• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fenton-like oxidation of azo dye in aqueous solution using magnetic Fe3O4-MnO2nanocomposites as catalysts

    2017-02-01 08:50:49ZhendongFangKaiZhangJieLiuJunyuFanZhiweiZhao
    Water Science and Engineering 2017年4期

    Zhen-dong Fang,Kai Zhang,Jie Liu,Jun-yu Fan,Zhi-wei Zhao*

    Department of National Defense Architecture Planning and Environmental Engineering,Logistical Engineering University,Chongqing 401311,China

    1.Introduction

    Refractory organic matter in natural water may cause a deficiency of oxygen,generate aquatic toxins,and have other harmful effects on living organisms(Soon and Hameed,2011).However,the traditional water treatment process cannot degrade refractory organic matter efficiently(Nidheesh,2015;Xing et al.,2011).It is necessary to develop efficient,practical,and low-cost water treatment processes for removal of refractory organic matter.

    As an advanced oxidation process,the heterogeneous Fenton process can not only produce hydroxyl radicals to oxidize organic matters rapidly(He et al.,2016;Liu et al.,2016;Zhang et al.,2009;Ramirez et al.,2007),but also overcome the drawbacks of the homogeneous Fenton process,including the production of nondisposable sludge and the narrow range of operative pH values(Hou et al.,2014;Wang et al.,2017;Munoz et al.,2015).Fe3O4(Costa et al.,2008),Fe2O3(Zhang et al.,2010),FeS2(Liu et al.,2015b),Fe0(Segura et al.,2012),CuO(Pan et al.,2015),CeO2(Gogoi et al.,2017),and MnO2(Cui et al.,2011)have all been used as heterogeneous Fenton-like catalysts.MnO2has received intense attention due to its large surface area,low cost,environmental friendliness,and high level of stability in neutral media.Moreover,MnO2of various crystal phases,including the α,β,γ,and δ types,has shown significant catalytic ability in Fenton-like reactions under neutral conditions.Zhang et al.(2006)used β-MnO2nanorods as Fenton-like catalysts to oxidize the methylene blue dye in aqueous solutions,and found that the degree of decoloration could reach 95%in only 15 min,demonstrating the high catalytic ability of β-MnO2.Kim et al.(2017)reported that the catalytic ability of MnO2was strongly related to the crystal structures,and the catalytic abilities associated with different crystal structures could be ranked in the following descending order:γ-MnO2,β-MnO2,α-MnO2,and δ-MnO2.However,due to the low apparent density of MnO2,ultrafine particles are usually formed in the water,resulting in difficulty in achieving solid-liquid separation after use.

    Fe3O4is sensitive to external magneticfields,and its structure is uniform and stable.Moreover,the high activity for activation of H2O2(Gao et al.,2007),persulfate(Yan et al.,2011),peroxymonosulfate(PMS)(Liu et al.,2017),and O3(Yin et al.,2016)due to the existence of Fe2+in the crystal has been demonstrated.Thus,Fe3O4has usually been used as supporter in composites for catalysis reaction.In our previous work,Fe3O4-MnO2core-shell nanocomposites were synthesized as PMS activators for oxidative removal of 4-chlorophenol(Liu et al.,2015a).The results showed that the core-shell nanocomposites not only activated the PMS to generate sulfate radicals efficiently,but can also be separated rapidly with external magneticfields.However,the application of Fe3O4-MnO2nanocomposites as heterogeneous Fenton catalysts has not been reported.

    In this study,Fe3O4-MnO2core-shell nanocomposites were used for thefirst time as Fenton-like catalysts for degradation of acid orange 7(AO7)in an aqueous solution.The effects of different initial conditions on the removal efficiency of AO7,including pH,catalyst dosage,oxidant dosage,and temperature,were investigated,and the catalytic mechanism was also analyzed based on the results.

    2.Experiment setup

    2.1.Materials

    All chemicals used in the experiments were analytical grade.Ferrous sulfate(FeSO4·7H2O),potassium permanganate(KMnO4),hydrochloric acid(HCl),boric acid(H3BO3),sodium tetraborate(Na2B4O7·10H2O),and sodium hydroxide(NaOH)were obtained from Xilong Chemicals,Co.,Ltd.(Shantou,China).Polyvinylpyrrolidone(PVP)K-30,tert-butyl alcohol(TBA),chloroform(CHCl3),and AO7 were purchased from Sinopharm Chemical Reagent Co.,Ltd.(Shanghai,China).

    2.2.Synthesis of catalysts

    1.668 g of FeSO4·7H2O and 1 g of PVP were dissolved in 100 mL of water and heated to 353 K.Then,6 mL of NaOH solution(2 mol/L)were added to the solution,while it was stirred.Five minutes after the addition of 10 mL of KMnO4solution(0.1 mol/L),the solution of precipitation changed from dark green to dark brown.After stirring at 353 K for 2 h,the mixture was cooled to room temperature,and then washed with ultrapure water and ethanol three times alternately.The solids were dried under a vacuum to a constant weight.

    2.3.Character of catalysts

    Scanning electron microscopy(SEM)images were obtained fromascanningelectronmicroscope(FEINovaNanoSEM450,USA).Transmission electron microscopy(TEM)images were acquiredusingatransmissionelectronmicroscope(TecnaiF20,USA)operated at 200 kV.Brunauer-Emmett-Teller(BET)surface area measurements of the samples were collected at 77 K by dinitrogen with an accelerated surface area and porosimetry system(Micrometrics ASAP 2020,USA).A vibrating sample magnetometer(VSM JDM-13,China)was used to determine the magnetic properties of the resultant samples.

    2.4.Experimental procedure

    The experiment was carried out in a 250-mL conicalflask.First,both the 25 mL of AO7 stock solution(200 mg/L)and the 9 mL of H2O2solution(with a mass fraction of 30%)were added into 50 mL of deionized water.The pH value of the solution was adjusted to 5.5 with 25-mmol/L tetraborate buffer.Then,a certain amount of catalyst with ultrasonic dispersion was added into the mixture and diluted to 100 mL.Finally,the conicalflask was placed in an air bath shaker under 303 K.A certain amount of solution was taken by a disposable syringe at afixed time during the reaction.Afterfiltration with a 0.22-μm membrane,0.5 mL of the filtrate was added to a liquid vial containing 0.5 mL of ethanol for a quantitative analysis of AO7.Concentrations of AO7 were determined by high-performance liquid chromatography(Waters 2695).The measurement of dissolved Fe and Mn ions was carried out on an inductively coupled plasma mass spectrometer(ICP-MS,Agilent 7500).

    3.Results and discussion

    3.1.Character of catalysts

    During the synthesis process,four samples were prepared withMnO2weightloadingsof10%(sample 1),15%(sample2),20%(sample 3),and 25%(sample 4).Zhao et al.(2012)demonstrated that MnO2adhered on the surface of Fe3O4in thenanocomposites,formingacore-shellnanoplate.Thetypical SEM andTEM imagesofsample3areshowninFig.1.Fig.1(a)shows that Fe3O4-MnO2nanocomposites have a uniform plate morphology.Meanwhile,Fig.1(b)showsthatamorphousMnO2adhered to the surface of Fe3O4nanoplates,forming an obvious core-shell structure.

    The BET surface area and hysteresis loop of the four samples were measured,and the obtained results are listed in Table 1.As can be seen from the results,the variation tendency of the BET surface area and saturation magnetization were similar to those of previous studies.The surface area increased with the MnO2weight loading,while the saturation magnetization of samples had a negative correlation with the MnO2weight loading.

    Table 1 Physiochemical properties of Fe3O4-MnO2magnetic nanocomposites.

    3.2.Catalytic activity of Fe3O4-MnO2nanocomposites

    The removal efficiency of AO7 in different reaction systems was investigated under the conditions of a pH value of 5.5,a temperature of 303 K,an initial AO7 concentration of 50 mg/L,a catalyst dosage of 0.6 g/L,and an H2O2dosage of 9 mL.The experimental results are shown in Fig.2,where C is the AO7 concentration,and C0is the initial AO7 concentration.Fig.2 shows that,when the Fe3O4-MnO2nanocomposites alone are added,the AO7 concentration in the solution does not change significantly over 120 min,which indicates that the Fe3O4-MnO2nanocomposites have little adsorption capacity for AO7.When the reaction system of Fe3O4/H2O2was used,the AO7 concentration decreased to 40.8 mg/L after 120 min,and the removal efficiency was 18.4%.In the reaction system of MnO2/H2O2,the removal efficiency of AO7 was much higher than that of the Fe3O4/H2O2system,and the removal efficiency was 79.2%over 120 min.When the Fenton catalyst was changed to Fe3O4-MnO2nanocomposites,the removal efficiency of AO7 was greatly improved.When the reaction time was 120 min,the concentration of AO7 was only 1.6 mg/L and the removal efficiency was 96.8%.Based on these results,the catalytic ability of Fe3O4-MnO2nanocomposites is higher than that of the two single components as catalysts,which indicates that there is a synergetic effect between Fe3O4and MnO2in the Fe3O4-MnO2nanocomposites,significantly enhancing the catalytic capacity of Fe3O4-MnO2nanocomposites.

    Fig.2.Degradation of AO7 in different systems.

    3.3.Optimization of different MnO2weight loadings of Fe3O4-MnO2nanocomposites

    For Fe3O4-MnO2core-shell nanocomposites,a higher Fe/Mn molar ratio means a lesser thickness of the shell MnO2.For a H2O2catalytic reaction at near-neutral pH conditions,the catalytic ability of MnO2is stronger than that of Fe3O4,so the nanocomposites with greater MnO2weight loading may have a greater catalytic ability.In the experiment,four kinds of Fe3O4-MnO2core-shell materials with various MnO2weight loadings were synthesized and compared in terms of their catalytic ability.In the experiment,the catalyst dosage was 600 mg/L,the H2O2dosage was 9 mL,the temperature was 303 K,the initial AO7 concentration was 50 mg/L,and the pH value was 5.5.

    Fig.3.Influence of Fe3O4-MnO2core-shell nanocomposites with various MnO2weight loadings on degradation of AO7.

    Table 2 Reaction rates calculated from Fig.3.

    The experimental results are shown in Fig.3,and the reaction rates calculated from Fig.3 are listed in Table 2,where R2is the coefficient of determination.The results show that the removal efficiency of AO7 was lowest when the MnO2weight loading was 10%.Meanwhile,the removal efficiency of AO7 increased when the MnO2weight loading increased.When the MnO2weight loading increased from 10%to 20%,the reaction rate increased from 0.0080 min-1to 0.0265 min-1,and the removal efficiency of AO7 increased from 59.2%to 96.8%.However,when the MnO2weight loading increased from 20%to 25%,the reaction rate of AO7 increased gradually from 0.0265 min-1to 0.0297 min-1,and the removal efficiency increased from 96.8%to 98.0%.The results show that the catalytic ability of Fe3O4-MnO2core-shell nanocomposites is enhanced with the increase of MnO2weight loading.On the other hand,the increase of the MnO2weight loading from 20%to 25%leads to a slight growth in the reaction rate.

    Our previous study showed that the complex Fe-Mn oxides between Fe3O4and MnO2in the Fe3O4-MnO2core-shell nanocomposites had greater catalytic ability than single components(Liu et al.,2015a).When the MnO2weight loading is low,the surface of Fe3O4is not completely covered by MnO2,and the amount of complex Fe-Mn oxides is less.With the increase of the MnO2weight loading,the interaction between Fe3O4and MnO2increases,so when the MnO2weight loading increases from 10%to 20%,the catalytic ability increases.At MnO2weight loading of 20%,the surface of Fe3O4may be completely covered by MnO2.When the content of MnO2further increases,the shell of MnO2thickens,which increases the number of active sites but hinders the contact between the Fe3O4core and the complex Fe-Mn oxides and H2O2,so the catalytic ability of nanocomposites with MnO2weight loading of 25%shows little growth compared with those with MnO2weight loading of 20%.Therefore,the optimal MnO2weight loading is 20%.In the experiments described below,nanocomposites with MnO2weight loading of 20%were used as catalysts.

    3.4.Effects of parameters on catalytic ability of Fe3O4-MnO2/H2O2system

    The effects of catalyst dosage,oxidant dosage,temperature,and initial pH on the removal efficiency of AO7 in the Fe3O4-MnO2/H2O2system were also investigated.

    In the experiment regarding catalyst dosage,the H2O2dosage was 9 mL,the initial pH value was 5.5,the temperature was 303 K,the initial AO7 concentration was 50 mg/L,and the dosages of the catalysts were 0.2,0.4,0.6,and 0.8 g/L,respectively.The experimental results are shown in Fig.4,and the reaction rates calculated from Fig.4 are listed in Table 3.

    As can be seen from the results provided above,the reaction rate of AO7 was 0.014 min-1when the catalyst dosage was 0.2 g/L.When the dosage reached 0.6 g/L,the reaction rate increased to 0.0265 min-1.However,when the dosage increased to 0.8 g/L,the reaction rate decreased to 0.0215 min-1.The main reason is that when the catalyst dosage is less than 0.6 g/L,the increase of the catalyst dosage cannot increase the number of active sites in the system,resulting in increases in the decomposition of H2O2and the generation of hydroxyl radicals,which are favorable for the degradation of AO7.When the catalyst dosage is further increased,the collision probability of the nanoparticles in the solution is greatly increased,which causes the nanoparticles to gradually agglomerate and obscures some active sites(Zhang et al.,2013).On the other hand,the increase of the solid particles also affects the mass transfer rates of H2O2and AO7 in the solution(Xu and Wang,2011),thus leading to a decrease in the catalytic ability.

    Fig.4.Influence of catalyst dosage on degradation of AO7.

    Table 3 Reaction rates calculated from Fig.4.

    For the Fenton system,the dosage of H2O2should be moderate,because the deficiency of the oxidant dosage may impede the complete degradation of the pollutants.In addition,as the dosage is too large,the generated hydroxyl radicals will continue to react with H2O2,leading to a decrease in the pollutant removal efficiency(Luo et al.,2010).In the experiment,the effects of the H2O2dosage on the removal effi-ciency of AO7 were investigated.The reaction conditions were as follows:the catalyst dosage was 600 mg/L,the temperature was 303 K,the initial AO7 concentration was 50 mg/L,and the pH value was 5.5.The experimental results are shown in Fig.5.When the H2O2dosage was between 3 and 9 mL,the increase of H2O2dosage increased the removal efficiency of AO7.When the dosage of H2O2increased from 9 to 15 mL,the removal efficiency of AO7 showed a slight increase,indicating that some H2O2may become a radical quencher,leading to a weak rise in the AO7 removal efficiency.

    The pH of the solution has a strong influence on the Fenton reaction system(Pignatello et al.,2006).The degradation of AO7 with the initial pH values of 3.5,5.5,and 7.5 was investigated.Other reaction conditions were as follows:the catalyst dosage was 600 mg/L,the H2O2dosage was 9 mL,the temperature was 303 K,and the initial AO7 concentration was 50 mg/L.The removal efficiency of AO7 was highest at the initial pH value of 3.5,and reached 90.4%at 15 min(Fig.6).When the initial pH values of the solution were 5.5 and 7.5,the removal efficiencies of AO7 over 120 min were 96.8%and 77.2%,respectively.It can be seen that a lower pH leads to greater degradation of AO7.However,AO7 can be degraded efficiently over a wide range of pH,showing that the reaction system is suitable for application in practical engineering.

    Fig.5.Influence of H2O2dosage on degradation of AO7.

    Fig.6.Influence of pH on degradation of AO7.

    The reaction temperature is a critical factor in the Fenton process,because a higher temperature can enhance the reaction rate(Saputra et al.,2013a).Therefore,the effect of temperature on AO7 degradation was investigated and the results are shown in Fig.7 and Fig.8.The reaction conditions were as follows:the catalyst dosage was 600 mg/L,the H2O2dosage was 9 mL,the initial AO7 concentration was 50 mg/L,and the pH value was 5.5.It can be seen that the effect of temperature on the reaction rate and AO7 removal efficiency was positive.The removal efficiency was 97.2%over 90 min and the reaction rate was 0.0381 min-1when the reaction temperature was 313 K,much higher than the result when it was 293 K.The activation energy of the reaction system calculated from the data in Fig.8 was 31.47 kJ/mol,revealing that the chemical reaction rate was the limiting factor in the Fe3O4-MnO2/H2O2system rather than mass transfer(Xu and Wang,2012).

    3.5.Stability test

    Fig.7.Effects of temperature on degradation of AO7.

    Fig.8.Relationship between lnk and 1/T.

    The stability and reusability of the Fe3O4-MnO2nanocomposites were evaluated through cycle catalytic reactions.The reaction conditions were as follows:the catalyst dosage was 600 mg/L,the H2O2dosage was 9 mL,the temperature was 303 K,the initial AO7 concentration was 50 mg/L,and the pH value was 5.5.After each reaction,the used catalysts were washed with pure water and added into the system.The results are shown in Fig.9.As can be seen,with the increase of the number of cycle runs,the removal efficiency of AO7 decreased slightly.After seven runs,the removal efficiency of AO7 decreased from 96.8%to 83.1%,while the removal efficiency of total organic carbon(TOC)decreased from 46.5%to 31.6%.Both of these changes demonstrated the stability of Fe3O4-MnO2nanocomposites in the heterogeneous Fenton process.In addition,the decrease of the removal efficiency of AO7 may have been due to the adsorption of intermediates on the surface of catalysts(Saputra et al.,2013b).On the other hand,no detectable Fe and Mn ions appeared in any of the seven runs.These results demonstrate the stability of the Fe3O4-MnO2nanocomposites in the heterogeneous Fenton process.

    3.6.Mechanism of catalysis

    In order to explore the species of generated radicals during the catalytic reactions,radical quenching experiments were carried out.TBA was used as a scavenger of hydroxyl radicals(with a reaction rate of 5.2 × 108L/(mol·s))(Huang et al.,2015),while chloroform was used as an O2·-scavenger(with a reaction rate of 3 × 1010L/(mol·s))(Wang et al.,2011).The reaction conditions were as follows:the catalyst dosage was 600 mg/L,the H2O2dosage was 9 mL,the temperature was 303 K,the initial AO7 concentration was 50 mg/L,and the pH value was 5.5.As shown in Fig.10(a),compared with the removal efficiency of 96.8%in the absence of a scavenger,the removal efficiency of AO7 decreased to 67.6%and 36.3%with the addition of TBA into the system from 2 mmo/L to 4 mmol/L.The results show that HO·was generated in the catalytic reaction and was the dominant reactive oxygen species for the AO7 degradation.Meanwhile,the results shown in Fig.10(b)demonstrate that the addition of chloroform into the system had little influence on the AO7 removal.O2·-was produced in the reaction but its role in the AO7 degradation was limited.

    Fig.9.Stability of Fe3O4-MnO2core-shell nanocomposites in repeated batch AO7 and TOC degradation experiments.

    Fig.10.Influence of two radical scavengers on degradation of AO7.

    Based on the results and studies reported by Jaafarzadeh et al.(2015),a catalytic mechanism is proposed(Fig.11).

    First,H2O2is adsorbed onto the surface of catalysts(Eq.(1)),and then it generates HO2·,while≡Mn4+is reduced to ≡Mn2+(Eq.(2)).Meanwhile,≡Fe3+in Fe3O4can be reduced to≡Fe2+by H2O2and generate HO2·(Eq.(3)).The generated≡Fe2+can obtain electrons from≡Mn4+for transfer to≡Fe3+(Eq.(4)),while≡Mn4+is transferred to≡Mn2+.Furthermore,≡Mn2+species may adhere to H2O2and be oxidized to≡Mn4+(Eq.(5)),while HO·is released into the solution.The HO2· in the solution may decompose to H+and O2·-(Eq.(6)).Meanwhile,HO·can oxidize AO7 to generate intermediate(Eq.(7)).

    4.Conclusions

    Fe3O4-MnO2core-shell nanocomposites were prepared and used for thefirst time as a heterogeneous Fenton catalyst for catalytic oxidation of AO7 in an aqueous solution.The experimental results showed that Fe3O4-MnO2nanocomposites had a greater catalytic ability than Fe3O4or MnO2used alone.The removal efficiency of AO7 was 96.8%over 120 min.The Fe3O4-MnO2nanocomposites had the greatest catalytic ability when used with a MnO2weight loading of 20%.Catalystdosage,H2O2dosage,initialpH,and temperature of the reaction had strong effects on the AO7 degradation.The chemical reaction rate was the limiting factor in the Fe3O4-MnO2/H2O2system rather than mass transfer according to thermodynamic calculation.The Fe3O4-MnO2nanocomposites showed a high degree of stability and reusability.The hydroxyl radicals were the main radicals in the catalytic system.Based on the experimental results and studies,a mechanism for the reaction process in the Fe3O4-MnO2/H2O2system has been proposed.

    Costa,R.C.C.,Moura,F.C.C.,Ardisson,J.D.,Fabris,J.D.,Lago,R.M.,2008.Highly active heterogeneous Fenton-like systems based on Fe0/Fe3O4composites prepared by controlled reduction of iron oxides.Appl.Catal.B Environ.83,131-139.https://doi.org/10.1016/j.apcatb.2008.01.039.

    Cui,H.,Huang,H.,Fu,M.,Yuan,B.,Pearl,W.,2011.Facile synthesis and catalytic properties of single crystalline β-MnO2nanorods.Catal.Commun.12(14),1339-1343.https://doi.org/10.1016/j.catcom.2011.05.013.

    Gao,L.,Zhuang,J.,Nie,L.,Zhang,J.,Zhang,Y.,Gu,N.,Wang,T.,Feng,J.,Yang,D.,Perrett,S.,Yan,X.,2007.Intrinsic peroxidase-like activity of ferromagnetic nanoparticles.Nat.Nanotechnol.2(9),577-583.https://doi.org/10.1038/nnano.2007.260.

    Gogoi,A.,Navgire,M.,Sarma,K.C.,Gogoi,P.,2017.Fe3O4-CeO2metal oxide nanocomposite as a Fenton-like heterogeneous catalyst for degradation of catechol.Chem.Eng.J.311,153-162.https://doi.org/10.1016/j.cej.2016.11.086.

    He,J.,Yang,X.,Men,B.,Wang,D.,2016.Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials:A review.J.Environ.Sci.39,97-109.https://doi.org/10.1016/j.jes.2015.12.003.

    Hou,L.,Zhang,Q.,J′er^ome,F.,Duprez,D.,Zhang,H.,Royer,S.,2014.Shapecontrolled nanostructured magnetite-type materials as highly efficient Fenton catalysts.Appl.Catal.B Environ.144,739-749.https://doi.org/10.1016/j.apcatb.2013.07.072.

    Huang,R.,Liu,Y.,Chen,Z.,Pan,D.,Li,Z.,Wu,M.,Shek,C.,Wu,C.M.L.,Lai,J.K.L.,2015.Fe-species-loaded mesoporous MnO2superstructural requirements for enhanced catalysis.ACS Appl.Mater.Interfaces 7(7),3949-3959.https://doi.org/10.1021/am505989j.

    Jaafarzadeh,N.,Kakavandi,B.,Takdastan,A.,Kalantary,R.R.,Azizi,M.,Jorfi,S.,2015.Powder activated carbon/Fe3O4hybrid composite as a highly efficient heterogeneous catalyst for Fenton oxidation of tetracycline:Degradation mechanism and kinetic.RSC Adv.5(103),84718-84728.https://doi.org/10.1039/C5RA17953J.

    Kim,E.,Oh,D.,Lee,C.,Gong,J.,Kim,J.,Chang,Y.,2017.Manganese oxide nanorods as a robust Fenton-like catalyst at neutral pH:Crystal phasedependent behavior.Catal.Today 282,71-76.https://doi.org/10.1016/j.cattod.2016.03.034.

    Liu,J.,Zhao,Z.,Shao,P.,Cui,F.,2015a.Activation of peroxymonosulfate with magnetic Fe3O4-MnO2core-shell nanocomposites for 4-chlorophenol degradation.Chem.Eng.J.262,854-861.

    Liu,J.,Zhao,Z.,Ding,Z.,Fang,Z.,Cui,F.,2016.Degradation of 4-chlorophenol in a Fenton-like system using Au-Fe3O4magnetic nanocomposites as the heterogeneous catalyst at near neutral conditions.RSC Adv.6(58),53080-53088.https://doi.org/10.1039/C6RA10929B.

    Liu,J.,Zhou,J.,Ding,Z.,Zhao,Z.,Xu,X.,Fang,Z.,2017.Ultrasound irritation enhanced heterogeneous activation of peroxymonosulfate with Fe3O4for degradation of azo dye.Ultrason.Sonochemistry 34,953-959.https://doi.org/10.1016/j.ultsonch.2016.08.005.

    Liu,W.,Wang,Y.,Ai,Z.,Zhang,L.,2015b.Hydrothermal synthesis of FeS2as a high-efficiency Fenton reagent to degrade alachlor via superoxidemediated Fe(II)/Fe(III)cycle.ACS Appl.Mater.Interfaces 7(51),28534-28544.https://doi.org/10.1021/acsami.5b09919.

    Luo,W.,Zhu,L.,Wang,N.,Tang,H.,Cao,M.,She,Y.,2010.Efficient removal of organic pollutants with magnetic nanoscaled BiFeO3as a reusable heterogeneous Fenton-like catalyst.Environ.Sci.Technol.44(5),1786-1791.https://doi.org/10.1021/es903390g.

    Munoz,M.,de Pedro,Z.M.,Casas,J.A.,Rodriguez,J.J.,2015.Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation:A review.App.Catal.B:Environ.176-177,249-265.https://doi.org/10.1016/j.apcatb.2015.04.003.

    Nidheesh,P.V.,2015.Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution:A review.RSC Adv.5(51),40552-40577.https://doi.org/10.1039/C5RA02023A.

    Pan,W.,Zhang,G.,Zheng,T.,Wang,P.,2015.Degradation of p-nitrophenol using CuO/Al2O3as a Fenton-like catalyst under microwave irradiation.RSC Adv.5(34),27043-27051.https://doi.org/10.1039/C4RA14516J.

    Pignatello,J.J.,Oliveros,E.,MacKay,A.,2006.Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry.Crit.Rev.Environ.Sci.Technol.36(1),1-84.https://doi.org/10.1080/10643380500326564.

    Ramirez,J.H.,Costa,C.A.,Madeira,L.M.,Mata,G.,Vicente,M.A.,Rojas-Cervantes,M.L.,Martín-Aranda,R.M.,2007.Fenton-like oxidation of Orange II solutions using heterogeneous catalysts based on saponite clay.Appl.Catal.B Environ.71(1),44-56.https://doi.org/10.1016/j.apcatb.2006.08.012.

    Saputra,E.,Muhammad,S.,Sun,H.,Ang,H.M.,Tad′e,M.O.,Wang,S.,2013a.Different crystallographic one-dimensional MnO2nanomaterials and their superior performance in catalytic phenol degradation.Environ.Sci.Technol.47(11),5882-5887.https://doi.org/10.1021/es400878c.

    Saputra,E.,Muhammad,S.,Sun,H.,Ang,H.,Tad′e,M.O.,Wang,S.,2013b.A comparative study of spinel structured Mn3O4,Co3O4and Fe3O4nanoparticles in catalytic oxidation of phenolic contaminants in aqueous solutions.J.Colloid Interface Sci.407,467-473.https://doi.org/10.1016/j.jcis.2013.06.061.

    Segura,Y.,Martínez,F.,Melero,J.A.,Molina,R.,Chand,R.,Bremner,D.H.,2012.Enhancement of the advanced Fenton process(Fe0/H2O2)by ultrasound for the mineralization of phenol.Appl.Catal.B Environ.113-114,100-106.https://doi.org/10.1016/j.apcatb.2011.11.024.

    Soon,A.N.,Hameed,B.H.,2011.Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process. Desalination 269(1-3), 1-16. https://doi.org/10.1016/j.desal.2010.11.002.

    Wang,H.,Zhao,Y.,Su,Y.,Li,T.,Yao,M.,Qin,C.,2017.Fenton-like degradation of 2,4-dichlorophenol using calcium peroxide particles:Performance and mechanisms.RSC Adv.7(8),4563-4571.https://doi.org/10.1039/C6RA26754H.

    Wang,N.,Zhu,L.,Lei,M.,She,Y.,Cao,M.,Tang,H.,2011.Ligand-induced drastic enhancement of catalytic activity of nano-BiFeO3for oxidative degradation of bisphenol A.ACS Catal.1(10),1193-1202.https://doi.org/10.1021/cs2002862.

    Xing,S.,Zhou,Z.,Ma,Z.,Wu,Y.,2011.Characterization and reactivity of Fe3O4/FeMnOx core/shell nanoparticles for methylene blue discoloration with H2O2.Appl.Catal.B Environ.107(3-4),386-392.https://doi.org/10.1016/j.apcatb.2011.08.002.

    Xu,L.,Wang,J.,2011.A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol.J.Hazard.Mater.186(1),256-264.https://doi.org/10.1016/j.jhazmat.2010.10.116.

    Xu,L.,Wang,J.,2012.Magnetic nanoscaled Fe3O4/CeO2composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol.Environ.Sci.Technol.46(18),10145-10153.https://doi.org/10.1021/es300303f.

    Yan,J.,Lei,M.,Zhu,L.,Anjum,M.N.,Zou,J.,Tang,H.,2011.Degradation of sulfamonomethoxine with Fe3O4magnetic nanoparticles as heterogeneous activator of persulfate.J.Hazard.Mater.186(2-3),1398-1404.https://doi.org/10.1016/j.jhazmat.2010.12.017.

    Yin,R.,Guo,W.,Zhou,X.,Zheng,H.,Du,J.,Wu,Q.,Chang,J.,Ren,N.,2016.Enhanced sulfamethoxazole ozonation by noble metal-free catalysis based on magnetic Fe3O4nanoparticles:Catalytic performance and degradation mechanism.RSC Adv.6(23),19265-19270.https://doi.org/10.1039/C5RA25994K.

    Zhang,G.,Gao,Y.,Zhang,Y.,Guo,Y.,2010.Fe2O3-pillared rectorite as an efficientand stable Fenton-like heterogeneouscatalystforphotodegradation of organic contaminants.Environ.Sci.Technol.44(16),6384-6389.https://doi.org/10.1021/es1011093.

    Zhang,S.,Zhao,X.,Niu,H.,Shi,Y.,Cai,Y.,Jiang,G.,2009.Superparamagnetic Fe3O4nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds.J.Hazard.Mater.167(1-3),560-566.https://doi.org/10.1016/j.jhazmat.2009.01.024.

    Zhang,T.,Zhu,H.,Crou′e,J.,2013.Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4spinel in water:Efficiency,stability,and mechanism.Environ.Sci.Technol.47(6),2784-2791.https://doi.org/10.1021/es304721g.

    Zhang,W.,Yang,Z.,Wang,X.,Zhang,Y.,Wen,X.,Yang,S.,2006.Largescale synthesis of β-MnO2nanorods and their rapid and efficient catalytic oxidation of methylene blue dye.Catal.Commun.7(6),408-412.https://doi.org/10.1016/j.catcom.2005.12.008.

    Zhao,Z.,Liu,J.,Cui,F.,Feng,H.,Zhang,L.,2012.One pot synthesis of tunable Fe3O4-MnO2core-shellnanoplatesandtheirapplicationsforwaterpurification.J.Mater.Chem.22(18),9052-9057.https://doi.org/10.1039/C2JM00153E.

    午夜激情福利司机影院| 日韩电影二区| 尾随美女入室| 亚洲美女黄色视频免费看| 精品午夜福利在线看| av卡一久久| 性色av一级| 久热这里只有精品99| 99视频精品全部免费 在线| 在线精品无人区一区二区三| 青春草亚洲视频在线观看| 亚洲内射少妇av| 亚洲综合色网址| 亚洲天堂av无毛| 亚洲美女视频黄频| 大片电影免费在线观看免费| 青青草视频在线视频观看| 好男人视频免费观看在线| 丰满少妇做爰视频| 中文乱码字字幕精品一区二区三区| 人妻系列 视频| 熟妇人妻不卡中文字幕| 国产日韩欧美在线精品| 久久毛片免费看一区二区三区| 国产毛片在线视频| 九九在线视频观看精品| 一本—道久久a久久精品蜜桃钙片| av卡一久久| 蜜桃久久精品国产亚洲av| 久久鲁丝午夜福利片| 在线观看免费日韩欧美大片 | 日本91视频免费播放| 国产精品.久久久| 日本午夜av视频| 综合色丁香网| 蜜桃久久精品国产亚洲av| 五月开心婷婷网| 看非洲黑人一级黄片| 最近中文字幕高清免费大全6| 韩国高清视频一区二区三区| 十八禁网站网址无遮挡| 制服诱惑二区| 在线观看免费高清a一片| 纯流量卡能插随身wifi吗| 人妻制服诱惑在线中文字幕| 日韩伦理黄色片| 亚洲,一卡二卡三卡| 日韩一区二区三区影片| 不卡视频在线观看欧美| 精品一区二区免费观看| 国产片特级美女逼逼视频| 亚洲欧美色中文字幕在线| 肉色欧美久久久久久久蜜桃| 国产亚洲午夜精品一区二区久久| 99热这里只有是精品在线观看| 考比视频在线观看| 在线观看免费日韩欧美大片 | 久久女婷五月综合色啪小说| 黑人高潮一二区| 久久国内精品自在自线图片| av黄色大香蕉| 成年美女黄网站色视频大全免费 | 免费人成在线观看视频色| 日韩,欧美,国产一区二区三区| 另类精品久久| 啦啦啦在线观看免费高清www| 亚洲国产av新网站| 午夜激情久久久久久久| 最近中文字幕高清免费大全6| 午夜91福利影院| a 毛片基地| 男人爽女人下面视频在线观看| 春色校园在线视频观看| 我要看黄色一级片免费的| 99热全是精品| 国产高清三级在线| 精品亚洲成国产av| 伊人久久精品亚洲午夜| 国产精品一区二区在线观看99| 黑丝袜美女国产一区| 亚洲欧洲国产日韩| 色视频在线一区二区三区| 国产精品国产三级国产专区5o| h视频一区二区三区| 国产毛片在线视频| 欧美人与善性xxx| 国产成人精品在线电影| 天天操日日干夜夜撸| 久久精品久久久久久噜噜老黄| 91在线精品国自产拍蜜月| 国产一级毛片在线| 国产伦理片在线播放av一区| 国产黄色免费在线视频| 亚洲欧洲日产国产| 最近中文字幕高清免费大全6| 中文乱码字字幕精品一区二区三区| 99热这里只有精品一区| 久久亚洲国产成人精品v| 国产高清不卡午夜福利| 免费观看av网站的网址| 亚洲国产精品专区欧美| 国产精品三级大全| 男男h啪啪无遮挡| 欧美精品亚洲一区二区| 国产在线一区二区三区精| 少妇的逼水好多| 我的老师免费观看完整版| 国产精品国产三级国产av玫瑰| 18禁在线无遮挡免费观看视频| 亚洲综合精品二区| 丝袜在线中文字幕| 91精品一卡2卡3卡4卡| 欧美精品一区二区大全| 国产国语露脸激情在线看| 一边亲一边摸免费视频| 亚洲精品国产色婷婷电影| 欧美 亚洲 国产 日韩一| 午夜激情久久久久久久| 日韩av不卡免费在线播放| 亚洲欧洲国产日韩| 亚洲欧洲精品一区二区精品久久久 | 新久久久久国产一级毛片| av在线老鸭窝| av视频免费观看在线观看| 国产毛片在线视频| 汤姆久久久久久久影院中文字幕| 国产 一区精品| 国产精品不卡视频一区二区| 日韩人妻高清精品专区| 少妇的逼好多水| 国产精品女同一区二区软件| 99热6这里只有精品| 国产亚洲av片在线观看秒播厂| 日韩电影二区| av专区在线播放| 国产高清不卡午夜福利| 日本午夜av视频| 国产高清国产精品国产三级| 免费日韩欧美在线观看| 欧美成人午夜免费资源| 一个人免费看片子| 2021少妇久久久久久久久久久| 国产乱来视频区| 在线观看免费视频网站a站| 看十八女毛片水多多多| 一区二区三区精品91| 少妇丰满av| 成人国产av品久久久| 高清毛片免费看| 色5月婷婷丁香| 国产成人精品无人区| 精品久久久久久电影网| 久久 成人 亚洲| 一边摸一边做爽爽视频免费| 精品视频人人做人人爽| 色94色欧美一区二区| 欧美精品一区二区大全| 亚洲激情五月婷婷啪啪| 91国产中文字幕| 在线观看免费日韩欧美大片 | 美女内射精品一级片tv| 王馨瑶露胸无遮挡在线观看| 91精品国产国语对白视频| 91在线精品国自产拍蜜月| 国产精品熟女久久久久浪| 免费黄网站久久成人精品| 亚洲性久久影院| 欧美xxⅹ黑人| 大码成人一级视频| 人妻人人澡人人爽人人| 国产亚洲av片在线观看秒播厂| 99国产综合亚洲精品| 美女国产视频在线观看| 日韩成人av中文字幕在线观看| 亚洲国产精品成人久久小说| 中文字幕制服av| 男女无遮挡免费网站观看| 一个人看视频在线观看www免费| 国产成人精品福利久久| 夫妻性生交免费视频一级片| 久久99一区二区三区| av网站免费在线观看视频| 亚洲美女黄色视频免费看| 美女国产视频在线观看| 大片电影免费在线观看免费| 国产精品欧美亚洲77777| 久久人人爽av亚洲精品天堂| 国精品久久久久久国模美| 精品国产国语对白av| 亚洲精品456在线播放app| 飞空精品影院首页| 青春草国产在线视频| 国产一级毛片在线| 亚洲av不卡在线观看| 久久久久久久大尺度免费视频| 韩国高清视频一区二区三区| 亚洲精品中文字幕在线视频| 黑人巨大精品欧美一区二区蜜桃 | 午夜激情福利司机影院| 久久精品久久久久久久性| 青春草国产在线视频| 亚洲国产成人一精品久久久| 女的被弄到高潮叫床怎么办| 亚洲国产精品国产精品| 久久久精品免费免费高清| 欧美老熟妇乱子伦牲交| 国产探花极品一区二区| 黄色一级大片看看| 99视频精品全部免费 在线| 国产免费一级a男人的天堂| 男女啪啪激烈高潮av片| 午夜av观看不卡| 精品一区二区免费观看| 在线观看三级黄色| 精品一区在线观看国产| 男男h啪啪无遮挡| 亚洲av免费高清在线观看| 久久精品国产亚洲网站| 中文字幕制服av| 青春草视频在线免费观看| 99re6热这里在线精品视频| 寂寞人妻少妇视频99o| 亚洲精品亚洲一区二区| 日本午夜av视频| 大码成人一级视频| 制服人妻中文乱码| 欧美 亚洲 国产 日韩一| 简卡轻食公司| 建设人人有责人人尽责人人享有的| 国产精品久久久久久久久免| 亚洲少妇的诱惑av| 亚洲久久久国产精品| 满18在线观看网站| 久久99精品国语久久久| 极品人妻少妇av视频| 国产日韩一区二区三区精品不卡 | 久久久久久久亚洲中文字幕| 久久久国产精品麻豆| 久久久久精品久久久久真实原创| 黄色毛片三级朝国网站| 99久久人妻综合| 国产一区二区三区综合在线观看 | 国产精品久久久久久久电影| 69精品国产乱码久久久| 少妇的逼好多水| av国产久精品久网站免费入址| 99久国产av精品国产电影| 亚洲精品第二区| 亚洲av综合色区一区| 日韩电影二区| 少妇高潮的动态图| 日韩人妻高清精品专区| 国产精品秋霞免费鲁丝片| 18禁在线播放成人免费| 99久国产av精品国产电影| 自线自在国产av| 欧美+日韩+精品| 久久久亚洲精品成人影院| 日韩av免费高清视频| 国产精品99久久99久久久不卡 | 欧美精品亚洲一区二区| 涩涩av久久男人的天堂| 午夜免费男女啪啪视频观看| 精品国产露脸久久av麻豆| av免费观看日本| 黑人欧美特级aaaaaa片| 国产在视频线精品| 成年av动漫网址| 国产免费现黄频在线看| 精品久久久久久久久亚洲| 一级毛片 在线播放| 国产综合精华液| 大香蕉97超碰在线| 狠狠精品人妻久久久久久综合| 欧美一级a爱片免费观看看| av.在线天堂| 成人黄色视频免费在线看| 免费久久久久久久精品成人欧美视频 | 久久久久久久国产电影| 国产在线视频一区二区| 免费高清在线观看视频在线观看| 国产精品人妻久久久影院| 好男人视频免费观看在线| 国产精品久久久久久精品古装| 在线播放无遮挡| 国产永久视频网站| 国产精品人妻久久久影院| 最后的刺客免费高清国语| 亚洲精品乱码久久久v下载方式| 亚洲中文av在线| 91aial.com中文字幕在线观看| 美女xxoo啪啪120秒动态图| 亚洲精品第二区| 久久精品熟女亚洲av麻豆精品| 交换朋友夫妻互换小说| 黑人猛操日本美女一级片| 97精品久久久久久久久久精品| av又黄又爽大尺度在线免费看| 亚洲高清免费不卡视频| 999精品在线视频| 精品亚洲乱码少妇综合久久| 亚洲国产精品999| 狠狠婷婷综合久久久久久88av| 亚洲国产av影院在线观看| 夫妻午夜视频| 美女国产高潮福利片在线看| 国产一区有黄有色的免费视频| 九九在线视频观看精品| 亚洲综合色惰| 能在线免费看毛片的网站| 国产亚洲一区二区精品| 熟妇人妻不卡中文字幕| a级片在线免费高清观看视频| 制服丝袜香蕉在线| 日本vs欧美在线观看视频| 精品少妇内射三级| 成年av动漫网址| 亚洲性久久影院| 国产午夜精品久久久久久一区二区三区| 日本猛色少妇xxxxx猛交久久| 少妇 在线观看| 国产在线视频一区二区| 最近最新中文字幕免费大全7| 免费日韩欧美在线观看| 日韩精品免费视频一区二区三区 | 一级毛片aaaaaa免费看小| 国产精品偷伦视频观看了| xxxhd国产人妻xxx| 欧美精品高潮呻吟av久久| 母亲3免费完整高清在线观看 | 国产高清三级在线| 最新的欧美精品一区二区| 亚洲欧美日韩卡通动漫| 18禁观看日本| 伊人亚洲综合成人网| 91精品国产国语对白视频| 一级爰片在线观看| 久久人妻熟女aⅴ| 男女高潮啪啪啪动态图| 秋霞在线观看毛片| 国产在线视频一区二区| 国产成人精品婷婷| 欧美日韩亚洲高清精品| 大话2 男鬼变身卡| 午夜免费鲁丝| 国产色婷婷99| 26uuu在线亚洲综合色| 在现免费观看毛片| 久久精品国产亚洲av涩爱| 国产亚洲午夜精品一区二区久久| 亚洲不卡免费看| 国产极品天堂在线| 欧美日韩国产mv在线观看视频| 99re6热这里在线精品视频| av又黄又爽大尺度在线免费看| 亚洲精品456在线播放app| 日本黄大片高清| av卡一久久| 亚洲性久久影院| 亚洲av福利一区| 丰满饥渴人妻一区二区三| 肉色欧美久久久久久久蜜桃| 18禁在线播放成人免费| 亚洲欧美色中文字幕在线| 一区在线观看完整版| 我要看黄色一级片免费的| 99国产精品免费福利视频| 亚洲一级一片aⅴ在线观看| 亚洲精品第二区| 人人妻人人澡人人爽人人夜夜| 日本猛色少妇xxxxx猛交久久| 精品99又大又爽又粗少妇毛片| 国产免费福利视频在线观看| 亚洲情色 制服丝袜| 精品亚洲成国产av| av在线观看视频网站免费| 亚洲欧美日韩卡通动漫| 免费看av在线观看网站| 精品熟女少妇av免费看| 久久综合国产亚洲精品| 亚洲三级黄色毛片| 亚洲天堂av无毛| av女优亚洲男人天堂| 国产一区二区三区综合在线观看 | 777米奇影视久久| 91精品国产九色| 久久久亚洲精品成人影院| 午夜91福利影院| 欧美+日韩+精品| 亚洲欧洲精品一区二区精品久久久 | 国产精品一区www在线观看| 免费av不卡在线播放| 日本爱情动作片www.在线观看| 国产成人午夜福利电影在线观看| 日韩中文字幕视频在线看片| 妹子高潮喷水视频| 最近中文字幕2019免费版| 欧美性感艳星| 欧美97在线视频| 草草在线视频免费看| 丝袜脚勾引网站| 久久女婷五月综合色啪小说| 亚洲av电影在线观看一区二区三区| 亚洲第一av免费看| 蜜臀久久99精品久久宅男| 亚洲精品国产av成人精品| 国产精品99久久久久久久久| 97超视频在线观看视频| 热re99久久精品国产66热6| 免费av不卡在线播放| 日本av手机在线免费观看| 国产乱人偷精品视频| 免费人妻精品一区二区三区视频| 亚洲av免费高清在线观看| 国产在线视频一区二区| 精品久久国产蜜桃| 九九爱精品视频在线观看| 91久久精品电影网| 国模一区二区三区四区视频| 亚洲精华国产精华液的使用体验| 国产一区二区在线观看日韩| 欧美日韩国产mv在线观看视频| 少妇被粗大的猛进出69影院 | 久久久国产欧美日韩av| 少妇被粗大猛烈的视频| 91精品国产九色| av播播在线观看一区| 99热全是精品| a级毛片在线看网站| 国产精品久久久久久精品电影小说| 夜夜看夜夜爽夜夜摸| 丝袜美足系列| 黄色一级大片看看| 黄片播放在线免费| 国产成人精品一,二区| 欧美日韩视频精品一区| 春色校园在线视频观看| av有码第一页| 国产国拍精品亚洲av在线观看| 免费看光身美女| 777米奇影视久久| 欧美成人精品欧美一级黄| 男女边摸边吃奶| 最后的刺客免费高清国语| 国产精品99久久久久久久久| av又黄又爽大尺度在线免费看| 丝袜在线中文字幕| 纵有疾风起免费观看全集完整版| 中文字幕av电影在线播放| 人妻 亚洲 视频| 亚洲美女视频黄频| 亚洲欧美日韩另类电影网站| 看免费成人av毛片| 大香蕉97超碰在线| 国产一级毛片在线| 91久久精品电影网| 一区二区三区免费毛片| 99re6热这里在线精品视频| 中文字幕最新亚洲高清| 成人综合一区亚洲| 国产一区二区在线观看av| 亚洲国产欧美日韩在线播放| 成人毛片60女人毛片免费| 亚洲欧美日韩卡通动漫| 精品视频人人做人人爽| 亚洲国产av影院在线观看| 国产精品久久久久久久久免| 亚洲精品乱码久久久久久按摩| 亚洲精品日本国产第一区| 国产精品久久久久久久电影| av国产精品久久久久影院| 免费看不卡的av| 成人国语在线视频| 亚洲精品乱码久久久v下载方式| 欧美日韩视频精品一区| 午夜激情福利司机影院| 边亲边吃奶的免费视频| 中文字幕精品免费在线观看视频 | 十八禁网站网址无遮挡| 青春草亚洲视频在线观看| 久热这里只有精品99| 国产男人的电影天堂91| 乱人伦中国视频| 少妇被粗大猛烈的视频| 欧美丝袜亚洲另类| 亚洲一区二区三区欧美精品| 亚洲欧美中文字幕日韩二区| 天堂中文最新版在线下载| 日韩免费高清中文字幕av| 欧美日韩综合久久久久久| 国产免费一区二区三区四区乱码| 国产白丝娇喘喷水9色精品| 精品少妇久久久久久888优播| 国产毛片在线视频| 亚洲av电影在线观看一区二区三区| 欧美老熟妇乱子伦牲交| 日韩强制内射视频| 人妻 亚洲 视频| a级毛片免费高清观看在线播放| 日韩欧美一区视频在线观看| 精品久久久久久久久av| 国产淫语在线视频| 一本—道久久a久久精品蜜桃钙片| av线在线观看网站| 日本色播在线视频| 国产乱来视频区| 久久热精品热| a级毛片黄视频| 交换朋友夫妻互换小说| 免费日韩欧美在线观看| 最近中文字幕2019免费版| 综合色丁香网| 国产色婷婷99| 日韩大片免费观看网站| 午夜影院在线不卡| xxx大片免费视频| 免费少妇av软件| 五月玫瑰六月丁香| 伊人久久国产一区二区| 草草在线视频免费看| 飞空精品影院首页| 国产精品国产三级专区第一集| 天堂俺去俺来也www色官网| 国产黄色免费在线视频| a级毛色黄片| 男人操女人黄网站| 亚洲国产成人一精品久久久| 免费播放大片免费观看视频在线观看| 丝瓜视频免费看黄片| 草草在线视频免费看| 亚洲精品乱码久久久v下载方式| 日日撸夜夜添| 欧美精品高潮呻吟av久久| 日本猛色少妇xxxxx猛交久久| 国产不卡av网站在线观看| 欧美性感艳星| 亚洲精品美女久久av网站| 亚洲婷婷狠狠爱综合网| www.av在线官网国产| 男男h啪啪无遮挡| 亚洲人成77777在线视频| 精品国产国语对白av| 你懂的网址亚洲精品在线观看| 在现免费观看毛片| 久久热精品热| 人妻系列 视频| 18在线观看网站| 国产日韩欧美视频二区| 国产精品国产三级专区第一集| 青春草国产在线视频| 如日韩欧美国产精品一区二区三区 | 精品国产国语对白av| 中文字幕人妻丝袜制服| 婷婷色综合www| 久久99一区二区三区| 最近2019中文字幕mv第一页| 在线观看免费日韩欧美大片 | 国产精品一区二区在线观看99| 免费观看无遮挡的男女| 夫妻性生交免费视频一级片| 校园人妻丝袜中文字幕| 18+在线观看网站| 国产精品欧美亚洲77777| 亚洲国产精品999| 亚洲精品av麻豆狂野| 久久国产精品大桥未久av| 日韩亚洲欧美综合| 国产黄色免费在线视频| 如何舔出高潮| 九九久久精品国产亚洲av麻豆| 新久久久久国产一级毛片| 日韩中文字幕视频在线看片| 精品一品国产午夜福利视频| 狂野欧美激情性xxxx在线观看| 欧美+日韩+精品| 男男h啪啪无遮挡| 熟女电影av网| 中文乱码字字幕精品一区二区三区| 亚洲av欧美aⅴ国产| 久久人人爽人人片av| 午夜av观看不卡| av线在线观看网站| 精品一区二区免费观看| 免费少妇av软件| av一本久久久久| 亚洲国产日韩一区二区| 亚洲国产最新在线播放| 在线看a的网站| 亚洲欧美一区二区三区国产| 国产精品一国产av| 午夜精品国产一区二区电影| 美女国产视频在线观看| 秋霞伦理黄片| 国产综合精华液| 欧美日本中文国产一区发布| av国产精品久久久久影院| 亚洲中文av在线| av电影中文网址| 天天操日日干夜夜撸| 天堂俺去俺来也www色官网| 最新中文字幕久久久久| 国产高清三级在线| 男女国产视频网站| 91精品三级在线观看| 丝袜美足系列| 国产女主播在线喷水免费视频网站| 一本一本综合久久| 美女大奶头黄色视频| 国产视频内射| 少妇被粗大猛烈的视频| 一级爰片在线观看| 男女国产视频网站| 日本黄色日本黄色录像| 少妇猛男粗大的猛烈进出视频| 天堂中文最新版在线下载|