• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ON GENERALIZED FEYNMAN-KAC TRANSFORMATION FOR MARKOV PROCESSES ASSOCIATED WITH SEMI-DIRICHLET FORMS?

    2017-01-21 05:30:40XinfangHAN韓新方LiMA馬麗
    關鍵詞:馬麗

    Xinfang HAN(韓新方)Li MA(馬麗)

    Department of Mathematics and Statistics,Hainan Normal University,Haikou 571158,China

    ON GENERALIZED FEYNMAN-KAC TRANSFORMATION FOR MARKOV PROCESSES ASSOCIATED WITH SEMI-DIRICHLET FORMS?

    Xinfang HAN(韓新方)Li MA(馬麗)?

    Department of Mathematics and Statistics,Hainan Normal University,Haikou 571158,China

    E-mail:xfanghan@163.com;malihnsd@163.com

    Suppose that X is a right process which is associated with a semi-Dirichlet form (E,D(E))on L2(E;m).Let J be the jumping measure of(E,D(E))satisfying J(E×E?d)<∞.Let u∈D(E)b:=D(E)∩L∞(E;m),we have the following Fukushima’s decomposition ?u(Xt)??u(X0)=Mut+Nut.Defne Putf(x)=Ex[eNutf(Xt)].Let Qu(f,g)=E(f,g)+E(u,fg) for f,g∈D(E)b.In the frst part,under some assumptions we show that(Qu,D(E)b)is lower semi-bounded if and only if there exists a constant α0≥0 such that kPutk2≤eα0tfor every t>0.If one of these assertions holds,then(Put)t≥0is strongly continuous on L2(E;m). If X is equipped with a diferential structure,then under some other assumptions,these conclusions remain valid without assuming J(E×E?d)<∞.Some examples are also given in this part.Let Atbe a local continuous additive functional with zero quadratic variation. In the second part,we get the representation of Atand give two sufcient conditions forto be strongly continuous.

    semi-Dirichlet form;generalized Feynman-Kac semigroup;strong continuity; lower semi-bounded;representation of local continuous additive functional with zero quadratic variation

    2010 MR Subject Classifcation60J55;60J35

    1 Introduction

    Let E be a metrizable Lusin space and X=((Xt)t≥0,(Px)x∈E?)be a right process on E (see[11,IV,Defnition 1.8]).Suppose that X is associated with a semi-Dirichlet form(E,D(E)) on L2(E;m),where m is a σ-fnite measure on the Borel σ-algebra B(E)of E.Then,by[3, Theorem 3.22],(E,D(E))is quasi-regular.Moreover,(E,D(E))is quasi-homeomorphic to a regular semi-Dirichlet form(see[6,Theorem 3.8]).We refer the reader to[5]and[11]for the theory of Dirichlet forms.The notations and terminologies of this paper follow[5,11–13].Put D(E)Vn={u∈D(E)|u=0 q.e.on Vcn}and D(E)Vn,b=D(E)Vn∩L∞(E,m).For α>0, defne Eα(u,u):=E(u,u)+α(u,u)m,where(u,u)mmeans the product of u and u in L2(E,m).

    Assumption 1There exist a sequence of sets{Vn}∈Θ and a sequence of locally bounded functions{Cn}on R,such that for each n∈N,if u,v∈D(E)Vn,b,then uv∈D(E)and

    For u∈D(E)b,under Assumption 1,by[12,Proposition 2.8],we have the following Fukushima type decomposition

    where?u is a quasi-continuous m-version of u,is a local martingale additive functional (abbreviated as MAF)andis a continuous additive functional(abbreviated as CAF)of zero quadratic variation.For x∈E,denote by Exthe expectation with respect to(w.r.t.)Px. Defne the generalized Feynman-Kac transformation

    In this paper,we will investigate the strong continuity of the semigroup

    The strong continuity of generalized Feynman-Kac semigroups for symmetric Markov processes was studied extensively by many people.We refer the reader to page 734 in[9]for a review.Suppose a symmetric Markov process(Xt)t≥0is associated with a Dirichlet form (E,E(E)).The researchers showed that the semigroupis strongly continuous on L2(E;m)if and only if the bilinear form(Qu,D(E)b)is lower semi-bounded.Here and henceforth

    For non-symmetric Dirichlet form,Ma and Sun gave two sufcient conditions for(Put)t≥0 to be strongly continuous in[9,Theorem 1.1,Theorem 1.2].In that paper,Beurling-Deny formula and Lejan’s transform rule are used essentially.

    For semi-Dirichlet form,Ma and Sun got Fukushima type decomposition for local semi-Dirichlet form in[8].Later Ma et al.generalized it to general semi-Dirichlet form in[12].Sois well-defned.It is natural to ask what’s the sufcient condition forto be strongly continuous in the setting of semi-Dirichlet form.

    There is a big diference between semi-Dirichlet form and Dirichlet form.For example, in general,the domain of semi-Dirichlet form is not an algebra,the symmetric part of semi-Dirichlet form and the dual form are only positive preserving forms not Dirichlet forms,the dual semigroup is not sub-Markov.So we need to put some assumptions under the framework of semi-Dirichlet form.For u∈D(E)b,let hMuitbe the sharp bracket process of Mutandμhuibe the Revuz measure of hMuit(see[8]).

    Assumption 2There are an E-nest{Fn}consisting of compact sets of E and some positive constants{Kn}such that for any n∈N,μhfi(Fn)≤KnE1(f,f)for any f∈D(E)Fn,b.

    Assumption 3There exists{Vn}∈Θ such that for each n∈N,there exists a Dirichlet form(η(n),D(η(n)))on L2(Vn;m)and a constant Cn>1 such that D(η(n))=D(E)Vnand forany u∈D(E)Vn,

    Denote by J(dx,dy)and K(dx)the jumping and killing measures of(E,D(E)),respectively (see[6]).

    Now we can state the frst two main results of the paper.

    Theorem 1.1Suppose that X is a right process associated with a semi-Dirichlet form (E,D(E))on L2(E;m).Let J be the jump measure of(E,D(E))satisfying J(E×E?d)<∞. Let u∈D(E)b.Then under Assumptions 2 and 3,the following two conditions are equivalent to each other:

    (i)there exists a constant α0≥0 such that

    (ii)there exists a constant α0≥0 such that

    Furthermore,if one of these conditions holds,then the semigroupis strongly continuous on L2(E;m).

    Notice that by[12],Assumption 3 implies Assumption 1 and Assumption 4.

    In Section 2,we give the proofs of Theorems 1.1 and 1.2.In Section 3,we will give some examples which satisfy Assumption 2 and Assumption 3.

    As is well-known,a CAF of zero energy has zero quadratic variation.It is natural to ask whether the zero quadratic variation processes are at least locally of zero energy or not. For symmetric irreducible difusion process,in[14],Oshima and Yamada gave an afrmative answer.For more general Markov process associated with non-symmetric Dirichlet form,in [20],Walsh got the similar result.

    In Section 4,for Markov processes associated with semi-Dirichlet forms,we will give a representation of local CAF of zero quadratic variation in terms of CAF with zero energy. Then we will study the strong continuity of generalized Feynman-Kac semigroups induced by a local CAF of zero quadratic variation.

    2 Proofs of Theorems 1.1 and 1.2

    By quasi-homeomorphism,we assume without loss of generality that X is a Hunt process and(E,D(E))is a regular semi-Dirichlet form on L2(E;m),where E is a locally compactseparable metric space and m is a positive Radon measure on E with supp[m]=E.We denote by?and ζ the cemetery and lifetime of X,respectively.It is known that every f∈D(E)has a quasi-continuous m-version.To simplify notation,we still denote this version by f.

    The proofs of Theorems 1.1 and 1.2 are similar to those of Theorems 1.1 and 1.2 in[9].In the following,we only point out the diferences.

    In[9],for u∈D(E),the Fukushima decomposition of u(Xt)?u(X0)always exists.But

    may be not locally integrable and the predictable dual process Bptof Btmay not exist,so instead of u,u?:=u+|u|Eis used to defne Bt,where|u|Eis the reduce function of u on E. Under semi-Dirichlet form setting,for u∈D(E),Fukushima decomposition of u(Xt)?u(X0) exists if and only if u satisfes condition(S)(see[12,Proposition 2.8]).So in this paper,we need u∈D(E)band J(E×E?d)<∞,which guarantee that u satisfes condition(S).Since u is bounded,so Btdefned by(2.1)is locally integrable and we can substitute u?in[9]by u or treat|u|Eas 0.

    Let Enbe the fne interior of some E-nest Fn.In inequalities(2.10)and(2.11)of[9],it is used that for any f∈D(E)En,b,

    In fact,for non-symmetric Dirichlet form,

    where?k(dx)is the killing measure of dual form ?E,which is also a Dirichlet form.However,for semi-Dirichlet form,the dual form is only a positive preserving form whose semi-group has no sub-Markov property,so the killing measure?k(dx)may not exist.So(2.2)may not hold in semi-Dirichlet form setting.For example,

    By[10,Remark 2.2(ii)],(E,D(E))is a regular local semi-Dirichlet form but not a Dirichlet form.Let Fn=[1n,1?1n],then{Fn}is an E-nest and En=(1n,1?1n)is the fne interior of Fn.For any f∈D(E)En,b,

    Denote by?E the symmetric part of E.The jumping measure?J and killing measures?K of the symmetric part(?E,D(E))are used to in(2.31)of[9].In semi-Dirichlet form setting,(?E,D(E)) is not a Dirichlet form,so?J and?K don’t exist.We can solve this by Assumption 2, Z

    Notice in(2.32)of[9],it is used that

    For semi-Dirichlet form,we can use Assumption 2 to overcome this difculty,

    So Assumption 2 is really needed in this paper.

    LeJan’s transformation rule and Lemma 2.4 of[9]are used in the proof of Theorem 1.1 in[9].We have corresponding results in semi-Dirichlet form setting(see[17,Theorem 3.3, Theorem 3.5])under Assumption 3.4 in[17].Our Assumption 3 guarantees the Assumption 3.4 in[17],so we can use the results of[17,Theorem 3.3,Theorem 3.5]and get Theorem 1.1.

    Beurling-Deny formula of Non-symmetric Dirichlet forms are used in the proof of Theorem 1.1 in[9].We have similar formula for semi-Dirichlet forms(see[6,Theorem 4.8]).Since u∈D(E)b,J(E×E?d)<∞in Theorem 1.1,so we can use[6,Theorem 4.8]directly.

    The expression of(E,D(E))is used in the proof of Theorem 1.2 in[9].In semi-Dirichlet form setting,under Assumption 4,(E,D(E))has similar expression(see[17,Theorem 1.4]).So we get Theorem 1.2.

    In the proof of main theorems(p.750 of[9]),it is used that∪n≥1D(E)Enis dense in D(E). For semi-Dirichlet form,our results are constructed under Assumption 2 and Assumption 3 or Assumption 1 and Assumption 2,so we need revise the set Enand prove that∪n≥1D(E)Enis dense in D(E).Let{Fn}be the compact sets in Assumption 2 and{F′n}be the compact sets in p.737 of[9],we should takeLetbe the sets in Assumption 1 or Assumption 3.Put[7,Lemma 3.6],is dense in D(E).

    Remark 2.1Letμ=μ+?μ?,whereμ+andμ?are smooth measures,be positive CAFs(PCAFs in short)with Revuz measureμ+andμ?,respectively,let Aμt:=Defne

    and

    then by localization method,similar to the proofs of Theorem 1.1 and Theorem 1.2,we can show the following two conditions are equivalent to each other

    (i)there exists a constant α0≥0 such that

    (ii)there exists a constant α0≥0 such that

    Furthermore,if one of these conditions holds,then the semigroupis strongly continuous on L2(E;m).This result extends[9,Remark 2.7].

    3 Some Examples

    In this section,we will give some examples which satisfy Assumption 2 and Assumption 3.

    Example 3.1In this example,we study the generalized Feynman-Kac semigroup for the semi-Dirichlet form given in[8]and[15].

    Let d≥3,U be an open subset of

    we defne

    Assume that

    We denote vector d by d.Let b= β+γ.Then,by[15,Theorem 1.2],under some conditions on aij,b,d,β,γ and c,there exists α>0 such that(Eα,C∞0(U))is closable on L2(U;dx)and its closure(Eα,D(Eα))is a regular local semi-Dirichlet form on L2(U;dx).Defne ηα(u,u):=Eα(u,u)?Rh▽u,βiudx for u∈D(Eα).By[15,Theorem 1.2(ii)and(1.28)],we know(ηα,D(Eα))is a Dirichlet form and there exists ?∈(0,1)such that for any u∈D(Eα),

    Let X be the Markovprocess associated with(Eα,D(Eα)),u∈D(Eα)b,then u(Xt)has Fukushima’s type decompositions a locally square integrable MAF andis a locally CAF of zero quadratic variation.By (3.1),Assumption 3 holds.Notice there is no jump part in expression of E,so J(E×E?d)<∞holds automatically.Next,we check Assumption 2.Since

    it follows that

    Hence Assumption 2 holds.LetThen,forwe have

    Suppose that the following condition holds.

    (A4)There exists a constant α0≥0 such that

    in the sense of Schwartz distribution.

    Then Qu(f,f)≥?α0(f,f)for any f∈C∞0(U)and thus for any f∈D(E)bby approximation.

    Example 3.2(see[4]and[16]) Let(E,d)be a locally compact separable metric space, m a positive Radon Measure on E with full topological support,and k(x,y)a nonnegative Borel measurable function on{(x,y)∈E×E|x 6=y}.Set ks(x,y)=12(k(x,y)+k(y,x)) and ka(x,y)=12(k(x,y)?k(y,x)).Denote by Clip0(E)the family of all uniformly Lipschitz continuous functions on E with compact support.Suppose that the following conditions hold

    and

    In fact

    Let D(E)be the η1-closure ofThen by[4,Theorem 2.1],(Eβ0,D(E))be a regular semi-Dirichlet form on L2(E,m).Moreover,Assumption 3 holds.

    Next we check Assumption 2.By(3.2),

    Hence

    So Assumption 2 holds,

    (B.III)There exists a constant α0≥0 such that

    in the sense of Schwartz distribution.

    If(B.III)holds,then Qu(f,f)≥?α0(f,f)mfor any f∈Clip0(E)and thus for any f∈D(E)bby approximation.

    Let X be aμ-tight special standard jump process associated with(Eβ0,D(E))and(Put)t≥0be the generalized Feynman-Kac semigroup induced by u.In Theorem 1.1,J(E×E?d)<∞is used in the proof of

    However,in this example,we can get(3.4)directly by the expression of(Eβ0,D(Eβ0))though J(E×E?d)<∞ may not be true here.Hence,by Theorem 1.1,if(B.III)holds,thenis a strongly continuous contraction semigroup on L2(E;m).

    Example 3.3(see[18]) Let d>3,G be an open set of Rd.Defne for u,v∈C10(G),

    and

    We refer to[18]for the conditions on aij,b,c,d,ksand ka.By previous example,we know

    By the proof of[18,Proposition 3.1 and Proposition 3.2],there exist some constants K1>0 and C>0 such that

    So

    If

    then

    Let1q+1d=12,by Cauchy-Schwarz’s inequality,

    and Assumption 2 holds.in the sense of Schwartz distribution.

    If(C.III)holds,then Qu(f,f)≥?α0(f,f)for any f∈Clip0(G)and thus for any f∈D(E)bby approximation.

    Let X be aμ-tight special standard jump process associated with(Eβ0,D(E))and(Put)t≥0be the generalized Feynman-Kac semigroup induced by u.If(C.III)and(3.7)holds,then by Theorem 1.2,is a strongly continuous contraction semigroup on L2(G;dx).

    4 Representation of Local CAF with Zero Quadratic Variation

    In this section,we consider representation of local CAF with zero quadratic variation under semi-Dirichlet form setting.For a quasi-open set V,let(EV,D(EV))be the part form of (E,D(E))on L2(V;m),then D(EV)=D(E)V.Let?GVαbe the co-resolvent of(EV,D(E)V) and XVbe the part process associated with(EV,D(E)V).Fix a function φ∈L1(E;m)with 0<φ≤1 m-a.e.,thenRVφ2dm ≤ REφ2dm ≤ REφdm<∞,hence φ∈L2(V,m).Put ˉhV=?GV1φ.For an AF Atof XV,defne

    whenever the limit exists in[0,∞],

    Theorem 4.1Let A be a local CAF of zero quadratic variation.Then,there exist a E-nest of fnely open sets{Gn}n∈N,a sequence{un}?D(E)Gn,band a nest of fnely open sets {Vn}n∈Nsuch that Vn?Gnand

    Px-a.s.for every x except in a exceptional set.Hereandis the zero energy part of Fukushima’s decomposition with respect to unand XGn.

    ProofThe proof is similar to that of[19,Theorem 1.1].We only list the diference here. In[19,Lemma 3.4],the co-semigroup?Ptand 1-co-resolvent?R1are expressed in terms of dual process?Xt,which dose not exist for semi-Dirichlet form.Notice?Ptand?R1still exist and are positivity preserving operators.Let g(x)= ?R1φ(x),then g is 1 co-excessive function.Hence when 0

    So[19,Lemma 3.4]still holds in semi-Dirichlet form case.

    Then by the proof of[19,Theorem 1.1],vnis bounded,Mnis a MAF of Xnand there exists {H0n}n∈N∈Θ such that for any n,IH0n?Mn∈ ˙MH0nand H0n? Gn.For fxed n∈N and anyLetthen h?is 1-co-excessive function with respect toof relatively compact set such that h?is bounded on H?n.Without loss of generality,assumeAlso,we can constructin Θ and sequence{gn}n∈Nand{hn}n∈Nin D(E)such that for all n∈N,

    Notice h?is 1-co-excessive function with respect to P0t,so

    and

    Notice gn∈D(E)H1nand h?is bounded up by Cnon H1n,so

    Since gn,h?∈D(E)H0n,so

    Let un=Rn1vn?γn+wn?Rn1wn,notice vnand gnare bounded,Rn1is sub-Markov and wn=vngn,so Rn1vn+wn?Rn1wnis bounded.By revising the nest?Gnsuch that I?Gnμn1and I?Gnμn2belongs to S00(En)instead of S0(En)in the proof of[19,Theorem 1.1],we can get γn∈D(E)Gn,b.Hence un∈D(E)Gn,band Px-a.e.for q.e.x∈E on{t<τVn},

    When s≤t<τVn,Xns=Xs,so let Gn=Gn,we get(4.2).

    Defne

    Theorem 4.2If(E,D(E)Gn)and its jumping measure Jnsatisfes the conditions of Theorem 1.1 or Theorem 1.2,then the following two are equivalent.

    (i)There exists a constant α0≥0 such that

    (ii)There exists a constant α0≥0 such that

    Further,if for any n∈N,(i)or(ii)holds,thenis strongly continuous.

    ProofBy section 2,we know(i)and(ii)are equivalent and they impliesare strongly continuous by looking Gnas E,Vnas En,unas u,undm as dμand

    If(ii)holds,then for?g∈L2(E;m),

    Since g∈L2(E;m)is arbitrary,we get

    Since f and n are arbitrary,is strongly continuous on L2(E;m).The proof is completed.

    AcknowledgementsWe thank Professor Wei Sun for helpful discussions.

    [1]Albeverio S,Ru-Zong F,R¨ockner M,Stannat W.A remark on coercive forms and associated semigroups. Oper Theory Adv Appl,1995,78:1–8

    [2]Chen C Z,Ma Z M,Sun W.On Girsanov and generalized Feynman-Kac transfromations for symmetric Markov processes.Infn Dimens Anal Quantum Probab Relat Top,2007,10:141–163

    [3]Fitzsimmons P J.On the quasi-regularity of semi-Dirichlet forms.Potential Anal,2001,15:158–185

    [4]Fukushima M,Uemura T.Hunt processes generated by lower bounded semi-Dirichlet forms.Ann Probab, 2012,40:858–889

    [5]Fukushima M,Oshima Y,Takeda M.Dirichlet Forms and Symmetric Markov Processes.Berlin:Walter de Gruyrer,1994

    [6]Hu Z C,Ma Z M,Sun W.Extensions of L′evy-Khintchine formula and Beurling-Deny formula in semi-Dirichlet forms setting.J Funct Anal,2006,239:179–213

    [7]Kuwae K.Maximum principles for subharmonic functions via local semi-Dirichlet forms.Can J Math,2008, 60:822–874

    [8]Ma L,Ma Z M,Sun W.Fukushima’s decomposition for difusions associated with semi-Dirichlet forms. Stoch Dyn,2012,12:1250003–1250031

    [9]Ma L,Sun W.On the generalized Feynman-Kac transformations for nearly symmetric Markov processes. J Theor Probab,2012,25:733–755

    [10]Ma Z M,Overbeck L,R¨ockner M.Markov processes associated with semi-Dirichlet forms.Osaka J Math, 1995,32:97–119

    [11]Ma Z M,R¨ockner M.Introduction to the Theory of(Non-Symmetric)Dirichlet Forms.Berlin:Springer-Verlag,1992

    [12]Ma Z M,Sun W,Wang L F.Fukushima type decomposition for semi-Dirichlet forms.Preprint, http://arxiv.org/abs/1402.4341

    [13]Oshima Y.Semi-Dirichlet Forms and Markov Processes.Walter de Gruyter,2013

    [14]Oshima Y,Yamada T.on some representations of continuous additive functionals locally of zero energy.J Math Soc Jpn,1984,36(2):315–339

    [15]R¨ockner M,Schmuland B.Quasi-regular Dirichlet forms:examples and counterexamples.Can J Math, 1995,47:165–200

    [16]Schilling R L,Wang J.Lower bounded semi-Dirichlet forms associated with L′evy type operators.Festschrift Masatoshi Fukushima,2015:507–526

    [17]Sun W,Zhang J.L′evy-Khintchine type representation of Dirichlet generators and semi-Dirichlet forms. Forum Math,2015,27:3111–3148

    [18]Uemura T.On multidimensional difusion processes with jumps.Osaka J Math,2014,51(4):969–993

    [19]Walsh A.On a representation of additive functionals of zero quadratic variation.Potential Anal,2013, 38(4):1173–1186

    [20]Walsh A.Stochastic integration with respect to additive functionals of zero quadratic variation.Bernoulli, 2013,19B(5):2414–2436

    ?Received June 2,2015;revised October 2,2015.This paper is supported by NSFC(11201102,11326169, 11361021)and Natural Science Foundation of Hainan Province(112002,113007).

    ?Corresponding author:Li MA.

    猜你喜歡
    馬麗
    消失的河流
    《哥,你好》魏翔&馬麗
    中國銀幕(2022年4期)2022-04-07 21:25:47
    “且”的真與假
    一首老歌
    江南詩(2020年3期)2020-06-08 10:20:40
    畫中迷
    嗨,馬麗
    馬麗 瘦弱女子勇挑家庭重擔
    從被嘲“丑女”到票房20億 諧星馬麗的逆襲之路
    好日子(2018年9期)2018-10-12 09:57:18
    馬麗設計作品
    藝術評論(2018年1期)2018-05-09 09:29:50
    馬麗蠟染作品
    藝術評論(2017年8期)2017-10-16 08:37:07
    中文天堂在线官网| 狠狠精品人妻久久久久久综合| 国产精品女同一区二区软件| 日本wwww免费看| 五月伊人婷婷丁香| 国产精品成人在线| 欧美xxⅹ黑人| 国产精品一区二区在线观看99| 男女无遮挡免费网站观看| 三上悠亚av全集在线观看| 亚洲人与动物交配视频| 下体分泌物呈黄色| 国产片特级美女逼逼视频| 啦啦啦视频在线资源免费观看| 久久人人爽av亚洲精品天堂| 午夜久久久在线观看| 精品久久国产蜜桃| 精品久久久久久久久av| 一级片'在线观看视频| 免费不卡的大黄色大毛片视频在线观看| 久久99精品国语久久久| 这个男人来自地球电影免费观看 | 最新的欧美精品一区二区| 成人毛片a级毛片在线播放| 亚洲av欧美aⅴ国产| 国产男女超爽视频在线观看| 国产白丝娇喘喷水9色精品| 大香蕉久久网| 久久久国产精品麻豆| 国产在线免费精品| 五月开心婷婷网| 波野结衣二区三区在线| 最近中文字幕2019免费版| 国产高清不卡午夜福利| 夫妻性生交免费视频一级片| 久久久久久久久久人人人人人人| 国产成人精品福利久久| 国产在线免费精品| 亚洲成色77777| 亚洲丝袜综合中文字幕| 久久久精品免费免费高清| 久久久欧美国产精品| 亚洲欧美成人精品一区二区| 日韩成人伦理影院| 在线精品无人区一区二区三| 不卡视频在线观看欧美| 看免费成人av毛片| 国产在线免费精品| 亚洲成人av在线免费| 99视频精品全部免费 在线| 精品国产露脸久久av麻豆| 免费观看av网站的网址| 日本黄大片高清| 中文天堂在线官网| 只有这里有精品99| 婷婷色综合大香蕉| 亚洲怡红院男人天堂| av免费在线看不卡| 中文精品一卡2卡3卡4更新| 亚洲欧洲日产国产| 亚洲精品国产色婷婷电影| 9色porny在线观看| 91在线精品国自产拍蜜月| 亚洲高清免费不卡视频| 一区二区三区免费毛片| 午夜福利影视在线免费观看| 国产亚洲精品久久久com| 人妻少妇偷人精品九色| 久久精品国产亚洲网站| 成人二区视频| 久久精品国产鲁丝片午夜精品| 国产高清三级在线| 大又大粗又爽又黄少妇毛片口| 久久久精品免费免费高清| 亚洲,欧美,日韩| 亚洲av二区三区四区| 夜夜看夜夜爽夜夜摸| 成人毛片60女人毛片免费| 综合色丁香网| 天美传媒精品一区二区| 日日摸夜夜添夜夜爱| 国产免费一区二区三区四区乱码| 日韩欧美精品免费久久| 老司机影院成人| 最近2019中文字幕mv第一页| 欧美3d第一页| 蜜桃久久精品国产亚洲av| 久久精品国产鲁丝片午夜精品| 欧美一级a爱片免费观看看| 亚洲精品久久成人aⅴ小说 | 18在线观看网站| 亚洲熟女精品中文字幕| 国产成人91sexporn| 九九久久精品国产亚洲av麻豆| 黑人高潮一二区| 久久久久人妻精品一区果冻| 国精品久久久久久国模美| 免费观看的影片在线观看| 久久久久精品性色| 国产69精品久久久久777片| 欧美成人午夜免费资源| 亚洲三级黄色毛片| 伦精品一区二区三区| 久久久久久久久久久免费av| 精品熟女少妇av免费看| 久久久午夜欧美精品| 看非洲黑人一级黄片| 亚洲av.av天堂| 国产精品三级大全| av在线播放精品| 免费观看的影片在线观看| 亚洲精品成人av观看孕妇| 亚洲精品乱码久久久v下载方式| 久久国产精品男人的天堂亚洲 | 久久久久久久久久久免费av| 成人毛片60女人毛片免费| 免费人妻精品一区二区三区视频| 精品国产乱码久久久久久小说| 爱豆传媒免费全集在线观看| 一级a做视频免费观看| 久久人人爽av亚洲精品天堂| 美女内射精品一级片tv| 女性被躁到高潮视频| 韩国高清视频一区二区三区| 老熟女久久久| 两个人免费观看高清视频| 看免费成人av毛片| 91久久精品电影网| 亚洲色图 男人天堂 中文字幕 | a级毛片在线看网站| 欧美日韩精品成人综合77777| 97超视频在线观看视频| 亚洲精品国产色婷婷电影| 99久久综合免费| 少妇 在线观看| av线在线观看网站| 秋霞伦理黄片| 成年人免费黄色播放视频| 高清午夜精品一区二区三区| 最新的欧美精品一区二区| 亚洲国产精品专区欧美| 多毛熟女@视频| videossex国产| 一边摸一边做爽爽视频免费| 久久精品国产a三级三级三级| 在线观看免费视频网站a站| 亚洲久久久国产精品| 一级毛片黄色毛片免费观看视频| 亚洲激情五月婷婷啪啪| 草草在线视频免费看| √禁漫天堂资源中文www| 国产成人av激情在线播放 | 少妇精品久久久久久久| 日韩成人伦理影院| 成年美女黄网站色视频大全免费 | 国产日韩欧美视频二区| av黄色大香蕉| 国产精品蜜桃在线观看| 国产高清三级在线| 精品少妇黑人巨大在线播放| 一级毛片黄色毛片免费观看视频| 91国产中文字幕| 欧美精品国产亚洲| 毛片一级片免费看久久久久| 午夜激情福利司机影院| tube8黄色片| 国产在线视频一区二区| 纵有疾风起免费观看全集完整版| 最新中文字幕久久久久| 欧美国产精品一级二级三级| 精品久久久精品久久久| 蜜桃国产av成人99| 精品一品国产午夜福利视频| 亚洲人成77777在线视频| 2022亚洲国产成人精品| 久久久久久伊人网av| 人人澡人人妻人| 欧美日韩av久久| 中文字幕人妻熟人妻熟丝袜美| 久久av网站| 亚洲欧美一区二区三区黑人 | 丝袜喷水一区| 亚洲,欧美,日韩| 91精品一卡2卡3卡4卡| 欧美日韩综合久久久久久| 大香蕉久久成人网| 黑人高潮一二区| 卡戴珊不雅视频在线播放| 韩国av在线不卡| 免费少妇av软件| 成人亚洲欧美一区二区av| 欧美日韩在线观看h| 国产国拍精品亚洲av在线观看| 久久午夜福利片| 久久久精品区二区三区| 日韩视频在线欧美| 久久精品人人爽人人爽视色| 男女啪啪激烈高潮av片| 色吧在线观看| 在线观看免费高清a一片| 性色av一级| 欧美变态另类bdsm刘玥| 99国产综合亚洲精品| 制服诱惑二区| 国产片内射在线| av女优亚洲男人天堂| 久久精品国产自在天天线| 亚洲国产日韩一区二区| 国产精品 国内视频| 免费播放大片免费观看视频在线观看| 国产精品偷伦视频观看了| 色吧在线观看| 国产片内射在线| 国产av国产精品国产| av在线播放精品| 2021少妇久久久久久久久久久| 亚洲国产最新在线播放| 国产乱来视频区| 国产日韩欧美在线精品| 亚洲av二区三区四区| 最新的欧美精品一区二区| 大码成人一级视频| 99久久综合免费| 纯流量卡能插随身wifi吗| 中国美白少妇内射xxxbb| 国产女主播在线喷水免费视频网站| 桃花免费在线播放| 国产成人免费无遮挡视频| 在线观看www视频免费| 亚洲精品久久成人aⅴ小说 | www.色视频.com| 高清不卡的av网站| 成人二区视频| 色5月婷婷丁香| 亚洲精品日韩在线中文字幕| 又粗又硬又长又爽又黄的视频| 插阴视频在线观看视频| 久久久久久久久久久丰满| 久久鲁丝午夜福利片| 国产精品成人在线| 一级二级三级毛片免费看| 国产精品熟女久久久久浪| 国产深夜福利视频在线观看| 国产在线视频一区二区| 国产精品一国产av| 伦理电影免费视频| 亚洲欧美日韩另类电影网站| 在线观看免费视频网站a站| 91久久精品电影网| 国产精品免费大片| a 毛片基地| h视频一区二区三区| 国产高清国产精品国产三级| av不卡在线播放| 国产亚洲av片在线观看秒播厂| 国产av精品麻豆| 看非洲黑人一级黄片| 日本爱情动作片www.在线观看| 国产精品一二三区在线看| 18+在线观看网站| 日韩av在线免费看完整版不卡| 一级a做视频免费观看| 下体分泌物呈黄色| 欧美精品高潮呻吟av久久| 免费观看av网站的网址| 精品午夜福利在线看| 99久国产av精品国产电影| tube8黄色片| 亚洲av日韩在线播放| 日韩中文字幕视频在线看片| 国产亚洲精品久久久com| 精品亚洲成国产av| 99视频精品全部免费 在线| 十分钟在线观看高清视频www| 亚洲综合精品二区| 国产日韩欧美亚洲二区| 老司机影院毛片| 七月丁香在线播放| 国产在视频线精品| 国产高清三级在线| 国产成人精品无人区| 亚洲欧洲日产国产| 秋霞在线观看毛片| 亚洲国产精品999| 大香蕉久久成人网| 久久综合国产亚洲精品| 性色av一级| 午夜福利,免费看| 成人黄色视频免费在线看| 免费观看无遮挡的男女| 18禁动态无遮挡网站| 国产成人精品福利久久| 日本wwww免费看| 性色avwww在线观看| 天天影视国产精品| 22中文网久久字幕| av天堂久久9| 亚洲精品456在线播放app| 免费观看的影片在线观看| 如何舔出高潮| 五月开心婷婷网| 少妇人妻久久综合中文| 亚洲高清免费不卡视频| 国产乱人偷精品视频| av.在线天堂| 免费久久久久久久精品成人欧美视频 | 日本欧美视频一区| 精品熟女少妇av免费看| 中文精品一卡2卡3卡4更新| 在现免费观看毛片| 久久这里有精品视频免费| 蜜臀久久99精品久久宅男| 亚洲av电影在线观看一区二区三区| 久久精品久久久久久久性| 国产一区二区三区综合在线观看 | 日日撸夜夜添| 日韩免费高清中文字幕av| 精品视频人人做人人爽| 亚洲精品久久久久久婷婷小说| 人人妻人人添人人爽欧美一区卜| 亚洲精品国产av蜜桃| 国产熟女欧美一区二区| 精品久久国产蜜桃| 国产精品国产三级国产专区5o| 成年人免费黄色播放视频| 九九久久精品国产亚洲av麻豆| 中文乱码字字幕精品一区二区三区| 人妻 亚洲 视频| 欧美亚洲 丝袜 人妻 在线| 观看美女的网站| 狠狠精品人妻久久久久久综合| 国产白丝娇喘喷水9色精品| 一本—道久久a久久精品蜜桃钙片| 亚洲国产精品成人久久小说| 97超碰精品成人国产| 精品国产乱码久久久久久小说| 性色avwww在线观看| 在线观看免费视频网站a站| 日本与韩国留学比较| 少妇猛男粗大的猛烈进出视频| 国产高清三级在线| 亚洲一区二区三区欧美精品| 黄片播放在线免费| 亚洲精品一区蜜桃| 久久99一区二区三区| 欧美性感艳星| 久久精品国产鲁丝片午夜精品| 91久久精品电影网| 视频中文字幕在线观看| 国产日韩欧美亚洲二区| 一级,二级,三级黄色视频| 亚洲欧美日韩卡通动漫| 老女人水多毛片| 亚洲av国产av综合av卡| 国产av国产精品国产| 又黄又爽又刺激的免费视频.| 精品人妻偷拍中文字幕| 一区二区三区四区激情视频| 国产日韩欧美亚洲二区| 91午夜精品亚洲一区二区三区| 日韩成人av中文字幕在线观看| 新久久久久国产一级毛片| 亚洲精品亚洲一区二区| 一二三四中文在线观看免费高清| 午夜影院在线不卡| 国产精品成人在线| 插阴视频在线观看视频| 18+在线观看网站| 日本wwww免费看| 精品人妻熟女av久视频| 亚洲久久久国产精品| 日韩大片免费观看网站| 久久精品国产亚洲网站| .国产精品久久| 国产精品三级大全| 国产欧美日韩一区二区三区在线 | av不卡在线播放| 久久久久久久久久成人| 国产一区亚洲一区在线观看| 久久人人爽人人片av| 九草在线视频观看| 一边亲一边摸免费视频| 国产精品蜜桃在线观看| 久久人妻熟女aⅴ| 亚洲情色 制服丝袜| 免费黄频网站在线观看国产| freevideosex欧美| 国产免费一区二区三区四区乱码| 亚洲国产成人一精品久久久| 伦精品一区二区三区| 亚洲av中文av极速乱| 自拍欧美九色日韩亚洲蝌蚪91| av卡一久久| 九九爱精品视频在线观看| 欧美激情极品国产一区二区三区 | 少妇高潮的动态图| 亚洲熟女精品中文字幕| 欧美性感艳星| 国产精品一二三区在线看| 亚洲人成网站在线观看播放| 日本-黄色视频高清免费观看| 一区二区av电影网| 美女福利国产在线| 如何舔出高潮| 精品少妇黑人巨大在线播放| 亚洲av国产av综合av卡| a级毛片免费高清观看在线播放| a级毛片黄视频| 成人综合一区亚洲| 国产免费一级a男人的天堂| 成人国产av品久久久| 97在线人人人人妻| 亚洲精品,欧美精品| 中文字幕精品免费在线观看视频 | .国产精品久久| 中文字幕最新亚洲高清| 免费黄频网站在线观看国产| 免费观看a级毛片全部| 亚洲欧美一区二区三区国产| 夫妻性生交免费视频一级片| 国产日韩一区二区三区精品不卡 | 边亲边吃奶的免费视频| 18禁在线无遮挡免费观看视频| 欧美激情 高清一区二区三区| 日韩大片免费观看网站| 欧美 日韩 精品 国产| 国产精品 国内视频| 亚洲综合精品二区| 九草在线视频观看| 久久午夜综合久久蜜桃| 在线观看人妻少妇| 欧美bdsm另类| 精品人妻在线不人妻| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲一区二区精品| 永久网站在线| 美女福利国产在线| a级片在线免费高清观看视频| 一本—道久久a久久精品蜜桃钙片| 超碰97精品在线观看| 精品人妻偷拍中文字幕| 99久久精品国产国产毛片| 国产成人精品福利久久| 中国国产av一级| 在线观看免费视频网站a站| 国产成人免费观看mmmm| 晚上一个人看的免费电影| 日韩一本色道免费dvd| 免费观看的影片在线观看| 伦理电影大哥的女人| 青青草视频在线视频观看| 在线观看一区二区三区激情| 日韩制服骚丝袜av| 国产欧美日韩一区二区三区在线 | 久久久精品区二区三区| 成人毛片60女人毛片免费| 99九九在线精品视频| 国产在线视频一区二区| 久久ye,这里只有精品| 欧美97在线视频| av免费在线看不卡| 精品99又大又爽又粗少妇毛片| 色94色欧美一区二区| 久久99精品国语久久久| 亚洲欧美中文字幕日韩二区| 全区人妻精品视频| 亚洲高清免费不卡视频| 免费大片黄手机在线观看| 久久影院123| 人妻 亚洲 视频| 国产成人精品婷婷| 精品亚洲乱码少妇综合久久| 国产一区二区三区av在线| 秋霞在线观看毛片| 美女大奶头黄色视频| 一本一本综合久久| 黑丝袜美女国产一区| 久久国产亚洲av麻豆专区| 亚洲在久久综合| 国产片内射在线| 秋霞伦理黄片| 自拍欧美九色日韩亚洲蝌蚪91| 涩涩av久久男人的天堂| 免费播放大片免费观看视频在线观看| 亚洲成人一二三区av| 亚洲一区二区三区欧美精品| 久久久久精品性色| 精品国产一区二区三区久久久樱花| 91精品国产国语对白视频| 国产成人freesex在线| 18禁在线播放成人免费| 久久毛片免费看一区二区三区| 免费久久久久久久精品成人欧美视频 | 国产精品无大码| 久久人人爽人人片av| 日韩一本色道免费dvd| 男人爽女人下面视频在线观看| 成年美女黄网站色视频大全免费 | 在线天堂最新版资源| 午夜91福利影院| 亚洲经典国产精华液单| 91精品伊人久久大香线蕉| 黄色一级大片看看| 国产av国产精品国产| 日本黄色日本黄色录像| 校园人妻丝袜中文字幕| 久久久久久久久久成人| 久久综合国产亚洲精品| 国产精品人妻久久久久久| 欧美另类一区| 考比视频在线观看| 免费久久久久久久精品成人欧美视频 | 黄片播放在线免费| 国产伦理片在线播放av一区| 91久久精品国产一区二区三区| 久热这里只有精品99| 久久久精品94久久精品| 考比视频在线观看| 激情五月婷婷亚洲| 国产午夜精品一二区理论片| av一本久久久久| 少妇的逼水好多| 91久久精品国产一区二区三区| 久久久欧美国产精品| 伦理电影免费视频| 熟女av电影| 国产精品女同一区二区软件| 国产毛片在线视频| 视频中文字幕在线观看| 不卡视频在线观看欧美| 91在线精品国自产拍蜜月| 不卡视频在线观看欧美| 91在线精品国自产拍蜜月| 国产在线免费精品| 毛片一级片免费看久久久久| 国产精品一区二区在线观看99| 美女内射精品一级片tv| 最近中文字幕2019免费版| 最近手机中文字幕大全| 欧美xxⅹ黑人| a级毛片黄视频| a级毛片在线看网站| 秋霞在线观看毛片| 街头女战士在线观看网站| 欧美亚洲日本最大视频资源| 3wmmmm亚洲av在线观看| 久久久久久人妻| 99热网站在线观看| 高清在线视频一区二区三区| 一本—道久久a久久精品蜜桃钙片| 欧美精品高潮呻吟av久久| 一边亲一边摸免费视频| 考比视频在线观看| 黑人欧美特级aaaaaa片| 免费大片黄手机在线观看| 嫩草影院入口| 欧美日韩一区二区视频在线观看视频在线| av不卡在线播放| 国产精品 国内视频| 久久99热6这里只有精品| 国产一区二区三区av在线| 狠狠精品人妻久久久久久综合| 草草在线视频免费看| 国产色爽女视频免费观看| 一边亲一边摸免费视频| 午夜视频国产福利| 激情五月婷婷亚洲| 熟女av电影| 黄片播放在线免费| 伦理电影大哥的女人| 嫩草影院入口| 亚洲第一区二区三区不卡| 人妻少妇偷人精品九色| av在线观看视频网站免费| 亚洲国产欧美日韩在线播放| 国产国语露脸激情在线看| 国产欧美日韩一区二区三区在线 | 亚洲精品456在线播放app| 日韩精品有码人妻一区| 精品亚洲成a人片在线观看| 久久久国产一区二区| kizo精华| 久久97久久精品| 美女脱内裤让男人舔精品视频| 久久久久网色| 超色免费av| 国产爽快片一区二区三区| 97超视频在线观看视频| 日韩欧美一区视频在线观看| 18禁在线播放成人免费| 看免费成人av毛片| 一级毛片我不卡| 国产永久视频网站| 蜜桃国产av成人99| 亚洲国产精品专区欧美| 久久狼人影院| 中文字幕久久专区| 亚洲欧洲日产国产| 欧美激情国产日韩精品一区| av卡一久久| 成人毛片60女人毛片免费| 人妻系列 视频| 草草在线视频免费看| 日韩视频在线欧美| 制服人妻中文乱码| 女性生殖器流出的白浆| av不卡在线播放| 国产精品国产三级专区第一集| 特大巨黑吊av在线直播| 成人国产av品久久久| 999精品在线视频| 日日撸夜夜添| 久久毛片免费看一区二区三区| 久久99热这里只频精品6学生| 国产免费现黄频在线看|