• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of water-sediment regulation and its impact on coastline and suspended sediment concentration in Yellow River Estuary

    2017-02-01 08:49:43HiboYngEnchongLiYongZhoQiuhuLing
    Water Science and Engineering 2017年4期

    Hi-bo Yng,En-chong Li,Yong Zho*,Qiu-hu Ling

    aSchool of Water Conservancy and Environmental Engineering,Zhengzhou University,Zhengzhou 450001,China

    bState Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University,Tianjin 300072,China

    cState Key Laboratory of Simulation and Regulation of Water Cycle in River Basin,China Institute of Water Resources and Hydropower Research,Beijing 100038,China

    dSchool of Civil Engineering and Geosciences,Newcastle University,NE1 7RU,UK

    1.Introduction

    The Yellow River,well known for having the second largest sediment load river in the world(Milliman and Meade,1983),passes through various regions where climatology,geology,and geomorphology vary spatially.The characteristics of a high concentration of sediment and different sources of water and sediment have caused many difficulties in Yellow River Basin management in terms of water science and engineering(Yu,2002),including for water resources allocation under the ever-increasing pressure of water demand for irrigation,industrial and urban uses,and delta wetland environments(Jia et al.,2006;Yang et al.,2009,2013);maintenance of the operating life of reservoirs with decreasing capacity due to sedimentation(Chamoun et al.,2016;Guo et al.,2015;Ran et al.,2013);and the alleviation offlood risk due to the high riverbed level of suspended rivers(Bai et al.,2016).Under the influence of human activities and natural factors,the Yellow River has been in an unstable water-sediment condition since the 1970s(Xu,2003).With a goal of maintaining Yellow River health and establishing a harmonious water-sedimentrelationship,some techniques,including joint reservoir operation and sediment evacuation and agitation,are used in the water-sediment regulation(WSR)scheme,in order to create a man-madeflood peak and allow turbidity venting to scour river channels downstream and wash away the reservoir sedimentation(Li and Sheng,2011).Since 2002,the implementation of WSR has efficiently reduced deposition,diminished the riverbed downstream,increased theflow capacity and sediment transport,and improved the wetland environment of the Yellow River Estuary(Xu and Si,2009;Li and Sheng,2011).

    Although the effect of WSR,mainly focused on solving the sedimentation problems of reservoirs and the lower reaches of the Yellow River,has been validated partially(Miao et al.,2016;Kong et al.,2015a),a large quantity of water and sediment discharge into the sea over half a month has inevitably induced many attendant problems(Kong et al.,2015b;Xia et al.,2016;Wang et al.,2017).The integrated management of the basin,channel,and estuary has to be studied(GWP,2000;Campbell,2016).In the WSR period(WSRP),compared with the normal period(NP),the Yellow River Estuary experienced a strong influence of human activities because of the rapid artificial turbidity of the current flow process.In addition to research on the environmental impact of WSR in the Yellow River Estuary(Xu et al.,2016;Li et al.,2017),the dramaticcoastlineswing and sedimentation morphology in the estuary region have been explored(Dong et al.,2015;Zeng et al.,2015).Along with the development of remote sensing and data availability,coastline change(Rahman et al.,2011;Liu et al.,2013;Li and Gong,2016;Ghosh et al.,2015)and suspended sediment(Volpe et al.,2011;Guo et al.,2017)have been broadly analyzed using remotely sensed data on coastal ocean and climate change.Using 27 satellite images,Cui and Li(2011)concluded that the Yellow River Estuary experienced a slow accretion stage from 2003 to 2010.Zhou et al.(2015)studied the progradation of the Yellow River Estuary and found that coastlines were an integrated response to the complex variations in both sediment and water supply in the WSRP.Wang et al.(2014)concluded that the process of sediment transport in the coastal ocean was mostly dominated by riverine and ocean dynamics,which were disturbed by WSR.Wu et al.(2015)collected surface sediment samples at 15 stations before,during,and after the WSR in 2013 to examine the spatial distribution of sediment with different grain sizes.

    With a maximum riverflow of approximately 4000 m3/s delivered to the river mouth for almost 15 days every year during the WSRP(Wang et al.,2005),the Yellow River Estuary was changed dramatically.There are two important things that need to be analyzed:(1)the effect of WSR,and(2)the impact of WSR on the Yellow River Estuary in terms of changes in morphology and sediment distribution.However,even after the implementation of WSR each year from 2002 onward,there has not been a sufficient degree of detailed comparative analysis of the coastline and suspended sediment concentration(SSC)variations in the NP(1986-2001)and WSRP(2002-2013).The purpose of this study was to(1)investigate the water and sediment conditions from 1950 onward,(2)to systematically compare the variations of coastline and SSC in the NP and WSRP,and(3)tofinely dissect the intra-annual changes of the coastline and SSC in the NP(before and after theflood season)and WSRP(before and after WSR).

    2.Data and methodology

    2.1.Study area

    The Yellow River Estuary,located in the Bohai Sea,is wellknown for its rapid erosion-deposition variation(Milliman and Meade,1983)and frequent shifting courses in the lower reaches(Wang et al.,1986),caused by the dramatic change of riverflows,ocean tides,and currents.The Yellow River course has changed more than 50 times in the past 150 years because of either natural or anthropogenic reasons(Pang and Si,1979;Zhong et al.,2003),including from the Diaokou course to the Qingshuigou course in 1976,from the Qingshuigou course to the Q8 course in August 1996,and then to downstream of the Q8 course in 2008(Liu et al.,2013).The study area is shown in Fig.1.

    2.2.Data sources

    Data for monthly runoff and sediment load at Lijin Station and Huayuankou Station from 1950 to 2014 were collected from the Yellow River Conservancy Commission(YRCC).Due to the moderate frequency(16 days)and medium resolution(30 m),Landsat imagery was used for coastline delineation and sediment concentration calculation.In this study,a total of 56 Landsat images were collected from 1986 to 2015,obtained from a thematic mapper(TM)and an enhanced thematic mapper(ETM+)(Table 1 and Table 2)in each year of the NP(before and after theflood season)and in each year of the WSRP(before and after WSR).Because of missing data or cloud coverage,images near these timing nodes were supplemented.All remote images were selected from the Earth Resources Observation and Science(EROS)Center(http://glovis.usgs.gov/),and the Chinese Academy of Sciences(http://www.gscloud.cn/).

    Fig.1.Study area.

    Table 1 Image acquisition date in each year of NP.

    Table 2 Image acquisition date and WSR date in each year of WSRP.

    2.3.Coastline delineation and SSC retrieval

    After the normalized difference water index(NDWI)was introduced to delineate open water features(McFeeters,1996),the modified normalized difference water index proposed by Xu(2006)was widely used(Yang et al.,2011;Ogilvie et al.,2015).Its mathematical expression is

    where MNDWIis the modified normalized difference water index,and RMirand RGrespectively represent the reflectivities of the mid-infrared band and green band.After MNDWIwas calculated by the ENVI software,in order to delineate the coastline,the thresholds of MNDWIshould be used to differentiate the water body from the non-water body areas.Considering that coastlines varied with time and tide,data quality was controlled in two ways.First,the stable area of the entire Yellow River Delta for each year was abstracted and analyzed to calculate the area change ratio,which is the ratio of the difference between the annual stable delta area and multi-year mean delta area to the multi-year mean delta area.Second,in consideration of the subjectivity of the threshold,the slope of the MNDWIwas calculated with ArcGIS software to quantify the threshold,through which obvious boundaries can be detected and delineated to obtain thefinal coastlines.By assuming the dynamic equilibrium of coastlines,Fig.2 shows that the mean area change ratio accounts for 0.79%of the total delta area,indicating that the results have relatively reliable accuracy.

    In addition to traditional methods,by virtue of remote sensing,the beam reflectance,optical backscattering,optical transmission,and spectral reflectance can be used for SSC measurement(Wren et al.,2000).Various visible and near infrared band combinations have been proposed to determine SSC in coastal or estuarine environments using several multispectral satellite sensors(Volpe et al.,2011).Inter-annual and seasonal variations of SSC in the Yellow River Estuary have been studied and assessed from 2000 to 2010(Zhang et al.,2014).Through spectralfield measurement and sampling investigation in the Yellow River Estuary,Fan et al.(2007)analyzed the relationship of waveband combinations and SSC,and put forward an equation that was used in this study.

    3.Results and discussion

    3.1.Water and sediment conditions in NP and WSRP

    Table 3 presents the average runoff and sediment load in two periods at Lijin Station.Data indicate that,since 1986,water and sediment conditions have experienced enormous change in the Yellow River Estuary.The average annual runoff at Lijin Station from 1986 to 2001 was 137.78×108m3and the average annual sediment load was 3.51×108t.During the WSRP,after the implementation of WSR,the average annual runoff increased to 184.28×108m3,the average annual sediment load decreased to 1.60×108t.Comparing the NP and WSRP,we find that the runoff proportion in the flood season increased from 56.77%to 57.47%,while the sediment proportion decreased from 87.46%to 77.50%.

    Calculation of the average monthly runoff and sediment load in the two periods shows that implementation of WSR extended the ranges with a relatively high runoff and sediment load in theflood season,due mostly to the WSR process from June to July(Fig.3).

    Fig.2.Area change ratio of Yellow River Delta.

    Table 3 Water and sediment data from Lijin Station.

    Long-term continuous sedimentation in the lower reaches of the Yellow River was indicated from the sediment difference between Lijin Station and Huayuankou Station from 1950 to 2002.However,after WSR implementation from 2002 onward,Fig.4 shows that the sedimentation turned into erosion,indicating that WSR reduces sedimentation of riverbed and reservoirs.

    3.2.Coastline change

    In order to analyze long-term serial coastline changes and spatial siltation and erosion evolution in the estuary from 1986 onward,multiple satellite images were used to delineate the coastlines.Fig.5 shows the changes in the coastlines in the NP and WSRP.The coastline pushed forward before 1997 and shrank after 2003 in the southern part of the mouth because of the river mouth shift in 1996,and continually extended outward in the northern part of the river mouth from 2003 onward.

    As shown in Fig.6,coastlines before and after WSR for each year from 2002 to 2013 were extracted.A comparative analysis was made of coastlines in the Yellow River Estuary throughout these years,and results indicated that the coastline in the southern part of the mouth swung randomly and included a certain amount of erosion,because of the sedimentation caused by reclamation and sea wave intrusion.In most cases,the coastlines extended offshore,especially in the northern part of the river mouth.However,in some years,the changes were not coincident with the described phenomena because the image data selected were far from the research timing node.

    Fig.3.Proportion of monthly water runoff and sediment load to annual values at Lijin Station in NP and WSRP.

    Fig.4.Sediment loads at Huayuankou Station and Lijin Station.

    Fig.5.Changes of coastlines in NP and WSRP.

    Fig.6.Changes of coastline in Yellow River Estuary before WSR and after WSR from 2002 to 2013.

    Fig.7.Land area change in Yellow River Estuary in different periods.

    In order to conduct further quantitative analysis of Yellow River Estuary changes(before and after the timing nodes)in the NP and WSRP,the land area was extracted and calculated for each year(Fig.7).Results indicated that area increases in the Yangtze River Estuary mainly appeared at the river mouth,and the coastline shrank in different regions to different degrees.Because of missing data or cloud coverage,data in some years(1990 and 1994)were supplemented using data from adjacent years.We found that the accretion-erosion evolution of coastlines could be divided into three stages from 1986 to 2013:the accretion stage(1986-1996),the slow erosion stage(1996-2002),and the slow accretion stage(2002 to the present).This corresponds to other research results(Cui and Li,2011).The mean accretion area in the NP,which is the difference between the land areas before and after theflood season,was 0.789 km2,and the mean accretion area in the WSRP,which is the difference between the land areas before and after WSR,was 4.73 km2.

    3.3.SSC spatial analysis

    SSC distribution in some years is shown in Fig.8.The suspended sediment in the estuary sea area was mainly distributed along the bank.SSC rapidly decreased as the offshore distance increased,and the concentration and diffusion scope of sediment discharging into sea after theflood season were higher than those before theflood season.All extreme SSC values appeared near the Yellow River Estuary,indicating that a large proportion of sediment discharging into the sea was deposited near the estuary.Only a small proportion of suspended sediments discharging into the sea in the Yellow River Estuary diffused northward,while most diffused towards the sea area of Leizhou Bay due to the combination of river dynamics and ocean dynamics.Under normal conditions,the high-concentration sediment center in the estuary region was connected to the sea area of Leizhou Bay.

    In order to analyze SSC spatial distribution variation with the offshore distance in different directions,and then to conduct quantitative analysis of SSC and its distribution in the estuary,the Yellow River Estuary was divided into 12 zones in two steps,as follows.First,three buffer regions with different distances from the coastline were generated.Second,extending from a certain point,five lines were drawn at an angle of 45°.As shown in Fig.9,A1 through A4 constitute the first buffer region(0-5 km away from the coastline),B1 through B4 constitute the second buffer region(5-10 km away from the coastline),and C1 through C4 constitute the third buffer region(10-20 km away from the coastline).Using the SSC distributions in 1991 and 2012 as examples,the SSC values showed a consistent decreasing trend offshore;SSC values in zones A4,B4,and C4 were higher than others;and SSC values after theflood season in 1991 and after WSR in 2012 were higher than those before theflood season in 1991 and before WSR in 2012,respectively(Fig.9).

    Fig.8.Distribution of SSC in Yellow River Estuary.

    Fig.9.Distribution of zonal average SSC in Yellow River Estuary.

    Fig.10.Mean annual SSC and its increasing ratio in different zones.

    Based on calculation of partial statistical results,we obtained average SSC in different zones before and after theflood season in the NP and before and after WSR in the WSRP.The results are shown in Fig.10.The average annual values of SSC after theflood season were higher than those before theflood season.During the NP,the average annual value of SSC in the estuary changed from 238 mg/L before theflood season to 293 mg/L after theflood season,while the average annual value of SSC during the WSRP changed from 192 mg/L before regulation to 264 mg/L after regulation.The varying amplitude of average annual SSC values in different periods decreased as the offshore distance increased,and the SSC value within thefirst buffer region(0-5 km away from the coastline)was the maximum.There was basically no difference between the average annual SSC values in the third buffer region(10-20 km away from the coastline),which indicated that sediment transport in this region was mainly influenced by ocean dynamics rather than river dynamics.The increasing ratio of SSC resulting from WSR after 2002 was high than that induced by theflood during the NP(Fig.10(b)).

    4.Conclusions

    This study analyzed the runoff and sediment load from 1950,extracted estuary coastlines and SSC distribution in the offshore region in the Yellow River Estuary to describe the serial variation in the NP and WSRP,and identified detailed intra-annual changes in the coastline and SSC in the NP(before and after theflood season)and WSRP(before and after WSR)using two images from each year.The results are as follows:

    (1)Comparing the NP with WSRP,the runoff proportion in theflood season increased from 56.77%to 57.47%and the sediment proportion decreased from 87.46%to 77.50%.The implementation of WSR extended the ranges with a high runoff and sediment load in theflood season.After the implementation of WSR from 2002 onward,the sedimentation in the low reaches of the Yellow River turned into erosion,indicating that WSR can reduce sedimentation of the riverbed and reservoirs.

    (2)The implementation of WSR changed the original water and sediment conditions in the Yellow River,and resulted in changes of land-sea morphology in the Yellow River Estuary.Coastlines mostly extended outward in the river mouth in the WSRP.However,in some years,the changes were not coincident with the observed phenomena because the image data selected were far from the research timing node.The mean accretion area increased from 0.789 km2in the NP to 4.73 km2in the WSRP.

    (3)The average annual value of SSC in the Yellow River Estuary changed from 238 mg/L before theflood season to 293 mg/L after theflood season during the NP,while it increased from 192 mg/L before WSR to 264 mg/L after WSR during the WSRP.

    Bai,P.,Liu,X.M.,Liang,K.,Liu,C.M.,2016.Investigation of changes in the annual maximumflood in the Yellow River Basin,China.Quat.Int.392,168-177.https://doi.org/10.1016/j.quaint.2015.04.053.

    Campbell,I.C.,2016.Integrated management of large rivers and their basins.Ecohydrol.Hydrobiol.16(4),203-214.https://doi.org/10.1016/j.ecohyd.2016.09.006.

    Chamoun,S.,Cesare,G.D.,Schleiss,A.J.,2016.Managing reservoir sedimentation by venting turbidity currents:A review.Int.J.Sediment Res.31(3),195-204.https://doi.org/10.1016/j.ijsrc.2016.06.001.

    Cui,B.L.,Li,X.Y.,2011.Coastline change of the Yellow River Estuary and its response to the sediment and runoff(1976-2005).Geomorphology 127(1-2),32-40.https://doi.org/10.1016/j.geomorph.2010.12.001.

    Dong,J.W.,Xia,X.H.,Wang,M.H.,Lai,Y.J.,Zhao,P.J.,Dong,H.Y.,Zhao,Y.L.,Wen,J.J.,2015.Effect of water-sediment regulation of the Xiaolangdi Reservoir on the concentrations,bioavailability,andfluxes of PAHs in the middle and lower reaches of the Yellow River.J.Hydrol.527,101-112.https://doi.org/10.1016/j.jhydrol.2015.04.052.

    Fan,H.,Huang,H.J.,Tang,J.W.,2007.Spectral signature of waters in Huanghe Estuary and estimation of suspended sediment concentration from remote sensing data.Geomatics Inf.Sci.Wuhan Univ.32(7),601-604.https://doi.org/10.13203/j.whugis2007.07.009(in Chinese).

    Ghosh,M.K.,Kumar,L.,Roy,C.,2015.Monitoring the coastline change of Hatiya Island in Bangladesh using remote sensing techniques.ISPRS J.Photogrammetry Remote Sens.101,137-144.https://doi.org/10.1016/j.isprsjprs.2014.12.009.

    Global Water Partnership(GWP),2000.Integrated Water Resources Management(IWRM).Global Water Partnership,Stockholm.

    Guo,K.,Zou,T.,Jiang,D.,Tang,C.,Zhang,H.,2017.Variability of Yellow River turbid plume detected with satellite remote sensing during watersediment regulation.Continent.Shelf Res.135,74-85.https://doi.org/10.1016/j.csr.2017.01.017.

    Guo,S.L.,Sun,D.P.,Jiang,E.H.,Li,P.,2015.Equilibrium sediment transport in lower Yellow River during later sediment-retaining period of Xiaolangdi Reservoir.Drink.Water Eng.Sci.8(1),78-84.https://doi.org/10.1016/j.wse.2015.01.006.

    Jia,Y.W.,Wang,H.,Zhou,Z.N.,Qiu,Y.Q.,Luo,X.Y.,Wang,J.H.,Yan,D.H.,Qin,D.Y.,2006.Development of the WEP-L distributed hydrological model and dynamic assessment of water resources in the Yellow River Basin.J.Hydrol.331(3-4),606-629.https://doi.org/10.1016/j.jhydrol.2006.06.006.

    Kong,D.X.,Miao,C.Y.,Borthwick,A.G.L.,Duan,Q.Y.,Liu,H.,Sun,Q.H.,Ye,A.Z.,Di,Z.H.,Gong,W.,2015a.Evolution of the Yellow River Delta and its relationship with runoff and sediment load from 1983 to 2011.J.Hydrol.520,157-167.https://doi.org/10.1016/j.jhydrol.2014.09.038.

    Kong,D.X.,Miao,C.Y.,Wu,J.W.,Duan,Q.Y.,Sun,Q.H.,Ye,A.Z.,Di,Z.H.,Gong,W.,2015b.The hydro-environmental response on the lower Yellow River to the water-sediment regulation scheme.Ecol.Eng.79,69-79.https://doi.org/10.1016/j.ecoleng.2015.03.009.

    Li,G.Y.,Sheng,L.X.,2011.Model of water-sediment regulation in Yellow River and its effect.Sci.China Technol.Sci.54(4),924-930.https://doi.org/10.1007/s11431-011-4322-3.

    Li,W.Y.,Gong,P.,2016.Continuous monitoring of coastline dynamics in western Florida with a 30-year time series of Landsat imagery.Rem.Sens.Environ.179,196-209.https://doi.org/10.1016/j.rse.2016.03.031.

    Li,X.Y.,Chen,H.T.,Jiang,X.Y.,Yu,Z.G.,Yao,Q.Z.,2017.Impacts of human activities on nutrient transport in the Yellow River:The role of the watersediment regulation scheme.Sci.Total Environ.592,161-170.https://doi.org/10.1016/j.scitotenv.2017.03.098.

    Liu,Y.X.,Huang,H.J.,Qiu,Z.F.,Fan,J.Y.,2013.Detectingcoastlinechangefrom satellite images based on beach slope estimation in a tidalflat.Int.J.Appl.Earth Obs.Geoinf.23,165-176.https://doi.org/10.1016/j.jag.2012.12.005.

    McFeeters,S.K.,1996.The use of the normalized difference water index(NDWI)in the delineation of open water features.Int.J.Rem.Sens.17,1425-1432.https://doi.org/10.1080/01431169608948714.

    Miao,C.Y.,Kong,D.X.,Wu,J.W.,Duan,Q.Y.,2016.Functional degradation of the water-sediment regulation scheme in the lower Yellow River:Spatial and temporal analyses.Sci.Total Environ.551-552,16-22.https://doi.org/10.1016/j.scitotenv.2016.02.006.

    Milliman,J.D.,Meade,R.H.,1983.World-wide delivery of river sediment to the oceans.J.Geol.91(1),1-21.https://doi.org/10.1086/628741.

    Ogilvie,A.,Belaud,G.,Delenne,C.,Bailly,J.S.,Bader,J.C.,Oleksiak,A.,Ferry,L.,Martin,D.,2015.Decadal monitoring of the Niger Inner Deltaflood dynamics using MODIS optical data.J.Hydrol.523,368-383.https://doi.org/10.1016/j.jhydrol.2015.01.036.

    Pang,J.Z.,Si,S.H.,1979.Evolution of the Yellow River mouth:Historical shifts.Chin.J.Oceanol.Limnol.10(2),136-141(in Chinese).

    Rahman,A.F.,Dragoni,D.,El-Masri,B.,2011.Response of the Sundarbans coastline to sea level rise and decreased sedimentflow:A remote sensing assessment.Rem.Sens.Environ.115(12),3121-3128.https://doi.org/10.1016/j.rse.2011.06.019.

    Ran,L.,Lu,X.X.,Xin,Z.B.,Yang,X.K.,2013.Cumulative sediment trapping by reservoirsinlargeriverbasins:AcasestudyoftheYellowRiverBasin.Global Planet.Change 100,308-319.https://doi.org/10.1016/j.gloplacha.2012.11.001.

    Volpe,V.,Silvestri,S.,Marani,M.,2011.Remote sensing retrieval of suspended sediment concentration in shallow waters.Rem.Sens.Environ.115(1),44-54.https://doi.org/10.1016/j.rse.2010.07.013.

    Wang,H.J.,Yang,Z.S.,Bi,N.S.,Li,H.D.,2005.Rapid shifts of the river plume pathway off the Huanghe(Yellow)River mouth in response to water-sedimentregulation scheme in 2005.Chin.Sci.Bull.50,2878-2884.https://doi.org/10.1360/982005-1196.

    Wang,H.J.,Wang,A.M.,Bi,N.S.,Zeng,X.M.,Xiao,H.H.,2014.Seasonal distribution of suspended sediment in the Bohai Sea,China.Continent.Shelf Res.90,17-32.https://doi.org/10.1016/j.csr.2014.03.006.

    Wang,S.,Fu,B.,Liang,W.,Liu,Y.,Wang,Y.,2017.Driving forces of changes in the water and sediment relationship in the Yellow River.Sci.Total Environ.576,453-461.https://doi.org/10.1016/j.scitotenv.2016.10.124.

    Wang,Y.,Ren,M.E.,Zhu,D.K.,1986.Sediment supply to the continental shelf by the major rivers of China.J.Geol.Soc.143(6),935-944.https://doi.org/10.1144/gsjgs.143.6.0935.

    Wren,D.G.,Barkdoll,B.D.,Kuhnle,R.A.,Derrow,R.W.,2000.Field techniques for suspended-sediment measurement.J.Hydraul.Eng.126(2), 97-104. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:2(97).

    Wu,X.,Bi,N.S.,Yuan,P.,Li,S.,Wang,H.J.,2015.Sediment dispersal and accumulation off the present Huanghe(Yellow River)Delta as impacted by the water-sediment regulation scheme.Continent.Shelf Res.111(B),126-138.https://doi.org/10.1016/j.csr.2015.11.003.

    Xia,X.H.,Dong,J.W.,Wang,M.H.,Xie,H.,Xia,N.,Li,H.S.,Zhang,X.T.,Mou,X.L.,Wen,J.J.,Bao,Y.M.,2016.Effect of water-sediment regulation of the Xiaolangdi Reservoir on the concentrations,characteristics,andfluxes of suspended sediment and organic carbon in the Yellow River.Sci.Total Environ.571,487-497.https://doi.org/10.1016/j.scitotenv.2016.07.015.

    Xu,B.C.,Yang,D.S.,Burnett,W.C.,Ran,X.B.,Yu,Z.G.,Gao,M.S.,Diao,S.B.,Jiang,X.Y.,2016.Artificial water sediment regulation scheme influences morphology,hydrodynamics and nutrient behavior in the Yellow River Estuary.J.Hydrol.539,102-112.https://doi.org/10.1016/j.jhydrol.2016.05.024.

    Xu,G.B.,Si,C.D.,2009.Effect of water and sediment regulation on lower Yellow River.Trans.Tianjin Univ.15(2),113-120.https://doi.org/10.1007/s12209-009-0020-7.

    Xu,H.Q.,2006.Modification of normalised difference water index(NDWI)to enhance open water features in remotely sensed imagery.Int. J. Rem. Sens. 27(14), 3025-3033. https://doi.org/10.1080/01431160600589179.

    Xu,J.X.,2003.Sedimentflux to the sea as influenced by changing human activities and precipitation:Example of the Yellow River,China.Environ.Manag.31(3),328-341.https://doi.org/10.1007/s00267-002-2828-y.

    Yang,H.B.,Wang,Z.M.,Zhao,H.L.,Guo,Y.,2011.Water body extraction methods study based on RS and GIS.Procedia Environ.Sci.10(C),2619-2624.https://doi.org/10.1016/j.proenv.2011.09.407.

    Yang,Z.F.,Sun,T.,Cui,B.S.,Chen,B.,Chen,G.Q.,2009.Environmentalflow requirements for integrated water resources allocation in the Yellow River Basin,China.Commun.Nonlinear Sci.Numer.Simulat.14(5),2469-2481.https://doi.org/10.1016/j.cnsns.2007.12.015.

    Yang,Z.F.,Qin,Y.,Yang,W.,2013.Assessing and classifying plant-related ecological risk under water management scenarios in China's Yellow River Delta Wetlands.J.Environ.Manag.130,276-287.https://doi.org/10.1016/j.jenvman.2013.08.015.

    Yu,L.S.,2002.The Huanghe(Yellow)River:A review of its development,characteristics,and future management issues.Continent.Shelf Res.22,389-403.https://doi.org/10.1016/S0278-4343(01)00088-7.

    Zeng,X.M.,He,R.Y.,Xue,Z.,Wang,H.J.,Wang,Y.,Yao,Z.G.,Guan,W.B.,Warrillow,J.,2015.River-derived sediment suspension and transport in the Bohai,Yellow,andEastChinaSeas:Apreliminarymodelingstudy.Continent.Shelf Res.111(B),112-125.https://doi.org/10.1016/j.csr.2015.08.015.

    Zhang,M.W.,Dong,Q.,Cui,T.W.,Xue,C.J.,Zhang,S.L.,2014.Suspended sediment monitoring and assessment for Yellow River estuary from Landsat TM and ETM+imagery.Rem.Sens.Environ.146,136-147.https://doi.org/10.1016/j.rse.2013.09.033.

    Zhong,J.H.,Wen,Z.F.,Wang,G.M.,Wang,X.B.,Rao,M.Y.,Li,Y.,Ni,J.R.,Shen,X.R.,2003.Influences of the current breaking of the Yellow River on the anomalous vertical development and evolution of the river course.Geol.Rev.49(6),616-621(in Chinese).

    Zhou,Y.Y.,Huang,H.Q.,Nanson,G.C.,Huang,C.,Liu,G.H.,2015.Progradation of the Yellow(Huanghe)River Delta in response to the implementation of a basin-scale water regulation program.Geomorphology 243,65-74.https://doi.org/10.1016/j.geomorph.2015.04.023.

    .国产精品久久| 精品免费久久久久久久清纯| 欧美高清性xxxxhd video| 少妇丰满av| 特大巨黑吊av在线直播| 伊人久久精品亚洲午夜| 91av网一区二区| 色av中文字幕| 欧美bdsm另类| 蜜桃久久精品国产亚洲av| 久久精品国产自在天天线| 一卡2卡三卡四卡精品乱码亚洲| 国产精品无大码| 老司机福利观看| 人人妻,人人澡人人爽秒播| 99热6这里只有精品| 91久久精品电影网| 国产人妻一区二区三区在| 日本黄大片高清| 国产真实乱freesex| 亚洲成人免费电影在线观看| 99久久精品国产国产毛片| 欧美三级亚洲精品| 亚洲四区av| 日韩人妻高清精品专区| 久久精品国产亚洲网站| 午夜福利18| 欧美日韩亚洲国产一区二区在线观看| 一a级毛片在线观看| 亚洲图色成人| 高清日韩中文字幕在线| 九色国产91popny在线| 十八禁网站免费在线| 啦啦啦观看免费观看视频高清| 国国产精品蜜臀av免费| 亚洲av中文字字幕乱码综合| 欧美性猛交黑人性爽| 伦精品一区二区三区| 午夜福利在线观看吧| 国内揄拍国产精品人妻在线| 亚洲第一区二区三区不卡| 国产午夜精品论理片| 精品久久久久久久久久久久久| 噜噜噜噜噜久久久久久91| 网址你懂的国产日韩在线| 禁无遮挡网站| 97碰自拍视频| 午夜福利成人在线免费观看| 日韩欧美一区二区三区在线观看| 黄色欧美视频在线观看| 我要看日韩黄色一级片| 伊人久久精品亚洲午夜| 国产亚洲精品久久久com| 久久人人精品亚洲av| 身体一侧抽搐| 国产免费男女视频| 国产综合懂色| 久久久国产成人精品二区| 俺也久久电影网| 一夜夜www| 国产一级毛片七仙女欲春2| 亚洲欧美激情综合另类| 99久久精品热视频| 国产精品野战在线观看| 成人午夜高清在线视频| 一区二区三区激情视频| 国产精品一区www在线观看 | 一边摸一边抽搐一进一小说| 一级黄色大片毛片| 国产美女午夜福利| 国内揄拍国产精品人妻在线| 精品国内亚洲2022精品成人| 俄罗斯特黄特色一大片| 日本熟妇午夜| 18禁裸乳无遮挡免费网站照片| 大型黄色视频在线免费观看| 欧美中文日本在线观看视频| 99热只有精品国产| 日日摸夜夜添夜夜添av毛片 | 国产色爽女视频免费观看| 国产精品爽爽va在线观看网站| 免费无遮挡裸体视频| 一本一本综合久久| 搡老岳熟女国产| 成人综合一区亚洲| 岛国在线免费视频观看| 国产极品精品免费视频能看的| aaaaa片日本免费| 香蕉av资源在线| 亚洲成av人片在线播放无| videossex国产| 2021天堂中文幕一二区在线观| 欧美高清性xxxxhd video| 国产一区二区亚洲精品在线观看| 伦理电影大哥的女人| 午夜激情福利司机影院| 国产精品久久久久久精品电影| 色综合婷婷激情| 嫁个100分男人电影在线观看| 国产男靠女视频免费网站| 最近最新中文字幕大全电影3| 亚洲欧美激情综合另类| 一边摸一边抽搐一进一小说| 亚洲性夜色夜夜综合| 亚州av有码| 搡女人真爽免费视频火全软件 | 亚洲av一区综合| 久久热精品热| 精品久久久久久久久久免费视频| 丝袜美腿在线中文| 国产三级在线视频| 国内精品久久久久精免费| 成人午夜高清在线视频| 日韩中文字幕欧美一区二区| 国产69精品久久久久777片| 久久精品国产亚洲网站| 直男gayav资源| 午夜日韩欧美国产| 欧美精品啪啪一区二区三区| 国产亚洲精品久久久久久毛片| 91av网一区二区| 免费大片18禁| 国产成人aa在线观看| 美女 人体艺术 gogo| 性欧美人与动物交配| 欧美日韩亚洲国产一区二区在线观看| 内地一区二区视频在线| 国产欧美日韩精品一区二区| 日本黄大片高清| 亚洲av.av天堂| 欧美成人性av电影在线观看| 日本黄色片子视频| 亚洲av中文字字幕乱码综合| 一区二区三区高清视频在线| 色吧在线观看| 夜夜爽天天搞| 91麻豆av在线| 亚洲国产精品合色在线| 欧美日韩精品成人综合77777| 免费观看人在逋| 干丝袜人妻中文字幕| 人人妻人人爽人人添夜夜欢视频 | 老师上课跳d突然被开到最大视频| 成人午夜精彩视频在线观看| 三级国产精品欧美在线观看| 日韩av免费高清视频| 国产在视频线精品| 久久精品国产a三级三级三级| 久久精品国产亚洲av涩爱| freevideosex欧美| 欧美少妇被猛烈插入视频| 男人爽女人下面视频在线观看| av线在线观看网站| 久久久久久久久久久免费av| 国产熟女欧美一区二区| 国产精品成人在线| 99热网站在线观看| 国产黄片视频在线免费观看| 国产成人aa在线观看| 联通29元200g的流量卡| 人妻制服诱惑在线中文字幕| 日韩人妻高清精品专区| 欧美bdsm另类| 成人特级av手机在线观看| 中文字幕精品免费在线观看视频 | 少妇 在线观看| 老师上课跳d突然被开到最大视频| 看十八女毛片水多多多| 国产精品成人在线| 免费av中文字幕在线| 国产美女午夜福利| 国产精品久久久久久久久免| 国产精品久久久久久精品古装| 在线播放无遮挡| 久久热精品热| 国产成人精品婷婷| 久久国内精品自在自线图片| 国产深夜福利视频在线观看| 国产一区二区三区综合在线观看 | a级一级毛片免费在线观看| 久久久久国产网址| 欧美日韩视频精品一区| 国产精品欧美亚洲77777| 久久国内精品自在自线图片| 国产爽快片一区二区三区| 亚洲久久久国产精品| 男女免费视频国产| 国内揄拍国产精品人妻在线| 青青草视频在线视频观看| 国产人妻一区二区三区在| 一级爰片在线观看| 黑丝袜美女国产一区| 日本色播在线视频| 欧美性感艳星| 亚洲精品成人av观看孕妇| 在线观看免费视频网站a站| 日韩一本色道免费dvd| 国产av国产精品国产| 精品久久久噜噜| 91aial.com中文字幕在线观看| 亚洲国产最新在线播放| 在线精品无人区一区二区三 | 亚洲丝袜综合中文字幕| 日韩不卡一区二区三区视频在线| 中文乱码字字幕精品一区二区三区| 久久久久久久久久成人| 亚洲内射少妇av| 欧美日韩亚洲高清精品| 国产黄色免费在线视频| 国内精品宾馆在线| 亚洲在久久综合| 日韩三级伦理在线观看| 蜜桃久久精品国产亚洲av| 国产永久视频网站| 一区二区三区乱码不卡18| 亚洲精华国产精华液的使用体验| 五月玫瑰六月丁香| 亚洲av不卡在线观看| 两个人的视频大全免费| 久久6这里有精品| 成人一区二区视频在线观看| 国产成人免费观看mmmm| 欧美极品一区二区三区四区| 边亲边吃奶的免费视频| 嫩草影院入口| 99re6热这里在线精品视频| 日韩三级伦理在线观看| 欧美成人午夜免费资源| 国产一区二区三区av在线| av不卡在线播放| 91狼人影院| 久久久久视频综合| 老熟女久久久| 欧美日韩在线观看h| 亚洲欧美清纯卡通| 久久久久久久久久久免费av| 精品一区在线观看国产| 丝袜喷水一区| 久久久久精品久久久久真实原创| 久久精品久久久久久久性| 亚洲第一区二区三区不卡| 久久青草综合色| 国产欧美日韩精品一区二区| 亚州av有码| 国产精品蜜桃在线观看| 国产黄频视频在线观看| 最近2019中文字幕mv第一页| 寂寞人妻少妇视频99o| 国产成人免费无遮挡视频| 小蜜桃在线观看免费完整版高清| 久久久久久久久大av| 青春草国产在线视频| 大话2 男鬼变身卡| 性色avwww在线观看| 亚洲久久久国产精品| 九色成人免费人妻av| 直男gayav资源| 一区二区三区精品91| 在现免费观看毛片| 国产av码专区亚洲av| 在线观看美女被高潮喷水网站| 夜夜爽夜夜爽视频| 色吧在线观看| 99久久人妻综合| 自拍偷自拍亚洲精品老妇| 一本一本综合久久| 最近中文字幕2019免费版| 中文精品一卡2卡3卡4更新| 91精品国产九色| 欧美精品人与动牲交sv欧美| 日本欧美国产在线视频| 99视频精品全部免费 在线| 偷拍熟女少妇极品色| 夜夜爽夜夜爽视频| 丰满人妻一区二区三区视频av| 亚洲精品456在线播放app| 久久久久久九九精品二区国产| 欧美xxxx黑人xx丫x性爽| 久久久久久久久久成人| 亚洲av电影在线观看一区二区三区| 成人美女网站在线观看视频| 十分钟在线观看高清视频www | 中文字幕人妻熟人妻熟丝袜美| 国产一区二区三区av在线| 精品人妻熟女av久视频| 永久免费av网站大全| 欧美xxxx黑人xx丫x性爽| 久久久久久久久久成人| 搡老乐熟女国产| 大又大粗又爽又黄少妇毛片口| 日本wwww免费看| 干丝袜人妻中文字幕| 午夜福利高清视频| 女性被躁到高潮视频| .国产精品久久| 日韩成人av中文字幕在线观看| 午夜视频国产福利| 精品久久国产蜜桃| 精品一品国产午夜福利视频| 午夜激情久久久久久久| av黄色大香蕉| www.色视频.com| 如何舔出高潮| 国产精品偷伦视频观看了| 国产精品久久久久久精品电影小说 | 久久精品久久久久久噜噜老黄| 97精品久久久久久久久久精品| 永久网站在线| 亚洲国产最新在线播放| 大陆偷拍与自拍| 啦啦啦视频在线资源免费观看| kizo精华| 91久久精品国产一区二区三区| 黄色欧美视频在线观看| 黑人高潮一二区| 久久精品国产鲁丝片午夜精品| 日本午夜av视频| 国产精品99久久99久久久不卡 | 在线 av 中文字幕| 99热这里只有是精品50| 午夜日本视频在线| 少妇裸体淫交视频免费看高清| 亚洲精品乱码久久久v下载方式| 欧美日韩一区二区视频在线观看视频在线| 国产精品人妻久久久影院| 人妻少妇偷人精品九色| 欧美老熟妇乱子伦牲交| 26uuu在线亚洲综合色| 日本一二三区视频观看| 国产在线男女| 蜜臀久久99精品久久宅男| 一二三四中文在线观看免费高清| 精品亚洲成a人片在线观看 | 王馨瑶露胸无遮挡在线观看| 中文字幕久久专区| 日产精品乱码卡一卡2卡三| 最近中文字幕高清免费大全6| 日韩欧美一区视频在线观看 | 在现免费观看毛片| 寂寞人妻少妇视频99o| 亚洲国产最新在线播放| 色网站视频免费| av卡一久久| 黄色一级大片看看| 午夜福利视频精品| 欧美最新免费一区二区三区| 王馨瑶露胸无遮挡在线观看| 免费av不卡在线播放| av国产精品久久久久影院| 亚洲久久久国产精品| 成人18禁高潮啪啪吃奶动态图 | 欧美精品亚洲一区二区| 国产乱人视频| 秋霞在线观看毛片| 亚洲欧美精品专区久久| 蜜桃亚洲精品一区二区三区| 少妇被粗大猛烈的视频| 丝瓜视频免费看黄片| av免费观看日本| 国产精品久久久久久精品古装| 国产黄频视频在线观看| 国产精品国产三级国产专区5o| 男人舔奶头视频| 国产美女午夜福利| 汤姆久久久久久久影院中文字幕| 性色av一级| 自拍偷自拍亚洲精品老妇| 免费在线观看成人毛片| freevideosex欧美| 秋霞在线观看毛片| 午夜日本视频在线| 亚洲精品第二区| 国内少妇人妻偷人精品xxx网站| 在线免费十八禁| 91久久精品电影网| 免费黄色在线免费观看| 亚洲一区二区三区欧美精品| 韩国高清视频一区二区三区| 国产真实伦视频高清在线观看| 欧美3d第一页| 少妇被粗大猛烈的视频| 免费黄网站久久成人精品| 成人国产麻豆网| 欧美高清性xxxxhd video| 日韩精品有码人妻一区| 伊人久久国产一区二区| 七月丁香在线播放| 在线观看一区二区三区激情| 五月玫瑰六月丁香| 男女无遮挡免费网站观看| 亚洲内射少妇av| 午夜免费观看性视频| 欧美国产精品一级二级三级 | 日韩av不卡免费在线播放| 色婷婷久久久亚洲欧美| 久久精品人妻少妇| 麻豆乱淫一区二区| 婷婷色综合大香蕉| 亚洲精品一区蜜桃| 日韩不卡一区二区三区视频在线| 男人爽女人下面视频在线观看| 精品视频人人做人人爽| 中文字幕免费在线视频6| 日韩欧美 国产精品| 国产在视频线精品| 免费看光身美女| 免费久久久久久久精品成人欧美视频 | 精品久久久噜噜| 日韩中字成人| 麻豆成人午夜福利视频| 黄色一级大片看看| 欧美国产精品一级二级三级 | 免费黄频网站在线观看国产| av在线观看视频网站免费| 一区二区三区免费毛片| 人妻一区二区av| 2018国产大陆天天弄谢| 精品99又大又爽又粗少妇毛片| 2022亚洲国产成人精品| 欧美成人一区二区免费高清观看| 国产又色又爽无遮挡免| 91aial.com中文字幕在线观看| 在线 av 中文字幕| 亚洲色图av天堂| 精品久久久精品久久久| 亚洲av欧美aⅴ国产| 少妇熟女欧美另类| 亚洲精品日韩av片在线观看| 日日啪夜夜爽| 2018国产大陆天天弄谢| 亚洲国产精品999| 亚洲色图综合在线观看| 国产熟女欧美一区二区| 国产成人aa在线观看| 久久99精品国语久久久| 精品99又大又爽又粗少妇毛片| 亚洲综合色惰| 99久久精品一区二区三区| 欧美性感艳星| 亚洲经典国产精华液单| 在线 av 中文字幕| 国产黄频视频在线观看| 丝瓜视频免费看黄片| 亚州av有码| 成人午夜精彩视频在线观看| 国产黄片视频在线免费观看| 大香蕉久久网| av不卡在线播放| 日韩av不卡免费在线播放| 美女高潮的动态| 亚洲欧洲国产日韩| 国产 一区 欧美 日韩| 有码 亚洲区| 亚洲性久久影院| 午夜福利视频精品| 我的老师免费观看完整版| 久久人人爽人人片av| 精华霜和精华液先用哪个| 又爽又黄a免费视频| 一边亲一边摸免费视频| 99re6热这里在线精品视频| 亚洲成人手机| 交换朋友夫妻互换小说| 成年免费大片在线观看| 男女下面进入的视频免费午夜| 老女人水多毛片| 日本wwww免费看| 香蕉精品网在线| 亚洲欧美成人综合另类久久久| 国产大屁股一区二区在线视频| 草草在线视频免费看| 久久久久久久国产电影| 国产精品国产三级国产av玫瑰| 久热这里只有精品99| 人人妻人人添人人爽欧美一区卜 | av一本久久久久| 伊人久久精品亚洲午夜| 婷婷色综合www| 男女边摸边吃奶| 欧美成人精品欧美一级黄| 一级毛片 在线播放| 99久久精品一区二区三区| 在线观看美女被高潮喷水网站| 免费av不卡在线播放| 亚洲国产色片| 哪个播放器可以免费观看大片| 中文字幕人妻熟人妻熟丝袜美| 日本猛色少妇xxxxx猛交久久| 亚洲,欧美,日韩| 久久午夜福利片| 男的添女的下面高潮视频| 一级av片app| 我的女老师完整版在线观看| 国产精品人妻久久久久久| 少妇猛男粗大的猛烈进出视频| 天堂中文最新版在线下载| 久久久久性生活片| 精品一区二区免费观看| av视频免费观看在线观看| 久久久久久久精品精品| 亚洲第一区二区三区不卡| 国产精品国产三级国产专区5o| 亚洲欧美成人综合另类久久久| 欧美97在线视频| 天堂8中文在线网| 精品国产一区二区三区久久久樱花 | 国产色爽女视频免费观看| 日韩强制内射视频| 夫妻性生交免费视频一级片| 精品一区二区三区视频在线| av免费观看日本| 亚洲精品色激情综合| 久久久精品免费免费高清| 免费观看无遮挡的男女| 欧美精品一区二区大全| 国产欧美日韩一区二区三区在线 | 视频区图区小说| 男女无遮挡免费网站观看| 亚洲精品久久午夜乱码| 国产成人精品久久久久久| 热re99久久精品国产66热6| 国产精品一及| 熟女av电影| 一级毛片我不卡| 2022亚洲国产成人精品| 尤物成人国产欧美一区二区三区| 狂野欧美激情性xxxx在线观看| 亚洲成色77777| 亚洲欧美一区二区三区国产| 亚洲av成人精品一二三区| 日韩欧美一区视频在线观看 | 内地一区二区视频在线| 国产精品欧美亚洲77777| 性高湖久久久久久久久免费观看| 黄色视频在线播放观看不卡| 免费播放大片免费观看视频在线观看| h视频一区二区三区| 免费观看无遮挡的男女| 国产爱豆传媒在线观看| 内地一区二区视频在线| 黑人猛操日本美女一级片| 亚洲av二区三区四区| 最近的中文字幕免费完整| 国产伦精品一区二区三区视频9| 亚洲av中文字字幕乱码综合| 亚洲婷婷狠狠爱综合网| freevideosex欧美| 国产大屁股一区二区在线视频| 亚洲国产精品一区三区| 亚洲国产高清在线一区二区三| 国产69精品久久久久777片| 爱豆传媒免费全集在线观看| 国产探花极品一区二区| 国产老妇伦熟女老妇高清| 看非洲黑人一级黄片| 久久这里有精品视频免费| 嫩草影院入口| 汤姆久久久久久久影院中文字幕| 国产大屁股一区二区在线视频| 久久综合国产亚洲精品| 国产成人精品久久久久久| 欧美 日韩 精品 国产| 日本猛色少妇xxxxx猛交久久| 性高湖久久久久久久久免费观看| 97精品久久久久久久久久精品| www.色视频.com| 国产伦理片在线播放av一区| 日本欧美国产在线视频| 少妇被粗大猛烈的视频| av视频免费观看在线观看| 成人无遮挡网站| 在线观看免费日韩欧美大片 | 高清毛片免费看| 亚洲精品国产色婷婷电影| 插逼视频在线观看| 免费看日本二区| 国产男女内射视频| av福利片在线观看| 国产亚洲一区二区精品| 亚洲av福利一区| 性高湖久久久久久久久免费观看| 久久久久国产精品人妻一区二区| 日日撸夜夜添| 国产探花极品一区二区| 国产精品一区www在线观看| 国产精品秋霞免费鲁丝片| 国产精品不卡视频一区二区| 毛片女人毛片| 日韩伦理黄色片| 国产又色又爽无遮挡免| 我要看黄色一级片免费的| 国产一区二区在线观看日韩| 午夜免费男女啪啪视频观看| 日本一二三区视频观看| 国产一区二区在线观看日韩| 国产精品国产av在线观看| 春色校园在线视频观看| 看非洲黑人一级黄片| 国产又色又爽无遮挡免| 久久国内精品自在自线图片| 少妇丰满av| 日韩成人伦理影院| 日韩亚洲欧美综合| 国产精品秋霞免费鲁丝片| 亚洲性久久影院| 在线免费十八禁| 美女国产视频在线观看| 伊人久久精品亚洲午夜| 欧美xxxx性猛交bbbb| 久久久久视频综合| 性高湖久久久久久久久免费观看| 国产乱来视频区| 久久人人爽人人爽人人片va| av天堂中文字幕网| 美女视频免费永久观看网站|