• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    STRONGLY CONVERGENT ITERATIVE METHODS FOR SPLIT EQUALITY VARIATIONAL INCLUSION PROBLEMS IN BANACH SPACES?

    2017-01-21 05:30:28ShihsenCHANG張石生
    關(guān)鍵詞:王林

    Shih-sen CHANG(張石生)

    Center for General Education,China Medical University,Taichung 40402,China

    Lin WANG(王林)

    College of Statistics and Mathematics,Yunnan University of Finance and Economics, Kunming 650221,China

    Lijuan QIN(秦麗娟?)

    Department of Mathematics,Kunming University,Kunming 650214,China

    Zhaoli MA(馬招麗)

    School of Information Engineering,College of Arts and Science Yunnan Normal University, Kunming 650222,China

    STRONGLY CONVERGENT ITERATIVE METHODS FOR SPLIT EQUALITY VARIATIONAL INCLUSION PROBLEMS IN BANACH SPACES?

    Shih-sen CHANG(張石生)?

    Center for General Education,China Medical University,Taichung 40402,China

    E-mail:changss2013@163.com

    Lin WANG(王林)

    College of Statistics and Mathematics,Yunnan University of Finance and Economics, Kunming 650221,China

    E-mail:wl64mail@aliyun.com

    Lijuan QIN(秦麗娟?)

    Department of Mathematics,Kunming University,Kunming 650214,China

    E-mail:annyqlj@163.com

    Zhaoli MA(馬招麗)

    School of Information Engineering,College of Arts and Science Yunnan Normal University, Kunming 650222,China

    E-mail:kmszmzl@126.com

    The purpose of this paper is to introduce and study the split equality variational inclusion problems in the setting of Banach spaces.For solving this kind of problems,some new iterative algorithms are proposed.Under suitable conditions,some strong convergence theorems for the sequences generated by the proposed algorithm are proved.As applications, we shall utilize the results presented in the paper to study the split equality feasibility problems in Banach spaces and the split equality equilibrium problem in Banach spaces.The results presented in the paper are new.

    the split equality variational inclusion problem in Banach space;split feasibility problem in Banach space;split equilibrium problem in Banach spaces

    2010 MR Subject Classifcation47J25;47H09;65K10

    1 Introduction

    Let C and Q be nonempty closed and convex subsets of real Hilbert spaces H1and H2, respectively.The split feasibility problem(SFP)is formulated aswhere A:H1→ H2is a bounded linear operator.In 1994,Censor and Elfving[1]frst introduced the(SFP)in fnite-dimensional Hilbert spaces for modeling inverse problems which arise from phase retrievals and in medical image reconstruction[2].It was found that the (SFP)can also be used in various disciplines such as image restoration,computer tomograph and radiation therapy treatment planning[3–5].The(SFP)in an infnite dimensional real Hilbert space can be found in[2,4,6–10].

    Recently,Moudaf[11–13]introduced the following split equality feasibility problem(SEFP):

    where A:H1→H3and B:H2→H3are two bounded linear operators.Obviously,if B=I (identity mapping on H2)and H3=H2,then(1.2)reduces to(1.1).The kind of split equality feasibility problems(1.2)allows asymmetric and partial relations between the variables x and y. The interest is to cover many situations,such as decomposition methods for PDEs,applications in game theory and intensity-modulated radiation therapy.

    In order to solve split equality feasibility problem(1.2),Moudaf[11]introduced the following simultaneous iterative method

    and under suitable conditions he proved the weak convergence of the sequence{(xn,yn)}to a solution of(1.2)in Hilbert spaces.

    Attempt to introduce and consider the split feasibility problem and split common null point problem in the setting of Banach spaces have recently been made.In 2015,Takahashi [14]frst introduced and considered such problems in Banach spaces.By using hybrid methods and Halpern’s type methods and under suitable conditions some strong and weak convergence theorems for such problems are proved in Banach spaces.The results presented in[14]seem to be the frst outside Hilbert space.

    Motivated by the above works and related literatures,the purpose of this paper is to introduce and study the following split equality variational inclusion problems in the setting of Banach spaces.

    Let H1and H2be two real Hilbert spaces and F be a real Banach space.Let A:H1→F,B:H2→F be two bounded linear operators and A?and B?be the adjoint mappings of A and B,respectively.In the sequel we always denote by F(K)the fxed point set of a mapping K.Let Ui:Hi→2Hi,i=1,2 be a maximal monotone mapping.The resolvent of Uiis defned by

    The“so-called”split equality variational inclusion problems in Banach spaces(SEVIP)is to fnd

    In the sequel,we always denote bythe solution set of(SEVIP)(1.4).

    Next we give some examples of(SEVIP)(1.4).

    Example 1.1Split equality feasibility problem in Banach spaces.

    Let H1,H2be two real Hilbert spaces and F be a real Banach space.Let C?H1and Q?H2be two nonempty closed convex subsets and A:H1→F,B:H2→F be two bounded linear operators.The“so-called”“split equality feasibility problem in Banach space”(SEFP) is to fnd

    Let iCand iQbe the indicator function of C and Q,respectively,i.e.,

    Denote by NC(x)and NQ(y)the normal cone of C and Q at x and y,respectively,

    where

    Hence we have

    where PCis the metric projection from H1onto C.This implies thatfor any β>0. Similarly,we also havefor any β>0.Therefore the(SEFP) (1.5)is equivalent to the following split equality variational inclusion problem in Banach space, i.e.,to fnd x?∈H1,and y?∈H2such that

    Example 1.2Split equality equilibrium problem in Banach space.

    Let D be a nonempty closed and convex subset of a real Hilbert space H.A bifunction g:D×D→(?∞,+∞)is said to be a equilibrium function,if it satisfes the following conditions

    (A1)g(x,x)=0 for all x∈D;

    (A2)g is monotone,i.e.,g(x,y)+g(y,x)≤0 for all x,y∈D;

    (A3)limsupt↓0g(tz+(1?t)x,y)≤g(x,y)for all x,y,z∈D;

    (A4)for each x∈D,y 7→g(x,y)is convex and lower semi-continuous.

    The“so-called”equilibrium problem with respective to the equilibrium function g is

    Its solution set is denoted by EP(g).

    For given λ>0 and x∈H,the resolvent of the equilibrium function g is the operator Rλ,g:H→D defned by

    Proposition 1.3(see[15]) The resolvent operator Rλ,gof the equilibrium function g has the following properties:

    (1)Rλ,gis single-valued;

    (2)F(Rλ,g)=EP(g)and EP(g)is a nonempty closed and convex subset of D;

    (3)Rλ,gis a frmly nonexpansive mapping.

    Let h,g:D×D→(?∞,+∞)be two equilibrium functions and F be a real Banach space. For given λ>0,let Rλ,hand Rλ,gbe the resolvent of h and g(defned by(1.8)),respectively.

    The”so-called”split equality equilibrium problem in Banach space with respect to h,g,D and F is to fnd x?∈D,y?∈D such that

    where A,B:D→F are two linear and bounded operators.

    By Proposition 1.3,the split equality equilibrium problem in Banach space(1.9)is equivalent to fnd x?∈D,y?∈D such that for each λ>0,

    Letting C=F(Rλh),Q=F(Rλg),by Proposition 1.1,C and Q both are nonempty closed and convex subset of D.Hence problem(1.9)is equivalent to the following split equality feasibility problem

    By using Example 1.1,we know that problem(1.10)is equivalent to the following split equality variational inclusion problem in Banach space

    For solving(SEVIP)(1.4),in Section 2,we propose a new type iterative algorithm.Under suitable conditions some strong convergence theorems for the sequences generated by the algorithm to approximate a solution of(SEVIP)(1.4)are proved.As an application,we shall utilize our results to study the split equality feasibility problem and the split equality equilibrium problem in Banach spaces.The results presented in the paper are new which extend and improve the corresponding results announced by Censor et al.[1,3–5,16],Moudafet al.[11–13],Eslamian and Latif[17],Chen et al.[18],Chuang[19],Chang,Wang[20],Chang, Agarwai[21]and Chang et al.[22],Naraghirad[23],Tang,China,Liu[24].

    2 Strong Convergence Theorems for Split Equality Variational Inclusion Problems in Banach Spaces

    Throughout this section we always assume that

    1.F is a real smooth Banach space and JFis the duality mapping of F defned by

    2.H1,H2are two real Hilbert spaces;

    3.A:H1→F,B:H2→F are two bounded linear operators and A?:F?→H1and B?:F?→H2are the adjoint mappings of A and B,respectively;

    4. Ui:Hi→2Hi,i=1,2 is a maximal monotone mapping.The resolventof Uiis defned by:

    It is easy to know that if Ui:Hi→2Hi,i=1,2 is a maximal monotone mapping,then the resolventof Uiis nonexpansive andwhereis the set of zero points of Uiandis the the set of fxed points of

    We are now in a position to give the following main result.

    Theorem 2.1Letand A,B,A?,B?be the same as above.Denote by C1=H1,Q1=H2.For given x1∈C1and y1∈Q1,let the iterative sequence{xn}and{yn}be generated by

    then the sequence{(xn,yn)}converges strongly to some point(x?,y?)∈?,where||A||(resp. ||B||)is the norm of the operator A(resp.B),therefore||A||=||A?||and||B||=||B?||.

    Proof(I)First we prove that for each n≥1,??Cn×Qn.

    In fact,for any(p,q)∈? we haveHence(p,q)∈C1×Q1.If for some n≥2,(p,q)∈Cn×Qn,next we prove that(p,q)∈Cn+1×Qn+1.In fact,from(2.1)we have

    Similarly,we can also prove that

    Add up(2.3)and(2.4).After simplifying and noting Ap=Bq,we have

    This implies that(p,q)∈Cn+1×Qn+1and so ??Cn×Qn,?n≥1.

    (II)Now we prove that{xn}and{yn}is a Cauchy sequence in H1and H2,respectively.

    Indeed,by the defnition of Cnand Qn,n≥1,it is easy to know that all of them are nonempty closed and convex subsets.Therefore the sequences{xn}and{xn}are well defned.

    Since

    we have

    This implies that{xn}and{yn}are bounded.

    Furthermore,it follows from(2.1)that

    Therefore{||xn?x1||}and{||yn?y1||}are convergence sequences.For any positive integers n,m≥1,since xm=PCmx1,by the property of projection operator,we have

    Therefore we have

    This shows that{xn}is a Cauchy sequence in H1.By the same way we can also prove that {yn}is a Cauchy sequences in H2.Without loss of generality,we can assume that xn→x?and yn→y?.

    (III)Now we prove that(x?,y?)∈?.

    In fact,since(xn+1,yn+1)∈Cn+1×Qn+1,it follows from(2.1)that

    Hence

    Therefore we have un→x?and vn→y?.Furthermore,it follows from(2.5)that

    By virtue of condition(2.2),we have

    It follows from(2.7)and(2.8)that

    3 Application to Split Equality Feasibility Problems in Banach Spaces

    In this section we shall utilize Theorem 2.1 to study the split equality feasibility problems in Banach spaces

    Let H1,H2be two real Hilbert spaces and F be a real Banach space.Let C?H1and Q?H2be two nonempty closed convex subsets and A:H1→F,B:H2→F be two bounded linear operators and A?and B?be the adjoint operators of A and B,respectively.As pointed out in Section 1,Example 1.1,that the“so-called”“split equality feasibility problem in Banach space”(SEFP)is to fnd

    which is equivalent to the following split equality variational inclusion problem in Banach space, i.e.,to fnd

    Therefore from Theorem 2.1 we can obtain the following.

    Theorem 3.1Let H1,H2,F,C,Q,A,B be the same as above.Let A?and B?be the adjoint operators of A and B respectively.Denote by C1=C,Q1=Q.For given x1∈C1andy1∈Q1,let the iterative sequence{xn}and{yn}be generated by

    If the solution set ?1:={(p,q)∈C×Q,Ap=Bq}of(SEVIP)(3.1)is nonempty and the following condition is satisfed

    then the sequence{(xn,yn)}converges strongly to some point(x?,y?)∈?1.

    4 Application to Split Equality Equilibrium Problems in Banach Spaces

    In this section we shall utilize Theorem 2.1 to study the split equality equilibrium problems in Banach spaces.

    Let H1,H2be two real Hilbert spaces,and F be a real Banach space.Let h:H1×H1→R and g:H2×H2→R be two equilibrium functions.Let A:H1→F and B:H2→F be two bounded linear operators with adjoint operator A?and B?,respectively.For given λ>0,let Rλ,h,and Rλ,gbe the resolvents of h and g(defned by(1.8)),respectively.

    As pointed out in Section 1,Example 1.2,that the split equality equilibrium problem with respective to h,g in Banach space is to fnd x?∈H1,y?∈H2such that

    which is equivalent

    Letting C=F(Rλh),Q=F(Rλg),by Proposition 1.3,C and Q are nonempty closed and convex subset of H1and H2,respectively.Hence problem(4.2)is equivalent to the following split equality feasibility problem in Banach space

    By using Example 1.1 in Section 1,we know that problem(4.3)is equivalent to the following split equality variational inclusion problem in Banach space

    Hence the following result can be obtained from Theorem 2.1 immediately.

    Theorem 4.1Let H1,H2,F,C,Q,h,g,A,B,A?,B?,,RλhRλgbe the same as above.Denote by C1=C,Q1=Q.For given x1∈C1and y1∈Q1,let the iterative sequence{xn}and{yn}be generated by

    If the solution set ?2:={(p,q)∈C×Q,Ap=Bq}of(SEVIP)(4.3)is nonempty and the following condition is satisfed

    then the sequence{xn,yn}converges strongly to some point(x?,y?)∈?2.

    [1]Censor Y,Elfving T.A multiprojection algorithm using Bregman projections in a product space.Numer Algorithms,1994,8:221–239

    [2]Byrne C.Iterative oblique projection onto convex subsets and the split feasibility problem.Inverse Problem, 2002,18:441–453

    [3]Censor Y,Bortfeld T,Martin N,Trofmov A.A unifed approach for inversion problem in intensitymodulated radiation therapy.Phys Med Biol,2006,51:2353–2365

    [4]Censor Y,Elfving T,Kopf N,Bortfeld T.The multiple-sets split feasiblility problem and its applications. Inverse Problem,2005,21:2071–2084

    [5]Censor Y,Motova A,Segal A.Perturbed projections ans subgradient projiections for the multiple-sets split feasibility problem.J Math Anal Appl,2007,327:1244–1256

    [6]Xu H K.A variable Krasnosel’skii-Mann algorithm and the multiple-sets split feasibility problem.Inverse Problem,2006,22:2021–2034

    [7]Yang Q.The relaxed CQ algorithm for solving the split feasibility problem.Inverse Problem,2004,20: 1261–1266

    [8]Zhao J,Yang Q.Several solution methods for the split feasibility problem.Inverse Problem,2005,21: 1791–1799

    [9]Chang S S,Cho Y J,Kim J K,Zhang W B,Yang L.Multiple-set split feasibility problems for asymptotically strict pseudocontractions.Abst Appl Anal,2012,2012:Article ID 491760

    [10]Chang S S,Wang L,Tang Y K,Yang L.The split common fxed point problem for total asymptotically strictly pseudocontractive mappings.J Appl Math,2012,2012:Article ID 385638

    [11]MoudafA.A relaxed alternating CQ algorithm for convex feasibility problems.Nonlinear Anal,2013,79: 117–121

    [12]MoudafA,Al-Shemas Eman.Simultaneouss iterative methods forsplit equality problem.Trans Math Prog Appl,2013,1:1–11

    [13]MoudafA.Split monotone variational inclusions.J Optim Theory Appl,2011,150:275–283

    [14]Takahashi W.Iterative methods for split feasibility problems and split common null point problems in Banach spaces//The 9th International Conference on Nonlinear Analysis and Convex Analysis.Thailand, Jan:Chiang Rai,2015:21–25

    [15]Blum E,Oettli W.From optimization and variational inequalities to equilibrium problems.Math Stud, 1994,63:123–145

    [16]Censor Y,Segal A.The split common fxed point problem for directed operators.J Convex Analysis,2009, 16:587–600

    [17]Eslamian M,Latif A.General split feasibility problems in Hilbert spaces.Abst Appl Anal,2013,2013: Article ID 805104

    [18]Chen R D,Wang J,Zhang H W.General split equality problems in Hilbert spaces.Fixed Point Theory Appl,2014,2014:35

    [19]Chuang C S.Strong convergence theorems for the split variational inclusion problem in Hilbert spaces. Fixed Point Theory Appl,2013,2013:350

    [20]Chang S S,Wang L.Strong convergence theorems for the general split variational inclusion problem in Hilbert spaces.Fixed Point Theory Appl,2014,2014:171

    [21]Chang S S,Agarwal Ravi P.Strong convergence theorems of general split equality problems for quasinonexpansive mappings.J Ineq Appl,2014,2014:367

    [22]Chang S S,Wang L,Tang Y K,Wang G.Moudaf’s open question and simultaneous iterative algorithm for general split equality variational inclusion problems and general split equality optimization problems. Fixed Point Theory Appl,2014,2014:215

    [23]Naraghirad E.On an open question of Moudaffor convex feasibility problem in Hilbert spaces.Taiwan J Math,2014,18(2):371–408

    [24]Tang J F,Chang S S,Liu M.General split feasibility problems for two families of nonexpansive mappings in Hilbert spaces.Acta Math Sci,2016,36B(2):602–613

    ?Received July 17,2015;revised April 18,2016.This work was supported by the National Natural Science Foundation of China(11361070)and the Natural Science Foundation of China Medical University,Taiwan.

    ?Corresponding authors:Shih-sen CHANG.

    猜你喜歡
    王林
    鏡子
    鏡 子
    Tunable 2H–TaSe2room-temperature terahertz photodetector?
    女兒說他們班有個(gè)壞孩子
    女兒說他們班有個(gè)壞孩子
    無碳小車的軌跡與設(shè)計(jì)
    大東方(2017年10期)2017-05-30 17:59:23
    女兒說他們班有個(gè)壞孩子
    王林中國畫作品
    心 計(jì)
    故事林(2016年5期)2016-03-04 08:06:57
    卑微的愛
    天堂俺去俺来也www色官网| 中国美白少妇内射xxxbb| 少妇高潮的动态图| 日本色播在线视频| 久久人人爽av亚洲精品天堂| 最近2019中文字幕mv第一页| 成人午夜精彩视频在线观看| 人成视频在线观看免费观看| √禁漫天堂资源中文www| 久久国内精品自在自线图片| 亚洲国产毛片av蜜桃av| 国产有黄有色有爽视频| 亚洲成国产人片在线观看| 一二三四中文在线观看免费高清| 亚洲精品中文字幕在线视频| 十八禁网站网址无遮挡| av福利片在线| 亚洲情色 制服丝袜| av不卡在线播放| 九九爱精品视频在线观看| 欧美变态另类bdsm刘玥| 美女大奶头黄色视频| av又黄又爽大尺度在线免费看| 成人无遮挡网站| 婷婷色av中文字幕| 熟女av电影| 亚洲精品视频女| 国产男女内射视频| 狂野欧美激情性bbbbbb| 国产精品不卡视频一区二区| 免费高清在线观看视频在线观看| 久久综合国产亚洲精品| 热re99久久精品国产66热6| kizo精华| 香蕉国产在线看| 亚洲精品国产色婷婷电影| 欧美国产精品va在线观看不卡| 国产一级毛片在线| 久热久热在线精品观看| 秋霞在线观看毛片| 欧美国产精品va在线观看不卡| 三级国产精品片| 999精品在线视频| 久久久久久人人人人人| 亚洲国产精品国产精品| 日韩一区二区视频免费看| 宅男免费午夜| 免费大片黄手机在线观看| 99国产综合亚洲精品| 高清黄色对白视频在线免费看| 搡老乐熟女国产| 乱人伦中国视频| 国产xxxxx性猛交| 国产一区二区三区综合在线观看 | 国产 一区精品| 国产国拍精品亚洲av在线观看| 9色porny在线观看| 国产亚洲精品久久久com| 欧美xxxx性猛交bbbb| 欧美亚洲日本最大视频资源| 天天躁夜夜躁狠狠躁躁| 亚洲国产精品国产精品| 久久狼人影院| 免费在线观看完整版高清| 久久久国产精品麻豆| 精品国产露脸久久av麻豆| 久久免费观看电影| 观看av在线不卡| 我的女老师完整版在线观看| 午夜久久久在线观看| 午夜免费鲁丝| 久久国内精品自在自线图片| 亚洲国产看品久久| 亚洲精品自拍成人| 日本爱情动作片www.在线观看| 飞空精品影院首页| 美女脱内裤让男人舔精品视频| 亚洲一级一片aⅴ在线观看| 国产亚洲精品久久久com| 巨乳人妻的诱惑在线观看| 天天操日日干夜夜撸| √禁漫天堂资源中文www| 亚洲五月色婷婷综合| 蜜桃在线观看..| 蜜臀久久99精品久久宅男| 黑人欧美特级aaaaaa片| 亚洲美女搞黄在线观看| 精品熟女少妇av免费看| 欧美国产精品一级二级三级| 妹子高潮喷水视频| 波野结衣二区三区在线| 国产极品粉嫩免费观看在线| 校园人妻丝袜中文字幕| 99热全是精品| 两个人免费观看高清视频| 成人毛片a级毛片在线播放| 国国产精品蜜臀av免费| 美女视频免费永久观看网站| 一级毛片黄色毛片免费观看视频| 黑人猛操日本美女一级片| 韩国av在线不卡| 91精品三级在线观看| 精品国产乱码久久久久久小说| 黄色毛片三级朝国网站| 日本欧美视频一区| 男女啪啪激烈高潮av片| 一区二区三区四区激情视频| 亚洲国产毛片av蜜桃av| 亚洲精品视频女| 人人妻人人添人人爽欧美一区卜| 久久久国产欧美日韩av| 一级片免费观看大全| 亚洲欧洲精品一区二区精品久久久 | 黑丝袜美女国产一区| 爱豆传媒免费全集在线观看| 国产精品一二三区在线看| 亚洲精品美女久久久久99蜜臀 | 日本欧美视频一区| 免费高清在线观看视频在线观看| 精品卡一卡二卡四卡免费| 老女人水多毛片| 午夜福利网站1000一区二区三区| 精品少妇久久久久久888优播| 国产爽快片一区二区三区| 九九在线视频观看精品| 丁香六月天网| 美女大奶头黄色视频| 9色porny在线观看| 丝袜喷水一区| 18在线观看网站| 日本av手机在线免费观看| 久久精品国产亚洲av天美| 永久网站在线| 色视频在线一区二区三区| 午夜精品国产一区二区电影| 欧美日韩一区二区视频在线观看视频在线| 女人精品久久久久毛片| 少妇熟女欧美另类| 黑丝袜美女国产一区| 2018国产大陆天天弄谢| 性色av一级| 女人久久www免费人成看片| 久久这里只有精品19| 欧美国产精品va在线观看不卡| 热99久久久久精品小说推荐| 亚洲国产精品专区欧美| 欧美成人午夜精品| 国产白丝娇喘喷水9色精品| 日韩三级伦理在线观看| 黄色 视频免费看| 成人免费观看视频高清| 亚洲欧洲日产国产| 香蕉精品网在线| 一级毛片黄色毛片免费观看视频| 视频中文字幕在线观看| 午夜影院在线不卡| 日本与韩国留学比较| 91精品伊人久久大香线蕉| 国产精品久久久av美女十八| 日产精品乱码卡一卡2卡三| 亚洲欧美日韩卡通动漫| 日韩一区二区视频免费看| 日本色播在线视频| 2021少妇久久久久久久久久久| kizo精华| 日韩中文字幕视频在线看片| 纯流量卡能插随身wifi吗| 午夜福利在线观看免费完整高清在| 男女国产视频网站| 伊人久久国产一区二区| 国产黄频视频在线观看| 国内精品宾馆在线| 九草在线视频观看| 丰满乱子伦码专区| 国产日韩欧美亚洲二区| 免费高清在线观看视频在线观看| 久久久精品94久久精品| 最近最新中文字幕大全免费视频 | 国产女主播在线喷水免费视频网站| av在线观看视频网站免费| 亚洲综合色惰| xxxhd国产人妻xxx| 亚洲人与动物交配视频| 免费黄频网站在线观看国产| 久久久国产精品麻豆| 亚洲天堂av无毛| 欧美性感艳星| 热99国产精品久久久久久7| 韩国精品一区二区三区 | 久久久久久久精品精品| 97精品久久久久久久久久精品| 国产精品麻豆人妻色哟哟久久| 五月开心婷婷网| 哪个播放器可以免费观看大片| 一区二区三区乱码不卡18| 午夜视频国产福利| 中国三级夫妇交换| 中文字幕免费在线视频6| 亚洲精品aⅴ在线观看| 看免费av毛片| 成年动漫av网址| 中文字幕人妻熟女乱码| 久久精品夜色国产| 永久网站在线| 亚洲婷婷狠狠爱综合网| 久久久久久久久久成人| 日韩中文字幕视频在线看片| 99久久人妻综合| 日韩av在线免费看完整版不卡| 亚洲精品av麻豆狂野| 青春草视频在线免费观看| 国产 一区精品| 五月天丁香电影| 国产在线免费精品| 在线观看国产h片| 91成人精品电影| 一区二区三区精品91| 亚洲综合精品二区| 国产成人精品福利久久| 久久ye,这里只有精品| 亚洲少妇的诱惑av| 在线观看免费日韩欧美大片| 美女国产高潮福利片在线看| 免费高清在线观看日韩| 最近中文字幕高清免费大全6| 久久狼人影院| 最近最新中文字幕免费大全7| 99热这里只有是精品在线观看| 99视频精品全部免费 在线| 搡老乐熟女国产| 国产高清三级在线| 日韩精品有码人妻一区| 国产亚洲一区二区精品| 纵有疾风起免费观看全集完整版| 日韩欧美精品免费久久| av有码第一页| 观看美女的网站| 日韩精品免费视频一区二区三区 | 久久99热6这里只有精品| 国产熟女欧美一区二区| 91精品伊人久久大香线蕉| kizo精华| 精品久久国产蜜桃| 91成人精品电影| 波多野结衣一区麻豆| 9热在线视频观看99| 成人亚洲精品一区在线观看| 黄片播放在线免费| 两个人免费观看高清视频| 亚洲av男天堂| 纯流量卡能插随身wifi吗| 亚洲精品乱码久久久久久按摩| 国产免费一区二区三区四区乱码| 在线天堂中文资源库| 夫妻午夜视频| 日韩电影二区| 亚洲精品乱久久久久久| 亚洲少妇的诱惑av| 免费播放大片免费观看视频在线观看| 建设人人有责人人尽责人人享有的| 大话2 男鬼变身卡| 我要看黄色一级片免费的| 免费看光身美女| 免费av中文字幕在线| 乱码一卡2卡4卡精品| 日本色播在线视频| 超碰97精品在线观看| 成人毛片60女人毛片免费| 美女福利国产在线| a级片在线免费高清观看视频| 桃花免费在线播放| 九九爱精品视频在线观看| 91国产中文字幕| 欧美日韩av久久| 中文字幕另类日韩欧美亚洲嫩草| 大片免费播放器 马上看| 亚洲成av片中文字幕在线观看 | 亚洲欧美日韩卡通动漫| 天堂中文最新版在线下载| 91在线精品国自产拍蜜月| 人妻 亚洲 视频| 十分钟在线观看高清视频www| 久热久热在线精品观看| 男人操女人黄网站| 在线观看www视频免费| 国产女主播在线喷水免费视频网站| 99九九在线精品视频| 欧美日本中文国产一区发布| 青青草视频在线视频观看| 80岁老熟妇乱子伦牲交| 精品久久国产蜜桃| h视频一区二区三区| 亚洲成国产人片在线观看| 自线自在国产av| 亚洲色图 男人天堂 中文字幕 | 在线看a的网站| 91精品伊人久久大香线蕉| 国产又色又爽无遮挡免| 大码成人一级视频| 日本欧美视频一区| 777米奇影视久久| 亚洲少妇的诱惑av| 亚洲av男天堂| 国产亚洲av片在线观看秒播厂| 国产欧美日韩综合在线一区二区| 女人被躁到高潮嗷嗷叫费观| 日韩中字成人| 国产一级毛片在线| 美女主播在线视频| 999精品在线视频| 久久99精品国语久久久| 日韩一区二区三区影片| 汤姆久久久久久久影院中文字幕| 最近的中文字幕免费完整| 成人毛片60女人毛片免费| 春色校园在线视频观看| 天堂中文最新版在线下载| 午夜91福利影院| 欧美老熟妇乱子伦牲交| 亚洲国产av新网站| 免费人妻精品一区二区三区视频| 超色免费av| 有码 亚洲区| 精品一区二区三区视频在线| 日韩欧美一区视频在线观看| 制服丝袜香蕉在线| 人人妻人人澡人人看| 一二三四中文在线观看免费高清| 纯流量卡能插随身wifi吗| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 丝瓜视频免费看黄片| 男的添女的下面高潮视频| 亚洲精品久久午夜乱码| 国产日韩欧美亚洲二区| 22中文网久久字幕| 一边亲一边摸免费视频| 亚洲av综合色区一区| 国产免费福利视频在线观看| 国产1区2区3区精品| 亚洲精品一二三| 亚洲色图 男人天堂 中文字幕 | 国产日韩欧美亚洲二区| 纵有疾风起免费观看全集完整版| 美女福利国产在线| a级片在线免费高清观看视频| 爱豆传媒免费全集在线观看| 九色亚洲精品在线播放| 国产在线免费精品| 国产亚洲午夜精品一区二区久久| 久久99热6这里只有精品| 捣出白浆h1v1| 人人妻人人澡人人看| 欧美 亚洲 国产 日韩一| 一区二区日韩欧美中文字幕 | 久久久精品94久久精品| 香蕉精品网在线| 久久99一区二区三区| 天美传媒精品一区二区| 一个人免费看片子| 亚洲美女黄色视频免费看| 亚洲国产最新在线播放| 精品人妻在线不人妻| 久久精品久久久久久噜噜老黄| 在现免费观看毛片| 91精品三级在线观看| 国产男人的电影天堂91| 国产日韩欧美视频二区| 美女脱内裤让男人舔精品视频| 制服人妻中文乱码| 亚洲少妇的诱惑av| 日本-黄色视频高清免费观看| 亚洲精品美女久久av网站| 99热国产这里只有精品6| 人妻人人澡人人爽人人| 欧美 日韩 精品 国产| 老司机影院毛片| 2018国产大陆天天弄谢| 99热6这里只有精品| 欧美激情极品国产一区二区三区 | 国产精品一二三区在线看| 看十八女毛片水多多多| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品国产av蜜桃| 亚洲精品乱码久久久久久按摩| 好男人视频免费观看在线| 赤兔流量卡办理| 日韩制服骚丝袜av| 丰满饥渴人妻一区二区三| 亚洲成人av在线免费| 天堂8中文在线网| 一级爰片在线观看| 一级a做视频免费观看| 欧美亚洲 丝袜 人妻 在线| 如何舔出高潮| 看十八女毛片水多多多| 久久久久久久精品精品| 国产高清三级在线| 亚洲av成人精品一二三区| 另类精品久久| 日本-黄色视频高清免费观看| 亚洲精品,欧美精品| 在线观看免费日韩欧美大片| 狂野欧美激情性bbbbbb| 精品99又大又爽又粗少妇毛片| 国产一区二区激情短视频 | 极品人妻少妇av视频| 黑人猛操日本美女一级片| 五月玫瑰六月丁香| 自线自在国产av| 亚洲精品久久久久久婷婷小说| 久久久亚洲精品成人影院| 9色porny在线观看| 午夜福利乱码中文字幕| 极品人妻少妇av视频| 国产爽快片一区二区三区| 成人手机av| 亚洲精品第二区| 美女大奶头黄色视频| www日本在线高清视频| 人人妻人人澡人人爽人人夜夜| 狂野欧美激情性xxxx在线观看| 秋霞伦理黄片| 久久久国产一区二区| 成人综合一区亚洲| 2018国产大陆天天弄谢| 日韩电影二区| 18禁裸乳无遮挡动漫免费视频| 高清毛片免费看| av福利片在线| 99热这里只有是精品在线观看| 天天躁夜夜躁狠狠久久av| 在线 av 中文字幕| 天堂中文最新版在线下载| av卡一久久| 在线天堂中文资源库| 两个人看的免费小视频| 国产精品国产av在线观看| 亚洲欧洲日产国产| 亚洲丝袜综合中文字幕| 欧美精品国产亚洲| 亚洲三级黄色毛片| 色吧在线观看| 十八禁高潮呻吟视频| 搡女人真爽免费视频火全软件| 如何舔出高潮| 欧美日韩视频精品一区| 亚洲人与动物交配视频| 国产精品久久久久久久电影| 一级毛片我不卡| 老司机影院毛片| 大片免费播放器 马上看| 看免费成人av毛片| 久久久久久久精品精品| 十八禁网站网址无遮挡| 亚洲精品久久午夜乱码| 99国产精品免费福利视频| 国产综合精华液| 伦精品一区二区三区| 国产精品一区二区在线不卡| 少妇被粗大的猛进出69影院 | 亚洲精品av麻豆狂野| 看免费成人av毛片| 亚洲精品久久午夜乱码| 午夜福利,免费看| 欧美国产精品一级二级三级| 国产又爽黄色视频| 成人国产av品久久久| 男女无遮挡免费网站观看| 亚洲国产精品专区欧美| 九九在线视频观看精品| 日本av手机在线免费观看| 免费在线观看完整版高清| 国产亚洲最大av| 国产成人午夜福利电影在线观看| 久久久国产一区二区| 天天影视国产精品| 国产精品国产三级国产av玫瑰| 亚洲精品一区蜜桃| 精品一区二区三区四区五区乱码 | 十八禁高潮呻吟视频| 亚洲欧洲国产日韩| 欧美成人精品欧美一级黄| 日本av免费视频播放| 国产精品久久久久久精品古装| 18在线观看网站| 97人妻天天添夜夜摸| 天天操日日干夜夜撸| 国内精品宾馆在线| 免费观看av网站的网址| 我要看黄色一级片免费的| 99精国产麻豆久久婷婷| 最近中文字幕高清免费大全6| 亚洲国产日韩一区二区| 久久97久久精品| 成人免费观看视频高清| av卡一久久| 老司机影院毛片| 久久精品国产综合久久久 | 热re99久久国产66热| 成人亚洲精品一区在线观看| 欧美日韩国产mv在线观看视频| 全区人妻精品视频| 国产老妇伦熟女老妇高清| 精品人妻偷拍中文字幕| 97精品久久久久久久久久精品| 亚洲av国产av综合av卡| 黄网站色视频无遮挡免费观看| 亚洲色图 男人天堂 中文字幕 | 你懂的网址亚洲精品在线观看| 丰满少妇做爰视频| 精品熟女少妇av免费看| 日本欧美国产在线视频| 亚洲一码二码三码区别大吗| 国产精品一区www在线观看| 91午夜精品亚洲一区二区三区| 亚洲人与动物交配视频| 一级,二级,三级黄色视频| 午夜激情av网站| 亚洲精品aⅴ在线观看| 国产精品久久久久成人av| 90打野战视频偷拍视频| 少妇猛男粗大的猛烈进出视频| 久久久久久久久久久免费av| 男男h啪啪无遮挡| 亚洲人成77777在线视频| videossex国产| 你懂的网址亚洲精品在线观看| 国产亚洲精品久久久com| 满18在线观看网站| 黄色视频在线播放观看不卡| 男的添女的下面高潮视频| 亚洲精品成人av观看孕妇| 只有这里有精品99| 亚洲成人一二三区av| 最黄视频免费看| 久久精品国产a三级三级三级| 亚洲av男天堂| 巨乳人妻的诱惑在线观看| 有码 亚洲区| kizo精华| 久久99热这里只频精品6学生| 在线天堂中文资源库| 王馨瑶露胸无遮挡在线观看| 香蕉丝袜av| 欧美日韩av久久| 久久99精品国语久久久| 亚洲精品国产av蜜桃| 最近最新中文字幕免费大全7| 欧美97在线视频| 激情五月婷婷亚洲| 国产白丝娇喘喷水9色精品| 人妻少妇偷人精品九色| 国产精品秋霞免费鲁丝片| 午夜免费男女啪啪视频观看| 午夜老司机福利剧场| 欧美日韩成人在线一区二区| tube8黄色片| 人人妻人人添人人爽欧美一区卜| 最近最新中文字幕大全免费视频 | 国产精品人妻久久久影院| 免费看光身美女| 亚洲av日韩在线播放| 香蕉精品网在线| 午夜久久久在线观看| 亚洲成色77777| 国产精品国产三级国产专区5o| 一本色道久久久久久精品综合| 精品少妇黑人巨大在线播放| 亚洲国产精品成人久久小说| 亚洲美女视频黄频| 亚洲国产精品999| 亚洲av免费高清在线观看| 最黄视频免费看| 国产高清三级在线| 欧美国产精品一级二级三级| 高清视频免费观看一区二区| 啦啦啦视频在线资源免费观看| 黑丝袜美女国产一区| 在现免费观看毛片| 日韩人妻精品一区2区三区| 青春草国产在线视频| 日韩精品有码人妻一区| 在线观看一区二区三区激情| 亚洲国产欧美在线一区| 亚洲精华国产精华液的使用体验| 校园人妻丝袜中文字幕| 99视频精品全部免费 在线| 下体分泌物呈黄色| 日韩av不卡免费在线播放| 国产亚洲一区二区精品| 日韩伦理黄色片| 在线观看一区二区三区激情| av一本久久久久| 久久久久国产网址| 日韩欧美精品免费久久| 国产永久视频网站| 国产无遮挡羞羞视频在线观看| 国产精品无大码| 国产欧美日韩一区二区三区在线| 国产一区二区在线观看av| 免费人成在线观看视频色| 丰满迷人的少妇在线观看| 女人久久www免费人成看片| 亚洲欧美清纯卡通| 亚洲av欧美aⅴ国产| 激情视频va一区二区三区| 日韩伦理黄色片| 国产精品麻豆人妻色哟哟久久| 亚洲欧洲日产国产| 成年人免费黄色播放视频| 国产在视频线精品| 视频在线观看一区二区三区| 婷婷成人精品国产| 亚洲综合色惰| 80岁老熟妇乱子伦牲交|