong, et al. Antibiotic resistance of epibiotic lactic acid bacteria on the surface of organic white radish[J]. Food Science, 2015, 36(11): 145-149. DOI:10.7506/spkx1002-6630-201511028.

    [29] FU Mingchun, XI Huiping, LIU Yanzhao. Current antibiotic residues and control countermeasures of milk and meat[J]. Chinese Journal of Animal Quarantine, 2008, 25(6): 20-22. DOI:10.3969/j.issn.1005-944X.2008.06.010.

    [30] ELKINS C A, MULLIS L B. Bile-mediated aminoglycoside sensibility in Lactobacillus species likely results from increased membrane permeability attributable to cholic acid[J]. Applied and Environmental Microbiology, 2004, 70(12): 7200-7209. DOI:10.1128/ aem.70.12.7200-7209.2004.

    [31] SHARMA P, TOMAR S K, GOSWAMI P, et al. Antibiotic resistance among commercially available probiotics[J]. Food Research International, 2014, 57(1): 176-195. DOI:10.1016/ j.foodres.2014.01.025.

    [32] NAWAZ M, WANG Juan, ZHOU Aiping, et al. Characterization and transfer of antibiotic resistance in lactic acid bacteria from fermented food products[J]. Current Microbiology, 2011, 62(3): 1081-1089. DOI:10.1007/s00284-010-9856-2.

    [33] TOOMEY N, BOLTON D, FANNING S. Characterisation and transferability of antibiotic resistance genes from lactic acid bacteria isolated from Irish pork and beef abattoirs[J]. Research in Microbiology, 2010, 161(2): 127-135. DOI:10.1016/ j.resmic.2009.12.010.

    四川泡菜發(fā)酵原料-燈籠辣椒附生乳酸菌的抗生素耐藥性評估與耐藥基因分析

    蔡 婷1,盧倩文1,向文良1,*,張 慶1,張其圣2,陳 功2,蔡義民3

    (1.西華大學食品與生物工程學院,四川省食品生物技術(shù)重點實驗室,古法發(fā)酵(釀造)生物技術(shù)研究所,四川 成都 610039;2. 四川省食品發(fā)酵工業(yè)研究設計院,四川 成都 611130;3.日本國際農(nóng)業(yè)科學研究中心,日本 筑波 30528686)

    以四川泡菜蔬菜原料——新鮮燈籠辣椒為對象,分析其表面附生乳酸菌Enterococcus mundtii(5 株)、Enterococcus faecalis(2 株)、Enterococcus hirae(5 株)、Lactococcus lactis(7 株)、Leuconostoc mesenteroides(2 株)、Leuconostoc holzapfelii(3 株)和Weissella cibaria(79 株)對青霉素(penicillin,PEN)、紅霉素(erythromycin,ERY)、四環(huán)素(tetracycline,TET)、鏈霉素(streptomycin,STR)和氯霉素(chloramphenicol,CHL)的抗生素耐藥性和耐藥基因分布,為制定合理的食品安全防控措施提供科學依據(jù)。研究表明:所有分離菌株均無PEN和ERY耐藥性,其他種屬部分菌株對TET、STR和CHL表現(xiàn)出單一、二重或三重耐藥性。除E. hirae、E. faecalis和L. holzapfelii部分菌株對STR表現(xiàn)出單一耐藥性外,所有L. mesenteroide菌株只表現(xiàn)出了STR單一耐藥性;STR和TET、STR和CHL二重耐藥菌株在E. faecalis、E. hirae、L. lactis和W. cibaria分離菌株中都有發(fā)現(xiàn),但是STR、TET、CHL三重耐藥菌株僅在W. cibaria中發(fā)現(xiàn)。聚合酶鏈式反應檢測發(fā)現(xiàn):除基因norA、sepA、tet(A)、tet(O)和aac(6’)-aph(2’)未被檢出外,其他耐藥菌株都有相應1 個或多個耐藥基因被檢出。多重耐藥外排泵基因efrA、tolC、norC、sugE和mdfA較核糖體蛋白質(zhì)保護和酶修飾基因檢出率高,分別達到了49%、41%、48%、41%和47%。雖然辣椒表面附生乳酸菌的抗生素耐藥基因在四川泡菜發(fā)酵過程中的擴散行為需要進一步研究,但根據(jù)食品加工過程安全規(guī)范標準,也應關(guān)注其表面附生的乳酸菌抗生素耐藥性存在的潛在食品安全問題。

    燈籠辣椒;乳酸菌;食品安全;抗生素耐藥性;抗生素耐藥性基因

    TS201.3

    A

    1002-6630(2017)02-0027-07

    nces

    2016-03-11

    國家自然科學基金面上項目(31571935);教育部春暉計劃項目(Z2014061);四川省應用基礎項目(2014JY0045);四川省教育廳重點項目(14ZA0110)

    蔡婷(1991—),女,碩士研究生,主要從事食品微生物分子生態(tài)研究。E-mail:caiting1124@sina.com

    10.7506/spkx1002-6630-201702005

    *通信作者:向文良(1973—),男,教授,博士,主要從事中國西南地區(qū)特色發(fā)酵食品微生物分子生態(tài)與生物過程學研究。

    E-mail:biounicom@mail.xhu.edu.cn

    CAI Ting, LU Qianwen, XIANG Wenliang, et al. Antibiotic resistance evaluation and resistance gene profile of epibiotic lactic acid bacteria on red bell peppers used for Sichuan pickle fermentation[J]. 食品科學, 2017, 38(2): 27-33.

    10.7506/ spkx1002-6630-201702005. http://www.spkx.net.cn

    CAI Ting, LU Qianwen, XIANG Wenliang, et al. Antibiotic resistance evaluation and resistance gene profile of epibiotic lactic acid bacteria on red bell peppers used for Sichuan pickle fermentation[J]. Food Science, 2017, 38(2): 27-33. DOI:10.7506/spkx1002-6630-201702005. http://www.spkx.net.cn

    猜你喜歡
    泡菜乳酸菌耐藥性
    韓國泡菜,不僅僅是辣白菜
    長絲鱸潰爛癥病原分離鑒定和耐藥性分析
    禽用乳酸菌SR1的分離鑒定
    雪花泡菜
    嬰幼兒感染中的耐藥菌分布及耐藥性分析
    WHO:HIV耐藥性危機升級,普及耐藥性檢測意義重大
    我只是想吃一碗泡菜
    乳酸菌成乳品市場新寵 年增速近40%
    乳飲品中耐胃酸乳酸菌的分離鑒定與篩選
    中國釀造(2014年9期)2014-03-11 20:21:04
    產(chǎn)γ-氨基丁酸乳酸菌的篩選及誘變育種
    食品科學(2013年23期)2013-03-11 18:30:09
    久久热在线av| 夫妻午夜视频| 九草在线视频观看| 国产精品麻豆人妻色哟哟久久| 侵犯人妻中文字幕一二三四区| 韩国av在线不卡| 久久精品夜色国产| 亚洲av电影在线观看一区二区三区| 免费久久久久久久精品成人欧美视频 | 国产精品国产三级国产av玫瑰| 91午夜精品亚洲一区二区三区| www.av在线官网国产| 国产成人一区二区在线| 亚洲精华国产精华液的使用体验| 涩涩av久久男人的天堂| 亚洲精品一区蜜桃| av电影中文网址| 成年人午夜在线观看视频| av天堂久久9| 黑人欧美特级aaaaaa片| 免费大片18禁| 人人澡人人妻人| www.熟女人妻精品国产 | 丰满饥渴人妻一区二区三| 亚洲精品成人av观看孕妇| 亚洲人与动物交配视频| 国产免费一区二区三区四区乱码| 又粗又硬又长又爽又黄的视频| 黄片无遮挡物在线观看| 永久免费av网站大全| 国产精品.久久久| 亚洲经典国产精华液单| 国产高清不卡午夜福利| 久久国产精品大桥未久av| 欧美人与善性xxx| 成人午夜精彩视频在线观看| 国产午夜精品一二区理论片| 99久久人妻综合| 精品亚洲乱码少妇综合久久| 日韩制服丝袜自拍偷拍| 久久久国产欧美日韩av| 又黄又爽又刺激的免费视频.| 韩国高清视频一区二区三区| 性色av一级| 国产精品久久久久久精品古装| 99热6这里只有精品| 精品亚洲乱码少妇综合久久| 亚洲精品久久成人aⅴ小说| 国产成人午夜福利电影在线观看| 在线观看人妻少妇| 亚洲少妇的诱惑av| 国产在线一区二区三区精| av黄色大香蕉| 久久久久久人妻| 日韩欧美一区视频在线观看| 亚洲,欧美,日韩| kizo精华| 女性生殖器流出的白浆| 国产有黄有色有爽视频| 边亲边吃奶的免费视频| 欧美xxⅹ黑人| 成人毛片a级毛片在线播放| 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧美一区二区三区黑人 | 欧美最新免费一区二区三区| 亚洲人成77777在线视频| 一边摸一边做爽爽视频免费| 日韩制服骚丝袜av| 国产精品国产三级专区第一集| 免费女性裸体啪啪无遮挡网站| 成年人免费黄色播放视频| 精品人妻熟女毛片av久久网站| 久久久国产精品麻豆| 黑丝袜美女国产一区| 在线天堂最新版资源| 午夜福利网站1000一区二区三区| 国产免费福利视频在线观看| 亚洲av日韩在线播放| 日本黄大片高清| 亚洲激情五月婷婷啪啪| 18在线观看网站| 亚洲色图 男人天堂 中文字幕 | 一边亲一边摸免费视频| 日本猛色少妇xxxxx猛交久久| 亚洲色图综合在线观看| 久久国内精品自在自线图片| 高清欧美精品videossex| 国产日韩欧美视频二区| 麻豆乱淫一区二区| 亚洲av综合色区一区| 黑人巨大精品欧美一区二区蜜桃 | 26uuu在线亚洲综合色| 18禁裸乳无遮挡动漫免费视频| 国产高清国产精品国产三级| 亚洲综合色惰| 极品人妻少妇av视频| 午夜激情久久久久久久| 美女国产视频在线观看| 一级毛片 在线播放| 黑人高潮一二区| 国产视频首页在线观看| 97在线视频观看| 亚洲精品av麻豆狂野| 卡戴珊不雅视频在线播放| 少妇猛男粗大的猛烈进出视频| av国产久精品久网站免费入址| 男人爽女人下面视频在线观看| 韩国av在线不卡| 黄色 视频免费看| 国产高清三级在线| 久久精品国产亚洲av天美| 美女中出高潮动态图| 18禁国产床啪视频网站| 亚洲丝袜综合中文字幕| 久久毛片免费看一区二区三区| 高清视频免费观看一区二区| 看免费成人av毛片| 免费女性裸体啪啪无遮挡网站| 免费女性裸体啪啪无遮挡网站| 免费女性裸体啪啪无遮挡网站| 美女大奶头黄色视频| 国产黄色免费在线视频| 成人手机av| 一级毛片 在线播放| 国产亚洲午夜精品一区二区久久| 国产综合精华液| 日日摸夜夜添夜夜爱| 一本久久精品| 亚洲五月色婷婷综合| av在线app专区| 91成人精品电影| 国产不卡av网站在线观看| 十八禁网站网址无遮挡| 亚洲欧美精品自产自拍| 午夜日本视频在线| 精品酒店卫生间| 久久精品人人爽人人爽视色| 国产成人精品在线电影| 高清黄色对白视频在线免费看| 久久99精品国语久久久| 中文欧美无线码| 欧美日韩视频精品一区| 黄片无遮挡物在线观看| 久久久久精品久久久久真实原创| 成人国产麻豆网| 日韩制服骚丝袜av| 国国产精品蜜臀av免费| 精品少妇久久久久久888优播| 美女内射精品一级片tv| 亚洲四区av| 国产乱来视频区| 飞空精品影院首页| 极品少妇高潮喷水抽搐| 久久这里有精品视频免费| 亚洲中文av在线| 国产成人精品久久久久久| 久久久亚洲精品成人影院| freevideosex欧美| 最新中文字幕久久久久| 国产精品免费大片| 黄色怎么调成土黄色| 男男h啪啪无遮挡| 最近手机中文字幕大全| 日韩一区二区三区影片| 欧美精品亚洲一区二区| 欧美3d第一页| 在线观看一区二区三区激情| 久久久精品免费免费高清| 日韩欧美一区视频在线观看| 精品国产露脸久久av麻豆| 天天操日日干夜夜撸| 熟妇人妻不卡中文字幕| 水蜜桃什么品种好| 久久精品国产a三级三级三级| 久久久精品区二区三区| 国产成人欧美| 男女午夜视频在线观看 | 日本与韩国留学比较| 精品久久久久久电影网| 日本猛色少妇xxxxx猛交久久| 91精品伊人久久大香线蕉| 在线 av 中文字幕| 久久久久久人人人人人| av视频免费观看在线观看| 黑丝袜美女国产一区| 久久精品国产自在天天线| 欧美性感艳星| 久久人人爽人人片av| 成人综合一区亚洲| 99精国产麻豆久久婷婷| 久久精品久久久久久噜噜老黄| 中国国产av一级| 九色亚洲精品在线播放| 国产精品麻豆人妻色哟哟久久| 欧美最新免费一区二区三区| 视频区图区小说| 啦啦啦在线观看免费高清www| 18禁在线无遮挡免费观看视频| 国产一级毛片在线| 国产日韩欧美在线精品| 亚洲人成77777在线视频| 国产 一区精品| 亚洲内射少妇av| 久久精品国产综合久久久 | 免费观看a级毛片全部| 国产国拍精品亚洲av在线观看| 国产av国产精品国产| 啦啦啦啦在线视频资源| 青春草视频在线免费观看| 亚洲经典国产精华液单| 午夜av观看不卡| 一级毛片电影观看| 欧美国产精品va在线观看不卡| 999精品在线视频| 亚洲性久久影院| freevideosex欧美| 夫妻午夜视频| 老司机影院成人| 亚洲欧美色中文字幕在线| 亚洲人成77777在线视频| 国产欧美日韩综合在线一区二区| 国产精品一区二区在线不卡| 国产精品嫩草影院av在线观看| 国产深夜福利视频在线观看| 国产成人一区二区在线| 亚洲精品自拍成人| 欧美国产精品一级二级三级| 亚洲四区av| 欧美成人午夜免费资源| 另类亚洲欧美激情| 纵有疾风起免费观看全集完整版| 日本wwww免费看| 色哟哟·www| 大香蕉97超碰在线| 精品人妻一区二区三区麻豆| www.av在线官网国产| 美女主播在线视频| 久久影院123| a级毛色黄片| 尾随美女入室| 欧美亚洲 丝袜 人妻 在线| 多毛熟女@视频| 亚洲五月色婷婷综合| 精品人妻在线不人妻| 亚洲精品日韩在线中文字幕| 国产成人精品婷婷| 中文乱码字字幕精品一区二区三区| 乱码一卡2卡4卡精品| 夫妻性生交免费视频一级片| 一级毛片 在线播放| 精品卡一卡二卡四卡免费| 欧美成人午夜免费资源| 90打野战视频偷拍视频| 26uuu在线亚洲综合色| 91精品伊人久久大香线蕉| 久久精品久久久久久久性| 少妇的逼水好多| 最近最新中文字幕大全免费视频 | 国产成人精品久久久久久| 亚洲av男天堂| av电影中文网址| 久久人人97超碰香蕉20202| 99国产精品免费福利视频| 一区二区三区精品91| 两个人看的免费小视频| 亚洲欧美日韩另类电影网站| 男女无遮挡免费网站观看| 美女大奶头黄色视频| 久久久国产一区二区| 亚洲精品日本国产第一区| 一级爰片在线观看| 在线天堂最新版资源| 色婷婷av一区二区三区视频| 毛片一级片免费看久久久久| 三上悠亚av全集在线观看| 在线天堂中文资源库| av播播在线观看一区| 亚洲色图综合在线观看| 女的被弄到高潮叫床怎么办| 十八禁网站网址无遮挡| 欧美bdsm另类| 毛片一级片免费看久久久久| 国产亚洲精品第一综合不卡 | 大片免费播放器 马上看| 免费黄网站久久成人精品| 成人亚洲精品一区在线观看| 最黄视频免费看| 亚洲,一卡二卡三卡| 亚洲伊人色综图| 女人久久www免费人成看片| 亚洲美女黄色视频免费看| 免费黄色在线免费观看| 国产乱人偷精品视频| 中文字幕人妻丝袜制服| 色哟哟·www| 久热久热在线精品观看| 国产成人精品福利久久| 男女边摸边吃奶| 黑人欧美特级aaaaaa片| 十八禁高潮呻吟视频| 丰满乱子伦码专区| 国产精品一二三区在线看| 91精品三级在线观看| av片东京热男人的天堂| 国产成人aa在线观看| 欧美日本中文国产一区发布| 人人妻人人澡人人看| 又黄又粗又硬又大视频| 国产淫语在线视频| 久久免费观看电影| 青青草视频在线视频观看| 久久精品国产a三级三级三级| 国产有黄有色有爽视频| 2018国产大陆天天弄谢| 99热这里只有是精品在线观看| 岛国毛片在线播放| av福利片在线| 高清av免费在线| 欧美亚洲日本最大视频资源| 国产成人精品福利久久| 色吧在线观看| 在线 av 中文字幕| 午夜福利,免费看| 成人国产麻豆网| 老司机影院成人| 欧美人与善性xxx| 亚洲av男天堂| 人妻少妇偷人精品九色| 亚洲成av片中文字幕在线观看 | 两个人免费观看高清视频| 日产精品乱码卡一卡2卡三| 热re99久久国产66热| 久久这里有精品视频免费| 69精品国产乱码久久久| 少妇猛男粗大的猛烈进出视频| videos熟女内射| 这个男人来自地球电影免费观看 | 在线精品无人区一区二区三| 国产 一区精品| 午夜老司机福利剧场| 亚洲第一av免费看| 精品人妻偷拍中文字幕| 国产高清国产精品国产三级| 黄色 视频免费看| 日本黄大片高清| 久久ye,这里只有精品| 18禁在线无遮挡免费观看视频| 亚洲精品美女久久av网站| 交换朋友夫妻互换小说| 亚洲性久久影院| 欧美人与善性xxx| 欧美精品一区二区大全| 91久久精品国产一区二区三区| 婷婷色av中文字幕| 最近中文字幕2019免费版| 亚洲综合色网址| 国产精品熟女久久久久浪| 亚洲国产毛片av蜜桃av| 欧美精品一区二区免费开放| 美女福利国产在线| 国产淫语在线视频| 在线观看免费日韩欧美大片| 午夜91福利影院| 热99久久久久精品小说推荐| 99热国产这里只有精品6| 在现免费观看毛片| 日韩在线高清观看一区二区三区| 搡女人真爽免费视频火全软件| 欧美国产精品va在线观看不卡| 亚洲精品美女久久久久99蜜臀 | 成人无遮挡网站| 国产又色又爽无遮挡免| 亚洲国产av影院在线观看| 黄色视频在线播放观看不卡| 亚洲在久久综合| 亚洲av男天堂| 青春草国产在线视频| 制服丝袜香蕉在线| 一级毛片电影观看| 中文字幕免费在线视频6| 亚洲国产精品一区二区三区在线| 天美传媒精品一区二区| 午夜福利视频在线观看免费| 91aial.com中文字幕在线观看| 国产在视频线精品| 午夜视频国产福利| 成人国产麻豆网| 国产日韩欧美视频二区| 黑丝袜美女国产一区| 亚洲欧洲日产国产| 亚洲精品成人av观看孕妇| 久久久国产精品麻豆| 免费av中文字幕在线| 高清毛片免费看| 中文天堂在线官网| 卡戴珊不雅视频在线播放| 秋霞伦理黄片| 美女主播在线视频| a级毛片黄视频| 亚洲成av片中文字幕在线观看 | 欧美日韩一区二区视频在线观看视频在线| 有码 亚洲区| 久久人人97超碰香蕉20202| 亚洲欧美精品自产自拍| 欧美日韩视频高清一区二区三区二| 亚洲欧美色中文字幕在线| 午夜av观看不卡| 夜夜骑夜夜射夜夜干| 亚洲欧美成人精品一区二区| 日本vs欧美在线观看视频| 99热全是精品| 中文字幕另类日韩欧美亚洲嫩草| 精品第一国产精品| 午夜影院在线不卡| 两性夫妻黄色片 | 在线观看一区二区三区激情| 欧美日韩精品成人综合77777| 免费观看无遮挡的男女| 日韩制服丝袜自拍偷拍| 亚洲精品美女久久av网站| 亚洲内射少妇av| 丝瓜视频免费看黄片| 中文天堂在线官网| 国产精品久久久久久av不卡| 亚洲人成网站在线观看播放| www.色视频.com| 蜜桃国产av成人99| 国产女主播在线喷水免费视频网站| 美女xxoo啪啪120秒动态图| 丰满饥渴人妻一区二区三| 人人妻人人爽人人添夜夜欢视频| 草草在线视频免费看| a级毛色黄片| 日本免费在线观看一区| 国产精品欧美亚洲77777| 9热在线视频观看99| 十八禁网站网址无遮挡| 女人精品久久久久毛片| 性色avwww在线观看| 日韩在线高清观看一区二区三区| 桃花免费在线播放| 欧美日韩亚洲高清精品| 久久免费观看电影| 一级毛片我不卡| 国产伦理片在线播放av一区| 国产一区亚洲一区在线观看| 亚洲国产欧美日韩在线播放| 人成视频在线观看免费观看| videossex国产| 精品少妇黑人巨大在线播放| 亚洲国产欧美在线一区| 女的被弄到高潮叫床怎么办| 寂寞人妻少妇视频99o| 王馨瑶露胸无遮挡在线观看| 欧美激情 高清一区二区三区| 亚洲综合色网址| 久久精品国产a三级三级三级| 91aial.com中文字幕在线观看| 99久久精品国产国产毛片| 国产一区二区激情短视频 | 久久毛片免费看一区二区三区| 亚洲国产精品专区欧美| 性色av一级| 亚洲精品乱码久久久久久按摩| 最后的刺客免费高清国语| 亚洲性久久影院| 一级片'在线观看视频| 韩国精品一区二区三区 | 久久99热6这里只有精品| 老司机影院毛片| 国产精品女同一区二区软件| 秋霞伦理黄片| 最近最新中文字幕免费大全7| 国产精品一二三区在线看| 久久久久久人人人人人| 欧美最新免费一区二区三区| 久久精品久久精品一区二区三区| 亚洲人成网站在线观看播放| 欧美精品国产亚洲| 国产乱人偷精品视频| 亚洲色图 男人天堂 中文字幕 | 国产精品人妻久久久久久| 成人国产av品久久久| 亚洲精品国产av蜜桃| 亚洲av国产av综合av卡| 欧美日韩av久久| 寂寞人妻少妇视频99o| 9191精品国产免费久久| 捣出白浆h1v1| 在线观看国产h片| 久久狼人影院| 亚洲美女视频黄频| 免费看av在线观看网站| 一级,二级,三级黄色视频| 夜夜骑夜夜射夜夜干| 成人亚洲精品一区在线观看| 免费观看性生交大片5| 久久亚洲国产成人精品v| 黑人高潮一二区| 日日啪夜夜爽| 久久久久精品久久久久真实原创| 妹子高潮喷水视频| 亚洲一区二区三区欧美精品| 2021少妇久久久久久久久久久| 波野结衣二区三区在线| av国产精品久久久久影院| 热99久久久久精品小说推荐| 777米奇影视久久| 午夜福利视频在线观看免费| 亚洲av.av天堂| 久久久久久人人人人人| 日本av免费视频播放| 麻豆乱淫一区二区| 久久人妻熟女aⅴ| 日韩欧美精品免费久久| 久久久久精品人妻al黑| 9色porny在线观看| 精品视频人人做人人爽| 亚洲国产欧美在线一区| 精品亚洲成国产av| 美女国产视频在线观看| 久久精品国产亚洲av天美| 搡女人真爽免费视频火全软件| 欧美 日韩 精品 国产| 久久精品国产自在天天线| 欧美 日韩 精品 国产| 一区在线观看完整版| 韩国av在线不卡| 国产永久视频网站| 午夜激情av网站| 久久久久久久久久久久大奶| 亚洲国产精品成人久久小说| 在线看a的网站| 亚洲四区av| 久久99一区二区三区| 国内精品宾馆在线| 亚洲一码二码三码区别大吗| 熟女人妻精品中文字幕| 日韩一本色道免费dvd| av女优亚洲男人天堂| 国产免费一级a男人的天堂| 老司机影院成人| 成人毛片60女人毛片免费| 曰老女人黄片| 久久久亚洲精品成人影院| 人妻少妇偷人精品九色| a级毛片在线看网站| 下体分泌物呈黄色| 在线看a的网站| 97人妻天天添夜夜摸| 亚洲一区二区三区欧美精品| 一本久久精品| www.av在线官网国产| 日韩成人av中文字幕在线观看| 久久久久精品人妻al黑| 91精品伊人久久大香线蕉| 五月开心婷婷网| 嫩草影院入口| 一级毛片黄色毛片免费观看视频| www日本在线高清视频| 男的添女的下面高潮视频| 久久精品夜色国产| 欧美日韩成人在线一区二区| 亚洲国产精品成人久久小说| 亚洲欧美一区二区三区黑人 | 欧美日韩视频高清一区二区三区二| 成年动漫av网址| 国国产精品蜜臀av免费| 蜜桃在线观看..| 亚洲精品久久午夜乱码| 国产白丝娇喘喷水9色精品| 99九九在线精品视频| 最近中文字幕2019免费版| 2021少妇久久久久久久久久久| 精品福利永久在线观看| 少妇熟女欧美另类| 男人操女人黄网站| 久久久久久久国产电影| 精品久久久久久电影网| 久久久a久久爽久久v久久| 欧美精品国产亚洲| 80岁老熟妇乱子伦牲交| 在线观看美女被高潮喷水网站| 国产在线视频一区二区| 国产精品久久久久久av不卡| 99国产综合亚洲精品| 国产片特级美女逼逼视频| 中文天堂在线官网| 久久99热6这里只有精品| 美女主播在线视频| 久久精品国产亚洲av天美| 久久久久视频综合| av视频免费观看在线观看| 亚洲国产精品一区三区| www.av在线官网国产| av国产久精品久网站免费入址| 成人亚洲精品一区在线观看| 中文字幕精品免费在线观看视频 | 国产精品熟女久久久久浪| 视频在线观看一区二区三区| 婷婷成人精品国产| 七月丁香在线播放| 日韩精品免费视频一区二区三区 | 黄色 视频免费看| 一区二区av电影网| 亚洲第一av免费看| 制服人妻中文乱码| 国产成人精品福利久久| 欧美人与性动交α欧美软件 | 在线免费观看不下载黄p国产| 成人手机av| 十八禁高潮呻吟视频| 大片电影免费在线观看免费| 国产伦理片在线播放av一区| 黄色毛片三级朝国网站|