• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ON GENERALIZED FEYNMAN-KAC TRANSFORMATION FOR MARKOV PROCESSES ASSOCIATED WITH SEMI-DIRICHLET FORMS?

    2017-01-21 05:30:40XinfangHAN韓新方LiMA馬麗
    關鍵詞:馬麗

    Xinfang HAN(韓新方)Li MA(馬麗)

    Department of Mathematics and Statistics,Hainan Normal University,Haikou 571158,China

    ON GENERALIZED FEYNMAN-KAC TRANSFORMATION FOR MARKOV PROCESSES ASSOCIATED WITH SEMI-DIRICHLET FORMS?

    Xinfang HAN(韓新方)Li MA(馬麗)?

    Department of Mathematics and Statistics,Hainan Normal University,Haikou 571158,China

    E-mail:xfanghan@163.com;malihnsd@163.com

    Suppose that X is a right process which is associated with a semi-Dirichlet form (E,D(E))on L2(E;m).Let J be the jumping measure of(E,D(E))satisfying J(E×E?d)<∞.Let u∈D(E)b:=D(E)∩L∞(E;m),we have the following Fukushima’s decomposition ?u(Xt)??u(X0)=Mut+Nut.Defne Putf(x)=Ex[eNutf(Xt)].Let Qu(f,g)=E(f,g)+E(u,fg) for f,g∈D(E)b.In the frst part,under some assumptions we show that(Qu,D(E)b)is lower semi-bounded if and only if there exists a constant α0≥0 such that kPutk2≤eα0tfor every t>0.If one of these assertions holds,then(Put)t≥0is strongly continuous on L2(E;m). If X is equipped with a diferential structure,then under some other assumptions,these conclusions remain valid without assuming J(E×E?d)<∞.Some examples are also given in this part.Let Atbe a local continuous additive functional with zero quadratic variation. In the second part,we get the representation of Atand give two sufcient conditions forto be strongly continuous.

    semi-Dirichlet form;generalized Feynman-Kac semigroup;strong continuity; lower semi-bounded;representation of local continuous additive functional with zero quadratic variation

    2010 MR Subject Classifcation60J55;60J35

    1 Introduction

    Let E be a metrizable Lusin space and X=((Xt)t≥0,(Px)x∈E?)be a right process on E (see[11,IV,Defnition 1.8]).Suppose that X is associated with a semi-Dirichlet form(E,D(E)) on L2(E;m),where m is a σ-fnite measure on the Borel σ-algebra B(E)of E.Then,by[3, Theorem 3.22],(E,D(E))is quasi-regular.Moreover,(E,D(E))is quasi-homeomorphic to a regular semi-Dirichlet form(see[6,Theorem 3.8]).We refer the reader to[5]and[11]for the theory of Dirichlet forms.The notations and terminologies of this paper follow[5,11–13].Put D(E)Vn={u∈D(E)|u=0 q.e.on Vcn}and D(E)Vn,b=D(E)Vn∩L∞(E,m).For α>0, defne Eα(u,u):=E(u,u)+α(u,u)m,where(u,u)mmeans the product of u and u in L2(E,m).

    Assumption 1There exist a sequence of sets{Vn}∈Θ and a sequence of locally bounded functions{Cn}on R,such that for each n∈N,if u,v∈D(E)Vn,b,then uv∈D(E)and

    For u∈D(E)b,under Assumption 1,by[12,Proposition 2.8],we have the following Fukushima type decomposition

    where?u is a quasi-continuous m-version of u,is a local martingale additive functional (abbreviated as MAF)andis a continuous additive functional(abbreviated as CAF)of zero quadratic variation.For x∈E,denote by Exthe expectation with respect to(w.r.t.)Px. Defne the generalized Feynman-Kac transformation

    In this paper,we will investigate the strong continuity of the semigroup

    The strong continuity of generalized Feynman-Kac semigroups for symmetric Markov processes was studied extensively by many people.We refer the reader to page 734 in[9]for a review.Suppose a symmetric Markov process(Xt)t≥0is associated with a Dirichlet form (E,E(E)).The researchers showed that the semigroupis strongly continuous on L2(E;m)if and only if the bilinear form(Qu,D(E)b)is lower semi-bounded.Here and henceforth

    For non-symmetric Dirichlet form,Ma and Sun gave two sufcient conditions for(Put)t≥0 to be strongly continuous in[9,Theorem 1.1,Theorem 1.2].In that paper,Beurling-Deny formula and Lejan’s transform rule are used essentially.

    For semi-Dirichlet form,Ma and Sun got Fukushima type decomposition for local semi-Dirichlet form in[8].Later Ma et al.generalized it to general semi-Dirichlet form in[12].Sois well-defned.It is natural to ask what’s the sufcient condition forto be strongly continuous in the setting of semi-Dirichlet form.

    There is a big diference between semi-Dirichlet form and Dirichlet form.For example, in general,the domain of semi-Dirichlet form is not an algebra,the symmetric part of semi-Dirichlet form and the dual form are only positive preserving forms not Dirichlet forms,the dual semigroup is not sub-Markov.So we need to put some assumptions under the framework of semi-Dirichlet form.For u∈D(E)b,let hMuitbe the sharp bracket process of Mutandμhuibe the Revuz measure of hMuit(see[8]).

    Assumption 2There are an E-nest{Fn}consisting of compact sets of E and some positive constants{Kn}such that for any n∈N,μhfi(Fn)≤KnE1(f,f)for any f∈D(E)Fn,b.

    Assumption 3There exists{Vn}∈Θ such that for each n∈N,there exists a Dirichlet form(η(n),D(η(n)))on L2(Vn;m)and a constant Cn>1 such that D(η(n))=D(E)Vnand forany u∈D(E)Vn,

    Denote by J(dx,dy)and K(dx)the jumping and killing measures of(E,D(E)),respectively (see[6]).

    Now we can state the frst two main results of the paper.

    Theorem 1.1Suppose that X is a right process associated with a semi-Dirichlet form (E,D(E))on L2(E;m).Let J be the jump measure of(E,D(E))satisfying J(E×E?d)<∞. Let u∈D(E)b.Then under Assumptions 2 and 3,the following two conditions are equivalent to each other:

    (i)there exists a constant α0≥0 such that

    (ii)there exists a constant α0≥0 such that

    Furthermore,if one of these conditions holds,then the semigroupis strongly continuous on L2(E;m).

    Notice that by[12],Assumption 3 implies Assumption 1 and Assumption 4.

    In Section 2,we give the proofs of Theorems 1.1 and 1.2.In Section 3,we will give some examples which satisfy Assumption 2 and Assumption 3.

    As is well-known,a CAF of zero energy has zero quadratic variation.It is natural to ask whether the zero quadratic variation processes are at least locally of zero energy or not. For symmetric irreducible difusion process,in[14],Oshima and Yamada gave an afrmative answer.For more general Markov process associated with non-symmetric Dirichlet form,in [20],Walsh got the similar result.

    In Section 4,for Markov processes associated with semi-Dirichlet forms,we will give a representation of local CAF of zero quadratic variation in terms of CAF with zero energy. Then we will study the strong continuity of generalized Feynman-Kac semigroups induced by a local CAF of zero quadratic variation.

    2 Proofs of Theorems 1.1 and 1.2

    By quasi-homeomorphism,we assume without loss of generality that X is a Hunt process and(E,D(E))is a regular semi-Dirichlet form on L2(E;m),where E is a locally compactseparable metric space and m is a positive Radon measure on E with supp[m]=E.We denote by?and ζ the cemetery and lifetime of X,respectively.It is known that every f∈D(E)has a quasi-continuous m-version.To simplify notation,we still denote this version by f.

    The proofs of Theorems 1.1 and 1.2 are similar to those of Theorems 1.1 and 1.2 in[9].In the following,we only point out the diferences.

    In[9],for u∈D(E),the Fukushima decomposition of u(Xt)?u(X0)always exists.But

    may be not locally integrable and the predictable dual process Bptof Btmay not exist,so instead of u,u?:=u+|u|Eis used to defne Bt,where|u|Eis the reduce function of u on E. Under semi-Dirichlet form setting,for u∈D(E),Fukushima decomposition of u(Xt)?u(X0) exists if and only if u satisfes condition(S)(see[12,Proposition 2.8]).So in this paper,we need u∈D(E)band J(E×E?d)<∞,which guarantee that u satisfes condition(S).Since u is bounded,so Btdefned by(2.1)is locally integrable and we can substitute u?in[9]by u or treat|u|Eas 0.

    Let Enbe the fne interior of some E-nest Fn.In inequalities(2.10)and(2.11)of[9],it is used that for any f∈D(E)En,b,

    In fact,for non-symmetric Dirichlet form,

    where?k(dx)is the killing measure of dual form ?E,which is also a Dirichlet form.However,for semi-Dirichlet form,the dual form is only a positive preserving form whose semi-group has no sub-Markov property,so the killing measure?k(dx)may not exist.So(2.2)may not hold in semi-Dirichlet form setting.For example,

    By[10,Remark 2.2(ii)],(E,D(E))is a regular local semi-Dirichlet form but not a Dirichlet form.Let Fn=[1n,1?1n],then{Fn}is an E-nest and En=(1n,1?1n)is the fne interior of Fn.For any f∈D(E)En,b,

    Denote by?E the symmetric part of E.The jumping measure?J and killing measures?K of the symmetric part(?E,D(E))are used to in(2.31)of[9].In semi-Dirichlet form setting,(?E,D(E)) is not a Dirichlet form,so?J and?K don’t exist.We can solve this by Assumption 2, Z

    Notice in(2.32)of[9],it is used that

    For semi-Dirichlet form,we can use Assumption 2 to overcome this difculty,

    So Assumption 2 is really needed in this paper.

    LeJan’s transformation rule and Lemma 2.4 of[9]are used in the proof of Theorem 1.1 in[9].We have corresponding results in semi-Dirichlet form setting(see[17,Theorem 3.3, Theorem 3.5])under Assumption 3.4 in[17].Our Assumption 3 guarantees the Assumption 3.4 in[17],so we can use the results of[17,Theorem 3.3,Theorem 3.5]and get Theorem 1.1.

    Beurling-Deny formula of Non-symmetric Dirichlet forms are used in the proof of Theorem 1.1 in[9].We have similar formula for semi-Dirichlet forms(see[6,Theorem 4.8]).Since u∈D(E)b,J(E×E?d)<∞in Theorem 1.1,so we can use[6,Theorem 4.8]directly.

    The expression of(E,D(E))is used in the proof of Theorem 1.2 in[9].In semi-Dirichlet form setting,under Assumption 4,(E,D(E))has similar expression(see[17,Theorem 1.4]).So we get Theorem 1.2.

    In the proof of main theorems(p.750 of[9]),it is used that∪n≥1D(E)Enis dense in D(E). For semi-Dirichlet form,our results are constructed under Assumption 2 and Assumption 3 or Assumption 1 and Assumption 2,so we need revise the set Enand prove that∪n≥1D(E)Enis dense in D(E).Let{Fn}be the compact sets in Assumption 2 and{F′n}be the compact sets in p.737 of[9],we should takeLetbe the sets in Assumption 1 or Assumption 3.Put[7,Lemma 3.6],is dense in D(E).

    Remark 2.1Letμ=μ+?μ?,whereμ+andμ?are smooth measures,be positive CAFs(PCAFs in short)with Revuz measureμ+andμ?,respectively,let Aμt:=Defne

    and

    then by localization method,similar to the proofs of Theorem 1.1 and Theorem 1.2,we can show the following two conditions are equivalent to each other

    (i)there exists a constant α0≥0 such that

    (ii)there exists a constant α0≥0 such that

    Furthermore,if one of these conditions holds,then the semigroupis strongly continuous on L2(E;m).This result extends[9,Remark 2.7].

    3 Some Examples

    In this section,we will give some examples which satisfy Assumption 2 and Assumption 3.

    Example 3.1In this example,we study the generalized Feynman-Kac semigroup for the semi-Dirichlet form given in[8]and[15].

    Let d≥3,U be an open subset of

    we defne

    Assume that

    We denote vector d by d.Let b= β+γ.Then,by[15,Theorem 1.2],under some conditions on aij,b,d,β,γ and c,there exists α>0 such that(Eα,C∞0(U))is closable on L2(U;dx)and its closure(Eα,D(Eα))is a regular local semi-Dirichlet form on L2(U;dx).Defne ηα(u,u):=Eα(u,u)?Rh▽u,βiudx for u∈D(Eα).By[15,Theorem 1.2(ii)and(1.28)],we know(ηα,D(Eα))is a Dirichlet form and there exists ?∈(0,1)such that for any u∈D(Eα),

    Let X be the Markovprocess associated with(Eα,D(Eα)),u∈D(Eα)b,then u(Xt)has Fukushima’s type decompositions a locally square integrable MAF andis a locally CAF of zero quadratic variation.By (3.1),Assumption 3 holds.Notice there is no jump part in expression of E,so J(E×E?d)<∞holds automatically.Next,we check Assumption 2.Since

    it follows that

    Hence Assumption 2 holds.LetThen,forwe have

    Suppose that the following condition holds.

    (A4)There exists a constant α0≥0 such that

    in the sense of Schwartz distribution.

    Then Qu(f,f)≥?α0(f,f)for any f∈C∞0(U)and thus for any f∈D(E)bby approximation.

    Example 3.2(see[4]and[16]) Let(E,d)be a locally compact separable metric space, m a positive Radon Measure on E with full topological support,and k(x,y)a nonnegative Borel measurable function on{(x,y)∈E×E|x 6=y}.Set ks(x,y)=12(k(x,y)+k(y,x)) and ka(x,y)=12(k(x,y)?k(y,x)).Denote by Clip0(E)the family of all uniformly Lipschitz continuous functions on E with compact support.Suppose that the following conditions hold

    and

    In fact

    Let D(E)be the η1-closure ofThen by[4,Theorem 2.1],(Eβ0,D(E))be a regular semi-Dirichlet form on L2(E,m).Moreover,Assumption 3 holds.

    Next we check Assumption 2.By(3.2),

    Hence

    So Assumption 2 holds,

    (B.III)There exists a constant α0≥0 such that

    in the sense of Schwartz distribution.

    If(B.III)holds,then Qu(f,f)≥?α0(f,f)mfor any f∈Clip0(E)and thus for any f∈D(E)bby approximation.

    Let X be aμ-tight special standard jump process associated with(Eβ0,D(E))and(Put)t≥0be the generalized Feynman-Kac semigroup induced by u.In Theorem 1.1,J(E×E?d)<∞is used in the proof of

    However,in this example,we can get(3.4)directly by the expression of(Eβ0,D(Eβ0))though J(E×E?d)<∞ may not be true here.Hence,by Theorem 1.1,if(B.III)holds,thenis a strongly continuous contraction semigroup on L2(E;m).

    Example 3.3(see[18]) Let d>3,G be an open set of Rd.Defne for u,v∈C10(G),

    and

    We refer to[18]for the conditions on aij,b,c,d,ksand ka.By previous example,we know

    By the proof of[18,Proposition 3.1 and Proposition 3.2],there exist some constants K1>0 and C>0 such that

    So

    If

    then

    Let1q+1d=12,by Cauchy-Schwarz’s inequality,

    and Assumption 2 holds.in the sense of Schwartz distribution.

    If(C.III)holds,then Qu(f,f)≥?α0(f,f)for any f∈Clip0(G)and thus for any f∈D(E)bby approximation.

    Let X be aμ-tight special standard jump process associated with(Eβ0,D(E))and(Put)t≥0be the generalized Feynman-Kac semigroup induced by u.If(C.III)and(3.7)holds,then by Theorem 1.2,is a strongly continuous contraction semigroup on L2(G;dx).

    4 Representation of Local CAF with Zero Quadratic Variation

    In this section,we consider representation of local CAF with zero quadratic variation under semi-Dirichlet form setting.For a quasi-open set V,let(EV,D(EV))be the part form of (E,D(E))on L2(V;m),then D(EV)=D(E)V.Let?GVαbe the co-resolvent of(EV,D(E)V) and XVbe the part process associated with(EV,D(E)V).Fix a function φ∈L1(E;m)with 0<φ≤1 m-a.e.,thenRVφ2dm ≤ REφ2dm ≤ REφdm<∞,hence φ∈L2(V,m).Put ˉhV=?GV1φ.For an AF Atof XV,defne

    whenever the limit exists in[0,∞],

    Theorem 4.1Let A be a local CAF of zero quadratic variation.Then,there exist a E-nest of fnely open sets{Gn}n∈N,a sequence{un}?D(E)Gn,band a nest of fnely open sets {Vn}n∈Nsuch that Vn?Gnand

    Px-a.s.for every x except in a exceptional set.Hereandis the zero energy part of Fukushima’s decomposition with respect to unand XGn.

    ProofThe proof is similar to that of[19,Theorem 1.1].We only list the diference here. In[19,Lemma 3.4],the co-semigroup?Ptand 1-co-resolvent?R1are expressed in terms of dual process?Xt,which dose not exist for semi-Dirichlet form.Notice?Ptand?R1still exist and are positivity preserving operators.Let g(x)= ?R1φ(x),then g is 1 co-excessive function.Hence when 0

    So[19,Lemma 3.4]still holds in semi-Dirichlet form case.

    Then by the proof of[19,Theorem 1.1],vnis bounded,Mnis a MAF of Xnand there exists {H0n}n∈N∈Θ such that for any n,IH0n?Mn∈ ˙MH0nand H0n? Gn.For fxed n∈N and anyLetthen h?is 1-co-excessive function with respect toof relatively compact set such that h?is bounded on H?n.Without loss of generality,assumeAlso,we can constructin Θ and sequence{gn}n∈Nand{hn}n∈Nin D(E)such that for all n∈N,

    Notice h?is 1-co-excessive function with respect to P0t,so

    and

    Notice gn∈D(E)H1nand h?is bounded up by Cnon H1n,so

    Since gn,h?∈D(E)H0n,so

    Let un=Rn1vn?γn+wn?Rn1wn,notice vnand gnare bounded,Rn1is sub-Markov and wn=vngn,so Rn1vn+wn?Rn1wnis bounded.By revising the nest?Gnsuch that I?Gnμn1and I?Gnμn2belongs to S00(En)instead of S0(En)in the proof of[19,Theorem 1.1],we can get γn∈D(E)Gn,b.Hence un∈D(E)Gn,band Px-a.e.for q.e.x∈E on{t<τVn},

    When s≤t<τVn,Xns=Xs,so let Gn=Gn,we get(4.2).

    Defne

    Theorem 4.2If(E,D(E)Gn)and its jumping measure Jnsatisfes the conditions of Theorem 1.1 or Theorem 1.2,then the following two are equivalent.

    (i)There exists a constant α0≥0 such that

    (ii)There exists a constant α0≥0 such that

    Further,if for any n∈N,(i)or(ii)holds,thenis strongly continuous.

    ProofBy section 2,we know(i)and(ii)are equivalent and they impliesare strongly continuous by looking Gnas E,Vnas En,unas u,undm as dμand

    If(ii)holds,then for?g∈L2(E;m),

    Since g∈L2(E;m)is arbitrary,we get

    Since f and n are arbitrary,is strongly continuous on L2(E;m).The proof is completed.

    AcknowledgementsWe thank Professor Wei Sun for helpful discussions.

    [1]Albeverio S,Ru-Zong F,R¨ockner M,Stannat W.A remark on coercive forms and associated semigroups. Oper Theory Adv Appl,1995,78:1–8

    [2]Chen C Z,Ma Z M,Sun W.On Girsanov and generalized Feynman-Kac transfromations for symmetric Markov processes.Infn Dimens Anal Quantum Probab Relat Top,2007,10:141–163

    [3]Fitzsimmons P J.On the quasi-regularity of semi-Dirichlet forms.Potential Anal,2001,15:158–185

    [4]Fukushima M,Uemura T.Hunt processes generated by lower bounded semi-Dirichlet forms.Ann Probab, 2012,40:858–889

    [5]Fukushima M,Oshima Y,Takeda M.Dirichlet Forms and Symmetric Markov Processes.Berlin:Walter de Gruyrer,1994

    [6]Hu Z C,Ma Z M,Sun W.Extensions of L′evy-Khintchine formula and Beurling-Deny formula in semi-Dirichlet forms setting.J Funct Anal,2006,239:179–213

    [7]Kuwae K.Maximum principles for subharmonic functions via local semi-Dirichlet forms.Can J Math,2008, 60:822–874

    [8]Ma L,Ma Z M,Sun W.Fukushima’s decomposition for difusions associated with semi-Dirichlet forms. Stoch Dyn,2012,12:1250003–1250031

    [9]Ma L,Sun W.On the generalized Feynman-Kac transformations for nearly symmetric Markov processes. J Theor Probab,2012,25:733–755

    [10]Ma Z M,Overbeck L,R¨ockner M.Markov processes associated with semi-Dirichlet forms.Osaka J Math, 1995,32:97–119

    [11]Ma Z M,R¨ockner M.Introduction to the Theory of(Non-Symmetric)Dirichlet Forms.Berlin:Springer-Verlag,1992

    [12]Ma Z M,Sun W,Wang L F.Fukushima type decomposition for semi-Dirichlet forms.Preprint, http://arxiv.org/abs/1402.4341

    [13]Oshima Y.Semi-Dirichlet Forms and Markov Processes.Walter de Gruyter,2013

    [14]Oshima Y,Yamada T.on some representations of continuous additive functionals locally of zero energy.J Math Soc Jpn,1984,36(2):315–339

    [15]R¨ockner M,Schmuland B.Quasi-regular Dirichlet forms:examples and counterexamples.Can J Math, 1995,47:165–200

    [16]Schilling R L,Wang J.Lower bounded semi-Dirichlet forms associated with L′evy type operators.Festschrift Masatoshi Fukushima,2015:507–526

    [17]Sun W,Zhang J.L′evy-Khintchine type representation of Dirichlet generators and semi-Dirichlet forms. Forum Math,2015,27:3111–3148

    [18]Uemura T.On multidimensional difusion processes with jumps.Osaka J Math,2014,51(4):969–993

    [19]Walsh A.On a representation of additive functionals of zero quadratic variation.Potential Anal,2013, 38(4):1173–1186

    [20]Walsh A.Stochastic integration with respect to additive functionals of zero quadratic variation.Bernoulli, 2013,19B(5):2414–2436

    ?Received June 2,2015;revised October 2,2015.This paper is supported by NSFC(11201102,11326169, 11361021)and Natural Science Foundation of Hainan Province(112002,113007).

    ?Corresponding author:Li MA.

    猜你喜歡
    馬麗
    消失的河流
    《哥,你好》魏翔&馬麗
    中國銀幕(2022年4期)2022-04-07 21:25:47
    “且”的真與假
    一首老歌
    江南詩(2020年3期)2020-06-08 10:20:40
    畫中迷
    嗨,馬麗
    馬麗 瘦弱女子勇挑家庭重擔
    從被嘲“丑女”到票房20億 諧星馬麗的逆襲之路
    好日子(2018年9期)2018-10-12 09:57:18
    馬麗設計作品
    藝術評論(2018年1期)2018-05-09 09:29:50
    馬麗蠟染作品
    藝術評論(2017年8期)2017-10-16 08:37:07
    一区二区日韩欧美中文字幕| 人人澡人人妻人| 中文字幕人妻丝袜制服| 国产精品香港三级国产av潘金莲 | 国产欧美日韩一区二区三区在线| 美女福利国产在线| 欧美另类一区| 亚洲熟女精品中文字幕| 天堂中文最新版在线下载| 亚洲中文av在线| 国产成人精品在线电影| 午夜福利,免费看| 极品少妇高潮喷水抽搐| 黄色视频在线播放观看不卡| 亚洲精品久久午夜乱码| 国产亚洲欧美精品永久| 精品国产一区二区久久| 欧美人与性动交α欧美精品济南到| 免费在线观看黄色视频的| 美女主播在线视频| 日本a在线网址| 国产欧美亚洲国产| 亚洲视频免费观看视频| 极品少妇高潮喷水抽搐| 精品人妻一区二区三区麻豆| 国产精品国产三级国产专区5o| 91九色精品人成在线观看| 欧美久久黑人一区二区| 91麻豆av在线| 少妇人妻 视频| 在线观看免费日韩欧美大片| 国产亚洲精品久久久久5区| 十八禁网站网址无遮挡| 国产午夜精品一二区理论片| 人人妻,人人澡人人爽秒播 | 亚洲av成人不卡在线观看播放网 | 超碰成人久久| 亚洲欧美日韩高清在线视频 | 亚洲第一av免费看| 日韩中文字幕欧美一区二区 | 成人免费观看视频高清| 亚洲精品美女久久av网站| 久久国产精品大桥未久av| 欧美精品人与动牲交sv欧美| 男人操女人黄网站| 精品福利永久在线观看| 女人久久www免费人成看片| 欧美老熟妇乱子伦牲交| 国产在线观看jvid| 嫩草影视91久久| 欧美日韩黄片免| 日韩一区二区三区影片| 老司机影院成人| 日韩免费高清中文字幕av| 日本欧美国产在线视频| 日本欧美国产在线视频| 好男人视频免费观看在线| 又黄又粗又硬又大视频| 国精品久久久久久国模美| av天堂久久9| 国产高清videossex| 啦啦啦中文免费视频观看日本| 亚洲国产中文字幕在线视频| 男的添女的下面高潮视频| 国产精品久久久久久人妻精品电影 | 色婷婷av一区二区三区视频| 亚洲精品日韩在线中文字幕| 人体艺术视频欧美日本| 亚洲,欧美,日韩| 久久久精品免费免费高清| a级片在线免费高清观看视频| 亚洲国产看品久久| 日韩精品免费视频一区二区三区| 在线亚洲精品国产二区图片欧美| 一区福利在线观看| 精品人妻一区二区三区麻豆| 在线观看人妻少妇| 老司机靠b影院| 欧美日韩亚洲高清精品| 午夜福利视频精品| 中文字幕高清在线视频| 一区二区三区乱码不卡18| 一本综合久久免费| 一级毛片我不卡| 丁香六月欧美| 精品卡一卡二卡四卡免费| 亚洲,一卡二卡三卡| 高清不卡的av网站| 久久青草综合色| 少妇猛男粗大的猛烈进出视频| 久久影院123| 国产av国产精品国产| 亚洲精品av麻豆狂野| 黄色毛片三级朝国网站| 日日夜夜操网爽| www.精华液| 国精品久久久久久国模美| 成人18禁高潮啪啪吃奶动态图| 久久热在线av| 精品少妇内射三级| 咕卡用的链子| 精品福利观看| 美女国产高潮福利片在线看| 不卡av一区二区三区| a 毛片基地| 又紧又爽又黄一区二区| 亚洲精品在线美女| 丰满饥渴人妻一区二区三| 99热全是精品| 建设人人有责人人尽责人人享有的| 热99国产精品久久久久久7| 天天躁日日躁夜夜躁夜夜| 好男人视频免费观看在线| 国产成人a∨麻豆精品| 青青草视频在线视频观看| 黄片播放在线免费| 婷婷色综合大香蕉| 国产一区二区三区av在线| 中文欧美无线码| 国产一区二区三区av在线| 亚洲国产av新网站| 女人精品久久久久毛片| 国产成人一区二区三区免费视频网站 | 精品国产一区二区三区久久久樱花| 国产一区二区激情短视频 | 欧美人与善性xxx| 国产一卡二卡三卡精品| 久久亚洲国产成人精品v| 久久久欧美国产精品| 宅男免费午夜| 欧美黄色片欧美黄色片| 中文字幕人妻丝袜一区二区| 99国产精品免费福利视频| 十八禁网站网址无遮挡| 一二三四社区在线视频社区8| 久久天堂一区二区三区四区| 熟女av电影| 精品人妻熟女毛片av久久网站| 99国产精品免费福利视频| av有码第一页| 国产男女超爽视频在线观看| 香蕉丝袜av| 欧美人与性动交α欧美精品济南到| av网站在线播放免费| 一本综合久久免费| 晚上一个人看的免费电影| 国产欧美日韩一区二区三区在线| 欧美+亚洲+日韩+国产| 国产在线一区二区三区精| av在线老鸭窝| 在线精品无人区一区二区三| 美女脱内裤让男人舔精品视频| 欧美xxⅹ黑人| 亚洲国产欧美一区二区综合| 亚洲av国产av综合av卡| 男人操女人黄网站| 精品国产一区二区久久| 少妇的丰满在线观看| 国产高清国产精品国产三级| 亚洲成人手机| 色婷婷久久久亚洲欧美| 久热爱精品视频在线9| 免费在线观看影片大全网站 | av有码第一页| cao死你这个sao货| 久9热在线精品视频| 国产一区二区在线观看av| 久久久国产一区二区| av天堂久久9| 国产成人a∨麻豆精品| 免费在线观看视频国产中文字幕亚洲 | 国产精品人妻久久久影院| 精品一区在线观看国产| 91精品伊人久久大香线蕉| 欧美日韩av久久| 国产爽快片一区二区三区| 午夜福利一区二区在线看| 国产精品.久久久| 亚洲av日韩在线播放| 99精品久久久久人妻精品| 91麻豆av在线| 丝袜美足系列| 精品福利观看| 韩国精品一区二区三区| 80岁老熟妇乱子伦牲交| 大香蕉久久网| 亚洲一码二码三码区别大吗| 国产熟女午夜一区二区三区| av片东京热男人的天堂| 精品一区二区三区av网在线观看 | 一区二区日韩欧美中文字幕| 国产成人精品久久二区二区91| 日本vs欧美在线观看视频| 午夜福利视频精品| 自线自在国产av| 久久精品国产亚洲av涩爱| 久久人妻福利社区极品人妻图片 | 夜夜骑夜夜射夜夜干| 亚洲欧美精品综合一区二区三区| 日韩制服丝袜自拍偷拍| 热99久久久久精品小说推荐| 99精国产麻豆久久婷婷| 国产黄色免费在线视频| 成人国语在线视频| 人人妻人人添人人爽欧美一区卜| 97人妻天天添夜夜摸| 亚洲欧美色中文字幕在线| 日韩熟女老妇一区二区性免费视频| 精品福利永久在线观看| 精品一区二区三区四区五区乱码 | 曰老女人黄片| 女人被躁到高潮嗷嗷叫费观| 美女中出高潮动态图| 美女高潮到喷水免费观看| 国产精品国产三级专区第一集| 国产高清videossex| 水蜜桃什么品种好| 男女无遮挡免费网站观看| 国产av精品麻豆| 国产精品国产三级专区第一集| 操美女的视频在线观看| 成人影院久久| 曰老女人黄片| 亚洲图色成人| 国产精品国产av在线观看| 丝袜美腿诱惑在线| 超色免费av| 亚洲精品国产一区二区精华液| 99久久99久久久精品蜜桃| 欧美日韩精品网址| 久久人人97超碰香蕉20202| 亚洲视频免费观看视频| 亚洲国产精品一区二区三区在线| 后天国语完整版免费观看| 亚洲成国产人片在线观看| 校园人妻丝袜中文字幕| 热re99久久精品国产66热6| 精品国产一区二区三区四区第35| 在线天堂中文资源库| 视频在线观看一区二区三区| 性少妇av在线| 国产精品一区二区在线不卡| 欧美人与性动交α欧美软件| 每晚都被弄得嗷嗷叫到高潮| 欧美黄色片欧美黄色片| 人成视频在线观看免费观看| 久久这里只有精品19| 久久午夜综合久久蜜桃| 免费在线观看视频国产中文字幕亚洲 | 99热网站在线观看| 一区二区三区四区激情视频| 9热在线视频观看99| 丝瓜视频免费看黄片| 大香蕉久久网| 久久久亚洲精品成人影院| 成人国语在线视频| 99久久综合免费| 久久久久久久国产电影| 久久毛片免费看一区二区三区| 精品免费久久久久久久清纯 | 又粗又硬又长又爽又黄的视频| 热re99久久国产66热| 欧美日韩精品网址| 91成人精品电影| 久久精品国产亚洲av涩爱| 亚洲五月婷婷丁香| 婷婷丁香在线五月| 婷婷色综合www| 精品亚洲乱码少妇综合久久| 欧美激情高清一区二区三区| 在线av久久热| 在线 av 中文字幕| 在线观看人妻少妇| 日本黄色日本黄色录像| 久久免费观看电影| 国产97色在线日韩免费| 好男人视频免费观看在线| 在线观看www视频免费| 欧美在线黄色| 国产高清不卡午夜福利| 久久久久国产一级毛片高清牌| 一级黄色大片毛片| 人人妻人人澡人人爽人人夜夜| 中文字幕色久视频| 欧美精品亚洲一区二区| 欧美黑人欧美精品刺激| 女人精品久久久久毛片| 国产精品久久久久久精品电影小说| 考比视频在线观看| 欧美日韩一级在线毛片| 一本综合久久免费| 美女中出高潮动态图| 欧美亚洲 丝袜 人妻 在线| 免费一级毛片在线播放高清视频 | 久久av网站| 午夜av观看不卡| netflix在线观看网站| 久久精品国产a三级三级三级| 老司机影院毛片| 婷婷丁香在线五月| 亚洲欧美一区二区三区国产| 国产91精品成人一区二区三区 | 飞空精品影院首页| 午夜福利在线免费观看网站| 精品一区二区三区四区五区乱码 | 好男人电影高清在线观看| 国产熟女欧美一区二区| 中文字幕色久视频| 欧美成人午夜精品| 91麻豆精品激情在线观看国产 | 婷婷成人精品国产| 大香蕉久久网| 视频区图区小说| 婷婷色综合www| 美女午夜性视频免费| 欧美日韩综合久久久久久| 国产成人一区二区三区免费视频网站 | 国产男人的电影天堂91| 一二三四在线观看免费中文在| 欧美变态另类bdsm刘玥| 亚洲av国产av综合av卡| 黄色怎么调成土黄色| 十八禁高潮呻吟视频| 亚洲av欧美aⅴ国产| 久久久精品94久久精品| 热99国产精品久久久久久7| 美女中出高潮动态图| 一级,二级,三级黄色视频| 成人18禁高潮啪啪吃奶动态图| 纯流量卡能插随身wifi吗| 99精国产麻豆久久婷婷| e午夜精品久久久久久久| 又黄又粗又硬又大视频| 久久国产精品男人的天堂亚洲| 亚洲国产欧美一区二区综合| 精品第一国产精品| 好男人电影高清在线观看| 国产av精品麻豆| 黑人猛操日本美女一级片| 久久久久久久大尺度免费视频| 女性生殖器流出的白浆| 各种免费的搞黄视频| 久久久久网色| a级片在线免费高清观看视频| 亚洲欧洲国产日韩| 天天躁日日躁夜夜躁夜夜| tube8黄色片| 男女免费视频国产| svipshipincom国产片| 久久久久久免费高清国产稀缺| 久久女婷五月综合色啪小说| 亚洲av男天堂| 九色亚洲精品在线播放| 亚洲久久久国产精品| 99久久精品国产亚洲精品| 国产精品熟女久久久久浪| 免费看不卡的av| 一区二区三区精品91| 黄色毛片三级朝国网站| 国产亚洲av片在线观看秒播厂| 日韩av不卡免费在线播放| 国产av国产精品国产| av在线app专区| 一级,二级,三级黄色视频| 日日爽夜夜爽网站| 欧美在线黄色| 嫁个100分男人电影在线观看 | 久久久欧美国产精品| 免费在线观看黄色视频的| 国产成人a∨麻豆精品| 欧美97在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 咕卡用的链子| 另类亚洲欧美激情| 观看av在线不卡| 老司机在亚洲福利影院| 大香蕉久久网| 午夜久久久在线观看| 国产欧美日韩一区二区三区在线| 久久人妻熟女aⅴ| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品一区蜜桃| 母亲3免费完整高清在线观看| 啦啦啦中文免费视频观看日本| 男女午夜视频在线观看| 日韩一本色道免费dvd| 国产精品一区二区免费欧美 | 极品少妇高潮喷水抽搐| 久久久久久久久久久久大奶| 交换朋友夫妻互换小说| 国产激情久久老熟女| 老汉色∧v一级毛片| 欧美日韩亚洲综合一区二区三区_| 久久久精品94久久精品| 午夜视频精品福利| 日韩av在线免费看完整版不卡| 国产1区2区3区精品| 欧美精品高潮呻吟av久久| 欧美人与性动交α欧美精品济南到| 一级毛片女人18水好多 | 日韩一卡2卡3卡4卡2021年| 欧美日韩av久久| 久久女婷五月综合色啪小说| 夫妻午夜视频| 嫩草影视91久久| 久久免费观看电影| 91精品伊人久久大香线蕉| h视频一区二区三区| 日本vs欧美在线观看视频| 亚洲中文字幕日韩| 国产免费现黄频在线看| 亚洲国产中文字幕在线视频| 悠悠久久av| 满18在线观看网站| xxxhd国产人妻xxx| 国产精品久久久av美女十八| 久久精品亚洲av国产电影网| 欧美国产精品va在线观看不卡| 久久久欧美国产精品| 国产麻豆69| 水蜜桃什么品种好| 国产亚洲欧美在线一区二区| 精品一区在线观看国产| av线在线观看网站| 久久天躁狠狠躁夜夜2o2o | 美女高潮到喷水免费观看| 日本猛色少妇xxxxx猛交久久| 免费在线观看影片大全网站 | 亚洲国产欧美在线一区| 黄色视频在线播放观看不卡| 成年人免费黄色播放视频| 亚洲欧洲日产国产| 黑人巨大精品欧美一区二区蜜桃| 日韩大码丰满熟妇| 女人爽到高潮嗷嗷叫在线视频| 国产欧美日韩一区二区三 | av网站免费在线观看视频| 9191精品国产免费久久| 久久亚洲国产成人精品v| 精品欧美一区二区三区在线| 午夜视频精品福利| 十八禁人妻一区二区| av不卡在线播放| 高清视频免费观看一区二区| 久久久国产一区二区| 亚洲图色成人| 成人手机av| 国产精品99久久99久久久不卡| 男女无遮挡免费网站观看| 成年人免费黄色播放视频| 久久久精品94久久精品| 国产在线一区二区三区精| 十八禁人妻一区二区| 亚洲国产最新在线播放| 一本一本久久a久久精品综合妖精| www.精华液| 丝袜喷水一区| 又大又黄又爽视频免费| 亚洲精品第二区| 51午夜福利影视在线观看| 午夜日韩欧美国产| 1024香蕉在线观看| 美女扒开内裤让男人捅视频| videos熟女内射| 久久这里只有精品19| 老汉色∧v一级毛片| 亚洲国产欧美一区二区综合| 99国产精品99久久久久| 成人午夜精彩视频在线观看| 99久久精品国产亚洲精品| 欧美成人精品欧美一级黄| a级毛片在线看网站| av不卡在线播放| 黑丝袜美女国产一区| av在线播放精品| 亚洲视频免费观看视频| 国产亚洲欧美精品永久| 天天躁夜夜躁狠狠躁躁| 国产黄频视频在线观看| 狂野欧美激情性bbbbbb| 国产男女超爽视频在线观看| 免费一级毛片在线播放高清视频 | 久久毛片免费看一区二区三区| 香蕉国产在线看| 久久ye,这里只有精品| 一个人免费看片子| 国产一区二区在线观看av| 晚上一个人看的免费电影| 男女边摸边吃奶| 美国免费a级毛片| 欧美黄色片欧美黄色片| 一边亲一边摸免费视频| 欧美av亚洲av综合av国产av| 国产91精品成人一区二区三区 | 大片免费播放器 马上看| 黄色视频不卡| √禁漫天堂资源中文www| 波多野结衣av一区二区av| 成年人黄色毛片网站| 男人爽女人下面视频在线观看| 女人久久www免费人成看片| 久久热在线av| 一区二区日韩欧美中文字幕| 中文字幕色久视频| 91字幕亚洲| 99热国产这里只有精品6| 婷婷色av中文字幕| 婷婷色麻豆天堂久久| 美女国产高潮福利片在线看| 成人亚洲欧美一区二区av| 一区二区三区四区激情视频| 在线观看免费视频网站a站| 欧美人与性动交α欧美精品济南到| 午夜激情av网站| 电影成人av| 国产精品久久久久久精品电影小说| 啦啦啦 在线观看视频| 多毛熟女@视频| 在线观看一区二区三区激情| 黄色片一级片一级黄色片| 晚上一个人看的免费电影| 最新的欧美精品一区二区| 在现免费观看毛片| 免费女性裸体啪啪无遮挡网站| 男男h啪啪无遮挡| 欧美黄色片欧美黄色片| 男女边吃奶边做爰视频| 国产亚洲av片在线观看秒播厂| 18禁黄网站禁片午夜丰满| 国产成人欧美| 欧美日韩成人在线一区二区| 精品少妇久久久久久888优播| 国产又色又爽无遮挡免| 国产精品人妻久久久影院| 亚洲av成人不卡在线观看播放网 | a级毛片在线看网站| 热99国产精品久久久久久7| 天天添夜夜摸| 啦啦啦在线免费观看视频4| 蜜桃在线观看..| 午夜激情久久久久久久| 美女午夜性视频免费| 亚洲免费av在线视频| 99久久人妻综合| 少妇人妻 视频| 亚洲国产成人一精品久久久| 久久精品亚洲av国产电影网| 亚洲欧美一区二区三区国产| 最近最新中文字幕大全免费视频 | 日韩熟女老妇一区二区性免费视频| 国产99久久九九免费精品| 大香蕉久久网| 热re99久久国产66热| 最近中文字幕2019免费版| 久久精品久久精品一区二区三区| 国产三级黄色录像| 啦啦啦视频在线资源免费观看| 1024香蕉在线观看| 国产日韩一区二区三区精品不卡| 久久亚洲精品不卡| 精品一区在线观看国产| 深夜精品福利| 男女国产视频网站| 亚洲欧美色中文字幕在线| 成人国产av品久久久| 国产av精品麻豆| 精品卡一卡二卡四卡免费| 午夜福利在线免费观看网站| 午夜91福利影院| 99国产综合亚洲精品| 一本久久精品| 日本a在线网址| 国产在视频线精品| 日本a在线网址| 最近手机中文字幕大全| 欧美xxⅹ黑人| 免费日韩欧美在线观看| 精品国产乱码久久久久久男人| 2021少妇久久久久久久久久久| 最近中文字幕2019免费版| 啦啦啦视频在线资源免费观看| 午夜免费男女啪啪视频观看| 亚洲国产欧美在线一区| 欧美av亚洲av综合av国产av| 首页视频小说图片口味搜索 | 欧美日韩亚洲综合一区二区三区_| 中文字幕av电影在线播放| 亚洲第一青青草原| 伦理电影免费视频| 成年动漫av网址| 七月丁香在线播放| 嫩草影视91久久| 日本色播在线视频| 妹子高潮喷水视频| 这个男人来自地球电影免费观看| a 毛片基地| 肉色欧美久久久久久久蜜桃| 好男人视频免费观看在线| 国产又色又爽无遮挡免| √禁漫天堂资源中文www| 国产在线观看jvid| 国产精品人妻久久久影院| av天堂在线播放| 久久精品久久久久久噜噜老黄| 欧美亚洲日本最大视频资源| 在线观看免费日韩欧美大片| 丝袜脚勾引网站| 中国美女看黄片| 黄色视频在线播放观看不卡| 天天躁夜夜躁狠狠久久av| 啦啦啦啦在线视频资源| 观看av在线不卡| 中文字幕亚洲精品专区| 免费不卡黄色视频| 青春草视频在线免费观看|