廖云杰,裴貽剛,李利豐,王維
對比劑增強磁共振血管成像(contrast enhanced magnetic resonance angiography,CE-MRA)和CT血管造影(CT angiography,CTA)是目前評估腎血管及其疾病的兩種常用檢查方法,但它們可能引起腎源性纖維化(nephrogenic systemic fibrosis,NSF)或?qū)Ρ葎┠I病(contrast induced nephropathy,CIN)[1-2]。因此,用非對比劑血管成像(non-contrast enhanced magnetic resonance angiography,NCEMRA)為高血壓患者顯示腎動脈是全世界研究的熱點。因為高血壓患者有隱匿性腎功能受損的可能,使用NCE-MRA可以從根源上避免CIN或NSF的發(fā)生。因此用NCE-MRA序列來評估高血壓患者的腎動脈及其病變具有重要的臨床意義。在本研究中,對52例高血壓患者,在1.5 T MRI上執(zhí)行多翻轉(zhuǎn)脈沖空間標記(spatial labeling with multiple inversion pulses,SLEEK)序列來顯示腎動脈,并與CTA對照來探討NCE-MRA SLEEK顯示腎血管及其病變的能力。
收集中南大學湘雅醫(yī)院2015年1月至 2016年8月行NCE-MRA SLEEK檢查的52例高血壓患者資料。在NCE-MRA SLEEK檢查后1~10 d內(nèi)所有患者行CTA檢查。在NCE-MRA SLEEK檢查前,對所有患者的肌酐進行評估,認為他們的腎功能可以安全接受對比劑型CTA檢查。共收集男性22例,女性30例,年齡為(37±19)歲。所有參加本研究的高血壓患者均簽署了知情同意書。
符合要求的52例患者均在1.5 T HD MR (GE healthcare)上接受了NCE-MRA SLEEK檢查。NCEMRA SLEEK的原理示意圖見圖1。采用8通道相控陣腹部線圈,采用3個不同的血液抑制反轉(zhuǎn)時間(blood suppression inversion time,BSP TI)分別行NCE-MRA SLEEK冠狀位掃描,掃描范圍包括雙腎及腹主動脈。掃描參數(shù)為BSP TI=800 ms、1100 ms、1400 ms,TE=2.0 ms,TR=3.9 ms,slice thickness=2 mm,F(xiàn)lip angle=75°,NEX=0.80,receiver bandwidth=±125 kHz,F(xiàn)OV=38 cm×30 cm,matrix=224×256。每例高血壓患者接受NCE-MRA SLEEK總掃描時間約為10~12 min。
所有接受CT檢查的患者檢查前飲水800~1000 ml。采用GE Light Speed VCT CT99 64排螺旋CT行腹部增強掃描,掃描范圍自右側(cè)膈頂上緣到雙側(cè)髂嵴上緣。掃描參數(shù)如下:300 mA,140 KV,層間距1.25 mm,層厚1.25 mm,準直寬度20 mm,螺距1.375:1,床運行速度13.75 cm/s,機架轉(zhuǎn)率1.25 r/s。采用高壓注射器經(jīng)肘靜脈以速率4.0 ml/s注入350碘帕醇80 ml,然后以同樣的速率注入生理鹽水20 ml,采用自動觸發(fā)技術,當監(jiān)測的腹主動脈CT值達到200 Hu時,開始觸發(fā)動脈期掃描;于注射對比劑50 s時行靜脈期成像。
為了清楚顯示腎動脈分支、副腎動脈及腎動脈病變,將NCE-MRA SLEEK和CTA的原始圖像傳至GE后處理工作站(AW4.4)進行圖像后處理,主要方法為:①多平面重建(multiple planar reconstruction,MPR);②容積再現(xiàn)(volume rendering);③最大密度投影(maximum intensity projection,MIP)。
對每位患者的NCE-MRA SLEEK的原始圖像和重建圖像由兩名放射科副主任醫(yī)師進行質(zhì)量評估,從3個用不同BSP TI的SLEEK圖像中選出最好顯示腎動脈的圖像。評價的標準包括顯示腎動脈信噪比,腎動脈的銳利度,顯示腎動脈主干及腎實質(zhì)內(nèi)腎動脈分支顯示情況及靜脈系統(tǒng)的干擾情況(圖2),分為:1:優(yōu)秀圖像(圖2A);2:良好圖像(圖2B);3:模糊圖像(圖2C)。對于獲得優(yōu)秀和良好的NCE-MRA SLEEK圖像,由兩名放射科副主任醫(yī)師共同評估NCE-MRA SLEEK圖像,評價它們顯示腎血管主干、分支及是否存在腎血管病變[包括正常腎動脈、腎動脈狹窄(renal artery stenoses,RAS)、肌纖維發(fā)育不良(fibromuscular dysplasia,F(xiàn)MD) ]的能力;對于模糊SLEEK圖像不予評估(視為掃描失敗)。
圖1 NCE-MRA SLEEK利用流入增強效應顯示腎動脈的原理圖。SLEEK采用一個縱行翻轉(zhuǎn)帶翻轉(zhuǎn)到其覆蓋區(qū)域所有結構、組織和血液信號,再利用另外一個翻轉(zhuǎn)帶把腎上極上方的動脈血再次翻轉(zhuǎn)回來,利用流入增強效應顯示腎動脈及腹主動脈 圖2 NCE-MRA SLEEK掃描后圖像質(zhì)量的評估標準。A:優(yōu)秀圖像:腎動脈主干腎實質(zhì)內(nèi)腎動脈分支清晰可見,輪廓清楚,無靜脈干擾;B:良好圖像:腎動脈主干清晰可見,輪廓清楚,腎實質(zhì)內(nèi)腎動脈分支較少或者無,較少的靜脈系統(tǒng)干擾;C:模糊圖像:腎動脈主干及腎實質(zhì)內(nèi)腎動脈分支顯示不清,輪廓不清楚,或出現(xiàn)較多靜脈的干擾 圖3 女性,42歲,高血壓患者(2年病史)。 A和B分別為NCE-MRA SLEEK和CTA的MIP圖。NCE-MRA SLEEK在顯示腎實質(zhì)內(nèi)的分支明顯優(yōu)于CTA (箭頭);NCE-MRA SLEEK顯示脊柱骨為低信號,避免了脊柱骨的干擾;NCE-MRA SLEEK在顯示右側(cè)腎動脈狹窄程度(Grade 3)時與CTA一致(箭) 圖4 女性,24歲,高血壓患者(病史7年)。A和B分別為NCEMRA SLEEK和CTA的MIP圖。NCE-MRA SLEEK顯示FMD (箭)和腎實質(zhì)分支(箭頭)優(yōu)于CTA 圖5 男性,52歲,高血壓患者(病史10年)。A和B分別為NCE-MRA SLEEK和CTA的MIP圖。NCE-MRA SLEEK在顯示兩側(cè)腎動脈狹窄程度和CTA一致(右側(cè)Grade 2,左側(cè)Grade 3) (長箭);NCEMRA SLEEK不能顯示血管壁粥樣硬化鈣化斑塊(箭頭),有利于腹主動脈及腎動脈的顯示。另外,NCE-MRA SLEEK不能顯示右側(cè)副腎動脈(短箭)Fig.1 Schematic picture of NCE-MRA SLEEK (non-contrast magnetic resonance angiographyusing spatial labeling with multiple inversion pulses)for displaying renal artery. Two orthogonal SLEEK bands were geographically localized during scan prescription to image the renal artery dependent on the in-ぼow effect. One 50 cm width vertical broad SLEEK band covered the whole body to invert all signals within a coil region to -Mz longitudinal magnetization. The other 20 cm width transversal SLEEK band was located superior to the upper pole of kidneys to bring the in-ぼow artery blood back to +Mz direction. Fig. 2 Criteria for evaluating renal artery image quality with NCE-MRA SLEEK. A: Example of excellent image quality: sharp and complete delineation of vessel borders, including the main renal artery and segmental branches in renal parenchyma, and less interference from venous system were regarded as excellent images; B: Example of good image quality: those with homogeneous vessel signal intensity with slight ぼow artifacts,good delineation of vessel borders, including the main renal artery and segmental branches up to renal parenchyma, and less interference from venous system were regarded as good images; C: Example of indeterminate image quality: those with inhomogeneous vessel signal intensity, irregular delineation of vessel borders, and unclear presentation of the main renal artery were regarded as indeterminate images. Fig.3 A 42-year-old woman with 2-year history of hypertension. Coronal maximum intensity projections from spatial labeling with multiple inversion pulses (SLEEK) (A) and contrast-enhanced CT angiography (CTA) (B) show unanimity for presenting degree of right stenoses (arrows; grade 3). Note that SLEEK was superior to CTA for presenting detail of segmental branches in renal parenchyma (arrow heads). In addition, SLEEK is insensitive to vertebra. Fig.4 A 24-year-old woman withfibromuscular dysplasia (FMD) and 10-year history of hypertension. Axial maximum intensity projections from spatial labeling with multiple inversion pulses (SLEEK) (A) and contrast-enhanced CT angiography (CTA) (B) show concordance for presenting left renal artery FMD. Note that SLEEK was slightly superior to CTA in delineating appearance of "string-of-beads" in FMD (arrows) and segmental branches in renal parenchyma (arrows heads).Fig. 5 A 52-year-old man with more than 10 years history of hypertension. Coronal maximum intensity projections from spatial labeling with multiple inversion pulses (SLEEK) (A) and contrast-enhanced CT angiography (CTA) (B) show agreement for displaying degree of stenoses (long arrows) (right renal artery, grade 2; left renal artery, grade 3). Note that SLEEK is superior to CTA for its insensitivity to calcified plaques (arrow heads). However, SLEEK did not present right accessory renal artery (short arrows).
采用盲法和隨機的原則分別記錄NCE-MRA SLEEK和CTA顯示腎動脈及其病變的能力,通過與CTA的結果比較,利用卡方檢驗對NCE-MRA SLEEK顯示腎動脈及其病變的能力進行評估。在本研究中,通過公式(1-S/R)×100%計算腎動脈的狹窄程度,R和S分別代表狹窄近端1 cm內(nèi)正常腎動脈的最大直徑和狹窄處的最小直徑;然后把腎動脈狹窄程度分為4級(4級,閉塞;3級,75%~99%;2級,50%~75%;1級,狹窄程度低于50%)。
總共收集的52例高血壓患者中有46例獲得優(yōu)秀或良好的NCE-MRA SLEEK圖像(優(yōu)秀:24例;良好:22例)。2例患者因為幽閉恐懼癥沒有完成MRI檢查,4例患者因為呼吸運動或者腹水而不能清楚顯示腎動脈主干。在獲得優(yōu)秀或良好NCEMRA SLEEK圖像的46例患者中,5根腎動脈(4根副腎動脈,1根FMD) NCE-MRA SLEEK未能顯示。NCE-MRA SLEEK總共發(fā)現(xiàn)109根腎動脈(52根右腎動脈,57根左腎動脈,其中28根RAS,4根FMD);CTA發(fā)現(xiàn)114根腎動脈(54根右腎動脈,60根左腎動脈,其中27根RAS,6根FMD)。NCEMRA SLEEK和CTA顯示腎動脈及腎動脈病變的結果見表1,其中1例為異位腎,2例為孤立腎。
除了上述5根腎動脈NCE-MRA SLEEK不能顯示外,NCE-MRA SLEEK能較好地顯示腎動脈主干,其能力與CTA相比基本一致,且無脊柱、鈣化斑塊和靜脈系統(tǒng)的干擾(圖3~5);對于顯示腎實質(zhì)內(nèi)腎動脈分支能力方面,NCE-MRA SLEEK明顯優(yōu)于CTA(P=0.001) (見表2,圖 3、4)。
在顯示腎動脈病變方面,NCE-MRA SLEEK和CTA評估RAS的結果見表3及圖3~5;對于RAS分級的評估,5根RAS的分級被NCE-MRA SLEEK高估(見表4),包括1根NCE-MRA SLEEK評為2級RAS (CTA:1級RAS),2根3級RAS (CTA:2級RAS),2根4級RAS (CTA:3級RAS)。另外,1根CTA表現(xiàn)為正常腎動脈被NCE-MRA SLEEK評為1級RAS,2根CTA表現(xiàn)為FMD而NCE-MRA SLEEK表現(xiàn)為閉塞,1根CTA表現(xiàn)為閉塞而NCEMRA SLEEK不能顯示;除了這4根血管外,NCE-MRA SLEEK和CTA顯示RAS具有很好的相關性(Rs=0.85,P<0.05)。NCE-MRA SLEEK較清楚地顯示了6例FMD中的4例(優(yōu)秀:2例;良好:2例;閉塞:2例) (圖4)。
表1 NCE-MRA SLEEK和CTA顯示腎動脈及其病變的比較Tab.1 Comparison of evaluation score of renal artery with NCE-MRA SLEEK and CTA
CTA和CE-MRA均能顯示腎動脈和準確評估腎動脈病變,但是它們需要使用對比劑,對腎功能不良的患者可能引起對比劑腎病和腎源性纖維化。因此用NCE-MRA評估腎動脈越來越受到青睞。目前常用的時間飛躍法和相位對比法[3-4]已經(jīng)廣泛用于顯示頭部及頸部血管,但是它們由于受呼吸運動的影響不能準確顯示或者評估腎動脈。近年來有一些NCE-MRA序列用于評估腎動脈病變,如時間-空間標記反轉(zhuǎn)脈沖(time-spatial labeling inversion pulse,Time-SLIP)[5]、穩(wěn)態(tài)自由進動(steady state free precession,SSFP)[6]及固有增強流入反轉(zhuǎn)恢復(inflow inversion recovery,IFIR)[7],但它們僅用于腎動脈狹窄的評估及圖像質(zhì)量的提高[5-12],對顯示腎動脈分支的能力未見報道,也未見用于FMD的顯示。
在本研究中采用一個不需要對比劑的SLEEK序列(NCE-MRA)掃描來顯示腎動脈。為了更好地顯示動脈血管,所有患者行NCE-MRA SLEEK掃描之前均接受呼吸訓練,使患者的呼吸頻率和深度基本保持一致,確保掃描過程中腎臟基本位于同一位置,減少呼吸原因?qū)ρ艹上竦挠绊憽T谑占馁Y料中,24例NCE-MRA SLEEK獲得優(yōu)秀圖像,22例獲得良好的圖像。
NCE-MRA SLEEK不同于NCE-MRA IFIR技術[7],NCE-MRA IFIR利用一個翻轉(zhuǎn)帶橫軸位掃描顯示腎動脈。由于腎臟的上下徑大于前后徑的解剖特點,NCE-MRA IFIR軸位掃描的范圍較廣,所花的時間較長,約為5~6 min,且顯示腹主動脈的范圍有限。而NCE-MRA SLEEK采用冠狀位掃描,利用兩個相互垂直的翻轉(zhuǎn)顯示腎動脈,使NCE-MRA SLEEK的掃描范圍較小,時間較短,約為2~4 min,這樣可以降低掃描過程中對患者均勻呼吸的長時間要求,利于NCE-MRA提高圖像質(zhì)量;同時,NCE-MRA SLEEK能較大范圍顯示腹主動脈,有利于副腎動脈、異位腎及相應血管的顯示。筆者利用NCE-MRA SLEEK發(fā)現(xiàn)1例異位腎,2例孤立腎的患者并清楚顯示其供血動脈[13-14]。在本研究中,發(fā)現(xiàn)NCE-MRA SLEEK不能顯示4根副腎動脈,其原因為:(1) 4根副腎動脈全部起源于腹主動脈的遠端,這樣掃描過程中標記的血液從腎上極到達副腎動脈水平所花費的時間遠遠大于該標記的血液到達正常位置腎動脈水平所需要的時間,導致這些副腎動脈不能利用流入增強效應顯示;(2)副腎動脈比正常腎動脈細而且流速比較慢,也不利于NCE-MRA SLEEK利用流入增強效應顯示副腎動脈。因此,NCEMRA SLEEK存在對血流較慢的細小副腎動脈甚至迷走腎動脈顯示不佳的局限性。在114根腎動脈中(60根左腎動脈,54根右腎動脈),NCE-MRA SLEEK顯示了109根(57根左腎動脈,52根右腎動脈)。除了4根副腎動脈外,NCE-MRA SLEEK與CTA在顯示腎動脈主干能力方面一致,說明NCEMRA SLEEK顯示腎動脈主干的能力不亞于CTA,且脊柱和鈣化斑塊在NCE-MRA SLEEK顯示為低信號,從而避免了它們對顯示為高信號的腎動脈的干擾,因此NCE-MRA SLEEK能作為顯示腎動脈和評估腎動脈病變的可靠的檢查方法。在本研究中,發(fā)現(xiàn)NCE-MRA SLEEK在61根腎動脈分支的顯示中優(yōu)于CTA (P<0.05),可能與以下因素有關:(1) NCE-MRA SLEEK采用一個翻轉(zhuǎn)脈沖抑制人體包括腎實質(zhì)在內(nèi)所有組織的信號,為清楚顯示腎實質(zhì)內(nèi)腎動脈分支提供了低信號的背景,有利于流入增強表現(xiàn)為高信號的腎動脈顯示;(2)在CTA中,由于對比劑到達腎動脈水平的時間受心率、呼吸等因素的影響[9],不同個體對比劑到達腎動脈水平的時間不一致,在實際掃描工作中很難把握精準掃描時間來清晰顯示腎實質(zhì)內(nèi)腎動脈分支;(3) CTA由于動脈期腎實質(zhì)本身的強化,這樣必定會掩蓋或者減弱腎實質(zhì)內(nèi)腎動脈分支的顯示。相反,NCE-MRA SLEEK不需要使用對比劑、掃描中也無時間及動脈期的限制、可以多次采用不同的BSP TI時間(800 ms、1100 ms、1400 ms)進行反復掃描,從中選出一個顯示腎動脈及其分支的最佳圖像,可以有效避免血流速度不
同等個體差異而影響腎血管的顯示。因此,NCEMRA SLEEK較CTA能更清楚地顯示腎動脈分支,表明NCE-MRA SLEEK更有可能發(fā)現(xiàn)腎實質(zhì)內(nèi)腎動脈分支的血管病變,可以作為顯示腎動脈和評估腎動脈病變的可靠檢查方法。
表2 NCE-MRA SLEEK和CTA評估腎實質(zhì)內(nèi)腎動脈分支的比較Tab.2 Results of NCE-MRA SLEEK in comparison with CTA in displaying segment branches in renal parenchyma
表3 NCE-MRA SLEEK和CTA評估腎動脈狹窄程度的比較Tab.3 Results for renal artery stenosis (RAS) according to NCE-MRA SLEEK and CTA
表 4 NCE-MRA SLEEK和CTA診斷腎動脈狹窄程度的比較Tab.4 Comparison of NCE-MRA SLEEK and CTA in presenting degree of stenosis
在本研究中,28根腎動脈被NCE-MRA SLEEK診斷為RAS (CTA證實26根RAS;雙側(cè)5例,單側(cè)16例),其中1根1級RAS在CTA上表現(xiàn)為正常,其原因可能與血液在腎動脈起始部突然發(fā)生少量湍流,NCE-MRA SLEEK不能采集到湍流血液的信號而導致信號丟失有關;2根腎動脈NCE-MRA SLEEK診斷為4級RAS,而CTA表現(xiàn)為FMD,其原因與FMD多處不同程度狹窄導致血液湍流的情況更加復雜,NCE-MRA SLEEK采集FMD病變處血液信號時全部丟失而顯示為腎動脈的中斷、閉塞;另外1根CTA顯示為4級RAS的患者,NCEMRA SLEEK不能顯示該腎動脈,其原因與腎動脈閉塞后血液流動明顯變慢、甚至僅有少量血液流入,NCE-MRA SLEEK不能有效依賴血液的流入增強效應顯示該腎動脈。除了上述4根腎動脈外,在評估腎動脈狹窄程度上NCE-MRA SLEEK和CTA具有很好的相關性(Rs=0.85,P<0.05),其結果與Mohrs等[6]報道一致,說明NCE-MRA SLEEK診斷RAS是可靠的,可以作為評估RAS的可靠檢查方法。有文獻報道NCE-MRA偶爾會夸大RAS的狹窄程度[15],其原因可能與腎動脈狹窄處血流信號部分丟失有關。在本研究中,筆者發(fā)現(xiàn)5根RAS的狹窄程度被NCE-MRA SLEEK夸大,包括1根2級RAS、2根3級RAS及2根4級RAS(CTA分別證實為1級RAS、2級RAS和3級RAS)。但是NCEMRA SLEEK診斷腎動脈狹窄的特異性不會受到影響,且RAS經(jīng)常與高血壓患者并存,因此筆者認為NCE-MRA SLEEK為高血壓患者的腎動脈評估提供了一種非常好的無創(chuàng)檢查方法,可以用NCEMRA SLEEK替代CTA作為無創(chuàng)性RAS篩查。
由于FMD病變處血液發(fā)生湍流比較復雜,故由于血流信號的丟失往往很難被NCE-MRA顯示[8]。在本研究中,NCE-MRA SLEEK采用3個不同的BSP T1來分別顯示腎動脈,從中選擇最好的腎動脈的圖像來判斷是否存在FMD。NCE-MRA SLEEK顯示4根FMD (CTA證實為6根FMD),另外2根被NCE-MRA SLEEK顯示為腎動脈閉塞,NCEMRA SLEEK診斷FMD的準確率為66.7%。在6例FMD中,4例FMD獲得了優(yōu)秀或者良好的NCEMRASLEEK圖像(優(yōu)秀2例,良好2例),發(fā)現(xiàn)它們選擇的BSP TI均為1400 ms,原因如下:雖然FMD血流復雜,但血液通過單位面積的凈血流量減少,使血液流速相對變慢,這樣需要一個相對較長的BSP TI來清楚顯示FMD。
總之,NCE-MRA SLEEK是一種無創(chuàng)、相對經(jīng)濟且診斷可靠的檢查方法。它能清楚地顯示腎動脈主干及分支,能有效避免鈣化斑塊、脊柱骨,靜脈系統(tǒng)的干擾,能準確評估腎動脈病變。同時,NCE-MRA SLEEK不需要使用對比劑、不受掃描期相的限制,顯示腎動脈分支較好,不會引起腎源性纖維化,因此它比CTA更具有優(yōu)勢,可以替代CTA成為評估腎動脈病變的可靠檢查方法。
[References]
[1] Tonelli M, Wiebe N, Culleton B, et al. Chronic kidney disease and mortality risk: a systematic review. J Am Soc Nephrol, 2006, 17(7):2034-2047.
[2] Go AS, Chertow GM, Fan D, et al. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med, 2004, 351(13): 1296-1305.
[3] Feng F, Zhao WY, Li ZH, et al. Comparison of three dimensional fast time-of-flightand standard time-of-flight MR angiography in intracranial arteries. Chin J Magn Reson Imaging, 2015, 6(6):422-425.馮飛, 趙武貽, 李中華, 等. 快速與標準三維時間飛躍法MRA在顱內(nèi)動脈成像的對比研究. 磁共振成像, 2015, 6(6): 422-425.
[4] Liu S, Lin GY, Jiang J, et al. 2D-TOF MR and 3D-CE MRA scan method of intracranial venous sinus comparison study. Chin J Magn Reson Imaging, 2015, 6(3): 178-181.劉爍, 林光耀, 蔣杰, 等. 顱內(nèi)靜脈竇2D-TOFMR和3D-CEMRA掃描方法對比研究. 磁共振成像, 2015, 6(3): 178-181.
[5] Goetti R, Baumueller S, Alkadhi H, et al. Diagnostic performance of a non-contrast-enhanced magnetic resonance imaging protocol for potential living related kidney donors. Acad Radiol, 2013, 20(4):393-400.
[6] Mohrs OK, Petersen SE, Schulze T, et al. High-resolution 3D unenhanced ECG-gated respiratory-navigated MR angiography of the renal arteries: comparison with contrast-enhanced MR angiography.AJR Am J Roentgenol, 2010, 195(6): 1423-1428.
[7] Bultman EM, Klaers J, Johnson KM, et al. Non-contrast enhanced 3D SSFP MRA of the renal allograft vasculature: a comparison between radial linear combination and cartesian inflow-weighted acquisitions. Magn Reson Imaging, 2014, 32(2): 190-195.
[8] Tang H, Wang Z, Wang L, et al. Depiction of transplant renal vascular anatomy and complications: Unenhanced MR angiography by using spatial labeling with multiple inversion pulses. Radiology,2014, 271(3): 879-887.
[9] Pei YG, Li F, Shen H, et al. Optimal blood suppression inversion time based on breathing rates and heart rates to improve renal artery visibility in spatial labeling with multiple inversion pulses: A preliminary study. Korean J Radiol, 2016, 17(1): 69-78.
[10] Kawahara S, Isoda H, Ohno T, et al. Non-contrast-enhanced hepatic MR arteriography with balanced steady-state free-precession and time spatial labeling inversion pulse: optimization of the inversion time at 3.0 T. Acta Radiol Open, 2015, 4(12): 1-7.
[11] Kurata Y, Kido A, Fujimoto K, et al. Optimization of non-contrastenhanced MR angiography of the renal artery with three-dimensional balanced steady-state free-precession and time-spatial labeling inversion pulse (time-SLIP) at 3.0 T MRI, in relation to age and blood velocity. Abdominal Radiology (NY), 2016, 41(1): 119-126.
[12] Lanzman RS, Kropil P, Schmitt P, et al. Nonenhanced free-breathing ECG-gated steady-state free precession 3D MR angiography of the renal arteries: comparison between 1.5 T and 3.0 T. AJR Am J Roentgenol, 2010, 194(3): 794-798.
[13] Xu L, Rong Y, Wang W, et al. Percutaneous radiofrequency ablation with contrast-enhanced ultrasonography for solitary and sporadic renal cell carcinoma in patients with autosomal dominant polycystic kidney disease. World J Surg Oncol, 2016, 14(1): 193-198.
[14] Ramanathan S, Kumar D, Khanna M, et al. Multi-modality imaging review of congenital abnormalities of kidney and upper urinary tract.World J Radiol, 2016, 8(2): 132-141.
[15] Bley TA, Francois CJ, Schiebler ML, et al. Non-contrast-enhanced MRA of renal artery stenosis: validation against DSA in a porcine model. Eur Radiol, 2016, 26(2): 547-555.