• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    STRONGLY CONVERGENT ITERATIVE METHODS FOR SPLIT EQUALITY VARIATIONAL INCLUSION PROBLEMS IN BANACH SPACES?

    2017-01-21 05:30:28ShihsenCHANG張石生
    關(guān)鍵詞:王林

    Shih-sen CHANG(張石生)

    Center for General Education,China Medical University,Taichung 40402,China

    Lin WANG(王林)

    College of Statistics and Mathematics,Yunnan University of Finance and Economics, Kunming 650221,China

    Lijuan QIN(秦麗娟?)

    Department of Mathematics,Kunming University,Kunming 650214,China

    Zhaoli MA(馬招麗)

    School of Information Engineering,College of Arts and Science Yunnan Normal University, Kunming 650222,China

    STRONGLY CONVERGENT ITERATIVE METHODS FOR SPLIT EQUALITY VARIATIONAL INCLUSION PROBLEMS IN BANACH SPACES?

    Shih-sen CHANG(張石生)?

    Center for General Education,China Medical University,Taichung 40402,China

    E-mail:changss2013@163.com

    Lin WANG(王林)

    College of Statistics and Mathematics,Yunnan University of Finance and Economics, Kunming 650221,China

    E-mail:wl64mail@aliyun.com

    Lijuan QIN(秦麗娟?)

    Department of Mathematics,Kunming University,Kunming 650214,China

    E-mail:annyqlj@163.com

    Zhaoli MA(馬招麗)

    School of Information Engineering,College of Arts and Science Yunnan Normal University, Kunming 650222,China

    E-mail:kmszmzl@126.com

    The purpose of this paper is to introduce and study the split equality variational inclusion problems in the setting of Banach spaces.For solving this kind of problems,some new iterative algorithms are proposed.Under suitable conditions,some strong convergence theorems for the sequences generated by the proposed algorithm are proved.As applications, we shall utilize the results presented in the paper to study the split equality feasibility problems in Banach spaces and the split equality equilibrium problem in Banach spaces.The results presented in the paper are new.

    the split equality variational inclusion problem in Banach space;split feasibility problem in Banach space;split equilibrium problem in Banach spaces

    2010 MR Subject Classifcation47J25;47H09;65K10

    1 Introduction

    Let C and Q be nonempty closed and convex subsets of real Hilbert spaces H1and H2, respectively.The split feasibility problem(SFP)is formulated aswhere A:H1→ H2is a bounded linear operator.In 1994,Censor and Elfving[1]frst introduced the(SFP)in fnite-dimensional Hilbert spaces for modeling inverse problems which arise from phase retrievals and in medical image reconstruction[2].It was found that the (SFP)can also be used in various disciplines such as image restoration,computer tomograph and radiation therapy treatment planning[3–5].The(SFP)in an infnite dimensional real Hilbert space can be found in[2,4,6–10].

    Recently,Moudaf[11–13]introduced the following split equality feasibility problem(SEFP):

    where A:H1→H3and B:H2→H3are two bounded linear operators.Obviously,if B=I (identity mapping on H2)and H3=H2,then(1.2)reduces to(1.1).The kind of split equality feasibility problems(1.2)allows asymmetric and partial relations between the variables x and y. The interest is to cover many situations,such as decomposition methods for PDEs,applications in game theory and intensity-modulated radiation therapy.

    In order to solve split equality feasibility problem(1.2),Moudaf[11]introduced the following simultaneous iterative method

    and under suitable conditions he proved the weak convergence of the sequence{(xn,yn)}to a solution of(1.2)in Hilbert spaces.

    Attempt to introduce and consider the split feasibility problem and split common null point problem in the setting of Banach spaces have recently been made.In 2015,Takahashi [14]frst introduced and considered such problems in Banach spaces.By using hybrid methods and Halpern’s type methods and under suitable conditions some strong and weak convergence theorems for such problems are proved in Banach spaces.The results presented in[14]seem to be the frst outside Hilbert space.

    Motivated by the above works and related literatures,the purpose of this paper is to introduce and study the following split equality variational inclusion problems in the setting of Banach spaces.

    Let H1and H2be two real Hilbert spaces and F be a real Banach space.Let A:H1→F,B:H2→F be two bounded linear operators and A?and B?be the adjoint mappings of A and B,respectively.In the sequel we always denote by F(K)the fxed point set of a mapping K.Let Ui:Hi→2Hi,i=1,2 be a maximal monotone mapping.The resolvent of Uiis defned by

    The“so-called”split equality variational inclusion problems in Banach spaces(SEVIP)is to fnd

    In the sequel,we always denote bythe solution set of(SEVIP)(1.4).

    Next we give some examples of(SEVIP)(1.4).

    Example 1.1Split equality feasibility problem in Banach spaces.

    Let H1,H2be two real Hilbert spaces and F be a real Banach space.Let C?H1and Q?H2be two nonempty closed convex subsets and A:H1→F,B:H2→F be two bounded linear operators.The“so-called”“split equality feasibility problem in Banach space”(SEFP) is to fnd

    Let iCand iQbe the indicator function of C and Q,respectively,i.e.,

    Denote by NC(x)and NQ(y)the normal cone of C and Q at x and y,respectively,

    where

    Hence we have

    where PCis the metric projection from H1onto C.This implies thatfor any β>0. Similarly,we also havefor any β>0.Therefore the(SEFP) (1.5)is equivalent to the following split equality variational inclusion problem in Banach space, i.e.,to fnd x?∈H1,and y?∈H2such that

    Example 1.2Split equality equilibrium problem in Banach space.

    Let D be a nonempty closed and convex subset of a real Hilbert space H.A bifunction g:D×D→(?∞,+∞)is said to be a equilibrium function,if it satisfes the following conditions

    (A1)g(x,x)=0 for all x∈D;

    (A2)g is monotone,i.e.,g(x,y)+g(y,x)≤0 for all x,y∈D;

    (A3)limsupt↓0g(tz+(1?t)x,y)≤g(x,y)for all x,y,z∈D;

    (A4)for each x∈D,y 7→g(x,y)is convex and lower semi-continuous.

    The“so-called”equilibrium problem with respective to the equilibrium function g is

    Its solution set is denoted by EP(g).

    For given λ>0 and x∈H,the resolvent of the equilibrium function g is the operator Rλ,g:H→D defned by

    Proposition 1.3(see[15]) The resolvent operator Rλ,gof the equilibrium function g has the following properties:

    (1)Rλ,gis single-valued;

    (2)F(Rλ,g)=EP(g)and EP(g)is a nonempty closed and convex subset of D;

    (3)Rλ,gis a frmly nonexpansive mapping.

    Let h,g:D×D→(?∞,+∞)be two equilibrium functions and F be a real Banach space. For given λ>0,let Rλ,hand Rλ,gbe the resolvent of h and g(defned by(1.8)),respectively.

    The”so-called”split equality equilibrium problem in Banach space with respect to h,g,D and F is to fnd x?∈D,y?∈D such that

    where A,B:D→F are two linear and bounded operators.

    By Proposition 1.3,the split equality equilibrium problem in Banach space(1.9)is equivalent to fnd x?∈D,y?∈D such that for each λ>0,

    Letting C=F(Rλh),Q=F(Rλg),by Proposition 1.1,C and Q both are nonempty closed and convex subset of D.Hence problem(1.9)is equivalent to the following split equality feasibility problem

    By using Example 1.1,we know that problem(1.10)is equivalent to the following split equality variational inclusion problem in Banach space

    For solving(SEVIP)(1.4),in Section 2,we propose a new type iterative algorithm.Under suitable conditions some strong convergence theorems for the sequences generated by the algorithm to approximate a solution of(SEVIP)(1.4)are proved.As an application,we shall utilize our results to study the split equality feasibility problem and the split equality equilibrium problem in Banach spaces.The results presented in the paper are new which extend and improve the corresponding results announced by Censor et al.[1,3–5,16],Moudafet al.[11–13],Eslamian and Latif[17],Chen et al.[18],Chuang[19],Chang,Wang[20],Chang, Agarwai[21]and Chang et al.[22],Naraghirad[23],Tang,China,Liu[24].

    2 Strong Convergence Theorems for Split Equality Variational Inclusion Problems in Banach Spaces

    Throughout this section we always assume that

    1.F is a real smooth Banach space and JFis the duality mapping of F defned by

    2.H1,H2are two real Hilbert spaces;

    3.A:H1→F,B:H2→F are two bounded linear operators and A?:F?→H1and B?:F?→H2are the adjoint mappings of A and B,respectively;

    4. Ui:Hi→2Hi,i=1,2 is a maximal monotone mapping.The resolventof Uiis defned by:

    It is easy to know that if Ui:Hi→2Hi,i=1,2 is a maximal monotone mapping,then the resolventof Uiis nonexpansive andwhereis the set of zero points of Uiandis the the set of fxed points of

    We are now in a position to give the following main result.

    Theorem 2.1Letand A,B,A?,B?be the same as above.Denote by C1=H1,Q1=H2.For given x1∈C1and y1∈Q1,let the iterative sequence{xn}and{yn}be generated by

    then the sequence{(xn,yn)}converges strongly to some point(x?,y?)∈?,where||A||(resp. ||B||)is the norm of the operator A(resp.B),therefore||A||=||A?||and||B||=||B?||.

    Proof(I)First we prove that for each n≥1,??Cn×Qn.

    In fact,for any(p,q)∈? we haveHence(p,q)∈C1×Q1.If for some n≥2,(p,q)∈Cn×Qn,next we prove that(p,q)∈Cn+1×Qn+1.In fact,from(2.1)we have

    Similarly,we can also prove that

    Add up(2.3)and(2.4).After simplifying and noting Ap=Bq,we have

    This implies that(p,q)∈Cn+1×Qn+1and so ??Cn×Qn,?n≥1.

    (II)Now we prove that{xn}and{yn}is a Cauchy sequence in H1and H2,respectively.

    Indeed,by the defnition of Cnand Qn,n≥1,it is easy to know that all of them are nonempty closed and convex subsets.Therefore the sequences{xn}and{xn}are well defned.

    Since

    we have

    This implies that{xn}and{yn}are bounded.

    Furthermore,it follows from(2.1)that

    Therefore{||xn?x1||}and{||yn?y1||}are convergence sequences.For any positive integers n,m≥1,since xm=PCmx1,by the property of projection operator,we have

    Therefore we have

    This shows that{xn}is a Cauchy sequence in H1.By the same way we can also prove that {yn}is a Cauchy sequences in H2.Without loss of generality,we can assume that xn→x?and yn→y?.

    (III)Now we prove that(x?,y?)∈?.

    In fact,since(xn+1,yn+1)∈Cn+1×Qn+1,it follows from(2.1)that

    Hence

    Therefore we have un→x?and vn→y?.Furthermore,it follows from(2.5)that

    By virtue of condition(2.2),we have

    It follows from(2.7)and(2.8)that

    3 Application to Split Equality Feasibility Problems in Banach Spaces

    In this section we shall utilize Theorem 2.1 to study the split equality feasibility problems in Banach spaces

    Let H1,H2be two real Hilbert spaces and F be a real Banach space.Let C?H1and Q?H2be two nonempty closed convex subsets and A:H1→F,B:H2→F be two bounded linear operators and A?and B?be the adjoint operators of A and B,respectively.As pointed out in Section 1,Example 1.1,that the“so-called”“split equality feasibility problem in Banach space”(SEFP)is to fnd

    which is equivalent to the following split equality variational inclusion problem in Banach space, i.e.,to fnd

    Therefore from Theorem 2.1 we can obtain the following.

    Theorem 3.1Let H1,H2,F,C,Q,A,B be the same as above.Let A?and B?be the adjoint operators of A and B respectively.Denote by C1=C,Q1=Q.For given x1∈C1andy1∈Q1,let the iterative sequence{xn}and{yn}be generated by

    If the solution set ?1:={(p,q)∈C×Q,Ap=Bq}of(SEVIP)(3.1)is nonempty and the following condition is satisfed

    then the sequence{(xn,yn)}converges strongly to some point(x?,y?)∈?1.

    4 Application to Split Equality Equilibrium Problems in Banach Spaces

    In this section we shall utilize Theorem 2.1 to study the split equality equilibrium problems in Banach spaces.

    Let H1,H2be two real Hilbert spaces,and F be a real Banach space.Let h:H1×H1→R and g:H2×H2→R be two equilibrium functions.Let A:H1→F and B:H2→F be two bounded linear operators with adjoint operator A?and B?,respectively.For given λ>0,let Rλ,h,and Rλ,gbe the resolvents of h and g(defned by(1.8)),respectively.

    As pointed out in Section 1,Example 1.2,that the split equality equilibrium problem with respective to h,g in Banach space is to fnd x?∈H1,y?∈H2such that

    which is equivalent

    Letting C=F(Rλh),Q=F(Rλg),by Proposition 1.3,C and Q are nonempty closed and convex subset of H1and H2,respectively.Hence problem(4.2)is equivalent to the following split equality feasibility problem in Banach space

    By using Example 1.1 in Section 1,we know that problem(4.3)is equivalent to the following split equality variational inclusion problem in Banach space

    Hence the following result can be obtained from Theorem 2.1 immediately.

    Theorem 4.1Let H1,H2,F,C,Q,h,g,A,B,A?,B?,,RλhRλgbe the same as above.Denote by C1=C,Q1=Q.For given x1∈C1and y1∈Q1,let the iterative sequence{xn}and{yn}be generated by

    If the solution set ?2:={(p,q)∈C×Q,Ap=Bq}of(SEVIP)(4.3)is nonempty and the following condition is satisfed

    then the sequence{xn,yn}converges strongly to some point(x?,y?)∈?2.

    [1]Censor Y,Elfving T.A multiprojection algorithm using Bregman projections in a product space.Numer Algorithms,1994,8:221–239

    [2]Byrne C.Iterative oblique projection onto convex subsets and the split feasibility problem.Inverse Problem, 2002,18:441–453

    [3]Censor Y,Bortfeld T,Martin N,Trofmov A.A unifed approach for inversion problem in intensitymodulated radiation therapy.Phys Med Biol,2006,51:2353–2365

    [4]Censor Y,Elfving T,Kopf N,Bortfeld T.The multiple-sets split feasiblility problem and its applications. Inverse Problem,2005,21:2071–2084

    [5]Censor Y,Motova A,Segal A.Perturbed projections ans subgradient projiections for the multiple-sets split feasibility problem.J Math Anal Appl,2007,327:1244–1256

    [6]Xu H K.A variable Krasnosel’skii-Mann algorithm and the multiple-sets split feasibility problem.Inverse Problem,2006,22:2021–2034

    [7]Yang Q.The relaxed CQ algorithm for solving the split feasibility problem.Inverse Problem,2004,20: 1261–1266

    [8]Zhao J,Yang Q.Several solution methods for the split feasibility problem.Inverse Problem,2005,21: 1791–1799

    [9]Chang S S,Cho Y J,Kim J K,Zhang W B,Yang L.Multiple-set split feasibility problems for asymptotically strict pseudocontractions.Abst Appl Anal,2012,2012:Article ID 491760

    [10]Chang S S,Wang L,Tang Y K,Yang L.The split common fxed point problem for total asymptotically strictly pseudocontractive mappings.J Appl Math,2012,2012:Article ID 385638

    [11]MoudafA.A relaxed alternating CQ algorithm for convex feasibility problems.Nonlinear Anal,2013,79: 117–121

    [12]MoudafA,Al-Shemas Eman.Simultaneouss iterative methods forsplit equality problem.Trans Math Prog Appl,2013,1:1–11

    [13]MoudafA.Split monotone variational inclusions.J Optim Theory Appl,2011,150:275–283

    [14]Takahashi W.Iterative methods for split feasibility problems and split common null point problems in Banach spaces//The 9th International Conference on Nonlinear Analysis and Convex Analysis.Thailand, Jan:Chiang Rai,2015:21–25

    [15]Blum E,Oettli W.From optimization and variational inequalities to equilibrium problems.Math Stud, 1994,63:123–145

    [16]Censor Y,Segal A.The split common fxed point problem for directed operators.J Convex Analysis,2009, 16:587–600

    [17]Eslamian M,Latif A.General split feasibility problems in Hilbert spaces.Abst Appl Anal,2013,2013: Article ID 805104

    [18]Chen R D,Wang J,Zhang H W.General split equality problems in Hilbert spaces.Fixed Point Theory Appl,2014,2014:35

    [19]Chuang C S.Strong convergence theorems for the split variational inclusion problem in Hilbert spaces. Fixed Point Theory Appl,2013,2013:350

    [20]Chang S S,Wang L.Strong convergence theorems for the general split variational inclusion problem in Hilbert spaces.Fixed Point Theory Appl,2014,2014:171

    [21]Chang S S,Agarwal Ravi P.Strong convergence theorems of general split equality problems for quasinonexpansive mappings.J Ineq Appl,2014,2014:367

    [22]Chang S S,Wang L,Tang Y K,Wang G.Moudaf’s open question and simultaneous iterative algorithm for general split equality variational inclusion problems and general split equality optimization problems. Fixed Point Theory Appl,2014,2014:215

    [23]Naraghirad E.On an open question of Moudaffor convex feasibility problem in Hilbert spaces.Taiwan J Math,2014,18(2):371–408

    [24]Tang J F,Chang S S,Liu M.General split feasibility problems for two families of nonexpansive mappings in Hilbert spaces.Acta Math Sci,2016,36B(2):602–613

    ?Received July 17,2015;revised April 18,2016.This work was supported by the National Natural Science Foundation of China(11361070)and the Natural Science Foundation of China Medical University,Taiwan.

    ?Corresponding authors:Shih-sen CHANG.

    猜你喜歡
    王林
    鏡子
    鏡 子
    Tunable 2H–TaSe2room-temperature terahertz photodetector?
    女兒說他們班有個(gè)壞孩子
    女兒說他們班有個(gè)壞孩子
    無碳小車的軌跡與設(shè)計(jì)
    大東方(2017年10期)2017-05-30 17:59:23
    女兒說他們班有個(gè)壞孩子
    王林中國畫作品
    心 計(jì)
    故事林(2016年5期)2016-03-04 08:06:57
    卑微的愛
    桃花免费在线播放| 国产爽快片一区二区三区| 亚洲精品乱久久久久久| 一区二区三区精品91| 伊人亚洲综合成人网| 人体艺术视频欧美日本| 成年人免费黄色播放视频| 精品人妻一区二区三区麻豆| 蜜桃国产av成人99| 日韩欧美精品免费久久| 综合色丁香网| 搡老乐熟女国产| 国产一区亚洲一区在线观看| 最新中文字幕久久久久| 日本色播在线视频| 男人操女人黄网站| 亚洲美女黄色视频免费看| 黄片无遮挡物在线观看| 精品国产乱码久久久久久男人| 国产在线免费精品| videosex国产| 国产男女超爽视频在线观看| 美女高潮到喷水免费观看| 久久精品熟女亚洲av麻豆精品| videos熟女内射| 精品人妻一区二区三区麻豆| 亚洲国产毛片av蜜桃av| 午夜影院在线不卡| 国产日韩欧美在线精品| 十八禁高潮呻吟视频| tube8黄色片| 国产xxxxx性猛交| av在线老鸭窝| 巨乳人妻的诱惑在线观看| 黑人巨大精品欧美一区二区蜜桃| av线在线观看网站| 精品亚洲乱码少妇综合久久| 日本91视频免费播放| 欧美日韩亚洲高清精品| 亚洲成人一二三区av| 欧美成人午夜免费资源| 欧美亚洲日本最大视频资源| 狠狠精品人妻久久久久久综合| 丝袜美腿诱惑在线| 精品国产乱码久久久久久男人| av视频免费观看在线观看| 久久久久久久精品精品| 免费高清在线观看视频在线观看| 一级片免费观看大全| 日韩伦理黄色片| 爱豆传媒免费全集在线观看| 高清av免费在线| 搡老乐熟女国产| 国产av国产精品国产| 精品少妇久久久久久888优播| 黑人欧美特级aaaaaa片| 久久热在线av| 久久青草综合色| 毛片一级片免费看久久久久| 欧美 亚洲 国产 日韩一| 美国免费a级毛片| 侵犯人妻中文字幕一二三四区| 啦啦啦啦在线视频资源| 久久久久久人妻| av在线app专区| 午夜影院在线不卡| 黄片小视频在线播放| 人人妻人人爽人人添夜夜欢视频| 亚洲久久久国产精品| 在线天堂中文资源库| 亚洲成av片中文字幕在线观看 | www.自偷自拍.com| 下体分泌物呈黄色| 在线观看免费高清a一片| 中文字幕精品免费在线观看视频| 亚洲欧美精品综合一区二区三区 | 日韩一区二区视频免费看| 亚洲国产精品999| 性高湖久久久久久久久免费观看| 最近中文字幕2019免费版| 久久久久久久久久久久大奶| 欧美精品一区二区免费开放| 少妇被粗大猛烈的视频| 少妇人妻久久综合中文| 国产亚洲欧美精品永久| 国产亚洲最大av| 在线观看美女被高潮喷水网站| 在线观看免费高清a一片| 国产精品99久久99久久久不卡 | 国产精品久久久久久久久免| av线在线观看网站| 亚洲国产看品久久| 亚洲精品美女久久久久99蜜臀 | 99九九在线精品视频| 亚洲欧美精品综合一区二区三区 | 捣出白浆h1v1| 久久女婷五月综合色啪小说| 国产熟女欧美一区二区| 中文天堂在线官网| 这个男人来自地球电影免费观看 | 青草久久国产| 亚洲天堂av无毛| 国产男人的电影天堂91| 自拍欧美九色日韩亚洲蝌蚪91| 久久精品亚洲av国产电影网| 美女国产视频在线观看| 欧美国产精品一级二级三级| 欧美精品av麻豆av| 中文字幕av电影在线播放| av不卡在线播放| 亚洲一区中文字幕在线| 丝袜在线中文字幕| 精品亚洲成国产av| 午夜福利一区二区在线看| 十八禁网站网址无遮挡| 久久久国产精品麻豆| 美女大奶头黄色视频| 欧美亚洲 丝袜 人妻 在线| 观看av在线不卡| 啦啦啦在线观看免费高清www| 制服人妻中文乱码| 精品久久久精品久久久| 精品少妇一区二区三区视频日本电影 | 久久精品aⅴ一区二区三区四区 | 交换朋友夫妻互换小说| 69精品国产乱码久久久| 精品国产一区二区久久| xxx大片免费视频| 免费观看性生交大片5| 午夜激情av网站| 熟妇人妻不卡中文字幕| 秋霞伦理黄片| 女性生殖器流出的白浆| 永久免费av网站大全| 男人操女人黄网站| av免费在线看不卡| 欧美日韩视频高清一区二区三区二| 亚洲精品国产av成人精品| 黄色视频在线播放观看不卡| 天天躁夜夜躁狠狠躁躁| 亚洲精品久久成人aⅴ小说| 国产成人精品福利久久| 成年美女黄网站色视频大全免费| 亚洲色图 男人天堂 中文字幕| 熟女少妇亚洲综合色aaa.| 美女xxoo啪啪120秒动态图| 亚洲精品av麻豆狂野| 免费日韩欧美在线观看| 蜜桃国产av成人99| 国产精品香港三级国产av潘金莲 | 久久精品久久精品一区二区三区| 我要看黄色一级片免费的| 久久精品久久久久久久性| 少妇精品久久久久久久| 中文字幕人妻丝袜一区二区 | 叶爱在线成人免费视频播放| 最新的欧美精品一区二区| 18禁裸乳无遮挡动漫免费视频| 天堂8中文在线网| 最近手机中文字幕大全| 国产精品蜜桃在线观看| 国产色婷婷99| 成年人免费黄色播放视频| 男女边摸边吃奶| 亚洲国产av影院在线观看| 人人澡人人妻人| 国产在视频线精品| 妹子高潮喷水视频| 亚洲精品久久成人aⅴ小说| 成年美女黄网站色视频大全免费| 精品国产乱码久久久久久小说| 男女高潮啪啪啪动态图| 夜夜骑夜夜射夜夜干| 久久久国产一区二区| 亚洲,一卡二卡三卡| 一级a爱视频在线免费观看| 国产欧美日韩一区二区三区在线| 欧美97在线视频| 国产高清不卡午夜福利| 亚洲精品视频女| 日韩不卡一区二区三区视频在线| 97在线视频观看| 日韩欧美精品免费久久| 999精品在线视频| 成年动漫av网址| 亚洲av电影在线进入| 91aial.com中文字幕在线观看| 国产一区亚洲一区在线观看| 一区二区三区四区激情视频| 国产片特级美女逼逼视频| 精品亚洲乱码少妇综合久久| kizo精华| 最近最新中文字幕大全免费视频 | 亚洲精品一区蜜桃| 国产在线视频一区二区| 精品福利永久在线观看| 成人国产麻豆网| 久久午夜综合久久蜜桃| 国产片特级美女逼逼视频| tube8黄色片| 伦理电影大哥的女人| 如日韩欧美国产精品一区二区三区| 国产亚洲最大av| 国产老妇伦熟女老妇高清| 精品亚洲成a人片在线观看| a 毛片基地| 丁香六月天网| 国产免费现黄频在线看| 欧美日韩一级在线毛片| av国产精品久久久久影院| 少妇熟女欧美另类| 国产精品国产av在线观看| 国产精品 国内视频| 国产亚洲欧美精品永久| 色婷婷久久久亚洲欧美| 国产亚洲精品第一综合不卡| videosex国产| 日韩精品有码人妻一区| 久久青草综合色| 啦啦啦啦在线视频资源| 国产伦理片在线播放av一区| 亚洲精品自拍成人| av网站在线播放免费| 午夜福利影视在线免费观看| 久久久久视频综合| av网站免费在线观看视频| 日日撸夜夜添| 91精品国产国语对白视频| 亚洲精品中文字幕在线视频| 亚洲人成网站在线观看播放| 亚洲欧美一区二区三区黑人 | 久久久久网色| 精品亚洲成国产av| 日韩,欧美,国产一区二区三区| a级毛片在线看网站| 久久久国产一区二区| 夜夜骑夜夜射夜夜干| videos熟女内射| 欧美日韩综合久久久久久| 欧美日韩视频精品一区| 91久久精品国产一区二区三区| 国产 精品1| 老女人水多毛片| 在线天堂最新版资源| 亚洲欧美成人综合另类久久久| 亚洲av电影在线观看一区二区三区| 午夜激情av网站| 久久久精品免费免费高清| www.熟女人妻精品国产| 久久97久久精品| 18禁观看日本| 黑丝袜美女国产一区| 最新中文字幕久久久久| 亚洲精品av麻豆狂野| 久久久久久人妻| 亚洲,欧美,日韩| 一区二区三区精品91| 久久久久久久久免费视频了| 久久久久久免费高清国产稀缺| 精品人妻在线不人妻| 国产福利在线免费观看视频| 精品一区二区免费观看| av卡一久久| 久久精品国产亚洲av天美| videosex国产| 日本wwww免费看| 卡戴珊不雅视频在线播放| 日韩制服丝袜自拍偷拍| 国产男女超爽视频在线观看| 日韩大片免费观看网站| av电影中文网址| 久久久久久久亚洲中文字幕| 免费观看av网站的网址| 午夜久久久在线观看| 欧美日韩av久久| 少妇的逼水好多| 亚洲精品日韩在线中文字幕| 国产亚洲欧美精品永久| 亚洲一区中文字幕在线| 青春草视频在线免费观看| 久久久亚洲精品成人影院| 久久久久人妻精品一区果冻| 国产乱来视频区| 成年人免费黄色播放视频| 久久精品国产自在天天线| 91精品国产国语对白视频| www.自偷自拍.com| 国产欧美亚洲国产| 亚洲av成人精品一二三区| 色播在线永久视频| av在线app专区| 亚洲欧美精品自产自拍| xxx大片免费视频| 国产精品嫩草影院av在线观看| 久久狼人影院| 这个男人来自地球电影免费观看 | 国产一区亚洲一区在线观看| 亚洲国产色片| 1024香蕉在线观看| 欧美人与性动交α欧美精品济南到 | 日本猛色少妇xxxxx猛交久久| 最近的中文字幕免费完整| 久久这里有精品视频免费| 母亲3免费完整高清在线观看 | 国产精品久久久久成人av| 天天躁狠狠躁夜夜躁狠狠躁| 满18在线观看网站| 国产男女内射视频| 男人爽女人下面视频在线观看| 久久毛片免费看一区二区三区| 久久99精品国语久久久| av国产精品久久久久影院| 久久精品国产鲁丝片午夜精品| 久久精品人人爽人人爽视色| 人人妻人人澡人人看| 国产精品久久久久久av不卡| 老女人水多毛片| 国产成人精品久久二区二区91 | 这个男人来自地球电影免费观看 | 中文字幕av电影在线播放| 丝瓜视频免费看黄片| 国产成人精品在线电影| av免费在线看不卡| 日韩 亚洲 欧美在线| 深夜精品福利| 搡女人真爽免费视频火全软件| 精品久久久精品久久久| 国产色婷婷99| 亚洲av国产av综合av卡| 搡老乐熟女国产| 999久久久国产精品视频| 免费观看av网站的网址| 国产激情久久老熟女| 一区二区三区激情视频| 国产一区二区激情短视频 | 日韩av免费高清视频| 狂野欧美激情性bbbbbb| 人人妻人人爽人人添夜夜欢视频| 欧美bdsm另类| 9热在线视频观看99| 天天影视国产精品| 精品福利永久在线观看| 国产片内射在线| 九九爱精品视频在线观看| 国产福利在线免费观看视频| 丰满迷人的少妇在线观看| 国产欧美日韩一区二区三区在线| 国产av码专区亚洲av| 国产高清国产精品国产三级| 九九爱精品视频在线观看| 熟女电影av网| 黑人猛操日本美女一级片| 中文字幕制服av| 亚洲人成77777在线视频| 免费久久久久久久精品成人欧美视频| 日韩中文字幕欧美一区二区 | 热99国产精品久久久久久7| 秋霞伦理黄片| 亚洲精品,欧美精品| 久久97久久精品| 国产又爽黄色视频| 大香蕉久久成人网| 亚洲国产欧美网| 成年女人在线观看亚洲视频| 日本av免费视频播放| 日韩免费高清中文字幕av| 18禁国产床啪视频网站| 又大又黄又爽视频免费| 亚洲四区av| 亚洲欧美成人精品一区二区| 菩萨蛮人人尽说江南好唐韦庄| 一本久久精品| 国产精品不卡视频一区二区| 精品一区二区三区四区五区乱码 | 国产精品三级大全| 国产精品一二三区在线看| 大香蕉久久网| 久久久国产一区二区| 建设人人有责人人尽责人人享有的| 国产白丝娇喘喷水9色精品| 一本—道久久a久久精品蜜桃钙片| 最近2019中文字幕mv第一页| 欧美日本中文国产一区发布| 日韩大片免费观看网站| 啦啦啦啦在线视频资源| 一级毛片黄色毛片免费观看视频| 美女xxoo啪啪120秒动态图| 在线观看人妻少妇| 免费高清在线观看视频在线观看| 国产精品久久久久久av不卡| 国产av一区二区精品久久| 日本av免费视频播放| 黄色毛片三级朝国网站| 国产淫语在线视频| 亚洲欧美成人综合另类久久久| 久久久久网色| 久久久久精品人妻al黑| 桃花免费在线播放| 妹子高潮喷水视频| 一级毛片黄色毛片免费观看视频| 精品一区在线观看国产| 精品亚洲乱码少妇综合久久| 这个男人来自地球电影免费观看 | 美女福利国产在线| 另类亚洲欧美激情| 日本vs欧美在线观看视频| 久久久久国产精品人妻一区二区| 成人亚洲精品一区在线观看| 男女高潮啪啪啪动态图| 乱人伦中国视频| 亚洲av国产av综合av卡| 国产免费一区二区三区四区乱码| 亚洲人成网站在线观看播放| 国产精品秋霞免费鲁丝片| a 毛片基地| 国产成人精品在线电影| www.熟女人妻精品国产| 97在线人人人人妻| 亚洲美女黄色视频免费看| 老司机亚洲免费影院| 亚洲中文av在线| 国产男女内射视频| 晚上一个人看的免费电影| 最近最新中文字幕大全免费视频 | 中文字幕另类日韩欧美亚洲嫩草| 中文字幕最新亚洲高清| 波多野结衣av一区二区av| av福利片在线| 九色亚洲精品在线播放| 亚洲人成77777在线视频| 人人澡人人妻人| 国产免费又黄又爽又色| 美女主播在线视频| 亚洲精品日本国产第一区| 免费高清在线观看日韩| 国产人伦9x9x在线观看 | 最近最新中文字幕免费大全7| 亚洲成人一二三区av| 亚洲欧美一区二区三区黑人 | 欧美xxⅹ黑人| 日韩不卡一区二区三区视频在线| 97人妻天天添夜夜摸| 熟女电影av网| 校园人妻丝袜中文字幕| 欧美变态另类bdsm刘玥| 女人精品久久久久毛片| 国产精品久久久久久精品古装| 中文天堂在线官网| 最近手机中文字幕大全| av有码第一页| 欧美精品av麻豆av| 久久久久久久亚洲中文字幕| 国产国语露脸激情在线看| 久久久精品区二区三区| 国产女主播在线喷水免费视频网站| 少妇猛男粗大的猛烈进出视频| 国产伦理片在线播放av一区| 可以免费在线观看a视频的电影网站 | 欧美日韩视频高清一区二区三区二| 美女中出高潮动态图| 菩萨蛮人人尽说江南好唐韦庄| 美女视频免费永久观看网站| 亚洲激情五月婷婷啪啪| av不卡在线播放| 国产有黄有色有爽视频| 久久 成人 亚洲| 精品一品国产午夜福利视频| 久久久久久伊人网av| 女的被弄到高潮叫床怎么办| 中文欧美无线码| 亚洲五月色婷婷综合| 丝袜美腿诱惑在线| 日日摸夜夜添夜夜爱| 国产在线视频一区二区| 精品第一国产精品| 欧美变态另类bdsm刘玥| 日本猛色少妇xxxxx猛交久久| 老女人水多毛片| 国产一区二区在线观看av| 久久久久久久国产电影| 亚洲色图 男人天堂 中文字幕| 国产乱来视频区| 电影成人av| 国产片特级美女逼逼视频| 欧美xxⅹ黑人| 亚洲精品国产av成人精品| 最近中文字幕2019免费版| 午夜日韩欧美国产| 日韩熟女老妇一区二区性免费视频| 久久久久久久精品精品| 亚洲男人天堂网一区| 搡老乐熟女国产| 国产精品国产av在线观看| 多毛熟女@视频| 成人午夜精彩视频在线观看| 欧美日韩亚洲国产一区二区在线观看 | 高清欧美精品videossex| 黄色一级大片看看| 天堂8中文在线网| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 夜夜骑夜夜射夜夜干| 亚洲经典国产精华液单| 啦啦啦视频在线资源免费观看| 中文字幕人妻丝袜一区二区 | 美女xxoo啪啪120秒动态图| 黑人欧美特级aaaaaa片| 精品亚洲成国产av| av片东京热男人的天堂| 亚洲伊人色综图| 菩萨蛮人人尽说江南好唐韦庄| 久久久久久人人人人人| 香蕉国产在线看| 亚洲精品中文字幕在线视频| 在线观看免费日韩欧美大片| 一二三四在线观看免费中文在| 国产女主播在线喷水免费视频网站| 欧美国产精品va在线观看不卡| 黄频高清免费视频| 9191精品国产免费久久| 国产白丝娇喘喷水9色精品| 卡戴珊不雅视频在线播放| 黄色一级大片看看| 看免费av毛片| 大香蕉久久网| 亚洲精品av麻豆狂野| 九草在线视频观看| 9色porny在线观看| 美女中出高潮动态图| 日本wwww免费看| 亚洲精品第二区| 人人妻人人澡人人爽人人夜夜| 一区二区av电影网| 夜夜骑夜夜射夜夜干| 国产xxxxx性猛交| 男女免费视频国产| 国产片内射在线| 香蕉精品网在线| 久久久久国产网址| 久久久久久久精品精品| 欧美人与善性xxx| 久久ye,这里只有精品| 成人午夜精彩视频在线观看| 国产亚洲午夜精品一区二区久久| 欧美精品高潮呻吟av久久| 人人妻人人澡人人看| 久久精品国产亚洲av天美| 欧美人与性动交α欧美精品济南到 | 亚洲五月色婷婷综合| 欧美亚洲 丝袜 人妻 在线| 精品国产超薄肉色丝袜足j| 波多野结衣一区麻豆| 999精品在线视频| 国产精品一国产av| 国产无遮挡羞羞视频在线观看| 91aial.com中文字幕在线观看| 婷婷成人精品国产| 日韩伦理黄色片| 成年av动漫网址| 亚洲av.av天堂| 国产一区有黄有色的免费视频| 精品久久蜜臀av无| 在线观看一区二区三区激情| 中文精品一卡2卡3卡4更新| 一区福利在线观看| 男女边吃奶边做爰视频| 国产午夜精品一二区理论片| 欧美少妇被猛烈插入视频| 免费看不卡的av| 9色porny在线观看| 亚洲成av片中文字幕在线观看 | 香蕉精品网在线| 最新中文字幕久久久久| 乱人伦中国视频| 性少妇av在线| 久久久国产欧美日韩av| 中文精品一卡2卡3卡4更新| 成年动漫av网址| 成人18禁高潮啪啪吃奶动态图| 在线天堂中文资源库| 精品少妇内射三级| 精品国产乱码久久久久久男人| 黄色视频在线播放观看不卡| 国产极品天堂在线| 国产精品久久久久久精品古装| 欧美日韩精品成人综合77777| 熟妇人妻不卡中文字幕| 桃花免费在线播放| 成年女人在线观看亚洲视频| 国产亚洲最大av| 亚洲成av片中文字幕在线观看 | 丝瓜视频免费看黄片| 爱豆传媒免费全集在线观看| 成年女人在线观看亚洲视频| 国产精品一区二区在线不卡| 中文字幕人妻丝袜一区二区 | 夜夜骑夜夜射夜夜干| 久久免费观看电影| 蜜桃国产av成人99| 极品人妻少妇av视频| 欧美精品高潮呻吟av久久| 日本猛色少妇xxxxx猛交久久| 亚洲精品一二三| 在线观看免费高清a一片| 中文字幕人妻丝袜制服| 侵犯人妻中文字幕一二三四区| 婷婷色麻豆天堂久久| 美女视频免费永久观看网站| 国产国语露脸激情在线看| 亚洲欧美色中文字幕在线| 国产片内射在线| 国产探花极品一区二区| 91精品伊人久久大香线蕉| 天堂中文最新版在线下载| 国产精品99久久99久久久不卡 | 国产极品粉嫩免费观看在线|