• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of water-sediment regulation and its impact on coastline and suspended sediment concentration in Yellow River Estuary

    2017-02-01 08:49:43HiboYngEnchongLiYongZhoQiuhuLing
    Water Science and Engineering 2017年4期

    Hi-bo Yng,En-chong Li,Yong Zho*,Qiu-hu Ling

    aSchool of Water Conservancy and Environmental Engineering,Zhengzhou University,Zhengzhou 450001,China

    bState Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University,Tianjin 300072,China

    cState Key Laboratory of Simulation and Regulation of Water Cycle in River Basin,China Institute of Water Resources and Hydropower Research,Beijing 100038,China

    dSchool of Civil Engineering and Geosciences,Newcastle University,NE1 7RU,UK

    1.Introduction

    The Yellow River,well known for having the second largest sediment load river in the world(Milliman and Meade,1983),passes through various regions where climatology,geology,and geomorphology vary spatially.The characteristics of a high concentration of sediment and different sources of water and sediment have caused many difficulties in Yellow River Basin management in terms of water science and engineering(Yu,2002),including for water resources allocation under the ever-increasing pressure of water demand for irrigation,industrial and urban uses,and delta wetland environments(Jia et al.,2006;Yang et al.,2009,2013);maintenance of the operating life of reservoirs with decreasing capacity due to sedimentation(Chamoun et al.,2016;Guo et al.,2015;Ran et al.,2013);and the alleviation offlood risk due to the high riverbed level of suspended rivers(Bai et al.,2016).Under the influence of human activities and natural factors,the Yellow River has been in an unstable water-sediment condition since the 1970s(Xu,2003).With a goal of maintaining Yellow River health and establishing a harmonious water-sedimentrelationship,some techniques,including joint reservoir operation and sediment evacuation and agitation,are used in the water-sediment regulation(WSR)scheme,in order to create a man-madeflood peak and allow turbidity venting to scour river channels downstream and wash away the reservoir sedimentation(Li and Sheng,2011).Since 2002,the implementation of WSR has efficiently reduced deposition,diminished the riverbed downstream,increased theflow capacity and sediment transport,and improved the wetland environment of the Yellow River Estuary(Xu and Si,2009;Li and Sheng,2011).

    Although the effect of WSR,mainly focused on solving the sedimentation problems of reservoirs and the lower reaches of the Yellow River,has been validated partially(Miao et al.,2016;Kong et al.,2015a),a large quantity of water and sediment discharge into the sea over half a month has inevitably induced many attendant problems(Kong et al.,2015b;Xia et al.,2016;Wang et al.,2017).The integrated management of the basin,channel,and estuary has to be studied(GWP,2000;Campbell,2016).In the WSR period(WSRP),compared with the normal period(NP),the Yellow River Estuary experienced a strong influence of human activities because of the rapid artificial turbidity of the current flow process.In addition to research on the environmental impact of WSR in the Yellow River Estuary(Xu et al.,2016;Li et al.,2017),the dramaticcoastlineswing and sedimentation morphology in the estuary region have been explored(Dong et al.,2015;Zeng et al.,2015).Along with the development of remote sensing and data availability,coastline change(Rahman et al.,2011;Liu et al.,2013;Li and Gong,2016;Ghosh et al.,2015)and suspended sediment(Volpe et al.,2011;Guo et al.,2017)have been broadly analyzed using remotely sensed data on coastal ocean and climate change.Using 27 satellite images,Cui and Li(2011)concluded that the Yellow River Estuary experienced a slow accretion stage from 2003 to 2010.Zhou et al.(2015)studied the progradation of the Yellow River Estuary and found that coastlines were an integrated response to the complex variations in both sediment and water supply in the WSRP.Wang et al.(2014)concluded that the process of sediment transport in the coastal ocean was mostly dominated by riverine and ocean dynamics,which were disturbed by WSR.Wu et al.(2015)collected surface sediment samples at 15 stations before,during,and after the WSR in 2013 to examine the spatial distribution of sediment with different grain sizes.

    With a maximum riverflow of approximately 4000 m3/s delivered to the river mouth for almost 15 days every year during the WSRP(Wang et al.,2005),the Yellow River Estuary was changed dramatically.There are two important things that need to be analyzed:(1)the effect of WSR,and(2)the impact of WSR on the Yellow River Estuary in terms of changes in morphology and sediment distribution.However,even after the implementation of WSR each year from 2002 onward,there has not been a sufficient degree of detailed comparative analysis of the coastline and suspended sediment concentration(SSC)variations in the NP(1986-2001)and WSRP(2002-2013).The purpose of this study was to(1)investigate the water and sediment conditions from 1950 onward,(2)to systematically compare the variations of coastline and SSC in the NP and WSRP,and(3)tofinely dissect the intra-annual changes of the coastline and SSC in the NP(before and after theflood season)and WSRP(before and after WSR).

    2.Data and methodology

    2.1.Study area

    The Yellow River Estuary,located in the Bohai Sea,is wellknown for its rapid erosion-deposition variation(Milliman and Meade,1983)and frequent shifting courses in the lower reaches(Wang et al.,1986),caused by the dramatic change of riverflows,ocean tides,and currents.The Yellow River course has changed more than 50 times in the past 150 years because of either natural or anthropogenic reasons(Pang and Si,1979;Zhong et al.,2003),including from the Diaokou course to the Qingshuigou course in 1976,from the Qingshuigou course to the Q8 course in August 1996,and then to downstream of the Q8 course in 2008(Liu et al.,2013).The study area is shown in Fig.1.

    2.2.Data sources

    Data for monthly runoff and sediment load at Lijin Station and Huayuankou Station from 1950 to 2014 were collected from the Yellow River Conservancy Commission(YRCC).Due to the moderate frequency(16 days)and medium resolution(30 m),Landsat imagery was used for coastline delineation and sediment concentration calculation.In this study,a total of 56 Landsat images were collected from 1986 to 2015,obtained from a thematic mapper(TM)and an enhanced thematic mapper(ETM+)(Table 1 and Table 2)in each year of the NP(before and after theflood season)and in each year of the WSRP(before and after WSR).Because of missing data or cloud coverage,images near these timing nodes were supplemented.All remote images were selected from the Earth Resources Observation and Science(EROS)Center(http://glovis.usgs.gov/),and the Chinese Academy of Sciences(http://www.gscloud.cn/).

    Fig.1.Study area.

    Table 1 Image acquisition date in each year of NP.

    Table 2 Image acquisition date and WSR date in each year of WSRP.

    2.3.Coastline delineation and SSC retrieval

    After the normalized difference water index(NDWI)was introduced to delineate open water features(McFeeters,1996),the modified normalized difference water index proposed by Xu(2006)was widely used(Yang et al.,2011;Ogilvie et al.,2015).Its mathematical expression is

    where MNDWIis the modified normalized difference water index,and RMirand RGrespectively represent the reflectivities of the mid-infrared band and green band.After MNDWIwas calculated by the ENVI software,in order to delineate the coastline,the thresholds of MNDWIshould be used to differentiate the water body from the non-water body areas.Considering that coastlines varied with time and tide,data quality was controlled in two ways.First,the stable area of the entire Yellow River Delta for each year was abstracted and analyzed to calculate the area change ratio,which is the ratio of the difference between the annual stable delta area and multi-year mean delta area to the multi-year mean delta area.Second,in consideration of the subjectivity of the threshold,the slope of the MNDWIwas calculated with ArcGIS software to quantify the threshold,through which obvious boundaries can be detected and delineated to obtain thefinal coastlines.By assuming the dynamic equilibrium of coastlines,Fig.2 shows that the mean area change ratio accounts for 0.79%of the total delta area,indicating that the results have relatively reliable accuracy.

    In addition to traditional methods,by virtue of remote sensing,the beam reflectance,optical backscattering,optical transmission,and spectral reflectance can be used for SSC measurement(Wren et al.,2000).Various visible and near infrared band combinations have been proposed to determine SSC in coastal or estuarine environments using several multispectral satellite sensors(Volpe et al.,2011).Inter-annual and seasonal variations of SSC in the Yellow River Estuary have been studied and assessed from 2000 to 2010(Zhang et al.,2014).Through spectralfield measurement and sampling investigation in the Yellow River Estuary,Fan et al.(2007)analyzed the relationship of waveband combinations and SSC,and put forward an equation that was used in this study.

    3.Results and discussion

    3.1.Water and sediment conditions in NP and WSRP

    Table 3 presents the average runoff and sediment load in two periods at Lijin Station.Data indicate that,since 1986,water and sediment conditions have experienced enormous change in the Yellow River Estuary.The average annual runoff at Lijin Station from 1986 to 2001 was 137.78×108m3and the average annual sediment load was 3.51×108t.During the WSRP,after the implementation of WSR,the average annual runoff increased to 184.28×108m3,the average annual sediment load decreased to 1.60×108t.Comparing the NP and WSRP,we find that the runoff proportion in the flood season increased from 56.77%to 57.47%,while the sediment proportion decreased from 87.46%to 77.50%.

    Calculation of the average monthly runoff and sediment load in the two periods shows that implementation of WSR extended the ranges with a relatively high runoff and sediment load in theflood season,due mostly to the WSR process from June to July(Fig.3).

    Fig.2.Area change ratio of Yellow River Delta.

    Table 3 Water and sediment data from Lijin Station.

    Long-term continuous sedimentation in the lower reaches of the Yellow River was indicated from the sediment difference between Lijin Station and Huayuankou Station from 1950 to 2002.However,after WSR implementation from 2002 onward,Fig.4 shows that the sedimentation turned into erosion,indicating that WSR reduces sedimentation of riverbed and reservoirs.

    3.2.Coastline change

    In order to analyze long-term serial coastline changes and spatial siltation and erosion evolution in the estuary from 1986 onward,multiple satellite images were used to delineate the coastlines.Fig.5 shows the changes in the coastlines in the NP and WSRP.The coastline pushed forward before 1997 and shrank after 2003 in the southern part of the mouth because of the river mouth shift in 1996,and continually extended outward in the northern part of the river mouth from 2003 onward.

    As shown in Fig.6,coastlines before and after WSR for each year from 2002 to 2013 were extracted.A comparative analysis was made of coastlines in the Yellow River Estuary throughout these years,and results indicated that the coastline in the southern part of the mouth swung randomly and included a certain amount of erosion,because of the sedimentation caused by reclamation and sea wave intrusion.In most cases,the coastlines extended offshore,especially in the northern part of the river mouth.However,in some years,the changes were not coincident with the described phenomena because the image data selected were far from the research timing node.

    Fig.3.Proportion of monthly water runoff and sediment load to annual values at Lijin Station in NP and WSRP.

    Fig.4.Sediment loads at Huayuankou Station and Lijin Station.

    Fig.5.Changes of coastlines in NP and WSRP.

    Fig.6.Changes of coastline in Yellow River Estuary before WSR and after WSR from 2002 to 2013.

    Fig.7.Land area change in Yellow River Estuary in different periods.

    In order to conduct further quantitative analysis of Yellow River Estuary changes(before and after the timing nodes)in the NP and WSRP,the land area was extracted and calculated for each year(Fig.7).Results indicated that area increases in the Yangtze River Estuary mainly appeared at the river mouth,and the coastline shrank in different regions to different degrees.Because of missing data or cloud coverage,data in some years(1990 and 1994)were supplemented using data from adjacent years.We found that the accretion-erosion evolution of coastlines could be divided into three stages from 1986 to 2013:the accretion stage(1986-1996),the slow erosion stage(1996-2002),and the slow accretion stage(2002 to the present).This corresponds to other research results(Cui and Li,2011).The mean accretion area in the NP,which is the difference between the land areas before and after theflood season,was 0.789 km2,and the mean accretion area in the WSRP,which is the difference between the land areas before and after WSR,was 4.73 km2.

    3.3.SSC spatial analysis

    SSC distribution in some years is shown in Fig.8.The suspended sediment in the estuary sea area was mainly distributed along the bank.SSC rapidly decreased as the offshore distance increased,and the concentration and diffusion scope of sediment discharging into sea after theflood season were higher than those before theflood season.All extreme SSC values appeared near the Yellow River Estuary,indicating that a large proportion of sediment discharging into the sea was deposited near the estuary.Only a small proportion of suspended sediments discharging into the sea in the Yellow River Estuary diffused northward,while most diffused towards the sea area of Leizhou Bay due to the combination of river dynamics and ocean dynamics.Under normal conditions,the high-concentration sediment center in the estuary region was connected to the sea area of Leizhou Bay.

    In order to analyze SSC spatial distribution variation with the offshore distance in different directions,and then to conduct quantitative analysis of SSC and its distribution in the estuary,the Yellow River Estuary was divided into 12 zones in two steps,as follows.First,three buffer regions with different distances from the coastline were generated.Second,extending from a certain point,five lines were drawn at an angle of 45°.As shown in Fig.9,A1 through A4 constitute the first buffer region(0-5 km away from the coastline),B1 through B4 constitute the second buffer region(5-10 km away from the coastline),and C1 through C4 constitute the third buffer region(10-20 km away from the coastline).Using the SSC distributions in 1991 and 2012 as examples,the SSC values showed a consistent decreasing trend offshore;SSC values in zones A4,B4,and C4 were higher than others;and SSC values after theflood season in 1991 and after WSR in 2012 were higher than those before theflood season in 1991 and before WSR in 2012,respectively(Fig.9).

    Fig.8.Distribution of SSC in Yellow River Estuary.

    Fig.9.Distribution of zonal average SSC in Yellow River Estuary.

    Fig.10.Mean annual SSC and its increasing ratio in different zones.

    Based on calculation of partial statistical results,we obtained average SSC in different zones before and after theflood season in the NP and before and after WSR in the WSRP.The results are shown in Fig.10.The average annual values of SSC after theflood season were higher than those before theflood season.During the NP,the average annual value of SSC in the estuary changed from 238 mg/L before theflood season to 293 mg/L after theflood season,while the average annual value of SSC during the WSRP changed from 192 mg/L before regulation to 264 mg/L after regulation.The varying amplitude of average annual SSC values in different periods decreased as the offshore distance increased,and the SSC value within thefirst buffer region(0-5 km away from the coastline)was the maximum.There was basically no difference between the average annual SSC values in the third buffer region(10-20 km away from the coastline),which indicated that sediment transport in this region was mainly influenced by ocean dynamics rather than river dynamics.The increasing ratio of SSC resulting from WSR after 2002 was high than that induced by theflood during the NP(Fig.10(b)).

    4.Conclusions

    This study analyzed the runoff and sediment load from 1950,extracted estuary coastlines and SSC distribution in the offshore region in the Yellow River Estuary to describe the serial variation in the NP and WSRP,and identified detailed intra-annual changes in the coastline and SSC in the NP(before and after theflood season)and WSRP(before and after WSR)using two images from each year.The results are as follows:

    (1)Comparing the NP with WSRP,the runoff proportion in theflood season increased from 56.77%to 57.47%and the sediment proportion decreased from 87.46%to 77.50%.The implementation of WSR extended the ranges with a high runoff and sediment load in theflood season.After the implementation of WSR from 2002 onward,the sedimentation in the low reaches of the Yellow River turned into erosion,indicating that WSR can reduce sedimentation of the riverbed and reservoirs.

    (2)The implementation of WSR changed the original water and sediment conditions in the Yellow River,and resulted in changes of land-sea morphology in the Yellow River Estuary.Coastlines mostly extended outward in the river mouth in the WSRP.However,in some years,the changes were not coincident with the observed phenomena because the image data selected were far from the research timing node.The mean accretion area increased from 0.789 km2in the NP to 4.73 km2in the WSRP.

    (3)The average annual value of SSC in the Yellow River Estuary changed from 238 mg/L before theflood season to 293 mg/L after theflood season during the NP,while it increased from 192 mg/L before WSR to 264 mg/L after WSR during the WSRP.

    Bai,P.,Liu,X.M.,Liang,K.,Liu,C.M.,2016.Investigation of changes in the annual maximumflood in the Yellow River Basin,China.Quat.Int.392,168-177.https://doi.org/10.1016/j.quaint.2015.04.053.

    Campbell,I.C.,2016.Integrated management of large rivers and their basins.Ecohydrol.Hydrobiol.16(4),203-214.https://doi.org/10.1016/j.ecohyd.2016.09.006.

    Chamoun,S.,Cesare,G.D.,Schleiss,A.J.,2016.Managing reservoir sedimentation by venting turbidity currents:A review.Int.J.Sediment Res.31(3),195-204.https://doi.org/10.1016/j.ijsrc.2016.06.001.

    Cui,B.L.,Li,X.Y.,2011.Coastline change of the Yellow River Estuary and its response to the sediment and runoff(1976-2005).Geomorphology 127(1-2),32-40.https://doi.org/10.1016/j.geomorph.2010.12.001.

    Dong,J.W.,Xia,X.H.,Wang,M.H.,Lai,Y.J.,Zhao,P.J.,Dong,H.Y.,Zhao,Y.L.,Wen,J.J.,2015.Effect of water-sediment regulation of the Xiaolangdi Reservoir on the concentrations,bioavailability,andfluxes of PAHs in the middle and lower reaches of the Yellow River.J.Hydrol.527,101-112.https://doi.org/10.1016/j.jhydrol.2015.04.052.

    Fan,H.,Huang,H.J.,Tang,J.W.,2007.Spectral signature of waters in Huanghe Estuary and estimation of suspended sediment concentration from remote sensing data.Geomatics Inf.Sci.Wuhan Univ.32(7),601-604.https://doi.org/10.13203/j.whugis2007.07.009(in Chinese).

    Ghosh,M.K.,Kumar,L.,Roy,C.,2015.Monitoring the coastline change of Hatiya Island in Bangladesh using remote sensing techniques.ISPRS J.Photogrammetry Remote Sens.101,137-144.https://doi.org/10.1016/j.isprsjprs.2014.12.009.

    Global Water Partnership(GWP),2000.Integrated Water Resources Management(IWRM).Global Water Partnership,Stockholm.

    Guo,K.,Zou,T.,Jiang,D.,Tang,C.,Zhang,H.,2017.Variability of Yellow River turbid plume detected with satellite remote sensing during watersediment regulation.Continent.Shelf Res.135,74-85.https://doi.org/10.1016/j.csr.2017.01.017.

    Guo,S.L.,Sun,D.P.,Jiang,E.H.,Li,P.,2015.Equilibrium sediment transport in lower Yellow River during later sediment-retaining period of Xiaolangdi Reservoir.Drink.Water Eng.Sci.8(1),78-84.https://doi.org/10.1016/j.wse.2015.01.006.

    Jia,Y.W.,Wang,H.,Zhou,Z.N.,Qiu,Y.Q.,Luo,X.Y.,Wang,J.H.,Yan,D.H.,Qin,D.Y.,2006.Development of the WEP-L distributed hydrological model and dynamic assessment of water resources in the Yellow River Basin.J.Hydrol.331(3-4),606-629.https://doi.org/10.1016/j.jhydrol.2006.06.006.

    Kong,D.X.,Miao,C.Y.,Borthwick,A.G.L.,Duan,Q.Y.,Liu,H.,Sun,Q.H.,Ye,A.Z.,Di,Z.H.,Gong,W.,2015a.Evolution of the Yellow River Delta and its relationship with runoff and sediment load from 1983 to 2011.J.Hydrol.520,157-167.https://doi.org/10.1016/j.jhydrol.2014.09.038.

    Kong,D.X.,Miao,C.Y.,Wu,J.W.,Duan,Q.Y.,Sun,Q.H.,Ye,A.Z.,Di,Z.H.,Gong,W.,2015b.The hydro-environmental response on the lower Yellow River to the water-sediment regulation scheme.Ecol.Eng.79,69-79.https://doi.org/10.1016/j.ecoleng.2015.03.009.

    Li,G.Y.,Sheng,L.X.,2011.Model of water-sediment regulation in Yellow River and its effect.Sci.China Technol.Sci.54(4),924-930.https://doi.org/10.1007/s11431-011-4322-3.

    Li,W.Y.,Gong,P.,2016.Continuous monitoring of coastline dynamics in western Florida with a 30-year time series of Landsat imagery.Rem.Sens.Environ.179,196-209.https://doi.org/10.1016/j.rse.2016.03.031.

    Li,X.Y.,Chen,H.T.,Jiang,X.Y.,Yu,Z.G.,Yao,Q.Z.,2017.Impacts of human activities on nutrient transport in the Yellow River:The role of the watersediment regulation scheme.Sci.Total Environ.592,161-170.https://doi.org/10.1016/j.scitotenv.2017.03.098.

    Liu,Y.X.,Huang,H.J.,Qiu,Z.F.,Fan,J.Y.,2013.Detectingcoastlinechangefrom satellite images based on beach slope estimation in a tidalflat.Int.J.Appl.Earth Obs.Geoinf.23,165-176.https://doi.org/10.1016/j.jag.2012.12.005.

    McFeeters,S.K.,1996.The use of the normalized difference water index(NDWI)in the delineation of open water features.Int.J.Rem.Sens.17,1425-1432.https://doi.org/10.1080/01431169608948714.

    Miao,C.Y.,Kong,D.X.,Wu,J.W.,Duan,Q.Y.,2016.Functional degradation of the water-sediment regulation scheme in the lower Yellow River:Spatial and temporal analyses.Sci.Total Environ.551-552,16-22.https://doi.org/10.1016/j.scitotenv.2016.02.006.

    Milliman,J.D.,Meade,R.H.,1983.World-wide delivery of river sediment to the oceans.J.Geol.91(1),1-21.https://doi.org/10.1086/628741.

    Ogilvie,A.,Belaud,G.,Delenne,C.,Bailly,J.S.,Bader,J.C.,Oleksiak,A.,Ferry,L.,Martin,D.,2015.Decadal monitoring of the Niger Inner Deltaflood dynamics using MODIS optical data.J.Hydrol.523,368-383.https://doi.org/10.1016/j.jhydrol.2015.01.036.

    Pang,J.Z.,Si,S.H.,1979.Evolution of the Yellow River mouth:Historical shifts.Chin.J.Oceanol.Limnol.10(2),136-141(in Chinese).

    Rahman,A.F.,Dragoni,D.,El-Masri,B.,2011.Response of the Sundarbans coastline to sea level rise and decreased sedimentflow:A remote sensing assessment.Rem.Sens.Environ.115(12),3121-3128.https://doi.org/10.1016/j.rse.2011.06.019.

    Ran,L.,Lu,X.X.,Xin,Z.B.,Yang,X.K.,2013.Cumulative sediment trapping by reservoirsinlargeriverbasins:AcasestudyoftheYellowRiverBasin.Global Planet.Change 100,308-319.https://doi.org/10.1016/j.gloplacha.2012.11.001.

    Volpe,V.,Silvestri,S.,Marani,M.,2011.Remote sensing retrieval of suspended sediment concentration in shallow waters.Rem.Sens.Environ.115(1),44-54.https://doi.org/10.1016/j.rse.2010.07.013.

    Wang,H.J.,Yang,Z.S.,Bi,N.S.,Li,H.D.,2005.Rapid shifts of the river plume pathway off the Huanghe(Yellow)River mouth in response to water-sedimentregulation scheme in 2005.Chin.Sci.Bull.50,2878-2884.https://doi.org/10.1360/982005-1196.

    Wang,H.J.,Wang,A.M.,Bi,N.S.,Zeng,X.M.,Xiao,H.H.,2014.Seasonal distribution of suspended sediment in the Bohai Sea,China.Continent.Shelf Res.90,17-32.https://doi.org/10.1016/j.csr.2014.03.006.

    Wang,S.,Fu,B.,Liang,W.,Liu,Y.,Wang,Y.,2017.Driving forces of changes in the water and sediment relationship in the Yellow River.Sci.Total Environ.576,453-461.https://doi.org/10.1016/j.scitotenv.2016.10.124.

    Wang,Y.,Ren,M.E.,Zhu,D.K.,1986.Sediment supply to the continental shelf by the major rivers of China.J.Geol.Soc.143(6),935-944.https://doi.org/10.1144/gsjgs.143.6.0935.

    Wren,D.G.,Barkdoll,B.D.,Kuhnle,R.A.,Derrow,R.W.,2000.Field techniques for suspended-sediment measurement.J.Hydraul.Eng.126(2), 97-104. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:2(97).

    Wu,X.,Bi,N.S.,Yuan,P.,Li,S.,Wang,H.J.,2015.Sediment dispersal and accumulation off the present Huanghe(Yellow River)Delta as impacted by the water-sediment regulation scheme.Continent.Shelf Res.111(B),126-138.https://doi.org/10.1016/j.csr.2015.11.003.

    Xia,X.H.,Dong,J.W.,Wang,M.H.,Xie,H.,Xia,N.,Li,H.S.,Zhang,X.T.,Mou,X.L.,Wen,J.J.,Bao,Y.M.,2016.Effect of water-sediment regulation of the Xiaolangdi Reservoir on the concentrations,characteristics,andfluxes of suspended sediment and organic carbon in the Yellow River.Sci.Total Environ.571,487-497.https://doi.org/10.1016/j.scitotenv.2016.07.015.

    Xu,B.C.,Yang,D.S.,Burnett,W.C.,Ran,X.B.,Yu,Z.G.,Gao,M.S.,Diao,S.B.,Jiang,X.Y.,2016.Artificial water sediment regulation scheme influences morphology,hydrodynamics and nutrient behavior in the Yellow River Estuary.J.Hydrol.539,102-112.https://doi.org/10.1016/j.jhydrol.2016.05.024.

    Xu,G.B.,Si,C.D.,2009.Effect of water and sediment regulation on lower Yellow River.Trans.Tianjin Univ.15(2),113-120.https://doi.org/10.1007/s12209-009-0020-7.

    Xu,H.Q.,2006.Modification of normalised difference water index(NDWI)to enhance open water features in remotely sensed imagery.Int. J. Rem. Sens. 27(14), 3025-3033. https://doi.org/10.1080/01431160600589179.

    Xu,J.X.,2003.Sedimentflux to the sea as influenced by changing human activities and precipitation:Example of the Yellow River,China.Environ.Manag.31(3),328-341.https://doi.org/10.1007/s00267-002-2828-y.

    Yang,H.B.,Wang,Z.M.,Zhao,H.L.,Guo,Y.,2011.Water body extraction methods study based on RS and GIS.Procedia Environ.Sci.10(C),2619-2624.https://doi.org/10.1016/j.proenv.2011.09.407.

    Yang,Z.F.,Sun,T.,Cui,B.S.,Chen,B.,Chen,G.Q.,2009.Environmentalflow requirements for integrated water resources allocation in the Yellow River Basin,China.Commun.Nonlinear Sci.Numer.Simulat.14(5),2469-2481.https://doi.org/10.1016/j.cnsns.2007.12.015.

    Yang,Z.F.,Qin,Y.,Yang,W.,2013.Assessing and classifying plant-related ecological risk under water management scenarios in China's Yellow River Delta Wetlands.J.Environ.Manag.130,276-287.https://doi.org/10.1016/j.jenvman.2013.08.015.

    Yu,L.S.,2002.The Huanghe(Yellow)River:A review of its development,characteristics,and future management issues.Continent.Shelf Res.22,389-403.https://doi.org/10.1016/S0278-4343(01)00088-7.

    Zeng,X.M.,He,R.Y.,Xue,Z.,Wang,H.J.,Wang,Y.,Yao,Z.G.,Guan,W.B.,Warrillow,J.,2015.River-derived sediment suspension and transport in the Bohai,Yellow,andEastChinaSeas:Apreliminarymodelingstudy.Continent.Shelf Res.111(B),112-125.https://doi.org/10.1016/j.csr.2015.08.015.

    Zhang,M.W.,Dong,Q.,Cui,T.W.,Xue,C.J.,Zhang,S.L.,2014.Suspended sediment monitoring and assessment for Yellow River estuary from Landsat TM and ETM+imagery.Rem.Sens.Environ.146,136-147.https://doi.org/10.1016/j.rse.2013.09.033.

    Zhong,J.H.,Wen,Z.F.,Wang,G.M.,Wang,X.B.,Rao,M.Y.,Li,Y.,Ni,J.R.,Shen,X.R.,2003.Influences of the current breaking of the Yellow River on the anomalous vertical development and evolution of the river course.Geol.Rev.49(6),616-621(in Chinese).

    Zhou,Y.Y.,Huang,H.Q.,Nanson,G.C.,Huang,C.,Liu,G.H.,2015.Progradation of the Yellow(Huanghe)River Delta in response to the implementation of a basin-scale water regulation program.Geomorphology 243,65-74.https://doi.org/10.1016/j.geomorph.2015.04.023.

    日韩精品中文字幕看吧| 欧美黑人欧美精品刺激| 精品人妻1区二区| 搡女人真爽免费视频火全软件 | 1024手机看黄色片| 成熟少妇高潮喷水视频| 99国产精品一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 少妇人妻一区二区三区视频| 一夜夜www| 黄色片一级片一级黄色片| 天堂影院成人在线观看| 国产精品久久久久久久电影 | 欧美国产日韩亚洲一区| 亚洲专区国产一区二区| 3wmmmm亚洲av在线观看| 性色av乱码一区二区三区2| 久久久久九九精品影院| 亚洲在线自拍视频| 99久久久亚洲精品蜜臀av| 美女高潮喷水抽搐中文字幕| 99riav亚洲国产免费| 亚洲av不卡在线观看| 搡老熟女国产l中国老女人| 1000部很黄的大片| 88av欧美| 欧美日韩一级在线毛片| 窝窝影院91人妻| 亚洲av五月六月丁香网| 一进一出好大好爽视频| 免费观看的影片在线观看| 在线播放国产精品三级| 国产亚洲精品久久久久久毛片| av天堂在线播放| 黄片小视频在线播放| 丝袜美腿在线中文| 午夜久久久久精精品| 波野结衣二区三区在线 | 成人午夜高清在线视频| 性欧美人与动物交配| 中文资源天堂在线| av中文乱码字幕在线| 丰满乱子伦码专区| 首页视频小说图片口味搜索| 国产亚洲精品av在线| 此物有八面人人有两片| 亚洲av电影在线进入| 国产精品美女特级片免费视频播放器| 可以在线观看毛片的网站| 午夜福利在线观看免费完整高清在 | 最近最新中文字幕大全电影3| 久久久精品欧美日韩精品| 国产91精品成人一区二区三区| 熟女电影av网| 亚洲国产精品合色在线| 精品国内亚洲2022精品成人| 色综合欧美亚洲国产小说| 在线免费观看不下载黄p国产 | 一个人看的www免费观看视频| 久久久久久人人人人人| 深爱激情五月婷婷| 一卡2卡三卡四卡精品乱码亚洲| 欧美+日韩+精品| 日本与韩国留学比较| 嫩草影院精品99| 亚洲人成伊人成综合网2020| 天天一区二区日本电影三级| 亚洲美女视频黄频| 一本久久中文字幕| 人妻丰满熟妇av一区二区三区| 熟女电影av网| 欧美一区二区国产精品久久精品| 午夜精品在线福利| 国产高清有码在线观看视频| 国内揄拍国产精品人妻在线| 国产精品精品国产色婷婷| 欧美色视频一区免费| 亚洲不卡免费看| 亚洲av中文字字幕乱码综合| 免费av不卡在线播放| 亚洲精品成人久久久久久| 亚洲av日韩精品久久久久久密| 欧美成人性av电影在线观看| 国产中年淑女户外野战色| 男女那种视频在线观看| 国产精品国产高清国产av| 亚洲精品在线观看二区| 精品乱码久久久久久99久播| 九九热线精品视视频播放| 97超视频在线观看视频| 99热只有精品国产| 超碰av人人做人人爽久久 | 一级毛片女人18水好多| 麻豆久久精品国产亚洲av| 天堂√8在线中文| 成人av在线播放网站| 精品久久久久久久人妻蜜臀av| 一进一出抽搐gif免费好疼| 欧美一区二区国产精品久久精品| 首页视频小说图片口味搜索| h日本视频在线播放| 国产精品久久久人人做人人爽| 天天躁日日操中文字幕| 看免费av毛片| 亚洲国产精品sss在线观看| av视频在线观看入口| 精品久久久久久成人av| 在线十欧美十亚洲十日本专区| 亚洲欧美日韩无卡精品| 亚洲国产精品成人综合色| 成人18禁在线播放| 日本黄色视频三级网站网址| 成人特级av手机在线观看| 在线看三级毛片| 成人高潮视频无遮挡免费网站| 亚洲真实伦在线观看| 亚洲性夜色夜夜综合| 午夜激情欧美在线| 好看av亚洲va欧美ⅴa在| 欧美在线黄色| 岛国在线免费视频观看| 最近最新中文字幕大全电影3| 夜夜看夜夜爽夜夜摸| 亚洲国产欧洲综合997久久,| 欧美色欧美亚洲另类二区| 欧美绝顶高潮抽搐喷水| 婷婷六月久久综合丁香| www.www免费av| 精品久久久久久久久久免费视频| 亚洲 欧美 日韩 在线 免费| 噜噜噜噜噜久久久久久91| 国产97色在线日韩免费| 一本综合久久免费| 国产主播在线观看一区二区| 给我免费播放毛片高清在线观看| 真人做人爱边吃奶动态| 美女免费视频网站| 亚洲av免费高清在线观看| 一级毛片高清免费大全| 最新中文字幕久久久久| 别揉我奶头~嗯~啊~动态视频| 欧美一级a爱片免费观看看| 久久精品人妻少妇| 深爱激情五月婷婷| 色尼玛亚洲综合影院| 欧美日韩黄片免| 国产欧美日韩精品亚洲av| 国产真实乱freesex| 在线观看舔阴道视频| 少妇人妻一区二区三区视频| 久久精品91无色码中文字幕| 看免费av毛片| 亚洲精品成人久久久久久| 最后的刺客免费高清国语| 高潮久久久久久久久久久不卡| 在线a可以看的网站| 日本精品一区二区三区蜜桃| 热99re8久久精品国产| 搡老熟女国产l中国老女人| 无遮挡黄片免费观看| 欧美一区二区亚洲| 亚洲av电影不卡..在线观看| 久久精品91蜜桃| 琪琪午夜伦伦电影理论片6080| 99热6这里只有精品| 国产探花极品一区二区| 国产精品久久久人人做人人爽| 免费看十八禁软件| 怎么达到女性高潮| 啦啦啦免费观看视频1| 免费人成视频x8x8入口观看| 怎么达到女性高潮| 在线视频色国产色| 精品熟女少妇八av免费久了| 国产熟女xx| 国产精品久久久人人做人人爽| 男人和女人高潮做爰伦理| 久久久久免费精品人妻一区二区| av欧美777| 99国产精品一区二区蜜桃av| 高潮久久久久久久久久久不卡| 亚洲 国产 在线| 国内毛片毛片毛片毛片毛片| 国产成人啪精品午夜网站| 精品不卡国产一区二区三区| 天天添夜夜摸| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 九九在线视频观看精品| 国产国拍精品亚洲av在线观看 | 身体一侧抽搐| 亚洲性夜色夜夜综合| 精品午夜福利视频在线观看一区| 午夜两性在线视频| 淫秽高清视频在线观看| 九色国产91popny在线| 神马国产精品三级电影在线观看| 午夜福利在线观看吧| 国产色婷婷99| 搡女人真爽免费视频火全软件 | 国产免费男女视频| 88av欧美| 婷婷丁香在线五月| 熟女电影av网| 亚洲七黄色美女视频| 日本三级黄在线观看| 麻豆久久精品国产亚洲av| 18禁在线播放成人免费| 国产探花在线观看一区二区| 99国产综合亚洲精品| av黄色大香蕉| 亚洲精品日韩av片在线观看 | 国产午夜精品论理片| 亚洲美女视频黄频| 成年免费大片在线观看| 熟女电影av网| 国产精品久久久久久人妻精品电影| 中文字幕人妻熟人妻熟丝袜美 | 少妇的丰满在线观看| 欧美日韩黄片免| 99国产综合亚洲精品| 国产综合懂色| 国产一区二区在线观看日韩 | 日韩精品中文字幕看吧| 欧美性猛交╳xxx乱大交人| 中文在线观看免费www的网站| 日韩欧美 国产精品| av视频在线观看入口| 99精品在免费线老司机午夜| 国产高清激情床上av| 在线免费观看不下载黄p国产 | 精品国内亚洲2022精品成人| 久久99热这里只有精品18| bbb黄色大片| 国产高清videossex| 精品99又大又爽又粗少妇毛片 | 无人区码免费观看不卡| 人妻久久中文字幕网| 99久久精品国产亚洲精品| 最新在线观看一区二区三区| 亚洲第一欧美日韩一区二区三区| 精品久久久久久久久久免费视频| 国产免费一级a男人的天堂| 俄罗斯特黄特色一大片| 男女那种视频在线观看| 国产伦精品一区二区三区视频9 | av天堂中文字幕网| 免费大片18禁| 亚洲av中文字字幕乱码综合| 十八禁网站免费在线| 99热6这里只有精品| 成人精品一区二区免费| 天天添夜夜摸| 亚洲av美国av| 国产av不卡久久| 一个人观看的视频www高清免费观看| 亚洲黑人精品在线| 女警被强在线播放| 久久国产精品人妻蜜桃| 国产精品野战在线观看| 国产黄片美女视频| 亚洲精品日韩av片在线观看 | 99久久成人亚洲精品观看| 亚洲精品在线观看二区| 18禁黄网站禁片午夜丰满| 国产精品99久久99久久久不卡| 亚洲国产精品999在线| 别揉我奶头~嗯~啊~动态视频| 伊人久久精品亚洲午夜| 露出奶头的视频| 最新美女视频免费是黄的| 3wmmmm亚洲av在线观看| 首页视频小说图片口味搜索| 两个人的视频大全免费| 男女视频在线观看网站免费| 少妇熟女aⅴ在线视频| 琪琪午夜伦伦电影理论片6080| 成熟少妇高潮喷水视频| 国产成人系列免费观看| 一进一出抽搐动态| 在线a可以看的网站| 亚洲欧美一区二区三区黑人| 午夜免费男女啪啪视频观看 | 国产单亲对白刺激| 精品人妻1区二区| 高清毛片免费观看视频网站| h日本视频在线播放| 俄罗斯特黄特色一大片| 精品国内亚洲2022精品成人| 亚洲精品美女久久久久99蜜臀| 午夜福利成人在线免费观看| 亚洲精品日韩av片在线观看 | 波野结衣二区三区在线 | bbb黄色大片| 国产一区在线观看成人免费| 亚洲专区中文字幕在线| 亚洲电影在线观看av| av中文乱码字幕在线| 最近视频中文字幕2019在线8| 夜夜夜夜夜久久久久| 麻豆一二三区av精品| 亚洲电影在线观看av| 搡女人真爽免费视频火全软件 | 国产一区二区在线观看日韩 | 欧美大码av| 一个人看的www免费观看视频| 男人舔女人下体高潮全视频| 国产精品久久视频播放| 制服人妻中文乱码| 精品一区二区三区视频在线观看免费| 亚洲18禁久久av| 精品无人区乱码1区二区| 手机成人av网站| 国产私拍福利视频在线观看| av女优亚洲男人天堂| 国产老妇女一区| 一个人观看的视频www高清免费观看| 中文字幕久久专区| 一二三四社区在线视频社区8| 亚洲一区高清亚洲精品| 日本五十路高清| 欧美成狂野欧美在线观看| 99久久九九国产精品国产免费| 99在线人妻在线中文字幕| 九色国产91popny在线| 九九久久精品国产亚洲av麻豆| 国产亚洲欧美98| 精品人妻偷拍中文字幕| 亚洲人成电影免费在线| 国产视频一区二区在线看| 精品免费久久久久久久清纯| 熟妇人妻久久中文字幕3abv| 男女之事视频高清在线观看| 中文字幕高清在线视频| 亚洲,欧美精品.| 高清在线国产一区| 在线观看一区二区三区| 美女高潮的动态| 人人妻,人人澡人人爽秒播| 禁无遮挡网站| 全区人妻精品视频| 日韩欧美在线二视频| 日本免费一区二区三区高清不卡| 99riav亚洲国产免费| 婷婷精品国产亚洲av| 99国产精品一区二区蜜桃av| 国产黄片美女视频| 国模一区二区三区四区视频| 久久香蕉精品热| 中国美女看黄片| www日本在线高清视频| 少妇的逼好多水| 狂野欧美白嫩少妇大欣赏| 老熟妇乱子伦视频在线观看| 90打野战视频偷拍视频| 亚洲久久久久久中文字幕| 国产高清视频在线播放一区| 一区二区三区免费毛片| 熟妇人妻久久中文字幕3abv| 五月玫瑰六月丁香| 国产成人av教育| 亚洲av中文字字幕乱码综合| 国产三级中文精品| 欧美日韩乱码在线| 亚洲在线自拍视频| 麻豆久久精品国产亚洲av| 观看美女的网站| 日韩大尺度精品在线看网址| eeuss影院久久| 一进一出抽搐动态| 成人高潮视频无遮挡免费网站| 五月伊人婷婷丁香| 1024手机看黄色片| 国产精品国产高清国产av| 哪里可以看免费的av片| 亚洲男人的天堂狠狠| 欧美一区二区精品小视频在线| 国产精品女同一区二区软件 | 亚洲av成人av| 国产久久久一区二区三区| 神马国产精品三级电影在线观看| 91久久精品国产一区二区成人 | 久久人人精品亚洲av| 国产中年淑女户外野战色| 午夜福利在线在线| 久久久国产成人精品二区| 少妇人妻一区二区三区视频| 亚洲国产中文字幕在线视频| 色噜噜av男人的天堂激情| 亚洲人成网站在线播| 久久精品国产自在天天线| 亚洲国产中文字幕在线视频| 国产精品av视频在线免费观看| 欧美一级毛片孕妇| 在线视频色国产色| 欧洲精品卡2卡3卡4卡5卡区| 18禁国产床啪视频网站| 国内精品久久久久精免费| 国产黄a三级三级三级人| 真人做人爱边吃奶动态| 国产亚洲欧美在线一区二区| 波多野结衣巨乳人妻| 久久久精品欧美日韩精品| 国产伦在线观看视频一区| 国内毛片毛片毛片毛片毛片| 搞女人的毛片| 嫩草影院入口| 欧美日韩黄片免| 成年人黄色毛片网站| 成人特级黄色片久久久久久久| 在线观看午夜福利视频| 国产免费一级a男人的天堂| 熟女人妻精品中文字幕| 国产三级在线视频| 欧美日韩亚洲国产一区二区在线观看| 国产一区二区在线观看日韩 | 午夜福利在线在线| 欧美3d第一页| 久久这里只有精品中国| 国产精品一区二区免费欧美| 久久久国产精品麻豆| 好看av亚洲va欧美ⅴa在| 91在线精品国自产拍蜜月 | 日韩高清综合在线| 一进一出抽搐gif免费好疼| 99热6这里只有精品| 精品久久久久久,| 精品99又大又爽又粗少妇毛片 | 亚洲精品亚洲一区二区| 亚洲成a人片在线一区二区| 亚洲国产精品999在线| 蜜桃久久精品国产亚洲av| 18禁国产床啪视频网站| a级一级毛片免费在线观看| av在线天堂中文字幕| 国内精品一区二区在线观看| 在线观看av片永久免费下载| 国产精品精品国产色婷婷| 久久久久久久亚洲中文字幕 | 波多野结衣高清无吗| 真人一进一出gif抽搐免费| h日本视频在线播放| 国产高清有码在线观看视频| 国产精品亚洲一级av第二区| 别揉我奶头~嗯~啊~动态视频| 悠悠久久av| 国产淫片久久久久久久久 | 国产野战对白在线观看| 特大巨黑吊av在线直播| 国产欧美日韩一区二区三| 黑人欧美特级aaaaaa片| 欧美性猛交黑人性爽| 久久精品国产亚洲av涩爱 | 午夜福利成人在线免费观看| 97超视频在线观看视频| 人人妻人人看人人澡| 欧美性猛交╳xxx乱大交人| 欧美激情久久久久久爽电影| a在线观看视频网站| 女同久久另类99精品国产91| 成人性生交大片免费视频hd| 村上凉子中文字幕在线| 精品99又大又爽又粗少妇毛片 | 国产精品综合久久久久久久免费| a级毛片a级免费在线| 日韩欧美国产在线观看| 一a级毛片在线观看| 99在线视频只有这里精品首页| 午夜免费男女啪啪视频观看 | 亚洲欧美日韩卡通动漫| 天堂网av新在线| 亚洲美女视频黄频| 精品午夜福利视频在线观看一区| 熟女电影av网| 免费搜索国产男女视频| 一个人看视频在线观看www免费 | 久久国产精品人妻蜜桃| 五月伊人婷婷丁香| 国产69精品久久久久777片| 一进一出抽搐gif免费好疼| 毛片女人毛片| 99视频精品全部免费 在线| 69av精品久久久久久| 99国产精品一区二区三区| 亚洲精品粉嫩美女一区| 成人18禁在线播放| 男人舔女人下体高潮全视频| 中出人妻视频一区二区| 亚洲国产精品999在线| 国产亚洲欧美98| 97碰自拍视频| 欧美一级毛片孕妇| 久久精品国产清高在天天线| 怎么达到女性高潮| 九色成人免费人妻av| 中文字幕久久专区| 偷拍熟女少妇极品色| av天堂中文字幕网| 嫁个100分男人电影在线观看| 成年版毛片免费区| 国产精华一区二区三区| 亚洲乱码一区二区免费版| 国产av一区在线观看免费| 成年女人永久免费观看视频| 欧美精品啪啪一区二区三区| 男人和女人高潮做爰伦理| 午夜影院日韩av| 午夜久久久久精精品| 露出奶头的视频| 亚洲av二区三区四区| 亚洲国产色片| 国产一区在线观看成人免费| 人妻丰满熟妇av一区二区三区| 噜噜噜噜噜久久久久久91| 亚洲av二区三区四区| 可以在线观看的亚洲视频| 欧美bdsm另类| 成人欧美大片| 亚洲欧美日韩卡通动漫| 国产高潮美女av| 特大巨黑吊av在线直播| 亚洲av成人av| 欧美激情久久久久久爽电影| 成人性生交大片免费视频hd| 午夜a级毛片| 国产欧美日韩精品一区二区| 岛国在线免费视频观看| 日韩欧美 国产精品| 色av中文字幕| 麻豆国产97在线/欧美| 成人国产综合亚洲| 亚洲成人久久爱视频| 久久精品夜夜夜夜夜久久蜜豆| 久久伊人香网站| 久久久久久大精品| 精品不卡国产一区二区三区| av片东京热男人的天堂| 久久精品国产清高在天天线| 欧美乱码精品一区二区三区| 色精品久久人妻99蜜桃| 久久久久久人人人人人| 亚洲不卡免费看| 亚洲无线在线观看| 女同久久另类99精品国产91| 国产97色在线日韩免费| 黄色女人牲交| 国产亚洲精品av在线| 午夜老司机福利剧场| 亚洲av成人不卡在线观看播放网| 蜜桃亚洲精品一区二区三区| 99精品欧美一区二区三区四区| 18+在线观看网站| 精品久久久久久久末码| 国产精品影院久久| 欧美国产日韩亚洲一区| 国产精品自产拍在线观看55亚洲| 亚洲国产精品合色在线| 一进一出抽搐动态| 日韩欧美精品v在线| 精品一区二区三区av网在线观看| 哪里可以看免费的av片| 精品福利观看| 亚洲成人久久爱视频| 久久99热这里只有精品18| 国产亚洲精品综合一区在线观看| 最近最新免费中文字幕在线| 一进一出抽搐gif免费好疼| 亚洲国产中文字幕在线视频| 女生性感内裤真人,穿戴方法视频| 久久久久免费精品人妻一区二区| 99riav亚洲国产免费| 亚洲成人精品中文字幕电影| 亚洲欧美日韩高清在线视频| 亚洲欧美日韩卡通动漫| 成人国产一区最新在线观看| 亚洲国产精品久久男人天堂| 国产精品精品国产色婷婷| 亚洲精品在线美女| www国产在线视频色| 哪里可以看免费的av片| 黄色日韩在线| 成人鲁丝片一二三区免费| 国产欧美日韩精品亚洲av| 99国产精品一区二区三区| 男人和女人高潮做爰伦理| avwww免费| 国产av麻豆久久久久久久| 午夜福利在线观看吧| 男人舔奶头视频| 九色国产91popny在线| 国产高清有码在线观看视频| 成人国产一区最新在线观看| 欧美国产日韩亚洲一区| 偷拍熟女少妇极品色| 免费在线观看影片大全网站| 免费在线观看成人毛片| 岛国视频午夜一区免费看| 色老头精品视频在线观看| 午夜福利视频1000在线观看| 3wmmmm亚洲av在线观看| 日韩欧美在线乱码| 毛片女人毛片| 久久亚洲精品不卡| 久久久久久久久中文| 美女cb高潮喷水在线观看| 欧美bdsm另类| 中文资源天堂在线| 久久久国产成人免费| 男女下面进入的视频免费午夜| 国产伦精品一区二区三区四那| 母亲3免费完整高清在线观看| 亚洲 国产 在线| 精品久久久久久久久久久久久| 18禁在线播放成人免费| 一进一出抽搐gif免费好疼| 中文在线观看免费www的网站|