• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fenton-like oxidation of azo dye in aqueous solution using magnetic Fe3O4-MnO2nanocomposites as catalysts

    2017-02-01 08:50:49ZhendongFangKaiZhangJieLiuJunyuFanZhiweiZhao
    Water Science and Engineering 2017年4期

    Zhen-dong Fang,Kai Zhang,Jie Liu,Jun-yu Fan,Zhi-wei Zhao*

    Department of National Defense Architecture Planning and Environmental Engineering,Logistical Engineering University,Chongqing 401311,China

    1.Introduction

    Refractory organic matter in natural water may cause a deficiency of oxygen,generate aquatic toxins,and have other harmful effects on living organisms(Soon and Hameed,2011).However,the traditional water treatment process cannot degrade refractory organic matter efficiently(Nidheesh,2015;Xing et al.,2011).It is necessary to develop efficient,practical,and low-cost water treatment processes for removal of refractory organic matter.

    As an advanced oxidation process,the heterogeneous Fenton process can not only produce hydroxyl radicals to oxidize organic matters rapidly(He et al.,2016;Liu et al.,2016;Zhang et al.,2009;Ramirez et al.,2007),but also overcome the drawbacks of the homogeneous Fenton process,including the production of nondisposable sludge and the narrow range of operative pH values(Hou et al.,2014;Wang et al.,2017;Munoz et al.,2015).Fe3O4(Costa et al.,2008),Fe2O3(Zhang et al.,2010),FeS2(Liu et al.,2015b),Fe0(Segura et al.,2012),CuO(Pan et al.,2015),CeO2(Gogoi et al.,2017),and MnO2(Cui et al.,2011)have all been used as heterogeneous Fenton-like catalysts.MnO2has received intense attention due to its large surface area,low cost,environmental friendliness,and high level of stability in neutral media.Moreover,MnO2of various crystal phases,including the α,β,γ,and δ types,has shown significant catalytic ability in Fenton-like reactions under neutral conditions.Zhang et al.(2006)used β-MnO2nanorods as Fenton-like catalysts to oxidize the methylene blue dye in aqueous solutions,and found that the degree of decoloration could reach 95%in only 15 min,demonstrating the high catalytic ability of β-MnO2.Kim et al.(2017)reported that the catalytic ability of MnO2was strongly related to the crystal structures,and the catalytic abilities associated with different crystal structures could be ranked in the following descending order:γ-MnO2,β-MnO2,α-MnO2,and δ-MnO2.However,due to the low apparent density of MnO2,ultrafine particles are usually formed in the water,resulting in difficulty in achieving solid-liquid separation after use.

    Fe3O4is sensitive to external magneticfields,and its structure is uniform and stable.Moreover,the high activity for activation of H2O2(Gao et al.,2007),persulfate(Yan et al.,2011),peroxymonosulfate(PMS)(Liu et al.,2017),and O3(Yin et al.,2016)due to the existence of Fe2+in the crystal has been demonstrated.Thus,Fe3O4has usually been used as supporter in composites for catalysis reaction.In our previous work,Fe3O4-MnO2core-shell nanocomposites were synthesized as PMS activators for oxidative removal of 4-chlorophenol(Liu et al.,2015a).The results showed that the core-shell nanocomposites not only activated the PMS to generate sulfate radicals efficiently,but can also be separated rapidly with external magneticfields.However,the application of Fe3O4-MnO2nanocomposites as heterogeneous Fenton catalysts has not been reported.

    In this study,Fe3O4-MnO2core-shell nanocomposites were used for thefirst time as Fenton-like catalysts for degradation of acid orange 7(AO7)in an aqueous solution.The effects of different initial conditions on the removal efficiency of AO7,including pH,catalyst dosage,oxidant dosage,and temperature,were investigated,and the catalytic mechanism was also analyzed based on the results.

    2.Experiment setup

    2.1.Materials

    All chemicals used in the experiments were analytical grade.Ferrous sulfate(FeSO4·7H2O),potassium permanganate(KMnO4),hydrochloric acid(HCl),boric acid(H3BO3),sodium tetraborate(Na2B4O7·10H2O),and sodium hydroxide(NaOH)were obtained from Xilong Chemicals,Co.,Ltd.(Shantou,China).Polyvinylpyrrolidone(PVP)K-30,tert-butyl alcohol(TBA),chloroform(CHCl3),and AO7 were purchased from Sinopharm Chemical Reagent Co.,Ltd.(Shanghai,China).

    2.2.Synthesis of catalysts

    1.668 g of FeSO4·7H2O and 1 g of PVP were dissolved in 100 mL of water and heated to 353 K.Then,6 mL of NaOH solution(2 mol/L)were added to the solution,while it was stirred.Five minutes after the addition of 10 mL of KMnO4solution(0.1 mol/L),the solution of precipitation changed from dark green to dark brown.After stirring at 353 K for 2 h,the mixture was cooled to room temperature,and then washed with ultrapure water and ethanol three times alternately.The solids were dried under a vacuum to a constant weight.

    2.3.Character of catalysts

    Scanning electron microscopy(SEM)images were obtained fromascanningelectronmicroscope(FEINovaNanoSEM450,USA).Transmission electron microscopy(TEM)images were acquiredusingatransmissionelectronmicroscope(TecnaiF20,USA)operated at 200 kV.Brunauer-Emmett-Teller(BET)surface area measurements of the samples were collected at 77 K by dinitrogen with an accelerated surface area and porosimetry system(Micrometrics ASAP 2020,USA).A vibrating sample magnetometer(VSM JDM-13,China)was used to determine the magnetic properties of the resultant samples.

    2.4.Experimental procedure

    The experiment was carried out in a 250-mL conicalflask.First,both the 25 mL of AO7 stock solution(200 mg/L)and the 9 mL of H2O2solution(with a mass fraction of 30%)were added into 50 mL of deionized water.The pH value of the solution was adjusted to 5.5 with 25-mmol/L tetraborate buffer.Then,a certain amount of catalyst with ultrasonic dispersion was added into the mixture and diluted to 100 mL.Finally,the conicalflask was placed in an air bath shaker under 303 K.A certain amount of solution was taken by a disposable syringe at afixed time during the reaction.Afterfiltration with a 0.22-μm membrane,0.5 mL of the filtrate was added to a liquid vial containing 0.5 mL of ethanol for a quantitative analysis of AO7.Concentrations of AO7 were determined by high-performance liquid chromatography(Waters 2695).The measurement of dissolved Fe and Mn ions was carried out on an inductively coupled plasma mass spectrometer(ICP-MS,Agilent 7500).

    3.Results and discussion

    3.1.Character of catalysts

    During the synthesis process,four samples were prepared withMnO2weightloadingsof10%(sample 1),15%(sample2),20%(sample 3),and 25%(sample 4).Zhao et al.(2012)demonstrated that MnO2adhered on the surface of Fe3O4in thenanocomposites,formingacore-shellnanoplate.Thetypical SEM andTEM imagesofsample3areshowninFig.1.Fig.1(a)shows that Fe3O4-MnO2nanocomposites have a uniform plate morphology.Meanwhile,Fig.1(b)showsthatamorphousMnO2adhered to the surface of Fe3O4nanoplates,forming an obvious core-shell structure.

    The BET surface area and hysteresis loop of the four samples were measured,and the obtained results are listed in Table 1.As can be seen from the results,the variation tendency of the BET surface area and saturation magnetization were similar to those of previous studies.The surface area increased with the MnO2weight loading,while the saturation magnetization of samples had a negative correlation with the MnO2weight loading.

    Table 1 Physiochemical properties of Fe3O4-MnO2magnetic nanocomposites.

    3.2.Catalytic activity of Fe3O4-MnO2nanocomposites

    The removal efficiency of AO7 in different reaction systems was investigated under the conditions of a pH value of 5.5,a temperature of 303 K,an initial AO7 concentration of 50 mg/L,a catalyst dosage of 0.6 g/L,and an H2O2dosage of 9 mL.The experimental results are shown in Fig.2,where C is the AO7 concentration,and C0is the initial AO7 concentration.Fig.2 shows that,when the Fe3O4-MnO2nanocomposites alone are added,the AO7 concentration in the solution does not change significantly over 120 min,which indicates that the Fe3O4-MnO2nanocomposites have little adsorption capacity for AO7.When the reaction system of Fe3O4/H2O2was used,the AO7 concentration decreased to 40.8 mg/L after 120 min,and the removal efficiency was 18.4%.In the reaction system of MnO2/H2O2,the removal efficiency of AO7 was much higher than that of the Fe3O4/H2O2system,and the removal efficiency was 79.2%over 120 min.When the Fenton catalyst was changed to Fe3O4-MnO2nanocomposites,the removal efficiency of AO7 was greatly improved.When the reaction time was 120 min,the concentration of AO7 was only 1.6 mg/L and the removal efficiency was 96.8%.Based on these results,the catalytic ability of Fe3O4-MnO2nanocomposites is higher than that of the two single components as catalysts,which indicates that there is a synergetic effect between Fe3O4and MnO2in the Fe3O4-MnO2nanocomposites,significantly enhancing the catalytic capacity of Fe3O4-MnO2nanocomposites.

    Fig.2.Degradation of AO7 in different systems.

    3.3.Optimization of different MnO2weight loadings of Fe3O4-MnO2nanocomposites

    For Fe3O4-MnO2core-shell nanocomposites,a higher Fe/Mn molar ratio means a lesser thickness of the shell MnO2.For a H2O2catalytic reaction at near-neutral pH conditions,the catalytic ability of MnO2is stronger than that of Fe3O4,so the nanocomposites with greater MnO2weight loading may have a greater catalytic ability.In the experiment,four kinds of Fe3O4-MnO2core-shell materials with various MnO2weight loadings were synthesized and compared in terms of their catalytic ability.In the experiment,the catalyst dosage was 600 mg/L,the H2O2dosage was 9 mL,the temperature was 303 K,the initial AO7 concentration was 50 mg/L,and the pH value was 5.5.

    Fig.3.Influence of Fe3O4-MnO2core-shell nanocomposites with various MnO2weight loadings on degradation of AO7.

    Table 2 Reaction rates calculated from Fig.3.

    The experimental results are shown in Fig.3,and the reaction rates calculated from Fig.3 are listed in Table 2,where R2is the coefficient of determination.The results show that the removal efficiency of AO7 was lowest when the MnO2weight loading was 10%.Meanwhile,the removal efficiency of AO7 increased when the MnO2weight loading increased.When the MnO2weight loading increased from 10%to 20%,the reaction rate increased from 0.0080 min-1to 0.0265 min-1,and the removal efficiency of AO7 increased from 59.2%to 96.8%.However,when the MnO2weight loading increased from 20%to 25%,the reaction rate of AO7 increased gradually from 0.0265 min-1to 0.0297 min-1,and the removal efficiency increased from 96.8%to 98.0%.The results show that the catalytic ability of Fe3O4-MnO2core-shell nanocomposites is enhanced with the increase of MnO2weight loading.On the other hand,the increase of the MnO2weight loading from 20%to 25%leads to a slight growth in the reaction rate.

    Our previous study showed that the complex Fe-Mn oxides between Fe3O4and MnO2in the Fe3O4-MnO2core-shell nanocomposites had greater catalytic ability than single components(Liu et al.,2015a).When the MnO2weight loading is low,the surface of Fe3O4is not completely covered by MnO2,and the amount of complex Fe-Mn oxides is less.With the increase of the MnO2weight loading,the interaction between Fe3O4and MnO2increases,so when the MnO2weight loading increases from 10%to 20%,the catalytic ability increases.At MnO2weight loading of 20%,the surface of Fe3O4may be completely covered by MnO2.When the content of MnO2further increases,the shell of MnO2thickens,which increases the number of active sites but hinders the contact between the Fe3O4core and the complex Fe-Mn oxides and H2O2,so the catalytic ability of nanocomposites with MnO2weight loading of 25%shows little growth compared with those with MnO2weight loading of 20%.Therefore,the optimal MnO2weight loading is 20%.In the experiments described below,nanocomposites with MnO2weight loading of 20%were used as catalysts.

    3.4.Effects of parameters on catalytic ability of Fe3O4-MnO2/H2O2system

    The effects of catalyst dosage,oxidant dosage,temperature,and initial pH on the removal efficiency of AO7 in the Fe3O4-MnO2/H2O2system were also investigated.

    In the experiment regarding catalyst dosage,the H2O2dosage was 9 mL,the initial pH value was 5.5,the temperature was 303 K,the initial AO7 concentration was 50 mg/L,and the dosages of the catalysts were 0.2,0.4,0.6,and 0.8 g/L,respectively.The experimental results are shown in Fig.4,and the reaction rates calculated from Fig.4 are listed in Table 3.

    As can be seen from the results provided above,the reaction rate of AO7 was 0.014 min-1when the catalyst dosage was 0.2 g/L.When the dosage reached 0.6 g/L,the reaction rate increased to 0.0265 min-1.However,when the dosage increased to 0.8 g/L,the reaction rate decreased to 0.0215 min-1.The main reason is that when the catalyst dosage is less than 0.6 g/L,the increase of the catalyst dosage cannot increase the number of active sites in the system,resulting in increases in the decomposition of H2O2and the generation of hydroxyl radicals,which are favorable for the degradation of AO7.When the catalyst dosage is further increased,the collision probability of the nanoparticles in the solution is greatly increased,which causes the nanoparticles to gradually agglomerate and obscures some active sites(Zhang et al.,2013).On the other hand,the increase of the solid particles also affects the mass transfer rates of H2O2and AO7 in the solution(Xu and Wang,2011),thus leading to a decrease in the catalytic ability.

    Fig.4.Influence of catalyst dosage on degradation of AO7.

    Table 3 Reaction rates calculated from Fig.4.

    For the Fenton system,the dosage of H2O2should be moderate,because the deficiency of the oxidant dosage may impede the complete degradation of the pollutants.In addition,as the dosage is too large,the generated hydroxyl radicals will continue to react with H2O2,leading to a decrease in the pollutant removal efficiency(Luo et al.,2010).In the experiment,the effects of the H2O2dosage on the removal effi-ciency of AO7 were investigated.The reaction conditions were as follows:the catalyst dosage was 600 mg/L,the temperature was 303 K,the initial AO7 concentration was 50 mg/L,and the pH value was 5.5.The experimental results are shown in Fig.5.When the H2O2dosage was between 3 and 9 mL,the increase of H2O2dosage increased the removal efficiency of AO7.When the dosage of H2O2increased from 9 to 15 mL,the removal efficiency of AO7 showed a slight increase,indicating that some H2O2may become a radical quencher,leading to a weak rise in the AO7 removal efficiency.

    The pH of the solution has a strong influence on the Fenton reaction system(Pignatello et al.,2006).The degradation of AO7 with the initial pH values of 3.5,5.5,and 7.5 was investigated.Other reaction conditions were as follows:the catalyst dosage was 600 mg/L,the H2O2dosage was 9 mL,the temperature was 303 K,and the initial AO7 concentration was 50 mg/L.The removal efficiency of AO7 was highest at the initial pH value of 3.5,and reached 90.4%at 15 min(Fig.6).When the initial pH values of the solution were 5.5 and 7.5,the removal efficiencies of AO7 over 120 min were 96.8%and 77.2%,respectively.It can be seen that a lower pH leads to greater degradation of AO7.However,AO7 can be degraded efficiently over a wide range of pH,showing that the reaction system is suitable for application in practical engineering.

    Fig.5.Influence of H2O2dosage on degradation of AO7.

    Fig.6.Influence of pH on degradation of AO7.

    The reaction temperature is a critical factor in the Fenton process,because a higher temperature can enhance the reaction rate(Saputra et al.,2013a).Therefore,the effect of temperature on AO7 degradation was investigated and the results are shown in Fig.7 and Fig.8.The reaction conditions were as follows:the catalyst dosage was 600 mg/L,the H2O2dosage was 9 mL,the initial AO7 concentration was 50 mg/L,and the pH value was 5.5.It can be seen that the effect of temperature on the reaction rate and AO7 removal efficiency was positive.The removal efficiency was 97.2%over 90 min and the reaction rate was 0.0381 min-1when the reaction temperature was 313 K,much higher than the result when it was 293 K.The activation energy of the reaction system calculated from the data in Fig.8 was 31.47 kJ/mol,revealing that the chemical reaction rate was the limiting factor in the Fe3O4-MnO2/H2O2system rather than mass transfer(Xu and Wang,2012).

    3.5.Stability test

    Fig.7.Effects of temperature on degradation of AO7.

    Fig.8.Relationship between lnk and 1/T.

    The stability and reusability of the Fe3O4-MnO2nanocomposites were evaluated through cycle catalytic reactions.The reaction conditions were as follows:the catalyst dosage was 600 mg/L,the H2O2dosage was 9 mL,the temperature was 303 K,the initial AO7 concentration was 50 mg/L,and the pH value was 5.5.After each reaction,the used catalysts were washed with pure water and added into the system.The results are shown in Fig.9.As can be seen,with the increase of the number of cycle runs,the removal efficiency of AO7 decreased slightly.After seven runs,the removal efficiency of AO7 decreased from 96.8%to 83.1%,while the removal efficiency of total organic carbon(TOC)decreased from 46.5%to 31.6%.Both of these changes demonstrated the stability of Fe3O4-MnO2nanocomposites in the heterogeneous Fenton process.In addition,the decrease of the removal efficiency of AO7 may have been due to the adsorption of intermediates on the surface of catalysts(Saputra et al.,2013b).On the other hand,no detectable Fe and Mn ions appeared in any of the seven runs.These results demonstrate the stability of the Fe3O4-MnO2nanocomposites in the heterogeneous Fenton process.

    3.6.Mechanism of catalysis

    In order to explore the species of generated radicals during the catalytic reactions,radical quenching experiments were carried out.TBA was used as a scavenger of hydroxyl radicals(with a reaction rate of 5.2 × 108L/(mol·s))(Huang et al.,2015),while chloroform was used as an O2·-scavenger(with a reaction rate of 3 × 1010L/(mol·s))(Wang et al.,2011).The reaction conditions were as follows:the catalyst dosage was 600 mg/L,the H2O2dosage was 9 mL,the temperature was 303 K,the initial AO7 concentration was 50 mg/L,and the pH value was 5.5.As shown in Fig.10(a),compared with the removal efficiency of 96.8%in the absence of a scavenger,the removal efficiency of AO7 decreased to 67.6%and 36.3%with the addition of TBA into the system from 2 mmo/L to 4 mmol/L.The results show that HO·was generated in the catalytic reaction and was the dominant reactive oxygen species for the AO7 degradation.Meanwhile,the results shown in Fig.10(b)demonstrate that the addition of chloroform into the system had little influence on the AO7 removal.O2·-was produced in the reaction but its role in the AO7 degradation was limited.

    Fig.9.Stability of Fe3O4-MnO2core-shell nanocomposites in repeated batch AO7 and TOC degradation experiments.

    Fig.10.Influence of two radical scavengers on degradation of AO7.

    Based on the results and studies reported by Jaafarzadeh et al.(2015),a catalytic mechanism is proposed(Fig.11).

    First,H2O2is adsorbed onto the surface of catalysts(Eq.(1)),and then it generates HO2·,while≡Mn4+is reduced to ≡Mn2+(Eq.(2)).Meanwhile,≡Fe3+in Fe3O4can be reduced to≡Fe2+by H2O2and generate HO2·(Eq.(3)).The generated≡Fe2+can obtain electrons from≡Mn4+for transfer to≡Fe3+(Eq.(4)),while≡Mn4+is transferred to≡Mn2+.Furthermore,≡Mn2+species may adhere to H2O2and be oxidized to≡Mn4+(Eq.(5)),while HO·is released into the solution.The HO2· in the solution may decompose to H+and O2·-(Eq.(6)).Meanwhile,HO·can oxidize AO7 to generate intermediate(Eq.(7)).

    4.Conclusions

    Fe3O4-MnO2core-shell nanocomposites were prepared and used for thefirst time as a heterogeneous Fenton catalyst for catalytic oxidation of AO7 in an aqueous solution.The experimental results showed that Fe3O4-MnO2nanocomposites had a greater catalytic ability than Fe3O4or MnO2used alone.The removal efficiency of AO7 was 96.8%over 120 min.The Fe3O4-MnO2nanocomposites had the greatest catalytic ability when used with a MnO2weight loading of 20%.Catalystdosage,H2O2dosage,initialpH,and temperature of the reaction had strong effects on the AO7 degradation.The chemical reaction rate was the limiting factor in the Fe3O4-MnO2/H2O2system rather than mass transfer according to thermodynamic calculation.The Fe3O4-MnO2nanocomposites showed a high degree of stability and reusability.The hydroxyl radicals were the main radicals in the catalytic system.Based on the experimental results and studies,a mechanism for the reaction process in the Fe3O4-MnO2/H2O2system has been proposed.

    Costa,R.C.C.,Moura,F.C.C.,Ardisson,J.D.,Fabris,J.D.,Lago,R.M.,2008.Highly active heterogeneous Fenton-like systems based on Fe0/Fe3O4composites prepared by controlled reduction of iron oxides.Appl.Catal.B Environ.83,131-139.https://doi.org/10.1016/j.apcatb.2008.01.039.

    Cui,H.,Huang,H.,Fu,M.,Yuan,B.,Pearl,W.,2011.Facile synthesis and catalytic properties of single crystalline β-MnO2nanorods.Catal.Commun.12(14),1339-1343.https://doi.org/10.1016/j.catcom.2011.05.013.

    Gao,L.,Zhuang,J.,Nie,L.,Zhang,J.,Zhang,Y.,Gu,N.,Wang,T.,Feng,J.,Yang,D.,Perrett,S.,Yan,X.,2007.Intrinsic peroxidase-like activity of ferromagnetic nanoparticles.Nat.Nanotechnol.2(9),577-583.https://doi.org/10.1038/nnano.2007.260.

    Gogoi,A.,Navgire,M.,Sarma,K.C.,Gogoi,P.,2017.Fe3O4-CeO2metal oxide nanocomposite as a Fenton-like heterogeneous catalyst for degradation of catechol.Chem.Eng.J.311,153-162.https://doi.org/10.1016/j.cej.2016.11.086.

    He,J.,Yang,X.,Men,B.,Wang,D.,2016.Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials:A review.J.Environ.Sci.39,97-109.https://doi.org/10.1016/j.jes.2015.12.003.

    Hou,L.,Zhang,Q.,J′er^ome,F.,Duprez,D.,Zhang,H.,Royer,S.,2014.Shapecontrolled nanostructured magnetite-type materials as highly efficient Fenton catalysts.Appl.Catal.B Environ.144,739-749.https://doi.org/10.1016/j.apcatb.2013.07.072.

    Huang,R.,Liu,Y.,Chen,Z.,Pan,D.,Li,Z.,Wu,M.,Shek,C.,Wu,C.M.L.,Lai,J.K.L.,2015.Fe-species-loaded mesoporous MnO2superstructural requirements for enhanced catalysis.ACS Appl.Mater.Interfaces 7(7),3949-3959.https://doi.org/10.1021/am505989j.

    Jaafarzadeh,N.,Kakavandi,B.,Takdastan,A.,Kalantary,R.R.,Azizi,M.,Jorfi,S.,2015.Powder activated carbon/Fe3O4hybrid composite as a highly efficient heterogeneous catalyst for Fenton oxidation of tetracycline:Degradation mechanism and kinetic.RSC Adv.5(103),84718-84728.https://doi.org/10.1039/C5RA17953J.

    Kim,E.,Oh,D.,Lee,C.,Gong,J.,Kim,J.,Chang,Y.,2017.Manganese oxide nanorods as a robust Fenton-like catalyst at neutral pH:Crystal phasedependent behavior.Catal.Today 282,71-76.https://doi.org/10.1016/j.cattod.2016.03.034.

    Liu,J.,Zhao,Z.,Shao,P.,Cui,F.,2015a.Activation of peroxymonosulfate with magnetic Fe3O4-MnO2core-shell nanocomposites for 4-chlorophenol degradation.Chem.Eng.J.262,854-861.

    Liu,J.,Zhao,Z.,Ding,Z.,Fang,Z.,Cui,F.,2016.Degradation of 4-chlorophenol in a Fenton-like system using Au-Fe3O4magnetic nanocomposites as the heterogeneous catalyst at near neutral conditions.RSC Adv.6(58),53080-53088.https://doi.org/10.1039/C6RA10929B.

    Liu,J.,Zhou,J.,Ding,Z.,Zhao,Z.,Xu,X.,Fang,Z.,2017.Ultrasound irritation enhanced heterogeneous activation of peroxymonosulfate with Fe3O4for degradation of azo dye.Ultrason.Sonochemistry 34,953-959.https://doi.org/10.1016/j.ultsonch.2016.08.005.

    Liu,W.,Wang,Y.,Ai,Z.,Zhang,L.,2015b.Hydrothermal synthesis of FeS2as a high-efficiency Fenton reagent to degrade alachlor via superoxidemediated Fe(II)/Fe(III)cycle.ACS Appl.Mater.Interfaces 7(51),28534-28544.https://doi.org/10.1021/acsami.5b09919.

    Luo,W.,Zhu,L.,Wang,N.,Tang,H.,Cao,M.,She,Y.,2010.Efficient removal of organic pollutants with magnetic nanoscaled BiFeO3as a reusable heterogeneous Fenton-like catalyst.Environ.Sci.Technol.44(5),1786-1791.https://doi.org/10.1021/es903390g.

    Munoz,M.,de Pedro,Z.M.,Casas,J.A.,Rodriguez,J.J.,2015.Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation:A review.App.Catal.B:Environ.176-177,249-265.https://doi.org/10.1016/j.apcatb.2015.04.003.

    Nidheesh,P.V.,2015.Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution:A review.RSC Adv.5(51),40552-40577.https://doi.org/10.1039/C5RA02023A.

    Pan,W.,Zhang,G.,Zheng,T.,Wang,P.,2015.Degradation of p-nitrophenol using CuO/Al2O3as a Fenton-like catalyst under microwave irradiation.RSC Adv.5(34),27043-27051.https://doi.org/10.1039/C4RA14516J.

    Pignatello,J.J.,Oliveros,E.,MacKay,A.,2006.Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry.Crit.Rev.Environ.Sci.Technol.36(1),1-84.https://doi.org/10.1080/10643380500326564.

    Ramirez,J.H.,Costa,C.A.,Madeira,L.M.,Mata,G.,Vicente,M.A.,Rojas-Cervantes,M.L.,Martín-Aranda,R.M.,2007.Fenton-like oxidation of Orange II solutions using heterogeneous catalysts based on saponite clay.Appl.Catal.B Environ.71(1),44-56.https://doi.org/10.1016/j.apcatb.2006.08.012.

    Saputra,E.,Muhammad,S.,Sun,H.,Ang,H.M.,Tad′e,M.O.,Wang,S.,2013a.Different crystallographic one-dimensional MnO2nanomaterials and their superior performance in catalytic phenol degradation.Environ.Sci.Technol.47(11),5882-5887.https://doi.org/10.1021/es400878c.

    Saputra,E.,Muhammad,S.,Sun,H.,Ang,H.,Tad′e,M.O.,Wang,S.,2013b.A comparative study of spinel structured Mn3O4,Co3O4and Fe3O4nanoparticles in catalytic oxidation of phenolic contaminants in aqueous solutions.J.Colloid Interface Sci.407,467-473.https://doi.org/10.1016/j.jcis.2013.06.061.

    Segura,Y.,Martínez,F.,Melero,J.A.,Molina,R.,Chand,R.,Bremner,D.H.,2012.Enhancement of the advanced Fenton process(Fe0/H2O2)by ultrasound for the mineralization of phenol.Appl.Catal.B Environ.113-114,100-106.https://doi.org/10.1016/j.apcatb.2011.11.024.

    Soon,A.N.,Hameed,B.H.,2011.Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process. Desalination 269(1-3), 1-16. https://doi.org/10.1016/j.desal.2010.11.002.

    Wang,H.,Zhao,Y.,Su,Y.,Li,T.,Yao,M.,Qin,C.,2017.Fenton-like degradation of 2,4-dichlorophenol using calcium peroxide particles:Performance and mechanisms.RSC Adv.7(8),4563-4571.https://doi.org/10.1039/C6RA26754H.

    Wang,N.,Zhu,L.,Lei,M.,She,Y.,Cao,M.,Tang,H.,2011.Ligand-induced drastic enhancement of catalytic activity of nano-BiFeO3for oxidative degradation of bisphenol A.ACS Catal.1(10),1193-1202.https://doi.org/10.1021/cs2002862.

    Xing,S.,Zhou,Z.,Ma,Z.,Wu,Y.,2011.Characterization and reactivity of Fe3O4/FeMnOx core/shell nanoparticles for methylene blue discoloration with H2O2.Appl.Catal.B Environ.107(3-4),386-392.https://doi.org/10.1016/j.apcatb.2011.08.002.

    Xu,L.,Wang,J.,2011.A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol.J.Hazard.Mater.186(1),256-264.https://doi.org/10.1016/j.jhazmat.2010.10.116.

    Xu,L.,Wang,J.,2012.Magnetic nanoscaled Fe3O4/CeO2composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol.Environ.Sci.Technol.46(18),10145-10153.https://doi.org/10.1021/es300303f.

    Yan,J.,Lei,M.,Zhu,L.,Anjum,M.N.,Zou,J.,Tang,H.,2011.Degradation of sulfamonomethoxine with Fe3O4magnetic nanoparticles as heterogeneous activator of persulfate.J.Hazard.Mater.186(2-3),1398-1404.https://doi.org/10.1016/j.jhazmat.2010.12.017.

    Yin,R.,Guo,W.,Zhou,X.,Zheng,H.,Du,J.,Wu,Q.,Chang,J.,Ren,N.,2016.Enhanced sulfamethoxazole ozonation by noble metal-free catalysis based on magnetic Fe3O4nanoparticles:Catalytic performance and degradation mechanism.RSC Adv.6(23),19265-19270.https://doi.org/10.1039/C5RA25994K.

    Zhang,G.,Gao,Y.,Zhang,Y.,Guo,Y.,2010.Fe2O3-pillared rectorite as an efficientand stable Fenton-like heterogeneouscatalystforphotodegradation of organic contaminants.Environ.Sci.Technol.44(16),6384-6389.https://doi.org/10.1021/es1011093.

    Zhang,S.,Zhao,X.,Niu,H.,Shi,Y.,Cai,Y.,Jiang,G.,2009.Superparamagnetic Fe3O4nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds.J.Hazard.Mater.167(1-3),560-566.https://doi.org/10.1016/j.jhazmat.2009.01.024.

    Zhang,T.,Zhu,H.,Crou′e,J.,2013.Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4spinel in water:Efficiency,stability,and mechanism.Environ.Sci.Technol.47(6),2784-2791.https://doi.org/10.1021/es304721g.

    Zhang,W.,Yang,Z.,Wang,X.,Zhang,Y.,Wen,X.,Yang,S.,2006.Largescale synthesis of β-MnO2nanorods and their rapid and efficient catalytic oxidation of methylene blue dye.Catal.Commun.7(6),408-412.https://doi.org/10.1016/j.catcom.2005.12.008.

    Zhao,Z.,Liu,J.,Cui,F.,Feng,H.,Zhang,L.,2012.One pot synthesis of tunable Fe3O4-MnO2core-shellnanoplatesandtheirapplicationsforwaterpurification.J.Mater.Chem.22(18),9052-9057.https://doi.org/10.1039/C2JM00153E.

    成人亚洲精品av一区二区| 又爽又黄无遮挡网站| 午夜激情欧美在线| 日本在线视频免费播放| 日韩大尺度精品在线看网址| 亚洲欧美精品综合一区二区三区| 久久精品人妻少妇| 欧美在线黄色| 长腿黑丝高跟| 日本免费a在线| 成年人黄色毛片网站| 特大巨黑吊av在线直播| 国产高清三级在线| 中文字幕高清在线视频| 国产精品久久久久久久电影 | 两个人的视频大全免费| 亚洲乱码一区二区免费版| 草草在线视频免费看| 九色成人免费人妻av| 欧美日韩乱码在线| 俺也久久电影网| av女优亚洲男人天堂 | 午夜视频精品福利| 欧美+亚洲+日韩+国产| 亚洲自拍偷在线| 巨乳人妻的诱惑在线观看| 久久天堂一区二区三区四区| 天堂动漫精品| 性色av乱码一区二区三区2| 免费人成视频x8x8入口观看| 黄片大片在线免费观看| 国产真实乱freesex| 夜夜夜夜夜久久久久| 国产激情久久老熟女| 亚洲欧美日韩高清在线视频| 亚洲国产日韩欧美精品在线观看 | 亚洲电影在线观看av| 日韩欧美一区二区三区在线观看| 黄片大片在线免费观看| 国产av麻豆久久久久久久| 国产午夜福利久久久久久| 黄色女人牲交| 久久久水蜜桃国产精品网| 在线免费观看的www视频| 国产精品 欧美亚洲| 亚洲欧美日韩东京热| 国产精品99久久99久久久不卡| 亚洲中文字幕一区二区三区有码在线看 | 日日摸夜夜添夜夜添小说| 99国产精品一区二区三区| 在线观看舔阴道视频| 激情在线观看视频在线高清| 日本黄色视频三级网站网址| 搡老岳熟女国产| 亚洲精品美女久久av网站| 久久中文字幕人妻熟女| 亚洲七黄色美女视频| 三级毛片av免费| 亚洲av中文字字幕乱码综合| 国产成人系列免费观看| 日韩av在线大香蕉| 国产综合懂色| 91字幕亚洲| 国产亚洲欧美在线一区二区| 亚洲一区高清亚洲精品| 国产伦一二天堂av在线观看| 热99在线观看视频| 好男人在线观看高清免费视频| 91老司机精品| 午夜福利高清视频| 观看美女的网站| 少妇的丰满在线观看| 99国产精品一区二区三区| 啦啦啦免费观看视频1| 91久久精品国产一区二区成人 | 久久久久久久久免费视频了| 国产精品影院久久| 日日干狠狠操夜夜爽| 欧美日韩亚洲国产一区二区在线观看| 动漫黄色视频在线观看| 国产三级黄色录像| 少妇的丰满在线观看| 757午夜福利合集在线观看| 国产不卡一卡二| 91久久精品国产一区二区成人 | 精品久久久久久久人妻蜜臀av| 18禁观看日本| 亚洲欧美一区二区三区黑人| 国产精品永久免费网站| ponron亚洲| 国产精品日韩av在线免费观看| 很黄的视频免费| 人人妻人人看人人澡| 久久久久亚洲av毛片大全| 成在线人永久免费视频| 成人18禁在线播放| 国内精品美女久久久久久| 国产精品九九99| x7x7x7水蜜桃| 国产精品国产高清国产av| 九九久久精品国产亚洲av麻豆 | www日本在线高清视频| 最新中文字幕久久久久 | 国产精品99久久久久久久久| 日韩欧美一区二区三区在线观看| 久99久视频精品免费| 久久久久久久久中文| 日韩成人在线观看一区二区三区| 国产精品久久视频播放| 国产伦精品一区二区三区四那| 日韩精品青青久久久久久| 国产精品自产拍在线观看55亚洲| 欧洲精品卡2卡3卡4卡5卡区| 国产高清视频在线播放一区| 制服丝袜大香蕉在线| 熟女少妇亚洲综合色aaa.| av天堂中文字幕网| 欧美一区二区国产精品久久精品| 老司机福利观看| 一二三四在线观看免费中文在| 国产精品一及| aaaaa片日本免费| 免费看光身美女| 国产蜜桃级精品一区二区三区| 一本久久中文字幕| 日日摸夜夜添夜夜添小说| 免费看a级黄色片| 51午夜福利影视在线观看| 久久草成人影院| 老司机在亚洲福利影院| 国产成年人精品一区二区| 99久久国产精品久久久| 亚洲色图av天堂| 91麻豆精品激情在线观看国产| 1024手机看黄色片| 免费在线观看视频国产中文字幕亚洲| 日韩欧美三级三区| 亚洲成a人片在线一区二区| 亚洲欧美日韩东京热| 欧美午夜高清在线| 亚洲人成伊人成综合网2020| 小说图片视频综合网站| 舔av片在线| 欧美极品一区二区三区四区| 1000部很黄的大片| 亚洲av第一区精品v没综合| 欧美中文综合在线视频| av在线蜜桃| 亚洲狠狠婷婷综合久久图片| 日韩欧美国产在线观看| 精品人妻1区二区| 69av精品久久久久久| 午夜久久久久精精品| 国产爱豆传媒在线观看| a级毛片在线看网站| 日本一本二区三区精品| 18禁黄网站禁片免费观看直播| 丝袜人妻中文字幕| 在线观看舔阴道视频| 国产伦精品一区二区三区视频9 | 久久久久精品国产欧美久久久| 黄色 视频免费看| 国产精品精品国产色婷婷| 99久久综合精品五月天人人| 男人舔女人的私密视频| 中亚洲国语对白在线视频| 精品一区二区三区av网在线观看| 亚洲国产精品999在线| 99riav亚洲国产免费| 国产精品电影一区二区三区| 一a级毛片在线观看| 午夜福利视频1000在线观看| 国产免费男女视频| 久久婷婷人人爽人人干人人爱| av视频在线观看入口| xxxwww97欧美| 两人在一起打扑克的视频| 成年女人毛片免费观看观看9| 黑人操中国人逼视频| 日本精品一区二区三区蜜桃| 亚洲五月婷婷丁香| 日韩欧美国产在线观看| 日本成人三级电影网站| 亚洲美女视频黄频| 久久久久久久精品吃奶| 熟女少妇亚洲综合色aaa.| 欧美激情久久久久久爽电影| 巨乳人妻的诱惑在线观看| 亚洲精品中文字幕一二三四区| 国产亚洲欧美98| 久久精品亚洲精品国产色婷小说| 欧美又色又爽又黄视频| 亚洲av日韩精品久久久久久密| 欧美中文日本在线观看视频| 国产亚洲av高清不卡| 国产一区二区三区在线臀色熟女| 精品一区二区三区av网在线观看| 啦啦啦免费观看视频1| 后天国语完整版免费观看| 亚洲专区字幕在线| 九色成人免费人妻av| 亚洲av电影不卡..在线观看| 国产男靠女视频免费网站| 嫩草影院入口| 国产精品亚洲美女久久久| 国产精品,欧美在线| 久久这里只有精品19| 亚洲专区国产一区二区| 搡老妇女老女人老熟妇| 在线国产一区二区在线| 国产欧美日韩精品亚洲av| 中出人妻视频一区二区| 国产精品影院久久| 日韩高清综合在线| www日本在线高清视频| 老汉色av国产亚洲站长工具| 亚洲国产精品久久男人天堂| 男人舔奶头视频| 精品久久久久久久末码| 亚洲va日本ⅴa欧美va伊人久久| 黄片小视频在线播放| aaaaa片日本免费| 熟女电影av网| 欧美在线一区亚洲| 一本综合久久免费| 女生性感内裤真人,穿戴方法视频| 精品久久久久久成人av| 亚洲真实伦在线观看| 欧美xxxx黑人xx丫x性爽| 人人妻人人看人人澡| 91麻豆精品激情在线观看国产| 日本黄色片子视频| 欧美+亚洲+日韩+国产| 丝袜人妻中文字幕| 亚洲色图av天堂| 午夜福利免费观看在线| 日韩大尺度精品在线看网址| 国产私拍福利视频在线观看| 色av中文字幕| 欧美日本亚洲视频在线播放| 一进一出抽搐动态| 亚洲中文字幕一区二区三区有码在线看 | 中出人妻视频一区二区| av天堂在线播放| 久久久久九九精品影院| 国内精品一区二区在线观看| 香蕉丝袜av| 淫妇啪啪啪对白视频| 中文字幕人成人乱码亚洲影| 国产视频内射| 成人国产一区最新在线观看| 午夜精品久久久久久毛片777| 国产精品98久久久久久宅男小说| 亚洲七黄色美女视频| 国产精品野战在线观看| 亚洲av成人av| 黑人欧美特级aaaaaa片| 色综合亚洲欧美另类图片| 又爽又黄无遮挡网站| 国产高清视频在线播放一区| 一本一本综合久久| 亚洲电影在线观看av| 91久久精品国产一区二区成人 | 在线观看66精品国产| 叶爱在线成人免费视频播放| 欧美高清成人免费视频www| 久久久久久久久久黄片| 国产高清videossex| 少妇人妻一区二区三区视频| 成年免费大片在线观看| ponron亚洲| 久久久久九九精品影院| 欧美日韩综合久久久久久 | 欧美最黄视频在线播放免费| 岛国视频午夜一区免费看| 国产激情久久老熟女| av中文乱码字幕在线| 真人一进一出gif抽搐免费| 一二三四在线观看免费中文在| 欧美日韩乱码在线| 国产伦在线观看视频一区| 国产黄a三级三级三级人| 天堂影院成人在线观看| 久久亚洲精品不卡| 欧美日韩亚洲国产一区二区在线观看| 精华霜和精华液先用哪个| 三级毛片av免费| 身体一侧抽搐| 又大又爽又粗| 成人国产综合亚洲| av视频在线观看入口| 在线观看舔阴道视频| 床上黄色一级片| 观看免费一级毛片| 亚洲,欧美精品.| 精品久久久久久成人av| 最新中文字幕久久久久 | 又粗又爽又猛毛片免费看| 亚洲成av人片免费观看| 亚洲精品在线美女| 一本久久中文字幕| 日韩中文字幕欧美一区二区| 亚洲精品久久国产高清桃花| 国产乱人伦免费视频| 天天添夜夜摸| 欧洲精品卡2卡3卡4卡5卡区| 欧美绝顶高潮抽搐喷水| 欧美最黄视频在线播放免费| 三级国产精品欧美在线观看 | 亚洲欧美激情综合另类| 成人一区二区视频在线观看| 午夜福利高清视频| а√天堂www在线а√下载| 五月玫瑰六月丁香| 亚洲人成伊人成综合网2020| 亚洲av五月六月丁香网| 国产一区二区在线av高清观看| 亚洲avbb在线观看| av在线蜜桃| 搡老妇女老女人老熟妇| 亚洲欧美日韩高清在线视频| 午夜福利18| www.www免费av| netflix在线观看网站| 久久这里只有精品中国| 成人性生交大片免费视频hd| 亚洲最大成人中文| 十八禁网站免费在线| 免费看日本二区| 1000部很黄的大片| 男女之事视频高清在线观看| 精品久久久久久久久久免费视频| 女人高潮潮喷娇喘18禁视频| 中国美女看黄片| 黑人操中国人逼视频| 国产91精品成人一区二区三区| 日本撒尿小便嘘嘘汇集6| 午夜免费观看网址| 久久久久性生活片| 中文亚洲av片在线观看爽| 俄罗斯特黄特色一大片| 午夜福利成人在线免费观看| 精品电影一区二区在线| 99久久无色码亚洲精品果冻| 国产精品野战在线观看| 久久99热这里只有精品18| 免费在线观看亚洲国产| 亚洲成人免费电影在线观看| 少妇裸体淫交视频免费看高清| 男女那种视频在线观看| 最好的美女福利视频网| 亚洲成av人片免费观看| 岛国在线观看网站| 国产成人福利小说| 亚洲国产中文字幕在线视频| 成人国产一区最新在线观看| 成人无遮挡网站| 韩国av一区二区三区四区| 中文字幕人妻丝袜一区二区| 色综合欧美亚洲国产小说| 1000部很黄的大片| 母亲3免费完整高清在线观看| 一区二区三区国产精品乱码| 丰满人妻一区二区三区视频av | 久久香蕉国产精品| 色精品久久人妻99蜜桃| 精品一区二区三区av网在线观看| 午夜福利在线在线| 桃红色精品国产亚洲av| 国产成人精品久久二区二区免费| 色吧在线观看| 精品一区二区三区四区五区乱码| 日韩精品中文字幕看吧| 变态另类丝袜制服| 亚洲一区高清亚洲精品| 国产精品99久久99久久久不卡| 嫩草影院精品99| 国产综合懂色| 亚洲自拍偷在线| 午夜精品久久久久久毛片777| 国产精品99久久99久久久不卡| or卡值多少钱| 久久精品国产99精品国产亚洲性色| 日本成人三级电影网站| 精品国产乱码久久久久久男人| 中文在线观看免费www的网站| 国产精品一区二区精品视频观看| 色哟哟哟哟哟哟| 亚洲国产精品999在线| 亚洲五月天丁香| 成人精品一区二区免费| 97人妻精品一区二区三区麻豆| 美女cb高潮喷水在线观看 | 久久精品国产亚洲av香蕉五月| 免费看日本二区| 久久久久久九九精品二区国产| 国产成人精品无人区| 一区二区三区国产精品乱码| 97超视频在线观看视频| 精品久久久久久成人av| 日韩欧美精品v在线| 欧美成人一区二区免费高清观看 | 香蕉丝袜av| 脱女人内裤的视频| 啦啦啦免费观看视频1| 黄色片一级片一级黄色片| 三级男女做爰猛烈吃奶摸视频| 国内毛片毛片毛片毛片毛片| 99热精品在线国产| 久久亚洲精品不卡| 色视频www国产| 亚洲中文字幕一区二区三区有码在线看 | 色av中文字幕| 午夜福利在线观看免费完整高清在 | 真实男女啪啪啪动态图| 亚洲专区中文字幕在线| 麻豆av在线久日| 国产亚洲精品综合一区在线观看| 国产精品,欧美在线| 国产成人av教育| 不卡av一区二区三区| 亚洲最大成人中文| 美女黄网站色视频| 国产亚洲欧美98| 身体一侧抽搐| 国产成人精品无人区| 午夜日韩欧美国产| 97超视频在线观看视频| 一卡2卡三卡四卡精品乱码亚洲| 日韩人妻高清精品专区| 丝袜人妻中文字幕| 成人国产综合亚洲| 欧美性猛交╳xxx乱大交人| 99热这里只有是精品50| 一区福利在线观看| 欧美3d第一页| 日韩精品青青久久久久久| 精品欧美国产一区二区三| 在线a可以看的网站| 国产成人精品无人区| 国产伦一二天堂av在线观看| 国产一区二区激情短视频| 久久热在线av| 18禁国产床啪视频网站| 欧美国产日韩亚洲一区| 免费看a级黄色片| 亚洲成a人片在线一区二区| 午夜福利欧美成人| 最新美女视频免费是黄的| 麻豆国产97在线/欧美| 中文资源天堂在线| 免费人成视频x8x8入口观看| 国产视频内射| 日本五十路高清| 国产精品亚洲av一区麻豆| 男人舔女人下体高潮全视频| 淫妇啪啪啪对白视频| 精品久久久久久久毛片微露脸| 欧美精品啪啪一区二区三区| 国产精华一区二区三区| 欧美又色又爽又黄视频| 亚洲av电影不卡..在线观看| 日本精品一区二区三区蜜桃| 欧美乱码精品一区二区三区| 久久天躁狠狠躁夜夜2o2o| 国内精品美女久久久久久| 麻豆成人午夜福利视频| 国产精品久久久久久久电影 | 久久国产精品影院| 嫩草影院精品99| 国产伦精品一区二区三区四那| 久久精品影院6| 亚洲av成人精品一区久久| 久久中文看片网| 亚洲欧洲精品一区二区精品久久久| 国产一区在线观看成人免费| 夜夜夜夜夜久久久久| 国产男靠女视频免费网站| 两人在一起打扑克的视频| 日韩欧美国产一区二区入口| 天天躁日日操中文字幕| e午夜精品久久久久久久| 免费在线观看影片大全网站| 男人的好看免费观看在线视频| 午夜两性在线视频| www.www免费av| 国产亚洲精品久久久久久毛片| 啪啪无遮挡十八禁网站| 天天一区二区日本电影三级| 在线观看美女被高潮喷水网站 | 中文字幕人成人乱码亚洲影| 一卡2卡三卡四卡精品乱码亚洲| 天天躁狠狠躁夜夜躁狠狠躁| 色视频www国产| 在线视频色国产色| 久久久国产成人精品二区| 国产av在哪里看| 97超级碰碰碰精品色视频在线观看| 国产爱豆传媒在线观看| 国产淫片久久久久久久久 | 两性夫妻黄色片| 全区人妻精品视频| 嫁个100分男人电影在线观看| 中文亚洲av片在线观看爽| 18禁裸乳无遮挡免费网站照片| 黄色日韩在线| 麻豆av在线久日| 又紧又爽又黄一区二区| 中国美女看黄片| 国产亚洲精品久久久久久毛片| 在线观看午夜福利视频| 日本成人三级电影网站| 日韩高清综合在线| 一区二区三区激情视频| 免费观看的影片在线观看| 夜夜看夜夜爽夜夜摸| 毛片女人毛片| 国内精品美女久久久久久| 精品欧美国产一区二区三| 亚洲成人久久性| 狂野欧美白嫩少妇大欣赏| 欧美又色又爽又黄视频| av片东京热男人的天堂| 午夜福利18| 亚洲第一欧美日韩一区二区三区| 99re在线观看精品视频| 99久国产av精品| www日本黄色视频网| 欧美中文综合在线视频| 精品国产美女av久久久久小说| 国产aⅴ精品一区二区三区波| 久久久久久久久久黄片| 国产精品电影一区二区三区| 成人特级av手机在线观看| 国产成人精品久久二区二区免费| 免费看美女性在线毛片视频| 熟妇人妻久久中文字幕3abv| 日日干狠狠操夜夜爽| h日本视频在线播放| 最近最新免费中文字幕在线| 一级黄色大片毛片| 午夜福利视频1000在线观看| 麻豆久久精品国产亚洲av| 日韩有码中文字幕| 成人国产一区最新在线观看| 亚洲成a人片在线一区二区| 日韩成人在线观看一区二区三区| 亚洲一区高清亚洲精品| 精品人妻1区二区| 成年女人毛片免费观看观看9| 国产一区二区在线观看日韩 | 在线看三级毛片| 美女大奶头视频| 欧洲精品卡2卡3卡4卡5卡区| 久久中文看片网| 99热精品在线国产| or卡值多少钱| 亚洲va日本ⅴa欧美va伊人久久| 色播亚洲综合网| 亚洲人成网站在线播放欧美日韩| 青草久久国产| 日本免费一区二区三区高清不卡| 中文字幕精品亚洲无线码一区| 色在线成人网| 黄色丝袜av网址大全| www日本黄色视频网| 国产人伦9x9x在线观看| www.999成人在线观看| 看片在线看免费视频| 国内毛片毛片毛片毛片毛片| 国产毛片a区久久久久| 丝袜人妻中文字幕| 日韩欧美 国产精品| 国产97色在线日韩免费| 男人舔女人下体高潮全视频| 日韩欧美国产在线观看| 99在线人妻在线中文字幕| 欧美高清成人免费视频www| 搡老妇女老女人老熟妇| 在线观看66精品国产| av女优亚洲男人天堂 | 最新在线观看一区二区三区| 亚洲国产看品久久| 久久人妻av系列| 国产一区二区在线av高清观看| 欧美日本视频| 最近最新免费中文字幕在线| 精品国产超薄肉色丝袜足j| 成人性生交大片免费视频hd| 日本与韩国留学比较| 欧洲精品卡2卡3卡4卡5卡区| 88av欧美| netflix在线观看网站| 国产精品久久久久久人妻精品电影| 中文亚洲av片在线观看爽| 可以在线观看的亚洲视频| 亚洲自拍偷在线| 伦理电影免费视频| 亚洲精品粉嫩美女一区| 中文资源天堂在线| 老汉色av国产亚洲站长工具| 成人一区二区视频在线观看| 99国产综合亚洲精品| 国语自产精品视频在线第100页| 久久九九热精品免费| 男女午夜视频在线观看| 欧美中文综合在线视频| 亚洲熟妇中文字幕五十中出| 在线观看舔阴道视频| 母亲3免费完整高清在线观看| 国产一区二区三区视频了| 国产日本99.免费观看| 久久亚洲精品不卡| 美女被艹到高潮喷水动态| 男女之事视频高清在线观看|