• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-fidelity Gaussian process based empirical potential development for Si:H nanowires

    2020-07-01 05:13:56MoonseopKimHuyiYinGungLin

    Moonseop Kim, Huyi Yin, Gung Lin,c,*

    a School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906-2045, USA

    b School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China

    c Department of Mathematics, Purdue University, West Lafayette, IN 47906-2045, USA

    Keywords:Multi-fidelity Gaussian process regression Inter-atomic potential and forces Elasticity

    ABSTRACT In material modeling, the calculation speed using the empirical potentials is fast compared to the first principle calculations, but the results are not as accurate as of the first principle calculations.First principle calculations are accurate but slow and very expensive to calculate. In this work, first,the H-H binding energy and H2-H2 interaction energy are calculated using the first principle calculations which can be applied to the Tersoff empirical potential. Second, the H-H parameters are estimated. After fitting H-H parameters, the mechanical properties are obtained. Finally, to integrate both the low-fidelity empirical potential data and the data from the high-fidelity firstprinciple calculations, the multi-fidelity Gaussian process regression is employed to predict the HH binding energy and the H2-H2 interaction energy. Numerical results demonstrate the accuracy of the developed empirical potentials.

    In the last three decades, empirical potentials have been advanced. With the advance of supercomputers, these potentials are anticipated to be widely used for the next three decades [1].Atomistic calculations by empirical potentials can be utilized in understanding the structural aspects of Si or Si-H systems that are found in many important areas such as the surface of nanopatterning Si [2, 3], nano-electro-mechanical systems (NEMS)[4], superconductivity of silane [5], optical modulators [6], and applications of α-Si:H materials [7]. In the past, empirical potentials for Si [8–11] and for Si-H [12–14] have been developed. But the bulk elastic properties of Si cannot be resolved using such empirical potentials. In Ref. [12], it has been shown that at the hydrogen-induced reconstruction of the silicon surface, the distance between hydrogen and hydrogen is 1.64 ? (1 ? = 1×10-10m) and bond angle H-Si-H is 106° using existing empirical potential. However, when H-H distance and the bond angle are compared with the results from the first-principle calculations,H-H distance and the bond angle are 2.1638 ? and 104.805° respectively. In this situation, the bond angle is distinguished from 1.195°, which means that the difference of the bond angles can be ignored, however, the biggest issue is that H-H distance is distinguished from 0.5238 ?. Hence, if the existing empirical potential is used for Si nanowires, the computation speed is fast, but the results obtained from the existing empirical potentials are not accurate compared to the results from the first-principle calculations. It is critical to fix such errors. In this paper, we propose two novel techniques to construct the empirical potentials with an emphasis on parameter fitting and multi-fidelity modeling, in which the relationship between material properties and potential parameters is explained. The input database has been obtained from the density functional theory (DFT) calculations with the Vienna ab initio simulation package (VASP) [15]. This paper is constituted as follows. First, the structure of silicon nanowires passivated hydrogen is introduced with some specific shapes. Second, governing equations of Tersoff empirical potentials are presented to explain which parameters can be obtained from H-H binding energy and H2-H2interaction energy.Third, we give a brief explanation of the multi-fidelity Gaussian process regression for prediction of the results of H-H binding energy and H2-H2interaction energy. Fourth, we represent three optimization methods for H-H parameter fitting. The rootmean-square-error obtained by the Nelder–Mead simplex method is compared with the results from the other two optimization methods. Lastly, we evaluate the mechanical properties (Young's modulus and equilibrium elongation) using the estimated parameters obtained from the H-H parameter fitting.

    In this study, Si nanowires passivated hydrogen model is chosen. If Si nanowires have dangling bonds, it will oxidize in the air circumstance. By passivating hydrogen to the surface of Si nanowires, it can be stabilized from the oxidization. Figure 1 has expressed a cross-section of silicon nanowires passivated hydrogen [16]. Green dots and blue dots represent silicon atoms and hydrogen atoms, respectively. Cross-section of Si nanowires represents by the Wulff structure selected by minimizing the surface energy. It can be stabilized by passivating hydrogen to the surface of Si nanowires. In the mechanical property, Young's modulus is calculated after the H-H parameter fitting by increasing the size of cross-section compared to the results of Young's modulus using the existing empirical potentials and the firstprinciples calculations.

    The atomistic computer simulations based on the empirical potential is fast for calculation. In this system, the number of atoms is not limited compared to the first principles, however,the accuracy of calculation is not adequate, therefore, reliability of the empirical potential presented so far is needed to verify.Various empirical potentials depend on the material, for instance, Ni and Ti are calculated through embedded atom method (EAM) [17], and Si is calculated through Tersoff empirical potential [9] and Stillinger-Weber empirical potential [8]. In this study, silicon nanowires passivated hydrogen model, and Tersoff empirical potential are used to verify the accuracy of existing Tersoff empirical potentials. Tersoff empirical potential is based on the concept of bond order, the force of bonds between atoms is not consistent and depends on the local environment.The total energy function is given as [12]

    Fig. 1. Cross-section of silicon nanowires passivated hydrogen<0 01> .

    where V is total energy function, fR(r) and fA(r) are repulsive energy and attractive energy respectively. These functions are defined as function of distance between i and j atoms, r is interatomic distance and bijis bond order. In this study, A, B, λ1and λ2are decided as H-H fitting parameters.

    where ζijis the function of effective coordination number, H(N)is the function of bond number, cos θijkis the bond angle, rijand rikare the distance between i and j atoms and between i and k respectively andandare equilibrium distance between i and j atoms and between i and k respectively. Lastly, in this study, α, β, η, δ , and c are determined from H2- H2parameter fitting.

    where fc(n) is a cutoff function determining whether there is coherence or not between the atom and its neighbor atom. r is the interatomic distance, R and D, the influence is 1. If the interatomic distance is larger than R–D, the influence is 0.Finally, if the interatomic distance is between R–D and R+D, it is influenced by Eq. (5).

    Here, we provide the steps for multi-fidelity modeling with Gaussian processes (GP). The steps on multi-fidelity are given as

    where u1(x) and u2(x) are independent. In the Gaussian process regression, it is assumed that the mean of GP is zero and k(x,x′;θ ) is the covariance matrix between all possible pairs ( x,x′) in the set of vectors of hyper-parameters θ. As shown in Ref.[18], the basic idea is that we begin with two independent GP u1(x) and u2(x); then we define the low-fidelity and the highfidelity models [19–24]

    This demonstrates the "relationship" between the low- and highfidelity models since both include the G P u1(x). In particular,setting k1= cov[u1, u1] and k2= cov[u2, u2] we have:

    cov[u1, u2] = 0 and cov[u2, u1] = 0 by independence and to sum up KLL, KLH, KHH:

    This gives us a complete model that incorporates both the lowand high-fidelity. In particular, we model the column vector[ fL(x); fH(x)] using a zero-mean prior and the covariance matrix defined block-wise by [ KLL, KLH; KHL, KHH]. Since the mean and covariance are known, the whole Gaussian process model is specified, and the training can be performed using the standard procedure.

    To represent the uncertainty (or noise) in the observation data,the covariance of the noise for both the low- and high-fidelity data is added on the diagonal of the covariance matrix in Eq.(16). The level of the noise in the observation data will affect the prediction accuracy as shown in Figs. 2 and 3.

    where K is the covariance matrix and the negative log marginal likelihood (NLML) is used as the "cost function" which should be minimized to get the best-fit model by using hyper-parameters θ. In prediction, if we consider a Gaussian likelihood and the posterior distribution is easy to apply and can be used to involve predictive deduction for a new output fH, given a new input x?as

    In numerical results, to reduce the computational cost for expensive calculations (DFT), multi-fidelity Gaussian process regression for prediction [19–24] is used. H-H binding energy and H2-H2interaction energy obtained from the empirical potential are applied to the low-fidelity model. Results of H-H binding energy and H2-H2interaction energy obtained from DFT are implied to the high-fidelity model with a limited number of samples due to high computational cost. In Figs. 2 and 3, the number of high-fidelity samples ( NH= 4) is fixed and we compare the standard deviation of the high-fidelity prediction by increasing the number of low-fidelity samples. As we can see,the standard deviation of the high-fidelity is decreased when the number of low-fidelity samples is increased.

    Fig. 2. Multi-fidelity prediction results of H-H binding energy with high-fidelity samples ( NH = 4) and three different numbers of low-fidelity samples ( NL = 3, 5, 7). If we increase N L, the accuracy is increased (the standard deviation of the high-fidelity decreases).

    Fig. 3. Multi-fidelity prediction results of H 2- H2 interaction energy with high-fidelity samples ( NH = 4) and three different numbers of low-fidelity samples ( NL = 3, 5, 7). If we increase N L, the accuracy is increased (the standard deviation of the high-fidelity decreases).

    The structure of Si nanowires is passivated by hydrogen to prevent oxidation. We divide the Si nanowires into three parts for parameter fitting. First, Si-Si parameter fitting is needed for the internal structure of Si nanowires, Second, H-H parameter fitting is required for the surface computation. Lastly, Si-H parameters for the interface calculation are needed. In this study, the H-H parameters fitting is focused on using H-H binding energy and H2-H2interaction energy for surface computation. In the surface of Si nanowires, there are two forces for hydrogen relations that are attractive and repulsive forces. This H-H parameter fitting is complicated so we have to design systematically.When we fit H-H parameters using H-H binding energy, we only use Eqs. (1)–(3) except for Eqs. (4) and (5). This is because H-H binding energy is calculated by two hydrogen atoms which can be neglected ζijterm that needs more than three atoms,however, H2-H2parameter fitting by using interaction energy is applied to more than three hydrogen atoms so it should be applied to ζijterm. In Table. 1, three methods of optimization were used for H-H parameters fitting. Finally, we investigate the error of each method between DFT results and the fitting line through the root-mean-square-error in Table 1. The Nelder–Mead simplex method is the best compared to the other two optimization methods. The parameters using the Nelder–Mead simplex method were chosen, which are listed in Table 1.

    In the study, we compute the binding energy using DFT for reference results that are adjusted to the results of the empiricalpotentials objective function. Parameters can be obtained after fitting between hydrogen and hydrogen. In Fig. 4, black dots represent DFT results for H-H binding energy and the red line is the fitting line. A, B, λ1, λ2, and R(e)values are listed on Table 1.

    Table 1 To fit H-H parameters for molecular hydrogen, three optimization methods are compared which are Nelder–Mead simplex method (N-M) [25], Broyden–Fletcher–Goldfarb–Shanno quasi–Newton method (BFGS) [26–29], trust-region method (T-R)[30, 31].

    We compute the interaction energy using DFT for reference results that are adjusted to the results of the empirical potentials objective function and we obtained parameters after fitting hydrogen inter-molecular. We use the Nelder–Mead simplex methods of optimization for the H-H parameter fitting using the interaction energy. In Fig. 5, the black dots represent the DFT results for H2-H2interaction energy, and the red line is the fitting line. In this H-H fitting, A, B, λ1, λ2, and R(e)are obtained from H-H parameter fitting using the binding energy applied to H2-H2parameter fitting and α, β, η, δ, and c values are presented in Table 1.

    Figures 6 and 7 represent the H-H binding energy and H2- H2interaction energy compared to DFT, empirical potential (this work), and existing empirical potential. In Fig. 6 and 7, crossdata represents the H-H binding energy and H2- H2interaction energy using the existing Tersoff empirical potential parameters.It is critical to note that these data's curve shape is not smooth because, in existing classical molecular dynamics (MD), the cutoff range is too short to calculation, so it does not calculate for the long-range interaction. In this study, we fixed cut off range much longer and calculate the long-range of hydrogen molecules. As we can see, DFT and empirical potential (this work)result matches each other after H-H parameters fitting. We have developed a systematic process to construct empirical potential for Si nanowires' passivated hydrogen.

    In Figs. 8 and 9, mechanical properties were performed using H-H parameters which are obtained after H-H part parameter fitting. To evaluate the new fit of the H-H part, Young's modulus and equilibrium elongation of Si nanowires are calculated by increasing the wire width of Si nanowires. We compared the numerical results with the DFT results and existing empirical results in Figs. 8 and 9. The size reliance of Young's modulus and equilibrium elongation shows critical improvement compared to the DFT results and the existing potential results. Until now,the surface part of Si nanowires is fitted using our systematic fitting method and shows mechanical properties to prove enhancement. However, the improvement of the irregular mechanical properties can be observed by the H-H parameter fitting of the surface. But the perfect result of matching could not be observed. The reason for this is that not only the surface but also the silicon-hydrogen parameter fitting between the silicon and the surface must be performed. In addition, the hydrogen parameters obtained so far are limited to the calculation of the mechanical properties of nanowires with hydrogen and silicon. Furthermore, it is necessary to derive parameter fitting that can be applied to various types of materials, and potential errors of existing empirical potentials must be corrected for calculations using various materials as well as silicon nanowires.

    Fig. 4. H-H parameter fitting using the Nelder-Mead simplex method.

    Fig. 5. H2-H2 parameter fitting using the Nelder-Mead simplex method.

    Fig. 6. Binding energy after H-H parameter fitting.

    Fig. 7. Interaction energy after H-H parameter fitting.

    Fig. 8. Young's modulus increasing as wire width of Si nanowires increasing.

    Fig. 9. Equilibrium elongation increasing as wire width of Si nanowires increasing.

    Acknowledgement

    We gratefully acknowledge the support from the National Science Foundation of USA (Grants DMS-1555072 and DMS-1736364).

    国产av麻豆久久久久久久| 亚洲欧美日韩高清在线视频| 狂野欧美白嫩少妇大欣赏| 桃色一区二区三区在线观看| 免费观看精品视频网站| 国产毛片a区久久久久| 国产精品综合久久久久久久免费| 亚洲一级一片aⅴ在线观看| 国产男人的电影天堂91| av国产免费在线观看| 日韩av不卡免费在线播放| 日日摸夜夜添夜夜添av毛片| 成人二区视频| 非洲黑人性xxxx精品又粗又长| 久久久久网色| 18禁裸乳无遮挡免费网站照片| 好男人在线观看高清免费视频| 国产91av在线免费观看| 亚洲成av人片在线播放无| 精品少妇黑人巨大在线播放 | 亚洲欧美日韩东京热| av在线蜜桃| 精品人妻偷拍中文字幕| 国产黄a三级三级三级人| 欧美成人一区二区免费高清观看| 国产91av在线免费观看| 国产亚洲精品av在线| 成年女人看的毛片在线观看| 久久久久久久久大av| 男女边吃奶边做爰视频| 日本爱情动作片www.在线观看| 午夜爱爱视频在线播放| 精品久久久久久久久久免费视频| 亚洲中文字幕日韩| 国产精品,欧美在线| 一个人免费在线观看电影| 国产精品嫩草影院av在线观看| 中文字幕制服av| 亚洲人成网站在线观看播放| 男的添女的下面高潮视频| 日日撸夜夜添| 一边摸一边抽搐一进一小说| 男人狂女人下面高潮的视频| 中文字幕av在线有码专区| 亚洲第一区二区三区不卡| 日韩中字成人| 国产黄片视频在线免费观看| 久久精品国产99精品国产亚洲性色| 99久久精品一区二区三区| 美女脱内裤让男人舔精品视频 | 美女黄网站色视频| 精品久久久久久久末码| 亚洲国产精品久久男人天堂| 国产伦一二天堂av在线观看| 村上凉子中文字幕在线| 淫秽高清视频在线观看| 国产中年淑女户外野战色| 国产色爽女视频免费观看| 伦理电影大哥的女人| 亚洲精品久久久久久婷婷小说 | 久久热精品热| 天堂√8在线中文| 亚洲经典国产精华液单| 伦精品一区二区三区| 亚洲经典国产精华液单| 亚洲av免费在线观看| 国产亚洲av嫩草精品影院| 亚洲国产日韩欧美精品在线观看| 老熟妇乱子伦视频在线观看| 国产精品免费一区二区三区在线| 精品欧美国产一区二区三| 亚洲在线观看片| 亚洲中文字幕一区二区三区有码在线看| 免费电影在线观看免费观看| 插阴视频在线观看视频| 久久久精品大字幕| 国产免费一级a男人的天堂| 亚洲自偷自拍三级| 99久久精品国产国产毛片| 99热这里只有是精品50| 亚洲激情五月婷婷啪啪| 一区福利在线观看| 最近中文字幕高清免费大全6| 欧美色欧美亚洲另类二区| 特大巨黑吊av在线直播| 99热这里只有精品一区| 国产精品1区2区在线观看.| 成人欧美大片| 精品一区二区三区人妻视频| 亚洲av免费在线观看| 国产成人a∨麻豆精品| 成人二区视频| 久久精品国产99精品国产亚洲性色| 国产91av在线免费观看| 99热这里只有是精品50| 成年女人看的毛片在线观看| 国产成年人精品一区二区| 欧美激情在线99| 久久午夜亚洲精品久久| 三级毛片av免费| 校园春色视频在线观看| 国产成人freesex在线| 高清午夜精品一区二区三区 | 亚洲熟妇中文字幕五十中出| 天天躁日日操中文字幕| 天堂影院成人在线观看| 在线观看66精品国产| 国产精品无大码| 成年女人永久免费观看视频| 1024手机看黄色片| 99热精品在线国产| 身体一侧抽搐| 亚洲欧洲国产日韩| 亚洲av熟女| 少妇人妻精品综合一区二区 | 欧美一级a爱片免费观看看| 欧美日本视频| 黄片无遮挡物在线观看| 啦啦啦韩国在线观看视频| 国产乱人视频| 免费看美女性在线毛片视频| 亚洲av不卡在线观看| 久久久久久久久中文| 最好的美女福利视频网| 美女内射精品一级片tv| 亚洲人成网站在线播| 熟女电影av网| 国产精品免费一区二区三区在线| 国产美女午夜福利| 小蜜桃在线观看免费完整版高清| 国产 一区精品| 狂野欧美激情性xxxx在线观看| 一级毛片我不卡| 日本一本二区三区精品| 夫妻性生交免费视频一级片| 美女国产视频在线观看| 日本爱情动作片www.在线观看| 桃色一区二区三区在线观看| 中文资源天堂在线| 免费观看在线日韩| 欧美一区二区国产精品久久精品| 午夜激情福利司机影院| 中文字幕久久专区| 午夜福利在线在线| 激情 狠狠 欧美| 狂野欧美白嫩少妇大欣赏| 亚洲丝袜综合中文字幕| 两个人的视频大全免费| 男女边吃奶边做爰视频| 国产精品一二三区在线看| 欧美变态另类bdsm刘玥| 日韩精品青青久久久久久| 九色成人免费人妻av| 春色校园在线视频观看| av专区在线播放| 国产免费一级a男人的天堂| 亚洲国产欧洲综合997久久,| 国内精品宾馆在线| 啦啦啦观看免费观看视频高清| 九九在线视频观看精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产成人a区在线观看| 国产午夜精品论理片| 国产伦精品一区二区三区视频9| 91在线精品国自产拍蜜月| 成年免费大片在线观看| 国产亚洲精品久久久久久毛片| АⅤ资源中文在线天堂| 国产日本99.免费观看| 国内精品一区二区在线观看| 男女做爰动态图高潮gif福利片| 麻豆成人午夜福利视频| 国产伦理片在线播放av一区 | 色吧在线观看| 狂野欧美白嫩少妇大欣赏| 国产av麻豆久久久久久久| 成人毛片a级毛片在线播放| 一级毛片久久久久久久久女| 欧美成人免费av一区二区三区| 国产伦精品一区二区三区四那| 国产一区二区三区av在线 | 毛片女人毛片| 久久久国产成人精品二区| 国产成人精品久久久久久| 亚洲综合色惰| 99久国产av精品国产电影| 久久久a久久爽久久v久久| 午夜福利在线观看免费完整高清在 | 深夜精品福利| 亚洲成人久久爱视频| 国产av麻豆久久久久久久| 日韩人妻高清精品专区| 久久综合国产亚洲精品| 人妻久久中文字幕网| 天天一区二区日本电影三级| 91麻豆精品激情在线观看国产| 性色avwww在线观看| 尤物成人国产欧美一区二区三区| 成年女人看的毛片在线观看| 久久精品影院6| 亚洲av免费高清在线观看| 男女那种视频在线观看| 在线观看av片永久免费下载| or卡值多少钱| 欧美色欧美亚洲另类二区| kizo精华| 国产极品天堂在线| 国产黄片视频在线免费观看| 观看免费一级毛片| av.在线天堂| 草草在线视频免费看| 亚洲国产精品成人综合色| 欧美另类亚洲清纯唯美| 亚洲第一区二区三区不卡| 床上黄色一级片| 免费观看的影片在线观看| 热99re8久久精品国产| 国产男人的电影天堂91| 丰满人妻一区二区三区视频av| 亚洲av一区综合| 18禁在线无遮挡免费观看视频| 夜夜夜夜夜久久久久| 免费黄网站久久成人精品| 国产欧美日韩精品一区二区| 中文资源天堂在线| 国产成人freesex在线| 亚洲第一区二区三区不卡| 成人特级黄色片久久久久久久| 精品久久久久久久久亚洲| 国产高清视频在线观看网站| 国产午夜精品久久久久久一区二区三区| 亚洲一级一片aⅴ在线观看| 午夜免费激情av| 真实男女啪啪啪动态图| 最近最新中文字幕大全电影3| 免费观看人在逋| 综合色丁香网| 国产单亲对白刺激| 中出人妻视频一区二区| 久久这里有精品视频免费| 免费av观看视频| 国产高清不卡午夜福利| 国产av在哪里看| 日日撸夜夜添| 青春草亚洲视频在线观看| 毛片一级片免费看久久久久| 亚洲成人久久爱视频| 国产亚洲欧美98| 婷婷色av中文字幕| 直男gayav资源| 别揉我奶头 嗯啊视频| 欧美人与善性xxx| 成人国产麻豆网| 给我免费播放毛片高清在线观看| 日韩欧美国产在线观看| 亚洲国产高清在线一区二区三| 亚洲真实伦在线观看| 亚洲一级一片aⅴ在线观看| 中文字幕熟女人妻在线| 欧美色视频一区免费| 欧美3d第一页| 国产av麻豆久久久久久久| 两个人的视频大全免费| 国产精品av视频在线免费观看| 日本免费a在线| 少妇熟女欧美另类| 九九爱精品视频在线观看| 国产精品不卡视频一区二区| 你懂的网址亚洲精品在线观看 | 长腿黑丝高跟| 国产精品国产三级国产av玫瑰| 欧美激情在线99| 99久久人妻综合| 三级男女做爰猛烈吃奶摸视频| 久久99精品国语久久久| 欧美日韩在线观看h| 精品免费久久久久久久清纯| 国产精品一二三区在线看| 成人欧美大片| 亚洲成人久久性| 亚洲欧洲日产国产| 一级黄片播放器| 午夜免费男女啪啪视频观看| 日韩国内少妇激情av| 国产精品乱码一区二三区的特点| 国内少妇人妻偷人精品xxx网站| 国产精品免费一区二区三区在线| 一级黄片播放器| 免费av观看视频| 全区人妻精品视频| 日韩一本色道免费dvd| 精品国产三级普通话版| 噜噜噜噜噜久久久久久91| 午夜免费激情av| 免费黄网站久久成人精品| 看黄色毛片网站| 老熟妇乱子伦视频在线观看| 99久久久亚洲精品蜜臀av| 久久久久久伊人网av| 免费观看人在逋| 午夜爱爱视频在线播放| 又黄又爽又刺激的免费视频.| 亚洲国产精品合色在线| 午夜福利高清视频| 九九久久精品国产亚洲av麻豆| 成年女人永久免费观看视频| 欧美在线一区亚洲| 青青草视频在线视频观看| 三级毛片av免费| 成人午夜精彩视频在线观看| 草草在线视频免费看| 国产老妇伦熟女老妇高清| 国产欧美日韩精品一区二区| 国产伦精品一区二区三区视频9| 亚洲欧美中文字幕日韩二区| 久久久久久久久久久免费av| 99在线人妻在线中文字幕| 极品教师在线视频| 日韩一本色道免费dvd| 色哟哟·www| 亚洲最大成人手机在线| 女的被弄到高潮叫床怎么办| 身体一侧抽搐| 免费搜索国产男女视频| 看黄色毛片网站| 久久久成人免费电影| 午夜激情福利司机影院| 身体一侧抽搐| 国产精品一区二区三区四区久久| 欧美成人a在线观看| 99久久成人亚洲精品观看| 网址你懂的国产日韩在线| 精品国产三级普通话版| 美女 人体艺术 gogo| 成年版毛片免费区| 91久久精品国产一区二区三区| 女的被弄到高潮叫床怎么办| 日韩欧美 国产精品| 99热网站在线观看| 亚洲成人久久爱视频| 婷婷亚洲欧美| 亚洲无线在线观看| 亚洲在线自拍视频| 99在线人妻在线中文字幕| 欧美一级a爱片免费观看看| 99热只有精品国产| 日本一本二区三区精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 黄色配什么色好看| 久久韩国三级中文字幕| 免费无遮挡裸体视频| 亚洲aⅴ乱码一区二区在线播放| 日韩欧美精品v在线| 国产亚洲5aaaaa淫片| 夜夜爽天天搞| 午夜视频国产福利| 九九久久精品国产亚洲av麻豆| 成人鲁丝片一二三区免费| 免费观看在线日韩| 免费搜索国产男女视频| 亚洲成av人片在线播放无| 亚洲精品色激情综合| 午夜福利成人在线免费观看| 久久久午夜欧美精品| 午夜福利视频1000在线观看| 免费看光身美女| 国产一区二区亚洲精品在线观看| 精品人妻一区二区三区麻豆| 日本与韩国留学比较| 国产真实乱freesex| 高清午夜精品一区二区三区 | 18+在线观看网站| 99久久中文字幕三级久久日本| 天天躁日日操中文字幕| 亚洲第一电影网av| 亚洲第一区二区三区不卡| 亚洲欧洲日产国产| 秋霞在线观看毛片| 久久久欧美国产精品| 亚洲综合色惰| 麻豆成人午夜福利视频| 中文字幕久久专区| 日韩人妻高清精品专区| 天堂√8在线中文| 激情 狠狠 欧美| 国产亚洲av嫩草精品影院| 成人综合一区亚洲| 边亲边吃奶的免费视频| 久久久久久久午夜电影| 美女 人体艺术 gogo| 国产免费男女视频| 色综合色国产| 一个人看视频在线观看www免费| 久久国产乱子免费精品| 国产亚洲精品久久久com| 小蜜桃在线观看免费完整版高清| 在线观看一区二区三区| 国模一区二区三区四区视频| 乱码一卡2卡4卡精品| 国产乱人视频| 搡老妇女老女人老熟妇| 高清毛片免费看| 男的添女的下面高潮视频| 欧美性猛交╳xxx乱大交人| 欧美极品一区二区三区四区| 在线观看66精品国产| 搡女人真爽免费视频火全软件| 97热精品久久久久久| 国产精品久久电影中文字幕| 国产精品一区二区在线观看99 | 女人被狂操c到高潮| 日韩国内少妇激情av| 亚洲美女视频黄频| 嫩草影院入口| 国产伦在线观看视频一区| 日韩中字成人| 男女视频在线观看网站免费| 国产亚洲av片在线观看秒播厂 | 黄色日韩在线| 久久99热这里只有精品18| 国产亚洲av嫩草精品影院| 午夜视频国产福利| 日韩精品有码人妻一区| 一边摸一边抽搐一进一小说| 别揉我奶头 嗯啊视频| 此物有八面人人有两片| 夜夜爽天天搞| 天堂影院成人在线观看| 99视频精品全部免费 在线| 亚洲av成人av| 免费在线观看成人毛片| 欧美日韩国产亚洲二区| 国产一区二区在线观看日韩| 毛片女人毛片| 97超碰精品成人国产| 小说图片视频综合网站| 高清日韩中文字幕在线| www日本黄色视频网| 男人的好看免费观看在线视频| 久久精品国产鲁丝片午夜精品| 12—13女人毛片做爰片一| 一级毛片电影观看 | 网址你懂的国产日韩在线| 国产成人精品婷婷| 久99久视频精品免费| 人体艺术视频欧美日本| 久久6这里有精品| 日韩成人伦理影院| 欧美一区二区国产精品久久精品| 国产精品国产高清国产av| 国产高清有码在线观看视频| 校园人妻丝袜中文字幕| 国产精品蜜桃在线观看 | 国产成人精品一,二区 | 99九九线精品视频在线观看视频| 一级黄片播放器| 天天一区二区日本电影三级| 国产免费一级a男人的天堂| a级毛片免费高清观看在线播放| 国产69精品久久久久777片| 在线a可以看的网站| 麻豆国产97在线/欧美| 国产av在哪里看| 国产精品综合久久久久久久免费| 男女边吃奶边做爰视频| 在线免费观看不下载黄p国产| 欧美激情国产日韩精品一区| 亚洲美女视频黄频| 欧美丝袜亚洲另类| 大又大粗又爽又黄少妇毛片口| 中文欧美无线码| 久久午夜亚洲精品久久| 日本三级黄在线观看| 欧美+亚洲+日韩+国产| 亚洲av熟女| 日本三级黄在线观看| 三级国产精品欧美在线观看| 久久99精品国语久久久| 日本爱情动作片www.在线观看| 国产视频内射| 亚洲欧美日韩东京热| 黄片无遮挡物在线观看| 久久韩国三级中文字幕| 欧美潮喷喷水| 91久久精品电影网| 一夜夜www| 性欧美人与动物交配| 人体艺术视频欧美日本| 一级毛片电影观看 | 精品久久久久久久久久免费视频| 男人舔奶头视频| 两个人视频免费观看高清| 精品人妻一区二区三区麻豆| 欧美一区二区精品小视频在线| 国产高清有码在线观看视频| 亚洲av成人精品一区久久| 少妇被粗大猛烈的视频| 国产成人a区在线观看| 一级二级三级毛片免费看| 国产精品1区2区在线观看.| 国产日本99.免费观看| 不卡一级毛片| 嘟嘟电影网在线观看| 久久久成人免费电影| 看片在线看免费视频| 两个人视频免费观看高清| 亚洲中文字幕一区二区三区有码在线看| 欧美xxxx性猛交bbbb| 男女下面进入的视频免费午夜| 久久久a久久爽久久v久久| 最近视频中文字幕2019在线8| 黄色一级大片看看| 日韩亚洲欧美综合| 久久人人精品亚洲av| 国产乱人偷精品视频| 久久久久久国产a免费观看| 九草在线视频观看| 国产真实乱freesex| 日韩中字成人| 欧美最黄视频在线播放免费| 日本av手机在线免费观看| 国产亚洲精品久久久久久毛片| 麻豆乱淫一区二区| 九九久久精品国产亚洲av麻豆| 看片在线看免费视频| 欧美在线一区亚洲| 成人毛片a级毛片在线播放| 极品教师在线视频| 哪里可以看免费的av片| 精品少妇黑人巨大在线播放 | 亚洲精品456在线播放app| 97超视频在线观看视频| 国产免费男女视频| 午夜精品在线福利| 婷婷色综合大香蕉| 久久久a久久爽久久v久久| 成人漫画全彩无遮挡| 女同久久另类99精品国产91| 国产人妻一区二区三区在| 久久精品人妻少妇| 少妇熟女欧美另类| 国产亚洲5aaaaa淫片| 欧美丝袜亚洲另类| 色哟哟哟哟哟哟| 亚洲国产精品成人久久小说 | 国产中年淑女户外野战色| 久久国产乱子免费精品| 欧美高清性xxxxhd video| 日韩精品有码人妻一区| 久久精品国产鲁丝片午夜精品| 国产伦精品一区二区三区视频9| 日本在线视频免费播放| avwww免费| 高清毛片免费看| 国产伦精品一区二区三区视频9| 国产av一区在线观看免费| 国产伦精品一区二区三区视频9| 午夜久久久久精精品| 色吧在线观看| 99热精品在线国产| 91久久精品国产一区二区三区| 日日摸夜夜添夜夜添av毛片| 免费看美女性在线毛片视频| 少妇熟女aⅴ在线视频| 丝袜美腿在线中文| 三级男女做爰猛烈吃奶摸视频| 男插女下体视频免费在线播放| 日本黄大片高清| 欧美xxxx性猛交bbbb| 只有这里有精品99| 国产一级毛片在线| 欧美bdsm另类| 亚洲国产精品国产精品| 色吧在线观看| 99精品在免费线老司机午夜| 美女xxoo啪啪120秒动态图| 国产成人一区二区在线| 好男人视频免费观看在线| 蜜臀久久99精品久久宅男| 人妻久久中文字幕网| 黄片wwwwww| 久久人妻av系列| 欧美性猛交黑人性爽| 国产成人一区二区在线| 97热精品久久久久久| 麻豆久久精品国产亚洲av| 热99re8久久精品国产| 国产午夜精品久久久久久一区二区三区| 又爽又黄无遮挡网站| 国产精品av视频在线免费观看| 久久久精品大字幕| or卡值多少钱| 日韩,欧美,国产一区二区三区 | 亚洲欧美日韩卡通动漫| 欧美最新免费一区二区三区| 国产精品嫩草影院av在线观看| 日本黄大片高清| 如何舔出高潮| 国产视频首页在线观看| 亚洲人成网站在线播放欧美日韩| 91精品国产九色| 久久久久久久午夜电影| 成人特级黄色片久久久久久久| 亚洲欧美精品综合久久99| 九九热线精品视视频播放| 一级黄色大片毛片| 99久国产av精品| 久久久久久国产a免费观看| 国产亚洲精品久久久久久毛片| 特大巨黑吊av在线直播| 成人特级av手机在线观看| 欧美三级亚洲精品| 国产精品蜜桃在线观看 | 亚洲在线观看片| 99久久无色码亚洲精品果冻|