• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ON GENERALIZED FEYNMAN-KAC TRANSFORMATION FOR MARKOV PROCESSES ASSOCIATED WITH SEMI-DIRICHLET FORMS?

    2017-01-21 05:30:40XinfangHAN韓新方LiMA馬麗
    關鍵詞:馬麗

    Xinfang HAN(韓新方)Li MA(馬麗)

    Department of Mathematics and Statistics,Hainan Normal University,Haikou 571158,China

    ON GENERALIZED FEYNMAN-KAC TRANSFORMATION FOR MARKOV PROCESSES ASSOCIATED WITH SEMI-DIRICHLET FORMS?

    Xinfang HAN(韓新方)Li MA(馬麗)?

    Department of Mathematics and Statistics,Hainan Normal University,Haikou 571158,China

    E-mail:xfanghan@163.com;malihnsd@163.com

    Suppose that X is a right process which is associated with a semi-Dirichlet form (E,D(E))on L2(E;m).Let J be the jumping measure of(E,D(E))satisfying J(E×E?d)<∞.Let u∈D(E)b:=D(E)∩L∞(E;m),we have the following Fukushima’s decomposition ?u(Xt)??u(X0)=Mut+Nut.Defne Putf(x)=Ex[eNutf(Xt)].Let Qu(f,g)=E(f,g)+E(u,fg) for f,g∈D(E)b.In the frst part,under some assumptions we show that(Qu,D(E)b)is lower semi-bounded if and only if there exists a constant α0≥0 such that kPutk2≤eα0tfor every t>0.If one of these assertions holds,then(Put)t≥0is strongly continuous on L2(E;m). If X is equipped with a diferential structure,then under some other assumptions,these conclusions remain valid without assuming J(E×E?d)<∞.Some examples are also given in this part.Let Atbe a local continuous additive functional with zero quadratic variation. In the second part,we get the representation of Atand give two sufcient conditions forto be strongly continuous.

    semi-Dirichlet form;generalized Feynman-Kac semigroup;strong continuity; lower semi-bounded;representation of local continuous additive functional with zero quadratic variation

    2010 MR Subject Classifcation60J55;60J35

    1 Introduction

    Let E be a metrizable Lusin space and X=((Xt)t≥0,(Px)x∈E?)be a right process on E (see[11,IV,Defnition 1.8]).Suppose that X is associated with a semi-Dirichlet form(E,D(E)) on L2(E;m),where m is a σ-fnite measure on the Borel σ-algebra B(E)of E.Then,by[3, Theorem 3.22],(E,D(E))is quasi-regular.Moreover,(E,D(E))is quasi-homeomorphic to a regular semi-Dirichlet form(see[6,Theorem 3.8]).We refer the reader to[5]and[11]for the theory of Dirichlet forms.The notations and terminologies of this paper follow[5,11–13].Put D(E)Vn={u∈D(E)|u=0 q.e.on Vcn}and D(E)Vn,b=D(E)Vn∩L∞(E,m).For α>0, defne Eα(u,u):=E(u,u)+α(u,u)m,where(u,u)mmeans the product of u and u in L2(E,m).

    Assumption 1There exist a sequence of sets{Vn}∈Θ and a sequence of locally bounded functions{Cn}on R,such that for each n∈N,if u,v∈D(E)Vn,b,then uv∈D(E)and

    For u∈D(E)b,under Assumption 1,by[12,Proposition 2.8],we have the following Fukushima type decomposition

    where?u is a quasi-continuous m-version of u,is a local martingale additive functional (abbreviated as MAF)andis a continuous additive functional(abbreviated as CAF)of zero quadratic variation.For x∈E,denote by Exthe expectation with respect to(w.r.t.)Px. Defne the generalized Feynman-Kac transformation

    In this paper,we will investigate the strong continuity of the semigroup

    The strong continuity of generalized Feynman-Kac semigroups for symmetric Markov processes was studied extensively by many people.We refer the reader to page 734 in[9]for a review.Suppose a symmetric Markov process(Xt)t≥0is associated with a Dirichlet form (E,E(E)).The researchers showed that the semigroupis strongly continuous on L2(E;m)if and only if the bilinear form(Qu,D(E)b)is lower semi-bounded.Here and henceforth

    For non-symmetric Dirichlet form,Ma and Sun gave two sufcient conditions for(Put)t≥0 to be strongly continuous in[9,Theorem 1.1,Theorem 1.2].In that paper,Beurling-Deny formula and Lejan’s transform rule are used essentially.

    For semi-Dirichlet form,Ma and Sun got Fukushima type decomposition for local semi-Dirichlet form in[8].Later Ma et al.generalized it to general semi-Dirichlet form in[12].Sois well-defned.It is natural to ask what’s the sufcient condition forto be strongly continuous in the setting of semi-Dirichlet form.

    There is a big diference between semi-Dirichlet form and Dirichlet form.For example, in general,the domain of semi-Dirichlet form is not an algebra,the symmetric part of semi-Dirichlet form and the dual form are only positive preserving forms not Dirichlet forms,the dual semigroup is not sub-Markov.So we need to put some assumptions under the framework of semi-Dirichlet form.For u∈D(E)b,let hMuitbe the sharp bracket process of Mutandμhuibe the Revuz measure of hMuit(see[8]).

    Assumption 2There are an E-nest{Fn}consisting of compact sets of E and some positive constants{Kn}such that for any n∈N,μhfi(Fn)≤KnE1(f,f)for any f∈D(E)Fn,b.

    Assumption 3There exists{Vn}∈Θ such that for each n∈N,there exists a Dirichlet form(η(n),D(η(n)))on L2(Vn;m)and a constant Cn>1 such that D(η(n))=D(E)Vnand forany u∈D(E)Vn,

    Denote by J(dx,dy)and K(dx)the jumping and killing measures of(E,D(E)),respectively (see[6]).

    Now we can state the frst two main results of the paper.

    Theorem 1.1Suppose that X is a right process associated with a semi-Dirichlet form (E,D(E))on L2(E;m).Let J be the jump measure of(E,D(E))satisfying J(E×E?d)<∞. Let u∈D(E)b.Then under Assumptions 2 and 3,the following two conditions are equivalent to each other:

    (i)there exists a constant α0≥0 such that

    (ii)there exists a constant α0≥0 such that

    Furthermore,if one of these conditions holds,then the semigroupis strongly continuous on L2(E;m).

    Notice that by[12],Assumption 3 implies Assumption 1 and Assumption 4.

    In Section 2,we give the proofs of Theorems 1.1 and 1.2.In Section 3,we will give some examples which satisfy Assumption 2 and Assumption 3.

    As is well-known,a CAF of zero energy has zero quadratic variation.It is natural to ask whether the zero quadratic variation processes are at least locally of zero energy or not. For symmetric irreducible difusion process,in[14],Oshima and Yamada gave an afrmative answer.For more general Markov process associated with non-symmetric Dirichlet form,in [20],Walsh got the similar result.

    In Section 4,for Markov processes associated with semi-Dirichlet forms,we will give a representation of local CAF of zero quadratic variation in terms of CAF with zero energy. Then we will study the strong continuity of generalized Feynman-Kac semigroups induced by a local CAF of zero quadratic variation.

    2 Proofs of Theorems 1.1 and 1.2

    By quasi-homeomorphism,we assume without loss of generality that X is a Hunt process and(E,D(E))is a regular semi-Dirichlet form on L2(E;m),where E is a locally compactseparable metric space and m is a positive Radon measure on E with supp[m]=E.We denote by?and ζ the cemetery and lifetime of X,respectively.It is known that every f∈D(E)has a quasi-continuous m-version.To simplify notation,we still denote this version by f.

    The proofs of Theorems 1.1 and 1.2 are similar to those of Theorems 1.1 and 1.2 in[9].In the following,we only point out the diferences.

    In[9],for u∈D(E),the Fukushima decomposition of u(Xt)?u(X0)always exists.But

    may be not locally integrable and the predictable dual process Bptof Btmay not exist,so instead of u,u?:=u+|u|Eis used to defne Bt,where|u|Eis the reduce function of u on E. Under semi-Dirichlet form setting,for u∈D(E),Fukushima decomposition of u(Xt)?u(X0) exists if and only if u satisfes condition(S)(see[12,Proposition 2.8]).So in this paper,we need u∈D(E)band J(E×E?d)<∞,which guarantee that u satisfes condition(S).Since u is bounded,so Btdefned by(2.1)is locally integrable and we can substitute u?in[9]by u or treat|u|Eas 0.

    Let Enbe the fne interior of some E-nest Fn.In inequalities(2.10)and(2.11)of[9],it is used that for any f∈D(E)En,b,

    In fact,for non-symmetric Dirichlet form,

    where?k(dx)is the killing measure of dual form ?E,which is also a Dirichlet form.However,for semi-Dirichlet form,the dual form is only a positive preserving form whose semi-group has no sub-Markov property,so the killing measure?k(dx)may not exist.So(2.2)may not hold in semi-Dirichlet form setting.For example,

    By[10,Remark 2.2(ii)],(E,D(E))is a regular local semi-Dirichlet form but not a Dirichlet form.Let Fn=[1n,1?1n],then{Fn}is an E-nest and En=(1n,1?1n)is the fne interior of Fn.For any f∈D(E)En,b,

    Denote by?E the symmetric part of E.The jumping measure?J and killing measures?K of the symmetric part(?E,D(E))are used to in(2.31)of[9].In semi-Dirichlet form setting,(?E,D(E)) is not a Dirichlet form,so?J and?K don’t exist.We can solve this by Assumption 2, Z

    Notice in(2.32)of[9],it is used that

    For semi-Dirichlet form,we can use Assumption 2 to overcome this difculty,

    So Assumption 2 is really needed in this paper.

    LeJan’s transformation rule and Lemma 2.4 of[9]are used in the proof of Theorem 1.1 in[9].We have corresponding results in semi-Dirichlet form setting(see[17,Theorem 3.3, Theorem 3.5])under Assumption 3.4 in[17].Our Assumption 3 guarantees the Assumption 3.4 in[17],so we can use the results of[17,Theorem 3.3,Theorem 3.5]and get Theorem 1.1.

    Beurling-Deny formula of Non-symmetric Dirichlet forms are used in the proof of Theorem 1.1 in[9].We have similar formula for semi-Dirichlet forms(see[6,Theorem 4.8]).Since u∈D(E)b,J(E×E?d)<∞in Theorem 1.1,so we can use[6,Theorem 4.8]directly.

    The expression of(E,D(E))is used in the proof of Theorem 1.2 in[9].In semi-Dirichlet form setting,under Assumption 4,(E,D(E))has similar expression(see[17,Theorem 1.4]).So we get Theorem 1.2.

    In the proof of main theorems(p.750 of[9]),it is used that∪n≥1D(E)Enis dense in D(E). For semi-Dirichlet form,our results are constructed under Assumption 2 and Assumption 3 or Assumption 1 and Assumption 2,so we need revise the set Enand prove that∪n≥1D(E)Enis dense in D(E).Let{Fn}be the compact sets in Assumption 2 and{F′n}be the compact sets in p.737 of[9],we should takeLetbe the sets in Assumption 1 or Assumption 3.Put[7,Lemma 3.6],is dense in D(E).

    Remark 2.1Letμ=μ+?μ?,whereμ+andμ?are smooth measures,be positive CAFs(PCAFs in short)with Revuz measureμ+andμ?,respectively,let Aμt:=Defne

    and

    then by localization method,similar to the proofs of Theorem 1.1 and Theorem 1.2,we can show the following two conditions are equivalent to each other

    (i)there exists a constant α0≥0 such that

    (ii)there exists a constant α0≥0 such that

    Furthermore,if one of these conditions holds,then the semigroupis strongly continuous on L2(E;m).This result extends[9,Remark 2.7].

    3 Some Examples

    In this section,we will give some examples which satisfy Assumption 2 and Assumption 3.

    Example 3.1In this example,we study the generalized Feynman-Kac semigroup for the semi-Dirichlet form given in[8]and[15].

    Let d≥3,U be an open subset of

    we defne

    Assume that

    We denote vector d by d.Let b= β+γ.Then,by[15,Theorem 1.2],under some conditions on aij,b,d,β,γ and c,there exists α>0 such that(Eα,C∞0(U))is closable on L2(U;dx)and its closure(Eα,D(Eα))is a regular local semi-Dirichlet form on L2(U;dx).Defne ηα(u,u):=Eα(u,u)?Rh▽u,βiudx for u∈D(Eα).By[15,Theorem 1.2(ii)and(1.28)],we know(ηα,D(Eα))is a Dirichlet form and there exists ?∈(0,1)such that for any u∈D(Eα),

    Let X be the Markovprocess associated with(Eα,D(Eα)),u∈D(Eα)b,then u(Xt)has Fukushima’s type decompositions a locally square integrable MAF andis a locally CAF of zero quadratic variation.By (3.1),Assumption 3 holds.Notice there is no jump part in expression of E,so J(E×E?d)<∞holds automatically.Next,we check Assumption 2.Since

    it follows that

    Hence Assumption 2 holds.LetThen,forwe have

    Suppose that the following condition holds.

    (A4)There exists a constant α0≥0 such that

    in the sense of Schwartz distribution.

    Then Qu(f,f)≥?α0(f,f)for any f∈C∞0(U)and thus for any f∈D(E)bby approximation.

    Example 3.2(see[4]and[16]) Let(E,d)be a locally compact separable metric space, m a positive Radon Measure on E with full topological support,and k(x,y)a nonnegative Borel measurable function on{(x,y)∈E×E|x 6=y}.Set ks(x,y)=12(k(x,y)+k(y,x)) and ka(x,y)=12(k(x,y)?k(y,x)).Denote by Clip0(E)the family of all uniformly Lipschitz continuous functions on E with compact support.Suppose that the following conditions hold

    and

    In fact

    Let D(E)be the η1-closure ofThen by[4,Theorem 2.1],(Eβ0,D(E))be a regular semi-Dirichlet form on L2(E,m).Moreover,Assumption 3 holds.

    Next we check Assumption 2.By(3.2),

    Hence

    So Assumption 2 holds,

    (B.III)There exists a constant α0≥0 such that

    in the sense of Schwartz distribution.

    If(B.III)holds,then Qu(f,f)≥?α0(f,f)mfor any f∈Clip0(E)and thus for any f∈D(E)bby approximation.

    Let X be aμ-tight special standard jump process associated with(Eβ0,D(E))and(Put)t≥0be the generalized Feynman-Kac semigroup induced by u.In Theorem 1.1,J(E×E?d)<∞is used in the proof of

    However,in this example,we can get(3.4)directly by the expression of(Eβ0,D(Eβ0))though J(E×E?d)<∞ may not be true here.Hence,by Theorem 1.1,if(B.III)holds,thenis a strongly continuous contraction semigroup on L2(E;m).

    Example 3.3(see[18]) Let d>3,G be an open set of Rd.Defne for u,v∈C10(G),

    and

    We refer to[18]for the conditions on aij,b,c,d,ksand ka.By previous example,we know

    By the proof of[18,Proposition 3.1 and Proposition 3.2],there exist some constants K1>0 and C>0 such that

    So

    If

    then

    Let1q+1d=12,by Cauchy-Schwarz’s inequality,

    and Assumption 2 holds.in the sense of Schwartz distribution.

    If(C.III)holds,then Qu(f,f)≥?α0(f,f)for any f∈Clip0(G)and thus for any f∈D(E)bby approximation.

    Let X be aμ-tight special standard jump process associated with(Eβ0,D(E))and(Put)t≥0be the generalized Feynman-Kac semigroup induced by u.If(C.III)and(3.7)holds,then by Theorem 1.2,is a strongly continuous contraction semigroup on L2(G;dx).

    4 Representation of Local CAF with Zero Quadratic Variation

    In this section,we consider representation of local CAF with zero quadratic variation under semi-Dirichlet form setting.For a quasi-open set V,let(EV,D(EV))be the part form of (E,D(E))on L2(V;m),then D(EV)=D(E)V.Let?GVαbe the co-resolvent of(EV,D(E)V) and XVbe the part process associated with(EV,D(E)V).Fix a function φ∈L1(E;m)with 0<φ≤1 m-a.e.,thenRVφ2dm ≤ REφ2dm ≤ REφdm<∞,hence φ∈L2(V,m).Put ˉhV=?GV1φ.For an AF Atof XV,defne

    whenever the limit exists in[0,∞],

    Theorem 4.1Let A be a local CAF of zero quadratic variation.Then,there exist a E-nest of fnely open sets{Gn}n∈N,a sequence{un}?D(E)Gn,band a nest of fnely open sets {Vn}n∈Nsuch that Vn?Gnand

    Px-a.s.for every x except in a exceptional set.Hereandis the zero energy part of Fukushima’s decomposition with respect to unand XGn.

    ProofThe proof is similar to that of[19,Theorem 1.1].We only list the diference here. In[19,Lemma 3.4],the co-semigroup?Ptand 1-co-resolvent?R1are expressed in terms of dual process?Xt,which dose not exist for semi-Dirichlet form.Notice?Ptand?R1still exist and are positivity preserving operators.Let g(x)= ?R1φ(x),then g is 1 co-excessive function.Hence when 0

    So[19,Lemma 3.4]still holds in semi-Dirichlet form case.

    Then by the proof of[19,Theorem 1.1],vnis bounded,Mnis a MAF of Xnand there exists {H0n}n∈N∈Θ such that for any n,IH0n?Mn∈ ˙MH0nand H0n? Gn.For fxed n∈N and anyLetthen h?is 1-co-excessive function with respect toof relatively compact set such that h?is bounded on H?n.Without loss of generality,assumeAlso,we can constructin Θ and sequence{gn}n∈Nand{hn}n∈Nin D(E)such that for all n∈N,

    Notice h?is 1-co-excessive function with respect to P0t,so

    and

    Notice gn∈D(E)H1nand h?is bounded up by Cnon H1n,so

    Since gn,h?∈D(E)H0n,so

    Let un=Rn1vn?γn+wn?Rn1wn,notice vnand gnare bounded,Rn1is sub-Markov and wn=vngn,so Rn1vn+wn?Rn1wnis bounded.By revising the nest?Gnsuch that I?Gnμn1and I?Gnμn2belongs to S00(En)instead of S0(En)in the proof of[19,Theorem 1.1],we can get γn∈D(E)Gn,b.Hence un∈D(E)Gn,band Px-a.e.for q.e.x∈E on{t<τVn},

    When s≤t<τVn,Xns=Xs,so let Gn=Gn,we get(4.2).

    Defne

    Theorem 4.2If(E,D(E)Gn)and its jumping measure Jnsatisfes the conditions of Theorem 1.1 or Theorem 1.2,then the following two are equivalent.

    (i)There exists a constant α0≥0 such that

    (ii)There exists a constant α0≥0 such that

    Further,if for any n∈N,(i)or(ii)holds,thenis strongly continuous.

    ProofBy section 2,we know(i)and(ii)are equivalent and they impliesare strongly continuous by looking Gnas E,Vnas En,unas u,undm as dμand

    If(ii)holds,then for?g∈L2(E;m),

    Since g∈L2(E;m)is arbitrary,we get

    Since f and n are arbitrary,is strongly continuous on L2(E;m).The proof is completed.

    AcknowledgementsWe thank Professor Wei Sun for helpful discussions.

    [1]Albeverio S,Ru-Zong F,R¨ockner M,Stannat W.A remark on coercive forms and associated semigroups. Oper Theory Adv Appl,1995,78:1–8

    [2]Chen C Z,Ma Z M,Sun W.On Girsanov and generalized Feynman-Kac transfromations for symmetric Markov processes.Infn Dimens Anal Quantum Probab Relat Top,2007,10:141–163

    [3]Fitzsimmons P J.On the quasi-regularity of semi-Dirichlet forms.Potential Anal,2001,15:158–185

    [4]Fukushima M,Uemura T.Hunt processes generated by lower bounded semi-Dirichlet forms.Ann Probab, 2012,40:858–889

    [5]Fukushima M,Oshima Y,Takeda M.Dirichlet Forms and Symmetric Markov Processes.Berlin:Walter de Gruyrer,1994

    [6]Hu Z C,Ma Z M,Sun W.Extensions of L′evy-Khintchine formula and Beurling-Deny formula in semi-Dirichlet forms setting.J Funct Anal,2006,239:179–213

    [7]Kuwae K.Maximum principles for subharmonic functions via local semi-Dirichlet forms.Can J Math,2008, 60:822–874

    [8]Ma L,Ma Z M,Sun W.Fukushima’s decomposition for difusions associated with semi-Dirichlet forms. Stoch Dyn,2012,12:1250003–1250031

    [9]Ma L,Sun W.On the generalized Feynman-Kac transformations for nearly symmetric Markov processes. J Theor Probab,2012,25:733–755

    [10]Ma Z M,Overbeck L,R¨ockner M.Markov processes associated with semi-Dirichlet forms.Osaka J Math, 1995,32:97–119

    [11]Ma Z M,R¨ockner M.Introduction to the Theory of(Non-Symmetric)Dirichlet Forms.Berlin:Springer-Verlag,1992

    [12]Ma Z M,Sun W,Wang L F.Fukushima type decomposition for semi-Dirichlet forms.Preprint, http://arxiv.org/abs/1402.4341

    [13]Oshima Y.Semi-Dirichlet Forms and Markov Processes.Walter de Gruyter,2013

    [14]Oshima Y,Yamada T.on some representations of continuous additive functionals locally of zero energy.J Math Soc Jpn,1984,36(2):315–339

    [15]R¨ockner M,Schmuland B.Quasi-regular Dirichlet forms:examples and counterexamples.Can J Math, 1995,47:165–200

    [16]Schilling R L,Wang J.Lower bounded semi-Dirichlet forms associated with L′evy type operators.Festschrift Masatoshi Fukushima,2015:507–526

    [17]Sun W,Zhang J.L′evy-Khintchine type representation of Dirichlet generators and semi-Dirichlet forms. Forum Math,2015,27:3111–3148

    [18]Uemura T.On multidimensional difusion processes with jumps.Osaka J Math,2014,51(4):969–993

    [19]Walsh A.On a representation of additive functionals of zero quadratic variation.Potential Anal,2013, 38(4):1173–1186

    [20]Walsh A.Stochastic integration with respect to additive functionals of zero quadratic variation.Bernoulli, 2013,19B(5):2414–2436

    ?Received June 2,2015;revised October 2,2015.This paper is supported by NSFC(11201102,11326169, 11361021)and Natural Science Foundation of Hainan Province(112002,113007).

    ?Corresponding author:Li MA.

    猜你喜歡
    馬麗
    消失的河流
    《哥,你好》魏翔&馬麗
    中國銀幕(2022年4期)2022-04-07 21:25:47
    “且”的真與假
    一首老歌
    江南詩(2020年3期)2020-06-08 10:20:40
    畫中迷
    嗨,馬麗
    馬麗 瘦弱女子勇挑家庭重擔
    從被嘲“丑女”到票房20億 諧星馬麗的逆襲之路
    好日子(2018年9期)2018-10-12 09:57:18
    馬麗設計作品
    藝術評論(2018年1期)2018-05-09 09:29:50
    馬麗蠟染作品
    藝術評論(2017年8期)2017-10-16 08:37:07
    久久6这里有精品| 国产高清视频在线观看网站| 日韩大尺度精品在线看网址| 亚洲成人久久爱视频| 亚洲国产欧美人成| 九色成人免费人妻av| 国产精品爽爽va在线观看网站| 淫秽高清视频在线观看| 亚洲七黄色美女视频| 欧美成人性av电影在线观看| 亚洲精品久久国产高清桃花| 久久久国产成人免费| 99热6这里只有精品| 首页视频小说图片口味搜索| 尤物成人国产欧美一区二区三区| 国产激情偷乱视频一区二区| 伊人久久精品亚洲午夜| av在线观看视频网站免费| 亚洲熟妇熟女久久| 久久九九热精品免费| 午夜久久久久精精品| 国产精品国产高清国产av| 美女大奶头视频| 免费看美女性在线毛片视频| 色av中文字幕| 日本成人三级电影网站| 丰满人妻一区二区三区视频av| 老鸭窝网址在线观看| 91麻豆av在线| 国产探花极品一区二区| 欧美bdsm另类| 性色av乱码一区二区三区2| 禁无遮挡网站| 欧美一区二区亚洲| 亚洲av.av天堂| 国产真实伦视频高清在线观看 | 中文字幕av在线有码专区| 色综合婷婷激情| 免费看光身美女| 成年女人看的毛片在线观看| 久久热精品热| 亚洲国产精品sss在线观看| 九九久久精品国产亚洲av麻豆| 欧美精品国产亚洲| av在线天堂中文字幕| 天天躁日日操中文字幕| 18禁黄网站禁片午夜丰满| 尤物成人国产欧美一区二区三区| 亚洲 欧美 日韩 在线 免费| 少妇的逼好多水| 日韩亚洲欧美综合| 麻豆一二三区av精品| 精品人妻偷拍中文字幕| 国产亚洲欧美在线一区二区| 亚洲人与动物交配视频| 噜噜噜噜噜久久久久久91| 国产欧美日韩一区二区精品| 国内精品久久久久精免费| 成人永久免费在线观看视频| 欧美日韩瑟瑟在线播放| 午夜免费男女啪啪视频观看 | 国产成人福利小说| 夜夜躁狠狠躁天天躁| 毛片女人毛片| 亚洲成av人片免费观看| 久久九九热精品免费| 真人一进一出gif抽搐免费| 熟女人妻精品中文字幕| 亚洲人成电影免费在线| 午夜精品在线福利| 久久九九热精品免费| 国产精品精品国产色婷婷| 综合色av麻豆| 免费人成视频x8x8入口观看| 麻豆国产av国片精品| 久久久久性生活片| 精品99又大又爽又粗少妇毛片 | 中文字幕人妻熟人妻熟丝袜美| 精品久久久久久久人妻蜜臀av| 国产精品98久久久久久宅男小说| 此物有八面人人有两片| 亚洲激情在线av| 午夜亚洲福利在线播放| 在现免费观看毛片| 免费黄网站久久成人精品 | 女生性感内裤真人,穿戴方法视频| 色哟哟·www| 精品久久久久久久末码| 男人的好看免费观看在线视频| 99热这里只有是精品50| 人妻夜夜爽99麻豆av| 男女床上黄色一级片免费看| 99热6这里只有精品| 国产伦在线观看视频一区| 91av网一区二区| 丝袜美腿在线中文| 精品久久久久久久久久免费视频| 国产高潮美女av| 淫秽高清视频在线观看| 欧美另类亚洲清纯唯美| 不卡一级毛片| 久久久精品欧美日韩精品| 国产亚洲欧美98| 特级一级黄色大片| 他把我摸到了高潮在线观看| 国产美女午夜福利| 日韩精品中文字幕看吧| 搡女人真爽免费视频火全软件 | 日韩欧美三级三区| 亚洲无线观看免费| 婷婷亚洲欧美| 色吧在线观看| 18禁黄网站禁片午夜丰满| 韩国av一区二区三区四区| 精品久久久久久,| 一区二区三区四区激情视频 | 有码 亚洲区| 日本撒尿小便嘘嘘汇集6| 欧美绝顶高潮抽搐喷水| 欧美黄色片欧美黄色片| av女优亚洲男人天堂| 成人精品一区二区免费| 成人三级黄色视频| 十八禁人妻一区二区| 亚洲在线自拍视频| ponron亚洲| 欧美性猛交╳xxx乱大交人| 成年女人毛片免费观看观看9| 黄色一级大片看看| 欧美精品国产亚洲| 亚洲欧美激情综合另类| 小说图片视频综合网站| 久久久久久大精品| 亚洲美女搞黄在线观看 | 天天一区二区日本电影三级| 国产精品一区二区三区四区久久| 久久久久性生活片| 国产精品亚洲一级av第二区| 亚洲最大成人av| 又爽又黄无遮挡网站| 亚洲精品一卡2卡三卡4卡5卡| 精品午夜福利在线看| 国产美女午夜福利| 亚洲精品一卡2卡三卡4卡5卡| 国产高清视频在线观看网站| 精品午夜福利视频在线观看一区| 1000部很黄的大片| 99国产综合亚洲精品| 中文字幕免费在线视频6| 日本黄色视频三级网站网址| 日韩欧美免费精品| 国产精品一区二区免费欧美| 亚洲av成人不卡在线观看播放网| 性插视频无遮挡在线免费观看| 久久国产精品人妻蜜桃| 久久国产乱子伦精品免费另类| 夜夜爽天天搞| 中文字幕高清在线视频| 国产欧美日韩一区二区三| 午夜精品久久久久久毛片777| 搡老熟女国产l中国老女人| www日本黄色视频网| 俺也久久电影网| 麻豆一二三区av精品| 欧美在线黄色| 狂野欧美白嫩少妇大欣赏| 一个人看视频在线观看www免费| 国产欧美日韩一区二区三| 久99久视频精品免费| 国产午夜精品论理片| 草草在线视频免费看| 国产精品嫩草影院av在线观看 | 三级男女做爰猛烈吃奶摸视频| 天堂动漫精品| 久久久精品大字幕| av天堂在线播放| 久久久久久久精品吃奶| 啦啦啦观看免费观看视频高清| 日韩欧美 国产精品| 99久久精品热视频| 欧美性猛交黑人性爽| 激情在线观看视频在线高清| 动漫黄色视频在线观看| 日本与韩国留学比较| 国产精品三级大全| 国产精华一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 激情在线观看视频在线高清| 美女免费视频网站| 国产精品女同一区二区软件 | 1024手机看黄色片| 精品一区二区三区av网在线观看| 欧美三级亚洲精品| 亚洲av美国av| 男插女下体视频免费在线播放| 欧美国产日韩亚洲一区| 在线十欧美十亚洲十日本专区| 美女免费视频网站| 国产亚洲精品久久久com| 欧美日本视频| 天堂√8在线中文| 老司机午夜福利在线观看视频| 国产精品亚洲一级av第二区| 岛国在线免费视频观看| 精品久久久久久久人妻蜜臀av| 国产主播在线观看一区二区| 国产视频内射| 国内精品美女久久久久久| 听说在线观看完整版免费高清| 日韩欧美国产在线观看| 久久欧美精品欧美久久欧美| 亚洲欧美日韩高清专用| 老熟妇乱子伦视频在线观看| 国产一区二区三区在线臀色熟女| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久午夜福利片| 在线国产一区二区在线| 欧美午夜高清在线| 欧美成人免费av一区二区三区| 欧美三级亚洲精品| 精品久久久久久久末码| 人妻制服诱惑在线中文字幕| 琪琪午夜伦伦电影理论片6080| 精品99又大又爽又粗少妇毛片 | 亚洲最大成人av| 中文在线观看免费www的网站| 国产三级在线视频| 99精品久久久久人妻精品| 日韩国内少妇激情av| 亚洲18禁久久av| 成年女人毛片免费观看观看9| 1000部很黄的大片| 俺也久久电影网| 欧美激情国产日韩精品一区| 国产一区二区亚洲精品在线观看| 真实男女啪啪啪动态图| 久久婷婷人人爽人人干人人爱| 免费在线观看成人毛片| 色哟哟哟哟哟哟| 成人午夜高清在线视频| 欧美高清成人免费视频www| 国产精品免费一区二区三区在线| 日韩欧美在线二视频| 国产三级中文精品| 1024手机看黄色片| 亚洲国产高清在线一区二区三| 51午夜福利影视在线观看| 午夜精品一区二区三区免费看| 久久精品国产自在天天线| 成人av在线播放网站| 网址你懂的国产日韩在线| 色综合站精品国产| 欧美一级a爱片免费观看看| 久久精品国产自在天天线| 无人区码免费观看不卡| 国产高潮美女av| 国产精品久久久久久人妻精品电影| 午夜日韩欧美国产| 国产黄a三级三级三级人| 久久伊人香网站| av中文乱码字幕在线| 欧美乱妇无乱码| 亚洲色图av天堂| 露出奶头的视频| 观看免费一级毛片| 久久久成人免费电影| 在线看三级毛片| 亚洲精品在线美女| 最近最新免费中文字幕在线| 欧美乱色亚洲激情| 欧美性猛交黑人性爽| av在线老鸭窝| 91麻豆精品激情在线观看国产| 如何舔出高潮| 深夜a级毛片| 无人区码免费观看不卡| 国内少妇人妻偷人精品xxx网站| 中亚洲国语对白在线视频| 亚洲一区二区三区不卡视频| 淫秽高清视频在线观看| 亚洲av中文字字幕乱码综合| 十八禁网站免费在线| 99久久精品国产亚洲精品| 国产一级毛片七仙女欲春2| 亚洲av熟女| 国产精品人妻久久久久久| www.999成人在线观看| 国内久久婷婷六月综合欲色啪| 久久人人精品亚洲av| 国产欧美日韩一区二区精品| 午夜福利在线观看免费完整高清在 | 国产精品自产拍在线观看55亚洲| 美女被艹到高潮喷水动态| 亚洲美女视频黄频| 色综合欧美亚洲国产小说| 国产av在哪里看| 日日干狠狠操夜夜爽| 成人精品一区二区免费| 99在线人妻在线中文字幕| 一本精品99久久精品77| 国产精品一及| 中出人妻视频一区二区| 一级a爱片免费观看的视频| 国产麻豆成人av免费视频| 在线天堂最新版资源| 色播亚洲综合网| 一个人看视频在线观看www免费| 中文字幕熟女人妻在线| 国产亚洲精品综合一区在线观看| 90打野战视频偷拍视频| 赤兔流量卡办理| 一二三四社区在线视频社区8| 中文在线观看免费www的网站| 午夜a级毛片| 久久精品国产99精品国产亚洲性色| 日韩欧美国产一区二区入口| 一级黄片播放器| 国内少妇人妻偷人精品xxx网站| 亚洲成av人片免费观看| 在线天堂最新版资源| 最近最新免费中文字幕在线| 三级男女做爰猛烈吃奶摸视频| 欧美激情在线99| 亚洲无线观看免费| 亚洲av一区综合| 国产精品人妻久久久久久| 精品久久国产蜜桃| 亚洲欧美日韩高清在线视频| 波多野结衣高清作品| 日韩欧美国产在线观看| 色吧在线观看| 九色国产91popny在线| 国产精品久久久久久精品电影| 极品教师在线免费播放| 美女被艹到高潮喷水动态| www.999成人在线观看| av在线老鸭窝| 久久久成人免费电影| 国内精品久久久久久久电影| 在线观看免费视频日本深夜| 国产高清视频在线观看网站| 免费在线观看亚洲国产| 日本熟妇午夜| 高清日韩中文字幕在线| 精品熟女少妇八av免费久了| 亚洲va日本ⅴa欧美va伊人久久| 99热只有精品国产| aaaaa片日本免费| 亚洲经典国产精华液单 | 精品一区二区三区av网在线观看| 免费看a级黄色片| 久久久久九九精品影院| 欧美日本视频| 久久中文看片网| 亚洲成a人片在线一区二区| 亚洲第一区二区三区不卡| 男女之事视频高清在线观看| 天堂网av新在线| 男女下面进入的视频免费午夜| 成人av在线播放网站| 少妇高潮的动态图| 国产一区二区激情短视频| 级片在线观看| 亚洲自拍偷在线| 美女高潮的动态| 国产午夜精品久久久久久一区二区三区 | 一级a爱片免费观看的视频| 国产成人欧美在线观看| 色在线成人网| 欧美极品一区二区三区四区| 午夜a级毛片| 内地一区二区视频在线| 九九久久精品国产亚洲av麻豆| 亚洲不卡免费看| 精品国产三级普通话版| 亚洲第一电影网av| 高清日韩中文字幕在线| 中文字幕久久专区| 国产精品三级大全| 国产精品不卡视频一区二区 | 波野结衣二区三区在线| 在线观看午夜福利视频| 日韩中文字幕欧美一区二区| 最近在线观看免费完整版| 99久久久亚洲精品蜜臀av| 99在线视频只有这里精品首页| 国产高潮美女av| 可以在线观看的亚洲视频| 精品人妻偷拍中文字幕| 国产精华一区二区三区| 午夜免费男女啪啪视频观看 | 欧美黑人欧美精品刺激| 亚洲国产精品久久男人天堂| 亚洲精品亚洲一区二区| 欧美成人a在线观看| 99国产精品一区二区三区| 亚洲性夜色夜夜综合| 精品国内亚洲2022精品成人| 草草在线视频免费看| 欧美日韩亚洲国产一区二区在线观看| 大型黄色视频在线免费观看| 亚洲aⅴ乱码一区二区在线播放| 欧美潮喷喷水| 国产蜜桃级精品一区二区三区| 亚洲成人久久爱视频| 国产白丝娇喘喷水9色精品| 欧美性猛交╳xxx乱大交人| 亚洲av成人精品一区久久| 男女下面进入的视频免费午夜| 亚洲人成伊人成综合网2020| 亚洲一区二区三区色噜噜| 91久久精品国产一区二区成人| 欧美高清成人免费视频www| 五月玫瑰六月丁香| 老司机福利观看| 国产三级中文精品| 最近在线观看免费完整版| av天堂中文字幕网| 精品免费久久久久久久清纯| 99久久精品一区二区三区| 国产欧美日韩一区二区三| 婷婷丁香在线五月| 亚洲真实伦在线观看| 亚洲国产色片| 久久久久亚洲av毛片大全| 性欧美人与动物交配| 18禁黄网站禁片免费观看直播| 国产成人啪精品午夜网站| 宅男免费午夜| 国产精品野战在线观看| 一个人免费在线观看电影| 免费无遮挡裸体视频| 亚洲欧美清纯卡通| 日韩欧美 国产精品| 老司机午夜十八禁免费视频| 18禁黄网站禁片免费观看直播| 国产久久久一区二区三区| 欧美黄色片欧美黄色片| 18+在线观看网站| 最近视频中文字幕2019在线8| 亚洲一区二区三区不卡视频| 欧美成人a在线观看| 亚洲第一区二区三区不卡| 精品人妻1区二区| 性插视频无遮挡在线免费观看| 9191精品国产免费久久| 欧美性猛交黑人性爽| 男女那种视频在线观看| 国产精品一及| av黄色大香蕉| eeuss影院久久| 午夜激情欧美在线| 老熟妇仑乱视频hdxx| 午夜免费激情av| 亚洲经典国产精华液单 | 91狼人影院| 亚洲精品粉嫩美女一区| 99热这里只有是精品50| 香蕉av资源在线| 中文字幕免费在线视频6| 亚洲美女黄片视频| xxxwww97欧美| 人人妻,人人澡人人爽秒播| 国产淫片久久久久久久久 | 波多野结衣高清作品| 久久久久精品国产欧美久久久| 3wmmmm亚洲av在线观看| 成年女人毛片免费观看观看9| av天堂在线播放| 成人性生交大片免费视频hd| 精品一区二区三区人妻视频| 桃红色精品国产亚洲av| 老熟妇乱子伦视频在线观看| 亚洲av熟女| 内射极品少妇av片p| 亚洲性夜色夜夜综合| a级一级毛片免费在线观看| 亚洲18禁久久av| 观看免费一级毛片| 国产精品免费一区二区三区在线| 天堂影院成人在线观看| 国产伦精品一区二区三区视频9| 国产精品伦人一区二区| 色在线成人网| 欧美中文日本在线观看视频| 色在线成人网| 级片在线观看| 中文字幕免费在线视频6| 免费电影在线观看免费观看| 波多野结衣巨乳人妻| 国产高清有码在线观看视频| 久久久久国产精品人妻aⅴ院| 欧美成人性av电影在线观看| 日本熟妇午夜| 91在线精品国自产拍蜜月| 日日摸夜夜添夜夜添小说| 88av欧美| 国产又黄又爽又无遮挡在线| avwww免费| 一级av片app| 午夜福利18| 国产成人av教育| 国产极品精品免费视频能看的| 丝袜美腿在线中文| 欧美+日韩+精品| 国产三级黄色录像| 脱女人内裤的视频| 国产私拍福利视频在线观看| 欧美黄色淫秽网站| 欧美又色又爽又黄视频| 欧美乱妇无乱码| 亚洲人成网站在线播放欧美日韩| 久久亚洲真实| 欧美激情国产日韩精品一区| 淫秽高清视频在线观看| 可以在线观看毛片的网站| 美女黄网站色视频| 精品99又大又爽又粗少妇毛片 | 亚洲美女视频黄频| 精品日产1卡2卡| 黄片小视频在线播放| 国产精品不卡视频一区二区 | 日本免费一区二区三区高清不卡| 亚洲精品456在线播放app | 禁无遮挡网站| 色在线成人网| 亚洲av成人精品一区久久| 欧美性感艳星| 夜夜看夜夜爽夜夜摸| 国产视频内射| 国产精品免费一区二区三区在线| 韩国av一区二区三区四区| 午夜老司机福利剧场| 91字幕亚洲| 亚洲不卡免费看| 国产亚洲欧美在线一区二区| 欧美不卡视频在线免费观看| 国产真实乱freesex| 婷婷色综合大香蕉| 亚洲三级黄色毛片| 精品免费久久久久久久清纯| av在线蜜桃| 欧美成人免费av一区二区三区| 十八禁网站免费在线| 免费看光身美女| 欧美乱妇无乱码| 久久国产乱子免费精品| 亚洲在线观看片| 我要搜黄色片| 精品一区二区三区人妻视频| 特大巨黑吊av在线直播| 十八禁网站免费在线| 少妇熟女aⅴ在线视频| 一本一本综合久久| 婷婷色综合大香蕉| 国产欧美日韩精品一区二区| 男女视频在线观看网站免费| 亚洲精品亚洲一区二区| 日韩欧美国产在线观看| 欧美一区二区亚洲| 午夜福利在线观看免费完整高清在 | 狂野欧美白嫩少妇大欣赏| 亚洲av成人不卡在线观看播放网| 美女高潮的动态| 欧美bdsm另类| av黄色大香蕉| 国产国拍精品亚洲av在线观看| 看黄色毛片网站| 制服丝袜大香蕉在线| 成年版毛片免费区| 桃红色精品国产亚洲av| 欧美一区二区精品小视频在线| x7x7x7水蜜桃| av国产免费在线观看| 久久久久精品国产欧美久久久| 波多野结衣高清作品| 色综合婷婷激情| 国产黄色小视频在线观看| 婷婷精品国产亚洲av| 给我免费播放毛片高清在线观看| 中文字幕av成人在线电影| 女人被狂操c到高潮| 久久婷婷人人爽人人干人人爱| 欧美一级a爱片免费观看看| 噜噜噜噜噜久久久久久91| 久久久久国产精品人妻aⅴ院| 高清毛片免费观看视频网站| 欧美一区二区精品小视频在线| 国产69精品久久久久777片| 国内揄拍国产精品人妻在线| 亚洲av成人精品一区久久| 久久久久久久久大av| 国内久久婷婷六月综合欲色啪| 亚洲精品乱码久久久v下载方式| 成人永久免费在线观看视频| 久久久久久大精品| 欧美最黄视频在线播放免费| 亚洲,欧美精品.| 精品国内亚洲2022精品成人| 少妇裸体淫交视频免费看高清| 老熟妇乱子伦视频在线观看| 国产淫片久久久久久久久 | 在线观看一区二区三区| 高潮久久久久久久久久久不卡| 最近视频中文字幕2019在线8| 免费看光身美女| a在线观看视频网站| 精品人妻偷拍中文字幕| 精品日产1卡2卡| 精品午夜福利在线看| 久久久久久久久久成人| 久久久久国内视频| 99国产极品粉嫩在线观看| 直男gayav资源| 琪琪午夜伦伦电影理论片6080|