• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Antibiotic Resistance Evaluation and Resistance Gene Profile of Epibiotic Lactic Acid Bacteria on Red Bell Peppers Used for Sichuan Pickle Fermentation

    2017-02-08 07:42:31CAITingLUQianwenXIANGWenliangZHANGQingZHANGQishengCHENGongCAIYimin
    食品科學 2017年2期
    關(guān)鍵詞:泡菜乳酸菌耐藥性

    CAI Ting, LU Qianwen, XIANG Wenliang,*, ZHANG Qing, ZHANG Qisheng, CHEN Gong, CAI Yimin

    (1. Provincial Key Laboratory of Food Biotechnology of Sichuan, Institute of Ancient Brewing Technology, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; 2. Sichuan Academy of Food and Fermentation Industries, Chengdu 611130, China; 3. International Research Center for Agricultural Sciences of Japan, Tsukuba 30528686, Japan)

    Antibiotic Resistance Evaluation and Resistance Gene Profile of Epibiotic Lactic Acid Bacteria on Red Bell Peppers Used for Sichuan Pickle Fermentation

    CAI Ting1, LU Qianwen1, XIANG Wenliang1,*, ZHANG Qing1, ZHANG Qisheng2, CHEN Gong2, CAI Yimin3

    (1. Provincial Key Laboratory of Food Biotechnology of Sichuan, Institute of Ancient Brewing Technology, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; 2. Sichuan Academy of Food and Fermentation Industries, Chengdu 611130, China; 3. International Research Center for Agricultural Sciences of Japan, Tsukuba 30528686, Japan)

    For formulating reasonable measures for the prevention and control of bacterial antibiotic resistance to ensure food safety, penicillin (PEN), erythromycin (ERY), tetracycline (TET), streptomycin (STR) and chloramphenicol (CHL) resistance of lactic acid bacteria (LABs) and the corresponding resistance genes were evaluated, including Enterococcus mundtii (n = 5), Enterococcus faecalis (n = 2), Enterococcus hirae (n = 2), Lactococcus lactis (n = 7), Leuconostoc mesenteroides (n = 2), Leuconostoc holzapfelii (n = 3) and Weissella cibaria (n = 79) from fresh red bell peppers used for Sichuan pickle fermentation. All of the isolated strains were susceptible to PEN or ERY, but they had solo, double or triplicate resistance to TET, STR and CHL. All the isolates of L. mesenteroides as well as some strains of E. hirae, E. faecalis and L. holzapfelii showed solo STR resistance. Some strains of E. faecalis, E. hirae, L. lactis and W. cibaria had double resistance to STR and TET, as well as STR and CHL. However, isolates with triplicate resistances to STR, TET and CHL were only found in W. cibaria. It was found that except norA, sepA, tet(A), tet(O) and aac(6’)-aph(2’) genes, all antibiotic resistance genes were harbored by the resistant isolates partly or completely. The multiple-drug resistance efflux pump genes efrA, tolC, norC, sugE and mdfA showed higher positive rates (which were 49%, 41%, 48%, 41% and 47%, respectively) than the ribosomal protection protein genes and the enzymatic modification genes in the corresponding polymerase chain reaction (PCR). Even though the dissemination of these antibiotic resistances needs to be further studied, such results demonstrated that food safety concerns will be partly focused on antibiotic resistance of LABs on fresh red bell peppers according to Qualified Presumption of Safety criteria.

    red bell peppers; lactic acid bacteria; food safety; antibiotic resistance; antibiotic resistance genes

    Sichuan pickle is the typical representative of Chinese traditional vegetable fermentation. It normally serves as a key flavor for Sichuan cuisine or is used as an appetizer because of its unique flavor in many regions of China. Like the kimchi, Sichuan pickle also has various beneficial properties on general health for the consumers, including anti-oxidative activity, antiaging effects, antimutagenic, antigenotoxic and antitumor activities, antimicrobial activity, immune stimulation, weight-controlling, lipidlowering, and anti-atherogenic activities[1]. The material basis of beneficial properties is closely linked to fermentation process dominated by strains of Lactobacillus, Leuconostoc, Weissella and Pediococcus genera from the old salt brine and the fresh vegetable materials. In the last years, the lactic acid bacteria (LAB) genera which are involved in traditional lactic fermentation, were generally considered to be safe for human according to the “Generally Recognized as Safe (GRAS)”principles and the “Qualitative Presumption of Safety (QPS)”risk assessment approach based on a long history of safe use[2]. However, in the recent years, along with antibiotic resistance genes (ARGs) polluting intensively, several antibiotic resistance genes have already been found in the Sichuan pickle[3]. This gives a new challenge to the traditional GRAS and QPS state of Sichuan pickle, more specifically to those without heat-treated before consumption.

    The antibiotic resistance genes (ARGs), as emerging contaminants, were first proposed in 2006[4]. They fleetly became a new research topic in the food safety and environmental science because their health risks resulted from spreading among different hosts were often greater than the harm caused by antibiotics themselves. In 2000, the World Health Organization (WHO) report focused on antibiotic resistance as one of the most critical human health challenges of the next century and heralded the need for “a global strategy to contain resistance”. The food chain was considered as the main route of transmission of antibiotic resistance[5]. The development of antibiotic resistance among bacteria introduced in the food chain is of great novel concern in the food safety[6]. Recently, several spontaneously fermented foods have been considered as important potential transmission vehicles of ARGs from environment to human gastrointestinal tract[7-9], moreover the transfer of ARGs in the commensal or bacteria may be also induced by low pH, high salt concentration, antimicrobial compounds and the high number of living bacteria. And thus the European Food Safety Authority (EFSA) requires that bacteria which are to be introduced into the food chain should lack acquired or transferable ARGs to prevent their spread among different bacteria[10]. Unfortunately, with the aggravation of pollution of ARGs in the environment, the bacteria with transferable ARGs would be inevitably introduced into food produce chains[11-12].

    Bell pepper, a vegetable of nightshade (Solanaceae) family, is one of the best vegetable to serve in a cruditéplatter because of its bright color, thick flesh, great favor, crunchy high texture capsorubin and high vitamin content[13]. In the southwest of China, it is also usually used to make the Sichuan pickle for the flavor refreshments to stimulate the appetite before the meal, or to relieve oleaginous taste after the meal in the summer. However, in the recent years, LABs with ARGs were often found in the Sichuan pickle fermentation system after the bell peppers were introduced to the old salt brine[3], which would make the GRAS and QPS state of Sichuan pickle worse if the transfer of ARGs took place between different LABs. Therefore, it is necessary to evaluate antibiotic resistance and ARGs of epibiotic LABs from the fresh red bell peppers. In current study, we have investigated their resistance to 5 important antibiotics including penicillin (PEN), erythromycin (ERY), tetracycline (TET), streptomycin (STR) and chloramphenicol (CHL), and their ARGs were also detected by polymerase chain reaction (PCR). This study would be very significant to food safety of epibiotic LABs on the fresh red bell peppers used for the Sichuan pickle.

    1 Materials and Methoddss

    1.1 LABs and growth condition

    In the present study, 100 LAB strains were previously obtained from the fresh red bell peppers used for the Sichuan pickle fermentation. They were identified according to the methods described by Pan Lu et al[14]and then stored as frozen stocks at -20 ℃ in de Man Rogosa and Sharpe (MRS) broth containing 20% (V/V) glycerol for long term storage. They were routinely propagated at 30 ℃ in MRS broth (Fluka, Madrid, Spain) or agar slants under aerobic conditions for 24-48 h.

    1.2 Antimicrobial susceptibility testing

    Antimicrobial susceptibility tests were performed by broth micro-dilution method[15]. Brief y, a 96-well plate was inoculated with 2 μL of fresh LAB cultures and 198 μL of MRS broth with serial two-fold dilutions of antibiotics (0.125-64.000 μg/mL PEN, 0.25-128.00 μg/mL ERY, 1-512 μg/mL TET, 2-1 024 μg/mL STR, 0.5-256.0 μg/mL CHL). LABs were f rst cultured in 2 mL of MRS for 24 h at 30 ℃and subsequently diluted in 0.85 g/100 mL physiological saline to the concentration of approximately 1×105CFU/mL. LABs inoculated in MRS were used as positive control, and a LAB-free well as negative. Plates were incubated under anaerobic conditions at 30 ℃ for 48 h.

    The minimal inhibitory concentration (MIC) of each antibiotic was visually evaluated as the lowest concentration at which no growth was observed. All the tests were repeated at least thrice. In duplicate experiments, the differences of MIC for independent sample never exceeded 1 order of dilution. Interpretation for susceptibility status was based on the threshold X defined also as Extended Common Object File Forma (ECOFF) according to the EFSA (2012)[16-17]and the European Committee on Antimicrobial Susceptibility Testing (EUCAST, http://www.eucast.org). When MIC ≤ECOFF value, the strain was sensitive to the antibiotic; on the contrary, it was resistant.

    1.3 Detection of ARGs

    The temple DNA for PCR was prepared as methods by Xiang et al[18]. The genes associated with resistance to chloramphenicol acetyltransferase gene (cat)[14,19], TET (tet(A), tet(B), tet(C), tet(D), tet(G), tet(H), tet(K), tet(M), tet(O), tet(S), tet(W) and tet(X))[19-20], and STR (strA, strB, aadA, aad6, aph(3’)-Ⅲa and aac(6’)-aph(2’)) were detected by PCR amplification[19]. The efflux pump genes mediating antibiotic resistance eff ux were also investigated according to the PCR methods described by Swick et al[21]for acrA, acrB, tolC, mdfA and norE; He et al[22]for sugE; Noguchi et al[23]for smr; Lee et al[24]for efrA and efrB; Patel et al[25]for mdeA, mepA, norA, norB, norC, sdrM and sepA. The PCR primers were listed in Table 1.

    All the amplified ARGs were respectively cloned into the pGEM-T plasmid vector (Promega, Madison, WI, USA) and transformed into the chemically competent E. coli DH5α cells for sequencing. Then the antibiotic resistance genes were further verified by sequence BLASTx program in the National Center for Biotechnology Information (NCBI).

    Table1 PCR primers for antibiotic resistance genes

    Table1 continued

    1.4 Statistical analysis

    The MIC distribution of 5 antibiotics was statistically analyzed using Excel 2010 (Microsoft, Redmond, Washington, USA). Distribution of antibiotic susceptibility and antibiotic resistance genes were performed using SPSS version 17.0 (IBM, Armonk, New York, USA).

    2 Results and Analysis

    2.1 Antibiotic susceptibility

    Antibiotics had been spread in the environment when used as growth promoters in livestock years ago, leading to the selection of antibiotic resistant bacteria[26]. These resistant bacteria may inhabitat in or on fruits, vegetables and animal feeds, and may further disseminate during the food fermentation[27-28]. Therefore, it is important to evaluate the antibiotic resistance incidences of bacteria in fermented vegetables[29]. A total of one hundred isolates were initially identified as LAB by 16S rRNA sequence analysis, and these LABs were further verified by physiological and biochemical methods. They were turned out to be seventy-nine strains of Weissella cibaria, five strains of Enterococcus mundtii, two strains of Enterococcus faecalis, two strains of Enterococcus hirae, two strains of Leuconostoc mesenteroides, three strains of Leuconostoc holzapfelii and seven strains of Lactococcus lactis (Table 2).

    Table2 Microbial classification of LABs isolated from red bell peppers using 16S rRNA gene sequence analysis

    Table3 MIC distribution of 5 antibiotics for LABs isolated from red peppers used for Sichuan pickle production

    The susceptibility determination was performed with epibiotic LABs to PEN, ERY, TET, STR and CHL. The results indicated that the MICs to PEN and ERY did not exceed the ECOFF values posed by the EFSA 2012 for E. mundtii, E. faecalis, E. hirae, L. mesenteroides, L. holzapfelii, L. lactis and W. cibaria (Table 3). It suggested that all epibiotic LABs on the fresh red bell peppers are sensitive to PEN and ERY. Conversely, except L. holzapfelii, most of them displayed resistance to the STR (84 strains LABs), with 100% of E. hirae and L. mesenteroides, 60% of E. mundtii, 50% of E. faecalis, 85.7% L. lactis and 88.6% W. cibaria (Table 3), and these resistant LABs showed high MIC values as previously reported by Elkins et al[30]. For TET, all strains of E. mundtii, L. mesenteroides and L. holzapfelii showed susceptibility, while 50% of E. faecalis, 100% of E. hirae and 28.6% of L. lactis strains had higher MIC than their corresponding ECOFF values, suggesting resistance to TET (Table 3). In the CHL, only 3.8% of W. cibaria strains had obtained resistance, the other species and 96.2% of W. cibaria strains were sensitive to CHL (Table 3).

    2.2 Antibiotic resistance phenotype and distribution

    Statistical analysis showed that none of strains were resistant to PEN and ERY, but there were some strains with solo, or double or triplicate resistance to TET, STR and CHL. As one of the most widespread agricultural antibiotics, the use of STR has lead STR resistance bacteria to grow in the environment, and thus unavoidably gathered at the surface of the vegetable. Therefore, STR resistant bacteria were often found on the surface of the vegetables[5]. It was also verified by our results that 84% of LAB isolates were resistant to STR, and the strains with solo resistance to STR almost existed in all species except E. hirae and E. faecalis (Fig. 1). All the strains of L. mesenteroides only showed solo STR resistance. In E. faecalis, E. hirae, L. lactis and W. cibaria, some isolates have double resistance to STR and TET or STR and CHL. However, the triplicate resistant strain was found only in W. cibaria, and it was against STR, TET and CHL (Fig. 1). Two E. hirae strains both displayed STR and TET double resistance. In two E. faecalis strains, one was sensitive to antibiotics tested, the other with TET and STR double resistance. In five E. mundtii strains, which have two strains with susceptibility to all testing antibiotics, three solo STR resistant. Among seven L. lactis strains, four strains were found to be with solo STR resistance, two strains with TET and STR double resistance, and one strain with susceptibility to all testing antibiotics. Among seventy nine W. cibaria strains, only one W. cibaria strain with triplicate resistance to TET, STR and CHL was observed. Furthermore, there were nine susceptibility isolates, fifty-eight solo STR resistant isolates, nine TET and STR double resistant isolates and two STR and CHL double resistant isolates.

    Fig. 1 Distribution of antibiotic susceptibility and resistant LAB isolates

    2.3 Antibiotic resistance genes

    The overuse and misuse of antibiotics have created a tremendous selective pressure toward antibiotic resistant bacteria[30]. Different mechanisms for the resistance to various antibiotics have been found in bacteria, including antibiotic degrading, pump efflux, altering and metabolism in cell[31]. The emergence of antibiotic resistance is a global threat because it reduces the efficiency of the antibiotic therapy, which is getting worse by the horizontal transfer of ARGs between bacteria[32-33]. Fermentative materials have been considered as potential vehicles of resistant genes from environment to products[5].

    To identify resistant determinants responsible for the resistance phenotypes observed, all the strains were screened by PCR for the presence of resistant genes as described above. In current investigation, these genes served the antibiotic resistance were detected and displayed in Fig. 2. Except the efflux genes norA and sepA, TET resistance genes tet(A) and tet(O), STR resistance gene aac(6’)-aph(2’), the other resistant genes were harbored by resistance isolates partly or completely. The multiple-drug resistant efflux pump genes, including efrA, tolC, norC, sugE and mdfA, showed higher positive ratios than the others in the corresponding PCR reactions, in which their detected ratios were 49, 41, 48, 41 and 47%, respectively. The results were similar to the eff ux pump genes in the LAB described by del Carmen et al[19]. The STR and TET double resistant W. cibaria CT023 carried most resistant genes, including seven drug eff ux pump genes efrA, efrB, acrB, sugE, norC, mdfA and mepA, three TET efflux genes tet(B), tet(C) and tet(K), two ribosomal protection protein genes tet(S) and tet(W), one enzymatic modif cationgene tet(X), and three STR resistance genes strB, aad6 and aph(3’)-Ⅲa. While, E. mundtii CT080, CT081, W. cibaria CT012, CT014, CT098 and CT206 have only possessed one resistance gene, norE for CT080, mdfA for CT081, strB for CT012 and CT206, acrA for CT014 and CT098. And all of them were positive for solo STR resistance. The detection of ARGs in fermentative vegetable materials implies that there is a potential food safety risk when ARGs spread to other microorganisms during the fermentation by horizontal gene transfer.

    Fig. 2 Distribution of ARGs in different antibiotic resistance LAB isolates

    3 Conclusions

    Traditionally fermented vegetables play an important role in the food systems in China. However, no investigation has been conducted to assess the antibiotic resistance incidences and ARGs of LAB. In current investigation, all the LAB isolates from the fresh red bell peppers were susceptible to PEN and ERY. Concerning TET, STR and CHL, all the strains of L. mesenteroides showed solo STR resistance. In E. faecalis, E. hirae, L. lactis and W. cibaria, some isolates had double resistance to STR and TET or STR and CHL. However, the triplicate resistance was found only in W. cibaria. Except for norA, sepA, tet(A), tet(O) and aac(6’)-aph(2’), the other resistance genes were harbored by resistant isolates partly or completely. The genes efrA, tolC, norC,

    sugE and mdfA showed higher positive ratios, which were 49%, 41%, 48%, 41% and 47% respectively. Even though the dissemination of these ARGs during vegetable fermentation need to be further studied, such studies will be conducive to safety assessment of fresh red bell peppers when being used as the material for fermentation.

    [1] JI Y, KIM H, PARK H, et al. Functionality and safety of lactic bacterial strains from Korean kimchi[J]. Food Control, 2013, 31(2): 467-473. DOI:10.1016/j.foodcont.2012.10.034.

    [2] ANADóN A, MART?NEZ-LARRA?AGA M R, MART?NEZ M A. Probiotics for animal nutrition in the European Union. regulation and safety assessment[J]. Regulatory Toxicology and Pharmacology, 2006, 45(1): 91-95. DOI:10.1016/j.yrtph.2006.02.004.

    [3] SONG Feifei, XU Gurong, CAI Ting, et al. Detection of streptomycin resistance and resistance genes in lactic acid bacteria from Sichuan Pickle of China[J]. Journal of Food Safety and Quality, 2014, 5(12): 4032-4039.

    [4] PRUDEN A, PEI R, STORTEBOOM H, et al. Antibiotic resistance genes as emerging contaminants: studies in northern Colorado[J]. Environmental Science and Technology, 2006, 40(23): 7445-7450. DOI:10.1021/es060413l.

    [5] VERRAES C, van BOXSTAEL S, van MEERVENNE E, et al. Antimicrobial resistance in the food chain: a review[J]. International Journal of Environmental Research and Public Health, 2013, 10(7): 2643-2669. DOI:10.3390/ijerph10072643.

    [6] WANG H, McENTIRE J C, ZHANG L, et al. The transfer of antibiotic resistance from food to humans: facts, implications and future directions[J]. International Office of Epizootics, 2012, 31(1): 249-260. DOI:10.20506/rst.31.1.2117.

    [7] BAUTISTA-GALLEGO J, ARROYO-L?PEA F N, RANTSIOU K, et al. Screening of lactic acid bacteria isolated from fermented table olives with probiotic potential[J]. Food Research International, 2013, 50(1): 135-142. DOI:10.1016/j.foodres.2012.10.004.

    [8] AHAOTU I, ANYOGU A, NLOKU O H, et al. Molecular identification and safety of Bacillus species involved in the fermentation of African oil beans (Pentaclethra macrophylla Benth) for production of Ugba[J]. International Journal of Food Microbiology, 2013, 162(1): 95-104. DOI:10.1016/j.ijfoodmicro.2013.01.001.

    [9] HUDDLESTON J R. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes[J]. Infecition and Drug Resistance, 2014(7): 167-176. DOI:10.2147/IDR.S48820.

    [10] van REENEN C A, DICKS L M T. Horizontal gene transfer amongst probiotic lactic acid bacteria and other intestinal microbiota: what are the possibilities? a review[J]. Archives of Microbiology, 2011, 193(3): 157-168. DOI:10.1007/s00203-010-0668-3.

    [11] ZHANG Xiangxu, ZHANG Tong, FANG H H P. Antibiotic resistance genes in water environment[J]. Applied Microbiology and Biotechnology, 2009, 82(3): 397-414. DOI:10.1007/s00253-008-1829-z.

    [12] FUENTES M A F, MORENTE E O, ABRIOUEL H, et al. Antimicrobial resistance determinants in antibiotic and biocide resistant gram-negative bacteria from organic foods[J]. Food Control, 2014, 37: 9-14. DOI:10.1016/j.foodcont.2013.08.041.

    [13] OUYANG Jing, TAO Xianglin, LI Ziming, at el. Analysis of changes in the main components and volatile components in fermented pepper with high salt content[J]. Food Science, 2014, 35(4): 174-179. DOI:10.7506/spkx1002-6630-201416038.

    [14] PAN Lu, HU Xiaoqing, WANG Xiaoyuan. Assessment of antibiotic resistance of lactic acid bacteria in Chinese fermented foods[J]. Food Control, 2011, 22(8): 1316-1321. DOI:10.1016/ j.foodcont.2011.02.006.

    [15] KLARE I, KONSTABEL C, M?LLER-BERTLING S, et al. Evaluation of new broth media for microdilution antibiotic susceptibility testing of Lactobacilli, Pediococci, Lactococci, and Bif dobacteria[J]. Applied and Environmental Microbiology, 2005, 71(12): 8982-8986. DOI:10.1128/aem.71.12.8982-8986.2005.

    [16] DANIELSEN M, WIND A. Susceptibility of Lactobacillus spp. to antimicrobial agents[J]. International Journal of Food Microbiology, 2003, 82(1): 1-11. DOI:10.1016/S0168-1605(02)00254-4.

    [17] FLOREZ H, SLIVA E, FERN?NDEZ V, et al. Prevalence and risk factors associated with the metabolic syndrome and dyslipidemia in White, Black, Amerindian and Mixed Hispanics in Zulia State, Venezuela[J]. Diabetes Research and Clinical Practice, 2005, 69(1): 63-77. DOI:10.1016/j.diabres.2004.11.018.

    [18] XIANG Wenliang, LI Ke, LIU Sen, et al. Microbial succession in the traditional Chinese Luzhou-flavor liquor fermentation process as evaluated by SSU rRNA profiles[J]. World Journal of Microbiology and Biotechnology, 2012, 29(3): 559-567. DOI:10.1007/s11274-012-1210-3.

    [19] del CARMEN CASADO MU?OZ M, BENMAR N, LERMA L L, et al. Antibiotic resistance of Lactobacillus pentosus and Leuconostoc pseudomesenteroides isolated from naturally-fermented Alore?a table olives throughout fermentation process[J]. International Journal of Food Microbiology, 2014, 172(17): 110-118. DOI:10.1016/ j.ijfoodmicro.2013.11.025.

    [20] JIA Shuyu, HE Xiwei, BU Yuanqing, et al. Environmental fate of tetracycline resistance genes originating from swine feedlots in river water[J]. Journal of Environmental Science and Health, 2014, 49(8): 624-631. DOI:10.1080/03601234.2014.911594.

    [21] SWICK M C, MORGAN-LINNELL S K, CARLSON K M, et al. Expression of multidrug efflux pump genes acrAB-tolC, mdfA, and norE in Escherichia coli clinical isolates as a function of fluoroquinolone and multidrug resistance[J]. Antimicrobial Agents and Chemotherapy, 2011, 55(2): 921-924. DOI:10.1128/AAC.00996-10.

    [22] HE Guixin, ZHANG Chu, CROW R R, et al. SugE, a new member of the SMR family of transporters, contributes to antimicrobial resistance in Enterobacter cloacae[J]. Antimicrobial Agents and Chemotherapy, 2011, 55(8): 3954-3957. DOI:10.1128/aac.00094-11.

    [23] NOGUCHI N, HASE M, KITTA M, et al. Antiseptic susceptibility and distribution of antiseptic-resistance genes in methicillin-resistant Staphylococcus aureus[J]. FEMS Microbiology Letters, 1999, 172(2): 247-253. DOI:10.1111/j.1574-6968.1999.tb13475.x.

    [24] LEE E W, HUDA M N, KURODA T, et al. EfrAB, an ABC multidrug efflux pump in Enterococcus faecalis[J]. Antimicrobial Agents and Chemotherapy, 2003, 47(12): 3733-3738. DOI:10.1128/ aac.47.12.3733-3738.2003.

    [25] PATEL D, KOSMIDIS C, SEO S M, et al. Ethidium bromide MIC screening for enhanced efflux pump gene expression or efflux activity in Staphylococcus aureus[J]. Antimicrobial Agents and Chemotherapy, 2010, 54(12): 5070-5073. DOI:10.1128/aac.01058-10.

    [26] DEVIRGILIIS C, CARAVELLI A, COPPOIA D, et al. Antibiotic resistance and microbial composition along the manufacturing process of Mozzarella di Bufala Campana[J]. International Journal of Food Microbiology, 2008, 128(2): 378-384. DOI:10.1016/ j.ijfoodmicro.2008.09.021.

    [27] ZHANG Hongmei, HUANG Shaosong, ZHOU Hanji, et al. Two kinds of antibiotics resistance of lactic acid bacteria isolated from yogurt[J]. Chinese Journal of Public Health, 2010, 26(4): 511-512. DOI:10.11847/zgggws2010-26-04-73.

    [28] LIN Kai, CAI Ting, XU Gurong, et al. Antibiotic resistance of epibiotic lactic acid bacteria on the surface of organic white radish[J]. Food Science, 2015, 36(11): 145-149. DOI:10.7506/spkx1002-6630-201511028.

    [29] FU Mingchun, XI Huiping, LIU Yanzhao. Current antibiotic residues and control countermeasures of milk and meat[J]. Chinese Journal of Animal Quarantine, 2008, 25(6): 20-22. DOI:10.3969/j.issn.1005-944X.2008.06.010.

    [30] ELKINS C A, MULLIS L B. Bile-mediated aminoglycoside sensibility in Lactobacillus species likely results from increased membrane permeability attributable to cholic acid[J]. Applied and Environmental Microbiology, 2004, 70(12): 7200-7209. DOI:10.1128/ aem.70.12.7200-7209.2004.

    [31] SHARMA P, TOMAR S K, GOSWAMI P, et al. Antibiotic resistance among commercially available probiotics[J]. Food Research International, 2014, 57(1): 176-195. DOI:10.1016/ j.foodres.2014.01.025.

    [32] NAWAZ M, WANG Juan, ZHOU Aiping, et al. Characterization and transfer of antibiotic resistance in lactic acid bacteria from fermented food products[J]. Current Microbiology, 2011, 62(3): 1081-1089. DOI:10.1007/s00284-010-9856-2.

    [33] TOOMEY N, BOLTON D, FANNING S. Characterisation and transferability of antibiotic resistance genes from lactic acid bacteria isolated from Irish pork and beef abattoirs[J]. Research in Microbiology, 2010, 161(2): 127-135. DOI:10.1016/ j.resmic.2009.12.010.

    四川泡菜發(fā)酵原料-燈籠辣椒附生乳酸菌的抗生素耐藥性評估與耐藥基因分析

    蔡 婷1,盧倩文1,向文良1,*,張 慶1,張其圣2,陳 功2,蔡義民3

    (1.西華大學食品與生物工程學院,四川省食品生物技術(shù)重點實驗室,古法發(fā)酵(釀造)生物技術(shù)研究所,四川 成都 610039;2. 四川省食品發(fā)酵工業(yè)研究設計院,四川 成都 611130;3.日本國際農(nóng)業(yè)科學研究中心,日本 筑波 30528686)

    以四川泡菜蔬菜原料——新鮮燈籠辣椒為對象,分析其表面附生乳酸菌Enterococcus mundtii(5 株)、Enterococcus faecalis(2 株)、Enterococcus hirae(5 株)、Lactococcus lactis(7 株)、Leuconostoc mesenteroides(2 株)、Leuconostoc holzapfelii(3 株)和Weissella cibaria(79 株)對青霉素(penicillin,PEN)、紅霉素(erythromycin,ERY)、四環(huán)素(tetracycline,TET)、鏈霉素(streptomycin,STR)和氯霉素(chloramphenicol,CHL)的抗生素耐藥性和耐藥基因分布,為制定合理的食品安全防控措施提供科學依據(jù)。研究表明:所有分離菌株均無PEN和ERY耐藥性,其他種屬部分菌株對TET、STR和CHL表現(xiàn)出單一、二重或三重耐藥性。除E. hirae、E. faecalis和L. holzapfelii部分菌株對STR表現(xiàn)出單一耐藥性外,所有L. mesenteroide菌株只表現(xiàn)出了STR單一耐藥性;STR和TET、STR和CHL二重耐藥菌株在E. faecalis、E. hirae、L. lactis和W. cibaria分離菌株中都有發(fā)現(xiàn),但是STR、TET、CHL三重耐藥菌株僅在W. cibaria中發(fā)現(xiàn)。聚合酶鏈式反應檢測發(fā)現(xiàn):除基因norA、sepA、tet(A)、tet(O)和aac(6’)-aph(2’)未被檢出外,其他耐藥菌株都有相應1 個或多個耐藥基因被檢出。多重耐藥外排泵基因efrA、tolC、norC、sugE和mdfA較核糖體蛋白質(zhì)保護和酶修飾基因檢出率高,分別達到了49%、41%、48%、41%和47%。雖然辣椒表面附生乳酸菌的抗生素耐藥基因在四川泡菜發(fā)酵過程中的擴散行為需要進一步研究,但根據(jù)食品加工過程安全規(guī)范標準,也應關(guān)注其表面附生的乳酸菌抗生素耐藥性存在的潛在食品安全問題。

    燈籠辣椒;乳酸菌;食品安全;抗生素耐藥性;抗生素耐藥性基因

    TS201.3

    A

    1002-6630(2017)02-0027-07

    nces

    2016-03-11

    國家自然科學基金面上項目(31571935);教育部春暉計劃項目(Z2014061);四川省應用基礎項目(2014JY0045);四川省教育廳重點項目(14ZA0110)

    蔡婷(1991—),女,碩士研究生,主要從事食品微生物分子生態(tài)研究。E-mail:caiting1124@sina.com

    10.7506/spkx1002-6630-201702005

    *通信作者:向文良(1973—),男,教授,博士,主要從事中國西南地區(qū)特色發(fā)酵食品微生物分子生態(tài)與生物過程學研究。

    E-mail:biounicom@mail.xhu.edu.cn

    CAI Ting, LU Qianwen, XIANG Wenliang, et al. Antibiotic resistance evaluation and resistance gene profile of epibiotic lactic acid bacteria on red bell peppers used for Sichuan pickle fermentation[J]. 食品科學, 2017, 38(2): 27-33.

    10.7506/ spkx1002-6630-201702005. http://www.spkx.net.cn

    CAI Ting, LU Qianwen, XIANG Wenliang, et al. Antibiotic resistance evaluation and resistance gene profile of epibiotic lactic acid bacteria on red bell peppers used for Sichuan pickle fermentation[J]. Food Science, 2017, 38(2): 27-33. DOI:10.7506/spkx1002-6630-201702005. http://www.spkx.net.cn

    猜你喜歡
    泡菜乳酸菌耐藥性
    韓國泡菜,不僅僅是辣白菜
    長絲鱸潰爛癥病原分離鑒定和耐藥性分析
    禽用乳酸菌SR1的分離鑒定
    雪花泡菜
    嬰幼兒感染中的耐藥菌分布及耐藥性分析
    WHO:HIV耐藥性危機升級,普及耐藥性檢測意義重大
    我只是想吃一碗泡菜
    乳酸菌成乳品市場新寵 年增速近40%
    乳飲品中耐胃酸乳酸菌的分離鑒定與篩選
    中國釀造(2014年9期)2014-03-11 20:21:04
    產(chǎn)γ-氨基丁酸乳酸菌的篩選及誘變育種
    食品科學(2013年23期)2013-03-11 18:30:09
    丝瓜视频免费看黄片| 成年人午夜在线观看视频| www.av在线官网国产| 亚洲成人一二三区av| 91老司机精品| 亚洲一码二码三码区别大吗| 久久精品国产a三级三级三级| 久久久久久久精品精品| 美女大奶头黄色视频| 亚洲国产精品国产精品| 在线观看免费高清a一片| 日韩伦理黄色片| 美女脱内裤让男人舔精品视频| 亚洲av在线观看美女高潮| 亚洲综合精品二区| 色网站视频免费| 18禁动态无遮挡网站| 国产精品女同一区二区软件| 麻豆av在线久日| 黄片小视频在线播放| 高清欧美精品videossex| 久久久久精品久久久久真实原创| 国产高清不卡午夜福利| 丝瓜视频免费看黄片| 亚洲综合精品二区| 国产亚洲午夜精品一区二区久久| 亚洲欧美精品自产自拍| 欧美精品高潮呻吟av久久| 在现免费观看毛片| 亚洲成国产人片在线观看| 大话2 男鬼变身卡| 国产深夜福利视频在线观看| av网站在线播放免费| 中文字幕人妻丝袜制服| 新久久久久国产一级毛片| 国产片特级美女逼逼视频| 久久久国产一区二区| 国产女主播在线喷水免费视频网站| 欧美在线黄色| 国产精品久久久久久精品古装| 久久久国产一区二区| 纵有疾风起免费观看全集完整版| 亚洲国产精品999| 亚洲国产精品成人久久小说| 亚洲婷婷狠狠爱综合网| 综合色丁香网| 两个人看的免费小视频| 卡戴珊不雅视频在线播放| 精品久久久精品久久久| 校园人妻丝袜中文字幕| 爱豆传媒免费全集在线观看| 国产熟女欧美一区二区| 欧美黄色片欧美黄色片| 久久精品国产综合久久久| 丝袜美足系列| 丁香六月欧美| 99热国产这里只有精品6| 欧美在线一区亚洲| 看免费成人av毛片| 国产精品久久久人人做人人爽| 老熟女久久久| 欧美日韩av久久| 亚洲国产欧美网| av一本久久久久| 各种免费的搞黄视频| 又大又爽又粗| 亚洲精品aⅴ在线观看| 国产男女超爽视频在线观看| 看免费成人av毛片| 国产成人午夜福利电影在线观看| 丁香六月天网| 国产在线一区二区三区精| 如何舔出高潮| 久久久精品区二区三区| 国产片特级美女逼逼视频| 丝袜美足系列| 嫩草影院入口| 久久人人爽av亚洲精品天堂| 国产精品 欧美亚洲| 国产精品秋霞免费鲁丝片| 亚洲精品,欧美精品| 久久久久久久久久久久大奶| 亚洲第一区二区三区不卡| 大香蕉久久网| 亚洲在久久综合| 久久婷婷青草| 男人添女人高潮全过程视频| 久久久久久人人人人人| 曰老女人黄片| av卡一久久| 久久影院123| 可以免费在线观看a视频的电影网站 | 我的亚洲天堂| 极品人妻少妇av视频| 国产精品 国内视频| 国产精品av久久久久免费| 国产在线视频一区二区| 精品一品国产午夜福利视频| 亚洲国产精品国产精品| 黄色 视频免费看| 国产精品一区二区精品视频观看| 中文字幕高清在线视频| 黄色怎么调成土黄色| 久久热在线av| 成人影院久久| 国产成人啪精品午夜网站| 日本vs欧美在线观看视频| av免费观看日本| 日韩av在线免费看完整版不卡| 成年人免费黄色播放视频| 在线观看免费视频网站a站| 国产成人系列免费观看| 久久久久久久国产电影| 亚洲欧美精品综合一区二区三区| 美女扒开内裤让男人捅视频| 亚洲av中文av极速乱| avwww免费| kizo精华| 国产伦理片在线播放av一区| 午夜福利一区二区在线看| 日韩一区二区视频免费看| 精品视频人人做人人爽| avwww免费| 亚洲成人国产一区在线观看 | 激情五月婷婷亚洲| 国产精品无大码| 大香蕉久久成人网| 国产极品天堂在线| 交换朋友夫妻互换小说| 国产男女超爽视频在线观看| 成人亚洲精品一区在线观看| 免费高清在线观看日韩| 国产精品.久久久| 19禁男女啪啪无遮挡网站| 九草在线视频观看| 欧美精品一区二区大全| 欧美激情高清一区二区三区 | 狂野欧美激情性xxxx| 国产成人91sexporn| 亚洲国产av影院在线观看| 久久久精品国产亚洲av高清涩受| 观看av在线不卡| 国产极品天堂在线| 亚洲人成电影观看| 麻豆av在线久日| 18在线观看网站| 美女扒开内裤让男人捅视频| 免费在线观看视频国产中文字幕亚洲 | 国产成人精品久久久久久| 国产欧美日韩综合在线一区二区| 观看美女的网站| 国产一级毛片在线| 赤兔流量卡办理| 成人免费观看视频高清| 纵有疾风起免费观看全集完整版| 国产一区二区在线观看av| 在线观看国产h片| 免费在线观看视频国产中文字幕亚洲 | 欧美xxⅹ黑人| 菩萨蛮人人尽说江南好唐韦庄| 观看美女的网站| 亚洲精品第二区| 美女中出高潮动态图| 99精国产麻豆久久婷婷| 久久久精品国产亚洲av高清涩受| 亚洲 欧美一区二区三区| 在线观看www视频免费| 亚洲第一青青草原| 亚洲av欧美aⅴ国产| 观看美女的网站| 新久久久久国产一级毛片| 日韩av不卡免费在线播放| 91老司机精品| 久久久久久久大尺度免费视频| 久久久国产精品麻豆| 亚洲美女视频黄频| www日本在线高清视频| 免费看不卡的av| 日本一区二区免费在线视频| av女优亚洲男人天堂| 深夜精品福利| 观看av在线不卡| 国产在视频线精品| 19禁男女啪啪无遮挡网站| 国产一区亚洲一区在线观看| 亚洲专区中文字幕在线 | 麻豆精品久久久久久蜜桃| 精品酒店卫生间| 国产精品人妻久久久影院| 国产精品国产三级国产专区5o| 国产免费现黄频在线看| 欧美久久黑人一区二区| 国产精品香港三级国产av潘金莲 | 免费久久久久久久精品成人欧美视频| 国产一级毛片在线| 天天躁夜夜躁狠狠久久av| 国产1区2区3区精品| 精品一区二区三卡| 婷婷色综合大香蕉| 亚洲欧美精品综合一区二区三区| 欧美激情高清一区二区三区 | 久久国产精品大桥未久av| 免费久久久久久久精品成人欧美视频| 亚洲图色成人| 又大又爽又粗| 我要看黄色一级片免费的| 深夜精品福利| 欧美中文综合在线视频| 精品人妻一区二区三区麻豆| 波多野结衣一区麻豆| 王馨瑶露胸无遮挡在线观看| 亚洲人成网站在线观看播放| 最新在线观看一区二区三区 | 女人高潮潮喷娇喘18禁视频| 男女边摸边吃奶| 国产精品亚洲av一区麻豆 | 最新在线观看一区二区三区 | 18禁国产床啪视频网站| 欧美激情极品国产一区二区三区| 满18在线观看网站| 久久久久国产一级毛片高清牌| 在线观看免费高清a一片| 亚洲国产成人一精品久久久| 国产精品.久久久| 免费在线观看黄色视频的| 啦啦啦在线观看免费高清www| 99re6热这里在线精品视频| 波野结衣二区三区在线| 一级片免费观看大全| 人人妻人人澡人人看| 激情五月婷婷亚洲| 在线 av 中文字幕| 97在线人人人人妻| 欧美激情高清一区二区三区 | 日韩欧美精品免费久久| 波多野结衣av一区二区av| 免费观看av网站的网址| 爱豆传媒免费全集在线观看| 久久精品亚洲熟妇少妇任你| 久久女婷五月综合色啪小说| 又大又黄又爽视频免费| 国产免费一区二区三区四区乱码| 日本91视频免费播放| 成年美女黄网站色视频大全免费| 美女扒开内裤让男人捅视频| 一级黄片播放器| 考比视频在线观看| 欧美亚洲 丝袜 人妻 在线| 亚洲婷婷狠狠爱综合网| 看免费成人av毛片| 91老司机精品| 国产一卡二卡三卡精品 | 狠狠精品人妻久久久久久综合| 日韩一本色道免费dvd| 丰满少妇做爰视频| 欧美激情极品国产一区二区三区| 久久久久久久久免费视频了| 亚洲人成网站在线观看播放| 国产男女内射视频| 国产色婷婷99| 一本—道久久a久久精品蜜桃钙片| 国产精品一二三区在线看| 制服丝袜香蕉在线| 国产免费一区二区三区四区乱码| 欧美激情极品国产一区二区三区| 黄片播放在线免费| 国产av一区二区精品久久| 亚洲欧美成人综合另类久久久| 亚洲 欧美一区二区三区| 精品免费久久久久久久清纯 | 成年人午夜在线观看视频| 国产乱人偷精品视频| 黄色一级大片看看| 免费观看av网站的网址| 日日撸夜夜添| netflix在线观看网站| 乱人伦中国视频| 精品国产露脸久久av麻豆| 国产精品亚洲av一区麻豆 | 男女免费视频国产| 搡老乐熟女国产| 性色av一级| 成人免费观看视频高清| 中国三级夫妇交换| 美女国产高潮福利片在线看| 成人午夜精彩视频在线观看| 成人黄色视频免费在线看| 国产成人免费无遮挡视频| 男女午夜视频在线观看| 美女脱内裤让男人舔精品视频| 多毛熟女@视频| 日日啪夜夜爽| 久久精品久久久久久噜噜老黄| 精品国产超薄肉色丝袜足j| 久久久久久久久久久久大奶| 9热在线视频观看99| 一级毛片黄色毛片免费观看视频| 王馨瑶露胸无遮挡在线观看| 亚洲成色77777| 精品少妇久久久久久888优播| 国产午夜精品一二区理论片| 国产精品三级大全| 日韩视频在线欧美| 精品久久蜜臀av无| 十八禁高潮呻吟视频| 免费在线观看黄色视频的| 激情视频va一区二区三区| 天天操日日干夜夜撸| 国产在视频线精品| av.在线天堂| 国产免费一区二区三区四区乱码| 亚洲人成77777在线视频| 天堂8中文在线网| 国产av一区二区精品久久| 亚洲av福利一区| 美女视频免费永久观看网站| 日本av免费视频播放| 亚洲五月色婷婷综合| 亚洲一码二码三码区别大吗| 久久久久网色| 亚洲国产精品一区二区三区在线| 一本久久精品| 美女脱内裤让男人舔精品视频| 国产1区2区3区精品| 精品人妻熟女毛片av久久网站| 精品一区在线观看国产| 久久天堂一区二区三区四区| 精品一区在线观看国产| 1024香蕉在线观看| 青春草亚洲视频在线观看| 人妻 亚洲 视频| 啦啦啦在线观看免费高清www| 丝袜喷水一区| 可以免费在线观看a视频的电影网站 | 汤姆久久久久久久影院中文字幕| 韩国av在线不卡| 日韩一本色道免费dvd| 亚洲一区中文字幕在线| av网站免费在线观看视频| 欧美人与性动交α欧美软件| 肉色欧美久久久久久久蜜桃| 欧美 亚洲 国产 日韩一| 国产精品av久久久久免费| 亚洲婷婷狠狠爱综合网| 国产av码专区亚洲av| 久久韩国三级中文字幕| 国产男女超爽视频在线观看| 亚洲综合精品二区| 51午夜福利影视在线观看| 天天躁日日躁夜夜躁夜夜| 久久精品人人爽人人爽视色| 咕卡用的链子| 成年美女黄网站色视频大全免费| 亚洲精品日本国产第一区| 久久精品国产亚洲av高清一级| 我要看黄色一级片免费的| 精品国产乱码久久久久久男人| 91精品伊人久久大香线蕉| 性高湖久久久久久久久免费观看| 国产免费视频播放在线视频| 天天添夜夜摸| 夜夜骑夜夜射夜夜干| 精品国产乱码久久久久久男人| 精品久久久精品久久久| 51午夜福利影视在线观看| 不卡av一区二区三区| 狠狠婷婷综合久久久久久88av| 午夜福利影视在线免费观看| 亚洲av日韩在线播放| www日本在线高清视频| 大话2 男鬼变身卡| 亚洲欧美精品综合一区二区三区| a级毛片在线看网站| 一级a爱视频在线免费观看| 电影成人av| 一二三四在线观看免费中文在| 男女边摸边吃奶| 精品少妇一区二区三区视频日本电影 | 多毛熟女@视频| 精品人妻在线不人妻| 欧美另类一区| 亚洲国产精品999| 青青草视频在线视频观看| 91精品三级在线观看| 亚洲精品久久午夜乱码| 午夜福利免费观看在线| 丰满少妇做爰视频| 久久99一区二区三区| 亚洲欧美中文字幕日韩二区| 久久天躁狠狠躁夜夜2o2o | 欧美黑人欧美精品刺激| 国产av国产精品国产| 女性生殖器流出的白浆| 日韩免费高清中文字幕av| 久久人妻熟女aⅴ| 亚洲一区中文字幕在线| 最新的欧美精品一区二区| 国产精品一二三区在线看| 国产精品一国产av| 国产爽快片一区二区三区| 日韩制服骚丝袜av| 在线观看一区二区三区激情| 国产精品 欧美亚洲| 国产成人午夜福利电影在线观看| 校园人妻丝袜中文字幕| 午夜福利在线免费观看网站| 免费在线观看视频国产中文字幕亚洲 | 大片免费播放器 马上看| 成人亚洲精品一区在线观看| 亚洲自偷自拍图片 自拍| 亚洲第一区二区三区不卡| 热99国产精品久久久久久7| 欧美精品一区二区大全| 青春草国产在线视频| 香蕉国产在线看| 纯流量卡能插随身wifi吗| 亚洲国产av新网站| 免费少妇av软件| 国产亚洲午夜精品一区二区久久| 亚洲欧美成人精品一区二区| 中文字幕av电影在线播放| 黑丝袜美女国产一区| 国产精品久久久久成人av| 欧美xxⅹ黑人| 99热全是精品| 久久精品久久久久久噜噜老黄| 国产乱人偷精品视频| 精品久久蜜臀av无| 亚洲精华国产精华液的使用体验| 啦啦啦中文免费视频观看日本| 午夜福利免费观看在线| 免费日韩欧美在线观看| 午夜日本视频在线| 久久久久久人人人人人| 尾随美女入室| 久久久久人妻精品一区果冻| 捣出白浆h1v1| 亚洲欧美一区二区三区久久| 天天操日日干夜夜撸| 国产日韩欧美视频二区| 精品国产乱码久久久久久小说| 高清在线视频一区二区三区| 日本猛色少妇xxxxx猛交久久| 18禁国产床啪视频网站| 国产1区2区3区精品| 欧美激情高清一区二区三区 | 男人操女人黄网站| av线在线观看网站| 国产激情久久老熟女| 国产伦理片在线播放av一区| 中文字幕av电影在线播放| 美女脱内裤让男人舔精品视频| 中文乱码字字幕精品一区二区三区| 麻豆av在线久日| 丝袜在线中文字幕| 亚洲精品乱久久久久久| 国产不卡av网站在线观看| 久久青草综合色| 欧美日韩综合久久久久久| 男人爽女人下面视频在线观看| 这个男人来自地球电影免费观看 | 国产一区亚洲一区在线观看| 18禁国产床啪视频网站| 中文字幕高清在线视频| 永久免费av网站大全| 亚洲精品第二区| av福利片在线| 日本欧美视频一区| 青青草视频在线视频观看| 精品酒店卫生间| 国产成人免费无遮挡视频| 黄色视频不卡| 国产精品女同一区二区软件| 国产日韩欧美在线精品| 少妇人妻 视频| 精品国产超薄肉色丝袜足j| 亚洲精品久久久久久婷婷小说| 一二三四在线观看免费中文在| 欧美精品人与动牲交sv欧美| 亚洲欧美中文字幕日韩二区| 亚洲七黄色美女视频| 国精品久久久久久国模美| 成人午夜精彩视频在线观看| 午夜久久久在线观看| 免费看不卡的av| 久久综合国产亚洲精品| 老汉色av国产亚洲站长工具| 日日爽夜夜爽网站| 亚洲视频免费观看视频| 亚洲国产中文字幕在线视频| 极品少妇高潮喷水抽搐| 久久这里只有精品19| 丝瓜视频免费看黄片| 国产精品秋霞免费鲁丝片| 亚洲美女搞黄在线观看| 操出白浆在线播放| 18禁动态无遮挡网站| 又大又黄又爽视频免费| 999久久久国产精品视频| 99热国产这里只有精品6| 三上悠亚av全集在线观看| 日本色播在线视频| 老司机靠b影院| 欧美人与性动交α欧美精品济南到| 中文字幕制服av| 国产极品粉嫩免费观看在线| 纯流量卡能插随身wifi吗| 日韩精品有码人妻一区| 国产爽快片一区二区三区| 观看av在线不卡| 久久久久久人人人人人| 99热国产这里只有精品6| 成年av动漫网址| 国产国语露脸激情在线看| 亚洲图色成人| 亚洲美女视频黄频| 女人高潮潮喷娇喘18禁视频| 一本—道久久a久久精品蜜桃钙片| 97在线人人人人妻| 又粗又硬又长又爽又黄的视频| 赤兔流量卡办理| 久久热在线av| 国产在线免费精品| 下体分泌物呈黄色| 人人妻人人澡人人看| 一区福利在线观看| 日日爽夜夜爽网站| av网站免费在线观看视频| 中文字幕制服av| 免费久久久久久久精品成人欧美视频| 国产在线免费精品| 97人妻天天添夜夜摸| 99热国产这里只有精品6| 精品视频人人做人人爽| 国产成人免费无遮挡视频| 男的添女的下面高潮视频| 三上悠亚av全集在线观看| 国产激情久久老熟女| 伦理电影大哥的女人| 欧美精品亚洲一区二区| 久久这里只有精品19| 欧美变态另类bdsm刘玥| av国产久精品久网站免费入址| 亚洲精品久久久久久婷婷小说| 国产日韩欧美亚洲二区| 久久人人爽av亚洲精品天堂| 成年美女黄网站色视频大全免费| 婷婷成人精品国产| 熟女少妇亚洲综合色aaa.| av有码第一页| 免费黄色在线免费观看| 桃花免费在线播放| 99re6热这里在线精品视频| www日本在线高清视频| 少妇被粗大猛烈的视频| 久热这里只有精品99| 大片免费播放器 马上看| 最新的欧美精品一区二区| 91成人精品电影| 两个人看的免费小视频| 国产成人精品久久久久久| 国产精品蜜桃在线观看| √禁漫天堂资源中文www| 性高湖久久久久久久久免费观看| 免费黄色在线免费观看| 日韩大片免费观看网站| 国产在线视频一区二区| 水蜜桃什么品种好| 操美女的视频在线观看| 中文字幕人妻丝袜一区二区 | 成人手机av| 美女中出高潮动态图| 毛片一级片免费看久久久久| 午夜福利网站1000一区二区三区| 婷婷成人精品国产| 国产成人啪精品午夜网站| 九草在线视频观看| 婷婷色综合www| 天天躁夜夜躁狠狠久久av| 久久99热这里只频精品6学生| 亚洲欧美中文字幕日韩二区| 制服丝袜香蕉在线| 亚洲国产精品成人久久小说| 久久久久久久久久久免费av| 国产片内射在线| 国产伦理片在线播放av一区| 黑人猛操日本美女一级片| 久久婷婷青草| 天美传媒精品一区二区| 欧美精品一区二区大全| 99久久人妻综合| 天堂8中文在线网| 精品福利永久在线观看| 伊人久久国产一区二区| 午夜免费鲁丝| 交换朋友夫妻互换小说| 精品人妻一区二区三区麻豆| 亚洲精品久久午夜乱码| 亚洲激情五月婷婷啪啪| 免费黄频网站在线观看国产| 久久97久久精品| 日韩大码丰满熟妇| 国产精品麻豆人妻色哟哟久久| 黄色毛片三级朝国网站| 免费高清在线观看视频在线观看| 国产免费又黄又爽又色| 亚洲婷婷狠狠爱综合网| 制服诱惑二区| 赤兔流量卡办理| 2021少妇久久久久久久久久久| 中文字幕人妻熟女乱码| 亚洲精品一二三| 亚洲一区中文字幕在线| 免费不卡黄色视频| 国产精品二区激情视频|