• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation of 2D square-like Bi2S3-BiOCl heterostructures withenhanced visible light-driven photocatalytic performance for dye pollutant degradation

    2017-02-01 08:50:26JingjingXuJingwenYangPuZhangQuanYuanYanhongZhuYuWangMiaomiaoWuZhengmeiWangMindongChen
    Water Science and Engineering 2017年4期

    Jing-jing Xu*,Jing-wen YangPu ZhangQuan YuanYan-hong ZhuYu WangMiao-miao WuZheng-mei WangMin-dong Chen

    aCollaborative Innovation Center of Atmospheric Environment and Equipment Technology,School of Environmental Science and Engineering,Nanjing University of Information Science and Technology,Nanjing 210044,China

    bJiangsu Engineering Technology Research Center of Environmental Cleaning Materials,Nanjing University of Information Science and Technology,Nanjing 210044,China

    cJiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control,Nanjing University of Information Science and Technology,Nanjing 210044,China

    1.Introduction

    Photocatalytic technology has been developing quickly since Fujishima and Honda(1972)found that titanium dioxide(TiO2)photoanodes can induce water splitting.Thefirst attempt at application of photocatalytic technology in thefield of organic pollutant degradation was the use of TiO2for the photodechlorination of polychlorobiphenyls(Carey et al.,1976).Because of their high reaction speed,stability,low toxicity,and many other advantages,semiconductor photocatalysts have attracted much attention over the past several decades.In recent years,photocatalysts such as TiO2(Bianchi et al.,2014;Wang et al.,2014),BiOX(X=Cl,Br,I)(Chen et al.,2013;Ao et al.,2016a,2016b,2016c;Qin et al.,2013;Zhang et al.,2013b),and Ag/AgX(X=Cl,Br)(Wang et al.,2012,2013c)have attracted much attention in thisfield.

    Bismuth oxyhalide BiOCl has a lamellar structure and strong photocorrosion resistance.BiOCl has been put to many uses,such as pigments(Maile et al.,2005),photoluminescence(Deng et al.,2008),and photocatalysis(Shenawi-Khalil et al.,2011).Much progress has been made.Xiong et al.(2011)prepared square-like BiOCl nanosheets through an environmentally friendly hydrothermal process.At room temperature,Ye et al.(2013)synthesizedflower-like BiOCl composed of self-assembled hierarchical nanosheets,which performed well in the degradation of Rhodamine B(RhB).However,widebandgap BiOCl shows little response to visible light,which accounts for 45%of solar spectra.This means that BiOCl cannot utilize the solar energy efficiently.The fact that it can only be photo-excited under ultraviolet(UV)irradiation has limited its application to removal of organic pollutants.Major efforts have been made to obtain visible light-driven BiOClbased photocatalysts(Zhang et al.,2013a;Xia et al.,2013;Wang et al.,2013a;Cao et al.,2013).

    Narrow-bandgap Bi2S3has been used to modify TiO2(Liu et al.,2017),Bi2O2CO3(Wang et al.,2013b),ZnS(Nawaz,2017),and some other wide-bandgap photocatalysts(Cheng et al.,2012)in order to improve their performance under visible light irradiation.Cao et al.(2012)synthesized a novel Bi2S3-sensitized BiOCl photocatalyst with a rose-like structure,which photodegraded 98.0%of RhB within 2 h under visible light irradiation,much more than BiOCl,Bi2S3,or TiO2alone.This showed that the combination of Bi2S3and BiOCl can turn BiOCl into a promising visible light-driven photocatalyst(Ferreira et al.,2016;Jiang et al.,2014).However,all the studies mentioned above focused on Bi2S3-modified three-dimensional(3D)flower-like structured BiOCl,and no study has focused on the preparation and activity of Bi2S3-modified two-dimensional(2D)plate-like structured BiOCl.2D Bi2S3-BiOCl would be highly active under visible light irradiation.

    2.Experimental setup

    2.1.Synthesis

    Analytical-grade chemicals have often been used without further purification.In this study,Bi2S3-BiOCl composites with different Bi2S3contents were synthesized via a facile two-step anion exchange route at room temperature.First,we prepared white BiOCl nanosheets using the solvothermal method(Xiong et al.,2011).Second,thioacetamide(TAA)was used as the sulfur source to obtain the composites.In the experimental synthesizing of Bi2S3-BiOCl composites,0.26 g of BiOCl nanosheets were added into 25 mL of ultrapure water and sonicated for 10 min to form suspension A.Solution B was obtained after the dissolution of a certain amount of TAA in 25 mL of ultrapure water.Then,solution B was gradually poured into suspension A and stirred for 5 h at room temperature.Finally,the light gray products were obtained;they were washed with deionized water,and dried at 80°C for about 6 h.Four samples were prepared by changing the added amount of TAA.The obtained samples were defined as Bi2S3-BiOCl(8:1),Bi2S3-BiOCl(8:2),Bi2S3-BiOCl(8:4),and Bi2S3-BiOCl(8:8),as the added amounts of TAA were 0.009,0.019,0.038,and 0.075 g,respectively.

    2.2.Characterization

    We used X-ray diffraction(XRD)to examine the crystal form and crystallinity of the samples.Field emission scanning electron microscopy(SEM)and transmission electron microscopy(TEM)were utilized to observe the surface morphologies and microstructures of the samples,using a Hitachi S-4800 scanning electron microscope and a Hitachi H-7650 transmission electron microscope,respectively.The absorption ability of catalysts was measured through ultraviolet-visible(UV/Vis)diffuse reflectance spectra(DRS)on a Shimadzu UV3600 spectrometer.The Brunauer-Emmett-Teller(BET)surface area of the samples was obtained with a BET analyzer(ASAP 2020,Micromeritics Instrument Corporation)through N2adsorption-desorption isotherms.

    2.3.Photocatalytic experiments

    The photocatalytic activities of the as-prepared samples were measured through photodegradation of X-3B under visible light(λ≥ 400 nm,where λ is the wave length)irradiation,a 300 W Xe lamp was used as a light source,and a circulating cooling water system was used to keep the temperature at 12°C.In each experiment,a 0.01-g sample was added to 50 mL of X-3B solution with a concentration of 25 mg/L to form a suspension.In order to reach adsorptiondesorption equilibrium,the suspension was ultrasonic-treated for 2 min and further stirred for 30 min in the dark.Under light irradiation,about 1.5 mL of suspension was taken out for examination every 15 min.

    3.Results and discussion

    The as-prepared Bi2S3-BiOCl samples were analyzed through XRD characterization(Fig.1,where a.u.means arbitrary unit,and 2θ is the diffraction angle)to examine their phase structure,crystal form,and crystallinity.All the diffraction peaks of BiOCl and Bi2S3could be indexed according to the structures of tetragonal BiOCl(JCPDS No.06-0249)and bulk orthorhombic Bi2S3(JCPDS No.75-1306),respectively,indicating high crystal purity.No diffraction peaks of Bi2S3were observed in the curves of Bi2S3-BiOCl composites.This is probably due to the amorphous structure,high level of dispersity,and small crystallites of Bi2S3.The obtained results indicate that the addition of Bi2S3does not cause changes in the crystal phase of BiOCl.

    Fig.1.XRD patterns of BiOCl,Bi2S3,and Bi2S3-BiOCl composites.

    During the preparation process of Bi2S3-BiOCl composites,thesquare-likeBiOClnanosheetswith athicknessof 10-25 nm(Fig.2(a))were dispersed in the ultrapure waterfirst.Then,through ion exchange,a reaction between Bi3+and TAA occurred over time(the stepwise equations were as follows:CH3CSNH2+H2O→CH3CONH2+H2S↑;2Bi3++3H2S→Bi2S3↓+6H+).Finally,Bi2S3was dispersed and anchored on the surface of BiOCl nanosheets,as shown clearly in Fig.3(b).Because of the rather lower solubility of Bi2S3(Ksp=1.0×10-97,where Kspis the solubility product),compared to BiOCl(Ksp=1.8×10-31)(Cheng et al.,2012),a partial anion ion exchange reaction induced the formation of Bi2S3on the surface of BiOCl.The microstructure and morphology of the samples were investigated by SEM and TEM.Compared to the morphology of Bi2S3nanorods with lengths of 100-180 nm(Fig.2(b)),Bi2S3-BiOCl composites were nanosheets(Fig.2(c)through(f))similar to pure BiOCl.Furthermore,it can be seen that the thickness of all the nanosheets were about 10-20 nm(marked by black arrows in Fig.2).Surface area and pore structures are crucial to the activity of photocatalysts.Therefore,the surface areas of the obtained samples were obtained through N2adsorptiondesorption isotherms.The surface areas of pure BiOCl,Bi2S3-BiOCl(8:1),Bi2S3-BiOCl(8:2),Bi2S3-BiOCl(8:4),Bi2S3-BiOCl(8:8),and Bi2S3were 2.91,5.12,5.63,5.90,6.24,and 15.62 m2/g,respectively.

    The UV/Vis diffuse reflectance spectra of BiOCl,Bi2S3,and Bi2S3-BiOCl composites are shown in Fig.4.Pure BiOCl can only adsorb UV light with an absorption edge at about 360 nm.However,Bi2S3exhibits strong absorption intensity in the visible light region,even extending to the near-infrared region.As for Bi2S3-BiOCl composites,their absorption edges shift to about 420 nm and an enhancement in photoabsorption efficiency is observed.The results illustrate that Bi2S3has a photosensitization effect on BiOCl.Furthermore,the bandgap energy(Eg)of pure BiOCl,Bi2S3,and Bi2S3-BiOCl composites can be calculated to be about 3.49,1.27,and 2.95 eV,respectively.

    Fig.2.SEM images of samples.

    Fig.3.TEM images of samples.

    Fig.4.UV/Vis DRS of pure BiOCl,Bi2S3,and Bi2S3-BiOCl composites.

    Fig.5 shows the concentration changes of X-3B dye in different samples with the visible light irradiation time in order to evaluate the photocatalytic activities,where C is the concentration of X-3B in the process and C0is the initial concentration of X-3B.After 30 min of stirring in the dark,a strong adsorption was observed on Bi2S3,while other samples exhibited relatively low levels of adsorption for X-3B.Furthermore,it can be seen that only 11.6%and 37.8%of X-3B were removed by BiOCl and Bi2S3after the adsorption and photocatalytic processes,respectively.The main reasons were that BiOCl has little response to visible light,and the photoexcited electron-hole pairs of Bi2S3would be recombined due to its narrow bandgap.Meanwhile,the degradation effi-ciency of Bi2S3-BiOCl(8:4)was 74.6%,which was the highest photodegradation efficiency of the samples.The apparent rate constants were 0.0015,0.014,0.02,0.028,0.018,and 0.096 min-1for pure BiOCl,Bi2S3-BiOCl(8:1),Bi2S3-BiOCl(8:2),Bi2S3-BiOCl(8:4),Bi2S3-BiOCl(8:8),and Bi2S3,respectively.Obviously,all Bi2S3-BiOCl composites performed better than both BiOCl and Bi2S3,and 8:4 was the optimal Bi/S ratio in this study.In order to determine the factor that caused the increase of the activity of Bi2S3-BiOCl composite photocatalysts,photocurrent was measured at open circuit potentials for all samples.The samples deposited onfluorine-doped tin oxide(FTO)conductive glass were used as anodes for the measurement.The results are shown in Fig.6.A uniform and apparent photocurrent response can be seen for all electrodes.Furthermore,all Bi2S3-BiOCl composites exhibited higher photocurrent intensity values than pure BiOCl.The photocurrent is determined by the recombination at the electrolyte interface and the transferring speed of excited electrons from the photocatalyst to FTO.Therefore,the increase of photocurrent for Bi2S3-BiOCl composites should be attributed to the higher separation efficiency of photogenerated charges.This results from the coupling of BiOCl and Bi2S3and the formation of heterojunctions between the two components.The formed heterojunctions help to transfer and separate the photogenerated electron-hole pairs,and thus increase the photocatalytic activity.It can also be seen that the photocatalytic performance and photocurrent of Bi2S3-BiOCl composites strengthen gradually with the increase of the Bi/S ratio from 8:1 to 8:4.However,Bi2S3-BiOCl(8:8)shows a weaker performance than Bi2S3-BiOCl(8:4),which may stem from the overload of Bi2S3.Therefore,there is an optimal value of the Bi/S ratio(8:4 in this study)that obtains the highest photocatalytic activity for Bi2S3-BiOCl composites.

    Fig.5.Photocatalytic activities of samples.

    Fig.6.Photocurrent responses of Bi2S3-BiOCl composites under visible light irradiation.

    To explore the mechanism of photocatalytic degradation of X-3B by Bi2S3-BiOCl composites is highly significant.As shown in Fig.7,a plausible mechanism for X-3B degradation is proposed.

    Under visible light irradiation,Bi2S3is excited enough to generate electron-hole pairs.Some of the photogenerated electrons are then trapped by dissolved O2and produce·O-2,an important active species in oxidation reactions,and the others can be readily transferred to the conduction band(CB)of BiOCl.These electrons on CB of BiOCl cannot react to produce·Ο-2radicals,because the CB potential is 0.11 eV,while the redox potential of O2/·O-2is-0.046 eV(Wang et al.,2013a).The hole(h+)can either react with OH-to produce·OH or directly decompose X-3B dye since it is also a strong oxidant(the valent band(VB)potential of Bi2S3is 1.47 eV,and the redox potential of H2O/·OH is 2.72 eV)(Li et al.,2009).Consequently,the recombination of e-and h+has largely been restrained,and these oxidative species(·O-2,·OH,and h+)can degrade X-3B dye.In addition,BiOCl may degrade X-3B molecules through the photosensitition effect,although it shows little response to visible light because of its wide bandgap.The related equations in this reaction process,including two collaborative processes(photodegradation and photosensitization),are as follows(Nawaz,2017;Cao et al.,2012):

    Fig.7.Schematic photocatalytic reaction process of Bi2S3-BiOCl composites with degradation of X-3B under visible light irradiation.

    where h is the Planck constant,ν is the frequency,and*means the excited state.

    The stability of Bi2S3-BiOCl samples is crucial to their practical applications.Therefore,typical reuse experiments of Bi2S3-BiOCl(8:4)were conducted to evaluate its long-term service properties.The obtained results are shown in Fig.8.The photocatalytic performance of Bi2S3-BiOCl(8:4)has no apparent decreasing trend after three cycles.This indicates that the prepared Bi2S3-BiOCl composite photocatalysts are stable.

    Fig.8.Recyclability of Bi2S3-BiOCl(8:4)under visible light irradiation.

    4.Conclusions

    Visible light-responsive and square-like Bi2S3-BiOCl composites with different Bi/S ratios were prepared via a twostep anion exchange route.The samples were obtained through a partial anion exchange reaction between the square-like BiOCl and TAA,in which the Bi2S3was produced on the surface of BiOCl.The phase structure,morphology,and optical properties of Bi2S3-BiOCl composites were studied with XRD,SEM,TEM,and DRS.The results show that the coupling of BiOCl with Bi2S3induce enhanced photoabsorption efficiency and a narrower bandgap.The photocatalytic activity under visible light irradiation was investigated through the photocatalytic degradation of X-3B dye.The results show that all Bi2S3-BiOCl composites exhibited much higher activity than pure BiOCl and Bi2S3,and the enhanced activity was ascribed to the formation of Bi2S3on BiOCl nanosheets.Based on investigation of the effect of the Bi/S ratio on the activity of Bi2S3-BiOCl composites,an optimal value(8:4)was obtained.This work can provide ideas concerning the design of more bismuth-based photocatalysts for treatment of pollutants.

    Ao,Y.H.,Bao,J.Q.,Wang,P.F.,Wang,C.,Hou,J.,2016a.Bismuth oxychloride modified titanium phosphate nanoplates:A new p-n type heterostructured photocatalyst with high activity for the degradation of different kinds of organic pollutants.J.Colloid Interface Sci.476,71-78.https://doi.org/10.1016/j.jcis.2016.05.021.

    Ao,Y.H.,Wang,K.D.,Wang,P.F.,Wang,C.,Hou,J.,2016b.Synthesis of novel 2D-2D p-n heterojunction BiOBr/La2Ti2O7composite photocatalyst with enhanced photocatalytic performance under both UVand visible light irradiation.Appl.Catal.B Environ.194,157-168.https://doi.org/10.1016/j.apcatb.2016.04.050.

    Ao,Y.H.,Wang,K.D.,Wang,P.F.,Wang,C.,Hou,J.,2016c.Fabrication of novel p-n heterojunction BiOI/La2Ti2O7composite photocatalysts for enhanced photocatalytic performance under visible light irradiation.Dalton Trans.45(19),7986-7997.https://doi.org/10.1039/c6dt00862c.

    Bianchi,C.L.,Gatto,S.,Pirola,C.,Naldoni,A.,Di Michele,A.,Cerrato,G.,Crocella,V.,Capucci,V.,2014.Photocatalytic degradation of acetone,acetaldehyde and toluene in gas-phase:Comparison between nano and micro-sized TiO2.Appl.Catal.B Environ.146,123-130.https://doi.org/10.1016/j.apcatb.2013.02.047.

    Cao,J.,Xu,B.Y.,Lin,H.L.,Luo,B.D.,Chen,S.F.,2012.Novel Bi2S3-sensitized BiOCl with highly visible light photocatalytic activity for the removal of rhodamine B.Catal.Commun.26,204-208.https://doi.org/10.1016/j.catcom.2012.05.025.

    Cao,J.,Zhou,C.C.,Lin,H.L.,Xu,B.Y.,Chen,S.F.,2013.Surface modifi-cation of m-BiVO4 with wide band-gap semiconductor BiOCl to largely improve the visible light induced photocatalytic activity.Appl.Surf.Sci.284,263-269.https://doi.org/10.1016/j.apsusc.2013.07.092.

    Carey,J.H.,Lawrence,J.,Tosine,H.M.,1976.Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions.Bull.Environ.Contam.Toxicol.16(6),697-701.

    Chen,L.,Huang,R.,Xiong,M.,Yuan,Q.,He,J.,Jia,J.,Yao,M.Y.,Luo,S.L.,Au,C.T.,Yin,S.F.,2013.Room-temperature synthesis offlower-like BiOX(X=Cl,Br,I)hierarchical structures and their visible-light photocatalytic activity.Inorg.Chem.52(19),11118-11125.https://doi.org/10.1021/ic401349j.

    Cheng,H.F.,Huang,B.B.,Qin,X.Y.,Zhang,X.Y.,Dai,Y.,2012.A controlled anion exchange strategy to synthesize Bi2S3nanocrystals/BiOCl hybrid architectures with efficient visible light photoactivity.Chem.Commun.48(1),97-99.https://doi.org/10.1039/c1cc15487g.

    Deng,Z.T.,Tang,F.Q.,Muscat,A.J.,2008.Strongbluephotoluminescencefrom single-crystalline bismuth oxychloridenanoplates.Nanotechnology 19(29),295705-295710.https://doi.org/10.1088/0957-4484/19/29/295705.

    Ferreira,V.C.,Neves,M.C.,Hillman,A.R.,Monteriro,O.C.,2016.Novel onepot synthesis and sensitisation of new BiOCl-Bi2S3nanostructures from DES medium displaying high photocatalytic activity.RSC Advances 6,77329-77339.https://doi.org/10.1039/C6RA14474H.

    Fujishima,A.,Honda,K.,1972.Electrochemical photolysis of water at a semiconductorelectrode.Nature 238(5358),37-38.https://doi.org/10.1038/238037a0.

    Jiang,S.H.,Zhou,K.Q.,Shi,Y.Q.,Lo,S.M.,Xu,H.Y.,Hu,Y.,Gui,Z.,2014.In situ synthesis of hierarchicalflower-like Bi2S3/BiOCl composite with enhanced visible light photocatalytic activity.Appl.Surf.Sci.290,313-319.https://doi.org/10.1016/j.apsusc.2013.11.074.

    Li,G.T.,Wong,K.H.,Zhang,X.W.,Hu,C.,Yu,J.C.,Chan,R.C.Y.,Wong,P.K.,2009.Degradation of acid orange 7 using magnetic AgBr under visible light:The roles of oxidizing species.Chemosphere 76(9),1185-1191.https://doi.org/10.1016/j.chemosphere.2009.06.027.

    Liu,Y.,Shi,Y.D.,Liu,X.,Li,H.X.,2017.A facile solvothermal approach of novel Bi2S3/TiO2/RGO composites with excellent visible light degradation activity for methylene blue.Appl.Surf.Sci.396,58-66.https://doi.org/10.1016/j.apsusc.2016.11.028.

    Maile,F.J.,Pfaff,G.,Reynders,P.,2005.Effect pigments:Past,present and future.Prog.Org.Coating 54(3),150-163.https://doi.org/10.1016/j.porgcoat.2005.07.003.

    Nawaz,M.,2017.Morphology-controlled preparation ofBi2S3-ZnS chloroplast-like structures,formation mechanism and photocatalytic activityforhydrogenproduction.J.Photochem.Photobiol.Chem.332,326-330.https://doi.org/10.1016/j.jphotochem.2016.09.005.

    Qin,X.Y.,Cheng,H.F.,Wang,W.J.,Huang,B.B.,Zhang,X.Y.,Dai,Y.,2013.Three dimensional BiOX(X=Cl,Br and I)hierarchical architectures:Facile ionic liquid-assisted solvothermal synthesis and photocatalysis towards organic dye degradation.Mater.Lett.100,285-288.https://doi.org/10.1016/j.matlet.2013.03.045.

    Shenawi-Khalil,S.,Uvarov,V.,Kritsman,Y.,Mennes,E.,Popov,I.,Sasson,Y.,2011.A new family of BiO(ClxBr1-x)visible light sensitive photocatalysts.Catal.Commun.12(12),1136-1141.https://doi.org/10.1016/j.catcom.2011.03.014.

    Wang,B.,Li,C.,Cui,H.,Zhang,J.P.,Zhai,J.,Li,Q.,2014.Shifting mechanisms in the initial stage of dye photodegradation by hollow TiO2nanospheres.J.Mater.Sci.49(3),1336-1344.https://doi.org/10.1007/s10853-013-7817-4.

    Wang,P.Q.,Bai,Y.,Liu,J.Y.,Fan,Z.,Hu,Y.Q.,2012.Facile synthesis and activity of daylight-driven plasmonic catalyser Ag/AgX(X=Cl,Br).IET Micro Nano Lett.7(8),838-841.https://doi.org/10.1049/mnl.2012.0591.

    Wang,Q.Z.,Hui,J.,Li,J.J.,Cai,Y.X.,Yin,S.Q.,Wang,F.P.,Su,B.T.,2013a.Photodegradation of methyl orange with PANI-modified BiOCl photocatalyst under visible light irradiation.Appl.Surf.Sci.283,577-583.https://doi.org/10.1016/j.apsusc.2013.06.149.

    Wang,W.J.,Cheng,H.F.,Huang,B.B.,Lin,X.J.,Qin,X.Y.,Zhang,X.Y.,Dai,Y.,2013b.Synthesis of Bi2O2CO3/Bi2S3hierarchical microspheres with heterojunctions and their enhanced visible light-driven photocatalytic degradation of dye pollutants.J.Colloid Interface Sci.402,34-39.https://doi.org/10.1016/j.jcis.2013.03.054.

    Wang,Y.Q.,Sun,L.,Fugetsu,B.,2013c.Morphology-controlled synthesis of sunlight-driven plasmonic photocatalysts Ag@AgX(X=Cl,Br)with graphene oxide template.J.Mater.Chem.1(40),12536-12544.https://doi.org/10.1039/c3ta12893h.

    Xia,J.X.,Xu,L.,Zhang,J.,Yin,S.,Li,H.M.,Xu,H.,Di,J.,2013.Improved visible light photocatalytic properties of Fe/BiOCl microspheres synthesized via self-doped reactable ionic liquids.CrystEngComm 15(46),10132-10141.https://doi.org/10.1039/C3CE41555D.

    Xiong,J.Y.,Cheng,G.,Li,G.F.,Qin,F.,Chen,R.,2011.Well-crystallized square-like 2D BiOCl nanoplates:Mannitol-assisted hydrothermal synthesis and improved visible-light-driven photocatalytic performance.RSC Adv.1(18),1542-1553.https://doi.org/10.1039/C1RA00335F.

    Ye,P.,Xie,J.J.,He,Y.M.,Zhang,L.,Wu,T.H.,Wu,Y.,2013.Hydrolytic synthesis offlower-like BiOCl and its photocatalytic performance under visible light.Mater.Lett.108,168-171.

    Zhang,J.,Xia,J.X.,Yin,S.,Li,H.M.,Xu,H.,He,M.Q.,Huang,L.Y.,Zhang,Q.,2013a.Improvement of visible light photocatalytic activity overflower-like BiOCl/BiOBr microspheres synthesized by reactable ionic liquids.Colloid.Surface.Physicochem.Eng.Aspect.420,89-95.https://doi.org/10.1016/j.colsurfa.2012.11.054.

    Zhang,W.D.,Zhang,Q.,Dong,F.D.,2013b.Visible-light photocatalytic removal of NO in air over BiOX(X=Cl,Br,I)single-crystal nanoplates prepared at room temperature.Ind.Eng.Chem.Res.52(20),6740-6746.https://doi.org/10.1021/ie400615f.

    免费人成视频x8x8入口观看| 性色avwww在线观看| 悠悠久久av| 麻豆一二三区av精品| 少妇人妻精品综合一区二区 | 99久久中文字幕三级久久日本| 久久欧美精品欧美久久欧美| 神马国产精品三级电影在线观看| 色在线成人网| 一a级毛片在线观看| 国产精品三级大全| 日本a在线网址| 欧美成人一区二区免费高清观看| 精品久久久久久久末码| 国产69精品久久久久777片| 极品教师在线视频| 老女人水多毛片| 中国美白少妇内射xxxbb| 国产伦精品一区二区三区四那| 麻豆成人av在线观看| 国产一区二区三区视频了| 亚洲第一区二区三区不卡| 日韩中字成人| 亚洲综合色惰| 色吧在线观看| 国产一区二区在线av高清观看| 成人无遮挡网站| 久久午夜亚洲精品久久| 免费在线观看日本一区| 亚洲最大成人中文| 尾随美女入室| 亚洲专区国产一区二区| 日韩在线高清观看一区二区三区 | 国产av不卡久久| 岛国在线免费视频观看| 国产av一区在线观看免费| 久99久视频精品免费| 俄罗斯特黄特色一大片| 日韩人妻高清精品专区| 久久久久国产精品人妻aⅴ院| 精品久久久久久久久久免费视频| 日日干狠狠操夜夜爽| 国产精品福利在线免费观看| 乱码一卡2卡4卡精品| 国产久久久一区二区三区| 一进一出抽搐动态| 91久久精品国产一区二区三区| 国产白丝娇喘喷水9色精品| 久久人妻av系列| 日本撒尿小便嘘嘘汇集6| 麻豆国产av国片精品| 男人的好看免费观看在线视频| 黄色视频,在线免费观看| 国产国拍精品亚洲av在线观看| 日韩欧美在线乱码| 亚洲精品一区av在线观看| 村上凉子中文字幕在线| 3wmmmm亚洲av在线观看| 精华霜和精华液先用哪个| 亚洲成人久久性| 日本成人三级电影网站| 精品不卡国产一区二区三区| 麻豆一二三区av精品| 一级av片app| 无人区码免费观看不卡| 精品免费久久久久久久清纯| av在线天堂中文字幕| 精品不卡国产一区二区三区| 99热这里只有精品一区| 一个人免费在线观看电影| 狠狠狠狠99中文字幕| 国产中年淑女户外野战色| 免费av毛片视频| 全区人妻精品视频| 一级黄色大片毛片| 欧美绝顶高潮抽搐喷水| 十八禁国产超污无遮挡网站| 精品午夜福利视频在线观看一区| 亚洲国产色片| 99久久精品国产国产毛片| 欧美xxxx黑人xx丫x性爽| 岛国在线免费视频观看| 夜夜爽天天搞| 亚洲av熟女| 国产精品女同一区二区软件 | 久久婷婷人人爽人人干人人爱| a级毛片a级免费在线| 欧美在线一区亚洲| 国产精品久久久久久亚洲av鲁大| 亚洲va在线va天堂va国产| 两人在一起打扑克的视频| 日本一本二区三区精品| 此物有八面人人有两片| or卡值多少钱| 蜜桃亚洲精品一区二区三区| 一个人看的www免费观看视频| 日韩中字成人| 给我免费播放毛片高清在线观看| 中文字幕高清在线视频| 精品久久久久久,| 日日干狠狠操夜夜爽| 内地一区二区视频在线| 国产精品一区二区三区四区免费观看 | 亚洲国产精品久久男人天堂| 成人特级黄色片久久久久久久| 亚洲精品色激情综合| 在线免费十八禁| 真人做人爱边吃奶动态| 久久欧美精品欧美久久欧美| 亚洲黑人精品在线| 精品久久久噜噜| 不卡一级毛片| 午夜影院日韩av| 国产精品久久久久久亚洲av鲁大| 亚洲电影在线观看av| 色尼玛亚洲综合影院| 日日夜夜操网爽| 午夜福利在线观看免费完整高清在 | 国产精品久久久久久精品电影| 亚洲18禁久久av| 亚洲av第一区精品v没综合| 久久这里只有精品中国| 久久国产乱子免费精品| 亚洲av免费在线观看| 国产成年人精品一区二区| 波多野结衣高清作品| or卡值多少钱| 在线观看美女被高潮喷水网站| 男女下面进入的视频免费午夜| 国产一区二区三区av在线 | 黄片wwwwww| 色综合亚洲欧美另类图片| 中文亚洲av片在线观看爽| 亚洲人成网站在线播放欧美日韩| 免费观看在线日韩| ponron亚洲| 日韩欧美 国产精品| 男女啪啪激烈高潮av片| www.色视频.com| 久久亚洲真实| 成熟少妇高潮喷水视频| 国产白丝娇喘喷水9色精品| 波多野结衣高清无吗| 国产精品国产三级国产av玫瑰| 色播亚洲综合网| 91麻豆av在线| 搞女人的毛片| 日本黄色视频三级网站网址| 欧美一区二区国产精品久久精品| 成年免费大片在线观看| 中国美白少妇内射xxxbb| 日本五十路高清| 亚洲精品国产成人久久av| 99久久精品国产国产毛片| 国产精品一区二区免费欧美| 亚洲成人久久性| 亚洲熟妇中文字幕五十中出| 久久久国产成人免费| 欧美极品一区二区三区四区| 国产精品99久久久久久久久| 亚洲成人中文字幕在线播放| 深爱激情五月婷婷| 天堂影院成人在线观看| 亚洲一区二区三区色噜噜| 97超视频在线观看视频| aaaaa片日本免费| 国产又黄又爽又无遮挡在线| 日本免费一区二区三区高清不卡| 亚洲av熟女| 欧美极品一区二区三区四区| 麻豆久久精品国产亚洲av| 国产精品国产三级国产av玫瑰| 春色校园在线视频观看| 成人永久免费在线观看视频| 九九久久精品国产亚洲av麻豆| 中国美女看黄片| 免费人成在线观看视频色| 一区二区三区高清视频在线| 国产精品精品国产色婷婷| x7x7x7水蜜桃| 成人国产综合亚洲| 日日撸夜夜添| 国产单亲对白刺激| 麻豆成人av在线观看| 亚洲18禁久久av| 亚洲五月天丁香| 日韩欧美在线二视频| 国产精品乱码一区二三区的特点| 色吧在线观看| 亚洲人与动物交配视频| 亚洲色图av天堂| 国产主播在线观看一区二区| 久久国内精品自在自线图片| 亚洲人成网站高清观看| 91av网一区二区| 99在线人妻在线中文字幕| 欧美性感艳星| 国产蜜桃级精品一区二区三区| 女的被弄到高潮叫床怎么办 | 又爽又黄a免费视频| 午夜激情欧美在线| 午夜精品一区二区三区免费看| 亚洲av不卡在线观看| 欧美高清性xxxxhd video| 精品人妻一区二区三区麻豆 | 很黄的视频免费| 热99re8久久精品国产| 国产精品一区二区免费欧美| 国产精品亚洲美女久久久| 婷婷精品国产亚洲av| 亚洲色图av天堂| 亚洲在线观看片| 国产高清三级在线| 国产精品人妻久久久久久| 欧美日本亚洲视频在线播放| 黄色女人牲交| 我要搜黄色片| 久久午夜亚洲精品久久| 欧美成人免费av一区二区三区| 午夜免费男女啪啪视频观看 | 人人妻人人看人人澡| 国语自产精品视频在线第100页| 午夜影院日韩av| 国产精华一区二区三区| 国产黄色小视频在线观看| 欧美性猛交黑人性爽| 少妇的逼好多水| 亚洲精品日韩av片在线观看| 日本 av在线| 两个人的视频大全免费| 亚洲专区中文字幕在线| 九九久久精品国产亚洲av麻豆| 少妇被粗大猛烈的视频| 亚洲欧美日韩无卡精品| 一区福利在线观看| 久久精品国产清高在天天线| 18禁黄网站禁片免费观看直播| 久久精品国产自在天天线| 免费电影在线观看免费观看| 久久欧美精品欧美久久欧美| eeuss影院久久| 精品午夜福利在线看| 男人舔女人下体高潮全视频| 热99在线观看视频| 免费在线观看影片大全网站| 欧美又色又爽又黄视频| 国产一区二区三区av在线 | 亚洲国产色片| 亚洲七黄色美女视频| 麻豆精品久久久久久蜜桃| 亚洲欧美日韩卡通动漫| 国产国拍精品亚洲av在线观看| 国产成人影院久久av| 99riav亚洲国产免费| 久久6这里有精品| 成人午夜高清在线视频| 成年人黄色毛片网站| 美女高潮的动态| 校园春色视频在线观看| 一级黄片播放器| 人妻久久中文字幕网| 日韩国内少妇激情av| 免费看光身美女| 欧美最新免费一区二区三区| 日本黄色视频三级网站网址| 久久精品夜夜夜夜夜久久蜜豆| 听说在线观看完整版免费高清| 日本撒尿小便嘘嘘汇集6| 中文字幕人妻熟人妻熟丝袜美| 国产色婷婷99| 大又大粗又爽又黄少妇毛片口| 看免费成人av毛片| 日本成人三级电影网站| 婷婷六月久久综合丁香| 国产高清激情床上av| 少妇被粗大猛烈的视频| 日韩欧美免费精品| 亚洲欧美日韩卡通动漫| 一区二区三区免费毛片| 韩国av在线不卡| 成人美女网站在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久免费精品人妻一区二区| 国产高清视频在线观看网站| 麻豆国产97在线/欧美| 九九热线精品视视频播放| 亚洲av成人av| a级毛片a级免费在线| 色精品久久人妻99蜜桃| 最近最新中文字幕大全电影3| 91在线观看av| 日韩欧美国产一区二区入口| 九九久久精品国产亚洲av麻豆| 欧美日韩乱码在线| 三级毛片av免费| 又爽又黄无遮挡网站| 免费无遮挡裸体视频| 国产女主播在线喷水免费视频网站 | 99久久九九国产精品国产免费| 国产午夜精品久久久久久一区二区三区 | 亚洲人成网站在线播| 人人妻,人人澡人人爽秒播| 岛国在线免费视频观看| 可以在线观看毛片的网站| 国产精品免费一区二区三区在线| 亚洲精品456在线播放app | 日韩亚洲欧美综合| 三级男女做爰猛烈吃奶摸视频| 亚洲自偷自拍三级| 免费在线观看成人毛片| 婷婷精品国产亚洲av| 成人特级av手机在线观看| 午夜福利成人在线免费观看| 国产精品99久久久久久久久| 美女高潮喷水抽搐中文字幕| 国产精品伦人一区二区| 亚洲 国产 在线| 久久亚洲真实| 看黄色毛片网站| 午夜a级毛片| 99在线视频只有这里精品首页| 国产高清不卡午夜福利| 国产国拍精品亚洲av在线观看| 精品午夜福利视频在线观看一区| 欧美三级亚洲精品| 亚洲黑人精品在线| 中国美白少妇内射xxxbb| 成年女人永久免费观看视频| 成人二区视频| 欧美三级亚洲精品| а√天堂www在线а√下载| 国产在线精品亚洲第一网站| 亚洲黑人精品在线| 国产伦精品一区二区三区四那| 成人国产麻豆网| 欧美色视频一区免费| 欧美绝顶高潮抽搐喷水| 麻豆国产97在线/欧美| 成人美女网站在线观看视频| 欧美bdsm另类| 亚洲人与动物交配视频| 国语自产精品视频在线第100页| 免费电影在线观看免费观看| 麻豆国产av国片精品| 在现免费观看毛片| 美女被艹到高潮喷水动态| 人人妻人人澡欧美一区二区| 狂野欧美激情性xxxx在线观看| 99热6这里只有精品| 韩国av一区二区三区四区| 97人妻精品一区二区三区麻豆| 两个人的视频大全免费| АⅤ资源中文在线天堂| 成人特级av手机在线观看| 欧美色欧美亚洲另类二区| 少妇的逼水好多| 永久网站在线| 他把我摸到了高潮在线观看| 日本与韩国留学比较| 成年女人永久免费观看视频| av女优亚洲男人天堂| 亚洲不卡免费看| 午夜日韩欧美国产| 91午夜精品亚洲一区二区三区 | 国内精品久久久久久久电影| 91狼人影院| 欧美日本亚洲视频在线播放| 欧美日韩乱码在线| 性欧美人与动物交配| 日韩国内少妇激情av| 国产 一区精品| 91久久精品国产一区二区成人| 九九爱精品视频在线观看| 精品不卡国产一区二区三区| 亚洲熟妇中文字幕五十中出| 中出人妻视频一区二区| 麻豆成人av在线观看| 中亚洲国语对白在线视频| 色5月婷婷丁香| 日韩强制内射视频| 免费在线观看日本一区| 色吧在线观看| 国产色婷婷99| 男人舔女人下体高潮全视频| 毛片女人毛片| 国产黄片美女视频| 一个人免费在线观看电影| 一个人看视频在线观看www免费| 亚洲精品粉嫩美女一区| 少妇的逼水好多| 88av欧美| a在线观看视频网站| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久久久久黄片| 韩国av在线不卡| 国产亚洲精品久久久久久毛片| 丰满乱子伦码专区| 内地一区二区视频在线| 久久久久久伊人网av| 国产亚洲欧美98| 亚洲精品一区av在线观看| 在现免费观看毛片| 22中文网久久字幕| 精品一区二区三区视频在线| 精品人妻偷拍中文字幕| 久久九九热精品免费| 身体一侧抽搐| 国产精品久久久久久av不卡| 在线观看66精品国产| 男女边吃奶边做爰视频| 午夜免费男女啪啪视频观看 | 成人特级av手机在线观看| 人人妻人人看人人澡| 欧美精品国产亚洲| 人妻丰满熟妇av一区二区三区| 久久99热这里只有精品18| 高清在线国产一区| 欧美bdsm另类| 国产aⅴ精品一区二区三区波| 美女大奶头视频| 国产单亲对白刺激| 男女啪啪激烈高潮av片| 狂野欧美白嫩少妇大欣赏| 精品人妻1区二区| 国产精品嫩草影院av在线观看 | 最新中文字幕久久久久| 内地一区二区视频在线| 色噜噜av男人的天堂激情| 午夜激情欧美在线| av天堂中文字幕网| 高清毛片免费观看视频网站| 精品不卡国产一区二区三区| 午夜精品在线福利| 久久精品91蜜桃| 成人性生交大片免费视频hd| 国产女主播在线喷水免费视频网站 | 18禁黄网站禁片午夜丰满| 99视频精品全部免费 在线| 国语自产精品视频在线第100页| 国产精品三级大全| 在线播放无遮挡| 亚洲av日韩精品久久久久久密| 亚洲无线观看免费| 十八禁网站免费在线| 免费人成视频x8x8入口观看| 亚洲性久久影院| 日韩一区二区视频免费看| 啪啪无遮挡十八禁网站| 乱系列少妇在线播放| 国产免费男女视频| 国产大屁股一区二区在线视频| 一进一出抽搐动态| 午夜免费男女啪啪视频观看 | 日韩欧美免费精品| 级片在线观看| 又粗又爽又猛毛片免费看| 免费看美女性在线毛片视频| 天堂影院成人在线观看| 男人舔奶头视频| 性插视频无遮挡在线免费观看| 久久精品国产亚洲av天美| 国产在线男女| 91av网一区二区| 日本欧美国产在线视频| 在线国产一区二区在线| 黄片wwwwww| 亚洲精华国产精华精| 国产在线男女| 色综合亚洲欧美另类图片| 人妻少妇偷人精品九色| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品免费一区二区三区在线| 国产精品嫩草影院av在线观看 | 观看免费一级毛片| 一进一出抽搐动态| 人妻丰满熟妇av一区二区三区| 久久人人精品亚洲av| 成人无遮挡网站| 真人一进一出gif抽搐免费| 精品久久久噜噜| 夜夜看夜夜爽夜夜摸| 最好的美女福利视频网| 日韩亚洲欧美综合| 99精品在免费线老司机午夜| 国产私拍福利视频在线观看| 狂野欧美白嫩少妇大欣赏| 国产精品亚洲美女久久久| 久久久久久久午夜电影| 欧美国产日韩亚洲一区| 在线观看av片永久免费下载| 真人一进一出gif抽搐免费| 日本黄色视频三级网站网址| a在线观看视频网站| 在线观看66精品国产| 舔av片在线| 色综合婷婷激情| 久久精品国产亚洲av香蕉五月| 国产麻豆成人av免费视频| 国产精品一区二区三区四区免费观看 | 精品久久久久久久久亚洲 | 国产日本99.免费观看| 欧美精品啪啪一区二区三区| 88av欧美| 女人被狂操c到高潮| 婷婷精品国产亚洲av| 变态另类丝袜制服| 亚洲欧美精品综合久久99| 1000部很黄的大片| 女人十人毛片免费观看3o分钟| 啦啦啦韩国在线观看视频| 五月玫瑰六月丁香| 成人亚洲精品av一区二区| 身体一侧抽搐| 亚洲av熟女| 成人美女网站在线观看视频| 亚洲成人久久性| 国产高清有码在线观看视频| 国产色爽女视频免费观看| 日本五十路高清| 亚洲五月天丁香| 免费人成在线观看视频色| 国产男靠女视频免费网站| 三级毛片av免费| 又紧又爽又黄一区二区| 日本免费a在线| 伦精品一区二区三区| 久久人人爽人人爽人人片va| 亚洲美女搞黄在线观看 | 黄色配什么色好看| 亚洲av美国av| 国产精华一区二区三区| 国产在线精品亚洲第一网站| 亚洲中文字幕一区二区三区有码在线看| 久久精品国产亚洲av香蕉五月| 日韩亚洲欧美综合| 欧美区成人在线视频| 听说在线观看完整版免费高清| 真实男女啪啪啪动态图| 成人特级黄色片久久久久久久| 极品教师在线免费播放| 欧美高清性xxxxhd video| 欧美日本亚洲视频在线播放| 别揉我奶头~嗯~啊~动态视频| 国产高清不卡午夜福利| 亚洲七黄色美女视频| 99精品在免费线老司机午夜| 美女免费视频网站| 国产精品一区www在线观看 | 日韩一本色道免费dvd| 亚洲熟妇中文字幕五十中出| 极品教师在线视频| 一进一出抽搐gif免费好疼| 男人和女人高潮做爰伦理| 内射极品少妇av片p| 亚洲熟妇熟女久久| 18禁黄网站禁片午夜丰满| 此物有八面人人有两片| 久久国内精品自在自线图片| 欧美不卡视频在线免费观看| 嫩草影院精品99| 小蜜桃在线观看免费完整版高清| 免费av毛片视频| 别揉我奶头~嗯~啊~动态视频| 国产黄片美女视频| 亚洲最大成人av| 午夜久久久久精精品| 人人妻,人人澡人人爽秒播| 97热精品久久久久久| 内射极品少妇av片p| 麻豆国产97在线/欧美| a级一级毛片免费在线观看| 亚州av有码| 黄色丝袜av网址大全| 日本色播在线视频| 色av中文字幕| 国产精品无大码| 亚洲欧美激情综合另类| 亚洲美女黄片视频| 少妇人妻精品综合一区二区 | 天堂av国产一区二区熟女人妻| 有码 亚洲区| 久久久久久久久中文| 在线观看美女被高潮喷水网站| 一个人看视频在线观看www免费| 男女视频在线观看网站免费| 麻豆成人av在线观看| 国内精品宾馆在线| 国内少妇人妻偷人精品xxx网站| 99精品久久久久人妻精品| 12—13女人毛片做爰片一| 可以在线观看的亚洲视频| 日韩精品青青久久久久久| 99热这里只有是精品在线观看| 日本色播在线视频| 男人和女人高潮做爰伦理| 国产精品乱码一区二三区的特点| a级毛片a级免费在线| 国内精品久久久久精免费| 婷婷色综合大香蕉| 一级黄片播放器| 村上凉子中文字幕在线| 99精品久久久久人妻精品| 国产精品98久久久久久宅男小说| 丰满乱子伦码专区| 亚洲在线观看片| 久久精品国产亚洲av香蕉五月| 欧美xxxx性猛交bbbb| 亚洲电影在线观看av| 最近视频中文字幕2019在线8| 观看免费一级毛片| 日本 av在线| 亚洲精品456在线播放app | 久久久久久大精品| 99精品在免费线老司机午夜| 精品乱码久久久久久99久播|