• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Genotoxicity of Three Avermectins on Polypedates megacephalus Tadpoles Using the Comet Assay

    2017-01-20 11:06:26BaorongGENGLinglingZHANGYunJIANGXiupingHUANGandJinmeiDAI
    Asian Herpetological Research 2016年4期

    Baorong GENG, Lingling ZHANG, Yun JIANG, Xiuping HUANG and Jinmei DAI

    College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian, China

    Genotoxicity of Three Avermectins on Polypedates megacephalus Tadpoles Using the Comet Assay

    Baorong GENG*, Lingling ZHANG, Yun JIANG, Xiuping HUANG and Jinmei DAI

    College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian, China

    Avermectins are a new class of macrocyclic lactones derived from mycelia of the soil actinomycete, and are used as effective agricultural pesticides and antiparasitic agents. However, run-off from crops treated with avermectins may contaminate various bodies of water, and accumulated to certain concentrations to impact the development of aquatic animals. Here, we tested the genotoxicity of three avermectins (abamectin, ABM; ivermectin, IVM; and emamectin benzoate, EMB) on Polypedates megacephalus tadpoles by the alkaline single-cell gel electrophoresis assay. Tadpoles were treated for 48 h in the laboratory with different concentrations of these three agents, 0.006, 0.012, 0.018, 0.024, 0.030 mg/L for ABM, 0.003, 0.006, 0.009, 0.012, 0.015 mg/L for IVM and 0.04, 0.06, 0.08, 0.10, 0.12 mg/L for EMB, and then measured their DNA damage by the Comet assay tail factor %. The concentrations of resulted in highly signifcant increases in DNA damage of the tadpoles were found above the concentration threshold of 0.012 mg/ L ABM, 0.003 mg/L IVM and 0.06 mg/L EMB and linear correlations between the intensity of DNA damage and the concentrations of these three avermectins. Our results showed clearly that avermectins caused dose dependent DNA damage on amphibian tadpoles, and there might be a control on the misuse of avermectins.

    Polypedates megacephalus, tadpole, avermectins, abamectin, ivermectin, emamectin benzoate, DNA damage, comet assay

    1. Introduction

    Amphibian decline in almost all over the world (Stuart et al., 2004; Xie et al., 2007), with diverse speculations regarding the causes (Ankley et al., 1998; Davidson, 2004; Wang and Jia, 2009). Chemical contamination in aquatic environment as a consequence of pesticide application continues to be postulated as a contributing factor for the decline (Berrill et al., 1997; Mann and Bidwell, 2001). Indeed, amphibians may be at greater risk of the toxic effects of pollutants than other aquatic vertebrates due to their special physiological and life history characteristics. Amphibian skins are highly absorptive, contaminants have the potential to easily permeate the epidermis (Tyler, 1994), and some amphibians often prefer to breed in shallow, lentic, or ephemeral water bodies, where contaminants may accumulate without dilution (Duellman and Trueb, 1994). Avermectins and their derivatives are very effective agricultural pesticides and antiparasitic agents, and nowadays are used widely in veterinary, and agricultural fields. About 2500 tons of avermectins is produced annually in China, with production expected to increase in the future (Sun and Meng, 2009). Avermectins are a new class of macrocyclic lactones derived from mycelia of the soil actinomycete, Streptomyces avermitilis, with four closely related major components, A1a, A2a, B1a and B2a, and four minor components, A1b, A2b, B1b and B2b, which are lower homologs of the corresponding major components (Danishefsky et al., 1989). These compounds were reported to be possessing insecticidal, acaricidal and nematicidal properties and the mechanism of toxicity is fundamentally different from those associated with current natural and synthetic pesticides (Putter et al., 1981). Among these components, the B1 fractions (ABM, abamectin, a blend of B1a and B1b avermectins) display the most effective antiparasitic activities (Egerton et al., 1979) and was selected fordevelopment to control phytophagous mites and insect pests on a variety of agricultural and horticultural crops worldwide (Reddy, 2013). Ivermectin (IVM, 22, 23-dihydroavermectins B1) is semisynthetic derivatives of avermectins B1 with the same effective antiparasitic activity and registered and widely used in veterinary medicine against scab mites (Currie and McCarthy, 2010). Emamectin benzoate (EMB), 4'-deoxy-4'-epi-methyl amino benzoate salt of avermectins B1, is structurally similar to natural fermentation products. It is a mixture of two avermectin homologues: a major constituent (≥90%) MAB1a and a minor constituent (≤ 10%) MAB1b. It has unprecedented potency against a broad spectrum of lepidopteron pests and is used for controlling lepidopteron pests in agricultural felds (Singh et al., 2013).

    More and more frequent application and broad array of uses, the potential negatively impact of these three agents needs to be carefully considered. After the investigation of acute toxicities, the genotoxicity of these avermectins to Polypedates megacephalus tadpoles were evaluated in this study using the Alkaline Single-Cell Gel Electrophoresis Assay (SCGE) or Comet assay, an effective and sensitive assay for testing DNA damage caused by mutagens (Tice, 1995).

    2. Materials and Methods

    2.1 ChemicalsNormal-melting-point agarose (NMA), Low-melting-point agarose (LMA), Triton X-100, and Tris (Tris hydroxymethyl) aminonethane hydrochloride were obtained from BBI (Ontario, Canada). Dimethylsulfoxide (DMSO) and ethidium bromide (EtBr) were purchased from Amersco (UKAS), while methylmethane sulfonate (MMS) and Trypan-blue dye was obtained from Sigma (St. Louis, MO). Other general reagents and chemicals used for the comet assay were purchased from Sangon Biotech (Shanghai) Co., Ltd. ABM and IVM were provided by Chengdu Aikeda Chemical Product Co., Ltd. (Chengdu, China), and EMB was provided by Yinnong Biochemical Industry Co., Ltd. (Huizhou, China).

    2.2 AnimalsPolypedates megacephalus (Anura: Rhacophoridae) is a medium-sized treefrog, widely distributed in southeastern China. It was chosen as the test animal for this study due to its presence in many disturbed agricultural areas, and its reproductive period is relatively long (Cai, 1979). The chance for the tadpoles to contact these agents is very high. The tadpoles were collected from farm felds in Geling Town, about 50 km southwest from Fuzhou, Fujian Province, China, and reared to Gosner-stage 37–38 tadpoles in the laboratory (Gosner, 1960).

    2.3 TreatmentAll tadpoles were held in glass tanks in dechlorinated water and fed with eel fodder and yolk. After 5–7 days of acclimation, healthy tadpoles with the same stage were selected for the genotoxic tests.

    The maximum test concentrations used in the assay were based on approximate 60% of the 48 h LC50concentrations for ABM (0.030 mg/L), IVM (0.015 mg/ L) and EMB (0.120 mg/L), and then a series of dilutions were made from these concentrations (Table 1). These 48 h LC50concentrations were derived from a report on acute toxicity in P. megacephalus tadpoles that will be published separately (in preparation). 60% of the 48 h LC50concentrations for these agents were chosen as the maximum test concentrations since more than the concentrations could induce a part of tadpole death and disturbed experimentation. A 48-h exposure to all concentrations resulted in 100% tadpole survival.

    A total of 408 tadpoles were divided into three parts (i.e., replicated 3 times) with each part consisting of 136 individuals. There were 8 tadpoles per group including negative, positive controls and various treated groups were conducted in the dark in 2 L beakers containing 1500 mL of dechlorinated water, 1500 mL of 3.125 mg/L MMS, or 1500 mL of the various concentrations of these avermectins.

    2.4 Alkaline Comet AssayThe procedure described by Ralph et al. (1996) and Geng et al. (2010) was employed, with some modifications. All animals were processed individually. The animals were truncated tails and placed immediately into 1 mL of cold phosphate buffered saline (PBS, calcium- and magnesium- free) for 5 min. Each roughened microscope slide was coated with 200 μL of 0.7 % NMA at 37°C, and then covered with a coverslip and transferred to a humidified box at 4°C for 25 min to allow the solidification of agarose. The erythrocytes (30 μL) were then mixed with 0.7 % LMA (100 μL) and this suspension was pipetted onto fully frosted slides and covered with coverslips. The slides were stored in the dark at 4°C for 30 min to allow complete polymerization of the agarose. The coverslips then were removed and the slides were immersed into freshly made lysing solution (pH = 10) and incubated at 4°C in the dark for 2 h. After lysis, the slides were drained and placed in an alkaline electrophoresis buffer for 30 min. For the electrophoresis, the power supply was set at 20 V and the current adjusted to 200 mA by slowly changing the buffer level in the tray. Slides were electrophoresed in the dark at 4°C for 30 min. After electrophoresis, the slides were placed in a stainingtray and covered with a pH 7.5 Tris-HCl neutralizing buffer in the dark for 15 min. This last step was repeated 3 times. The slides were drained, overlayered with 20 μg/ mL EtBr, covered with coverslips, and examined at 400× using a fluorescence microscope. All slides were coded and examined blindly. Routinely, 100–120 cells were examined per animal.

    Table 1 Detection of DNA damage with DNA damage frequency and cell viability in erythrocytes of Polypedates megacephalus tadpoles (Gosner-stage 37-38) after a 48 h exposure to different concentrations of abamectin, ivermectin and emamectin-benzoate.

    2.5 Statistical AnalysisThe standard of classify comets as 0–4 class (Collins et al., 1995) was used according to degree of DNA damage using software CASP in the study (Figure 1). Comet assay tail factor % was used as DNA damage degree according to Valic et al. (2004). Comet assay tail factor % = ∑i×Fi (The “i” was coeffcients of the various classify comets, with 2.5,12.5, 30, 67.5 and 97.5, respectively; and the “Fi” was the percent of various class damages). Prior to any statistical tests all variables were tested for normality using the Kolmogorov- Smirnov test and for homogeneity of variances using Bartlett’s test. The results of the different treatment groups relative to the negative control groups were compared using non-parametric comparisons (Kruskal-Wallis test). Alpha levels of 0.05 and 0.01 were used to determine significance in all statistical analysis. Linear regression analyses were carried out to establish correlations between dose and DNA damage (Comet assay tail factor %). All data processing was made using statistical software SPSS 19.0.

    Figure 1 Classifcation of comets as 0–3 class in erythrocytes of Polypedates megacephalus tadpoles.

    3. Results

    No death and morbidity of the tadpoles were observed after the treatment. DNA damage degrees (Comet assay tail factor %) with DNA damage frequency and cell viability in each treatment group were summarized in table 1.

    As shown in table 1, Polypedates megacephalus tadpoles exposed to the lower concentrations of EMB (0.040 mg/L) did not show a significant increase in the mean Comet assay tail factor % compared to those of the negative control (P > 0.05). However, the tadpoles exposed to the lower concentrations of ABM (0.006 mg/ L) showed a significant increase in DNA damage (P <0.05), and the tadpoles exposed to other concentrations of the three avermectins showed a highly significant increase in DNA damage (P < 0.01). Similarly, the tadpoles exposed to MMS (3.125 mg/L) showed a strong signifcant increase in DNA damage (P < 0.01).

    The three avermectins increased the DNA damage observed in the tadpoles in a dose-responsive manner. There were strong linear correlations between the DNA damages and the concentrations of the three test substances (Figure 2). The cellular distributions of DNA damages in tadpoles are shown in Figure 3. Of the tadpoles treated with increasing concentrations of the three test substances, higher proportions of cells had greater amount of DNA damage than those of the negative control.

    Figure 2 Linear correlations between the DNA damages (Comet assay tail factor %) of tadpoles and the concentrations of abamectin, ivermectin and emamectin benzoate.

    4. Discussion

    Cell viability was found to be more than 85 %, measure up the most current internationally accepted standards for conducting the comet assay (Tice et al., 2000), using the Trypan-blue dye exclusion technique. DNA damage frequency and DNA damage degree were evaluated in the testes of three avermectins-exposed Polypedates megacephalus tadpoles. The results indicate that the comet assay can detect DNA damage induced by exposing P. megacephalus tadpoles to avermectins.

    Although numerous studies report on the toxicities of avermectins (Madsen et al., 1990; Herd, 1995; Davies et al., 1998; Katharios et al., 2002; Jensen et al., 2003; Jencic et al., 2006; Sanderson et al., 2007; Yu et al., 2007; Fanigliulo and Sacchetti, 2008; Jiang et al., 2008; R?mbke et al., 2009; Egeler et al. 2010; R?mbke et al., 2010; Tang et al., 2011; Prichard et al., 2012; Bansod et al., 2013), little information is available on their genotoxicities. The 96-h LC50values of ABM to Brachydanio rerio, Oncorhynchus mykiss and Pelophylax nigromaculatus were 55.1 μg/L (Tisler and Erzen, 2006), 3.2 μg/L (Jencic et al., 2006) and 43.2 μg/L (Wang and Zhao, 2013), respectively. The 96-h LC50values of IVM to Salmo gairdneri and Xenopus laevis larvae were 3.3 μg/L (Bloom and Matheson, 1993) and 5.5 μg/L (Martini et al, 2012), respectively. The 96 h-LC50values of EMB to Brachydanio rerio and Rana zhenhaiensis tadpoles were 0.113 mg/L (Wei et al., 2008) and 0.129 mg/L (Chen et al., 2011) , respectively. The adverse effectof ABM was found on male rat fertility (Elbetieha and Da’as, 2003) and it might have reproductive toxicity (Bing, et al., 2008). Wang and Zhao (2013) found that ABM can induce micronucleus and nuclear anomalies in erythocytes of Pelophylax nigomaculatus. Zhang et al. (2014) recently reported an in situ assay for quantifying genotoxicity of IVM to the tadpoles at Gosner stage 30-33 in laboratory conditions using alkaline SCGE, and EMB was also found to produce genotoxicity on Rana zhenhaiensis tadpoles (Fang et al., 2010).

    Figure 3 Distribution of DNA damage (based on damage class of DNA patterns pooled across 8 tadpoles in each dose group) observed at the cellular level in Polypedates megacephalus tadpoles after exposure for a 48 h period to selected concentrations of abamectin, ivermectin and emamectin benzoate.

    According to these results above and our fnding that avermectins can cause DNA damage in tadpoles at the concentrations below the recommended applied levels (Xu et al., 2010), we consider it possible that avermectins are carcinogenic, and confrm it has the negative impact on the development of tadpoles. Amphibian tadpoles were found to be susceptible to genetic damage caused by short-term exposure to low concentrations of chemicals(Ralph et al., 1996; Clements et al., 1997). Our study also shows amphibian tadpoles may be considered as a sensitive biomonitor for detecting the genotoxic potential of avermectins.

    In conclusion, because of their genotoxic effects at relatively low concentrations, dose- dependent responses, frequent application and broad array of uses, avermectins likely pose a threat to organisms inhabiting in small water bodies.

    AcknowledgementsWe thank Dr. Xiaohong HUANG for her helping to improve the English of this article. The research was granted by the Natural Science Foundation of Fujian, China (2015J01124).

    Ankley G. T., Tietge J. E., Defoe D. L., Jensen K. M., Holcombe G. W., Durhan E. J., Diamond S. A. 1998. Effects of ultraviolet light and methoprene on survival and development of Rana pipiens. Environ Toxicol Chem, 17: 2530–2542

    Bansod Y. V., Kharkar S. V., Raut A., Choudalwar P. 2013. Abamectin: an uncommon but potentially fatal cause of pesticide poisoning. Int J Res Med Sci, 1: 285–286

    Berrill M., Bertram S., Pauli B. 1997. Effects of pesticides on amphibian embryos and tadpoles. In: Green D. M. (ed). Amphibians in decline: Canadian studies of a global problem. Society for the Study of Amphibians and Reptiles, St. Louis, MO. 233–245

    Bing X., Ru S. G., Zhou W. L., Jia Y. G. 2008. Avermectin’s safety evaluation of environmental estrogenic activity and reproductive toxicity. J Wuhan Univ, 54: 745–750 (In Chinese)

    Bloom R. A., Matheson J. C. 1993. Environmental assessment of avermectins by the US Food and Drug Administration. Vet Parasitol, 48: 281–294

    Cai M. Z. 1979. Observations on reproductive habits of thirty-two anuran species of Fujian Province. J Fujian Nor Univ, (1): 71–79 (In Chinese)

    Chen Z. X., Fang X. Q., Lin L., Geng B.R. 2011. Acute toxicity of emamectin benzoate on Rana zhenhaiensis tadpoles. J Ningde Teach Coll, 23: 21–23 (In Chinese)

    Clements C., Ralph S., Petras M. 1997. Genotoxicity of select herbicides in Rana catesbeiana tadpoles using the alkaline sing-cell gel DNA electrophoresis (Comet) assay. Environ Mol Mutagen, 29: 277?288

    Collins A. R., Ma A. G., Duthie S. J. 1995. The kinetics of repair of oxidative DNA damage (strand breaks and oxidised pyrimidines) in human cells. Mutation Res, 336: 69–77

    Currie B. J., McCarthy J. S. 2010. Permethrin and Ivermectin for Scabies. N Engl J Med, 362: 717–725

    Danishefsky S. J, Armistead D. M., Wincott F. E., Selnick H. G., Hungate R. 1989. The total synthesis of avermectin-A1A. J Am Chem Soc, 111: 2967–2980

    Davidson C. 2004. Declining downwind: Amphibian population declines in California and historical pesticide use. Ecol Appl, 14: 1892?1902

    Davies I. M., Gillibrand P. A., McHenery J. G., Rae G. H. 1998. Environment risk of ivermectin to sediment dwelling organisms. Aquaculture, 163: 29–46

    Duellman W. E., Trueb L. 1994. Biology of amphibians. Baltimore: The John Hopkings University Press

    Egeler P., Gilberg D., Fink G., Duis K. 2010. Chronic toxicity of ivermectin to the benthic invertebrates Chironomus riparius and Lumbriculus variegates. J Soils Sedime, 10: 368–376

    Egerton J. R., Ostlind D. A., Blair L. S., Eary C. H., Suhayda D., Cifelli S., Riek R. F., Campbell W. C. 1979. Avermectins, new family of potent anthelmintic agents: efficacy of the B1a component. Antimicrob Agents Chemother. 15: 372–378

    Elbetieha A., Da’as S. I. 2003. Assessment of antifertility activities of abamectin pesticide in male rats. Ecotoxicol Environ Saf, 55: 307–313

    Fang X. Q., Chen Z. X., Lin L., Geng B. R. 2010. Genotoxicity of emamectin benzoate on Rana zhenhaiensis tadpoles. J Ningde Teach Coll, 22: 373–376 (In Chinese)

    Fanigliulo A., Sacchetti M. 2008. Emamectin benzoate: new insecticide against helicoverpa armigera. Commun Agric Appl Biol Sci, 73: 651–653

    Geng B. R., Lin L., Zhang Q. J., Zhong B.J. 2010. Genotoxicity of the pesticide dichlorvos and herbicide butachlor on Rana zhenhaiensis tadpoles. Asian Herpetol Res, 1: 118–122

    Gosner K. L. 1960. A simplifed table for staging anuran embryos and larvae with notes on identifcation. Herpetologica, 16: 183–190

    Herd R. 1995. Endectocidal drugs: ecological risks and countermeasures. Int J Parasitol, 25: 875–885

    Jencic V., Cerne M., Erzen N. K., Kobal S., Cerkvenik-Flajs V. 2006. Abamectin effects on rainbow trout (Oncorhynchus mykiss). Ecotoxicol, 15: 249–257

    Jensen J., Krogh P. H., Sverdrup L. E. 2003. Effects of the antibacterial agents tiamulin, olanquindox and metronidazole and the anthelmintic ivermectin on the soil invertebrate species Folsomia fimetaria (Collembola) and Enchytraeus crypticus (Enchytraeidae). Chemosphere, 50:437–443

    Jiang M., Peng Z. X., Wu H., Hu K., Huang X. X. 2008. Application of ivermectin in aquaculture and corresponding aqua-ecosystem risk. Fish Modern, 35: 47–50 (In Chinese)

    Katharios P., Iliopoulou-Georgudaki J., Kapata-Zoumbos K., Spiropoulos S. 2002. Toxicity of intraperitoneally injected ivermectin in sea bream, Sparus aurata. Fish Physiol Biochem, 25: 99–108

    Krieger R. I. 2001. Handbook of pesticide toxicology second edition volume 1. American: Academic Press

    Madsen M., Overgaard-Nielsen B., Holter P., Pedersen O. C., Br?chner-Jespersen J., Vagn-Jensen K. M., Nansen P., Gr?nvold J. 1990. Treating cattle with ivermectin: effects on the fauna and decomposition of dung pats. J Appl Ecol, 27: 1–15

    Mann R. M., Bidwell J. R. 2001. The acute toxicity of agricultural surfactants to the tadpoles of four Australian and two exotic frogs. Environ Poll, 1l4: 195–205

    Martini F., Tarazona J. V., Pablos M. V. 2012. Are fish and standardized FETAX assays protective enough for amphibians? A case study on Xenopus laevis larvae assay with biologically active substances present in livestock wastes. Sci World J, 2012: 1–6

    Prichard R., Ménez C., Lespine A. 2012. Moxidectin and the avermectins: Consanguinity but not identity. Int J Parasitol: Drugs and Drug Resistance, 2: 134–153

    Putter J. G., Mac Connell F. A., Preiser F. A., Haidri A. A., Rishich S. S., Dybas R. A. 1981. Avermectins: novel class of insecticides, acaricides and nematicides from a soil microorganism. Experientia, 37: 963–964

    Ralph S., Petras M., Pandrangi R., Vrzoc M. 1996. Alkaline single cell gel (comet) assay and genotoxicity monitoring using two species of tadpoles. Environ Mol Mut, 28: 112–120

    Reddy P. P. 2013. Recent advances in crop protection. Springer: 13–24

    R?mbke J., Floate K. D., Jochmann R., Sch?fer M. A., Puniamoorthy N., Kn?be S., Lehmhus J., Rosenkranz B., Scheffczyk A., Schmidt T., Sharples A., Blanckenhorn W. U. 2009. Lethal and sublethal toxic effects of a test chemical (ivermectin) on the yellow dung fly Scathophaga stercoraria based on a standardized international ring test. Environ Toxicol Chem, 28: 2117–2124

    R?mbke J., Krogh K. A., Moser T., Scheffczyk A., Liebig M. 2010. Effects of the veterinary pharmaceutical ivermectin on soil invertebrates in laboratory tests. Arch Environ Contam Toxicol, 58: 332–340

    Sanderson H., Laird B., Pope L., Brain R., Wilson C., Johnson D., Bryning G., Peregrine A. S., Boxall A., Solomon K. 2007. Assessment of the environmental fate and effects of ivermectin in aquatic mesocosms. Aquat Toxicol, 85: 229–240

    Singh G., Chahil G. S., Jyot G., Battu R. S., Singh B. 2013. Degradation dynamics of emamectin benzoate on cabbage under subtropical conditions of Punjab, India. Bull Environ Contam Toxicol, 91:129–133

    Stuart S. N., Chanson J. S., Cox N. A., Young B. E., Rodrigues A. S., Fischman D. L., Waller R. W. 2004. Status and trends of amphibian declines and extinctions worldwide. Science, 306: 1783–1786

    Sun J., Meng S. Q. 2009. Status and development trend of avermectin in Chinese market. World Pestic, 31(Suppl. 2): 18–21

    Tang W. W., Lu Y. X., Mu B., Yin X. F., Zhang L. L. 2011. Research progress in emamectin benzoate toxicology. Chin J Foren Med, 26: 210–212

    Tice R.R. 1995. Applications of the single cell gel assay to environmental biomonitoring for genotoxic pollutants. In: Butterworth B. M., Corkum L. D., Guzma′n-Rinco′n J. ed. Biomonitoring and Bio-markers as Indicators of Environmental Change. New York: Plenum Press, 69–79

    Tice R. R., Agurell E., Anderson D., Burlinson B., Hartmann A., Kobayashi H., Miyamae Y., Rojas E., Ryu J. C., Sasaki Y. F. 2000. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mut, 35: 206–221

    Tisler T., Erzen N. K. 2006. Abamectin in the aquatic environment. Ecotoxicol, 15: 495–502

    Tyler M. J. 1994. Australian frogs: A natural history. Chatswood: Reed Books

    Valic E., Jahn O., P?pke O., Winker R., Wolf C., Rüdiger.W. H. 2004. Transient increase in micronucleus frequency and DNA effects in the comet assay in two patients after intoxication with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Int Arch Occup Environ Heal, 77: 301–306

    Wang D. D., Zhao E. M. 2013. Study on toxicological effect of avermectins on Pelophylax nigromaculatus. Sichuan J Zoo, 32: 334–342 (In Chinese)

    Wang M. Z., Jia X. Y. 2009. Low levels of lead exposure induce oxidative damage and DNA damage in the testes of the frog Rana nigromaculata. Ecotoxicol, 18: 94–99

    Wei F. L., Zhu J. W., Li S. N., Zhu G. N. 2008. Acute toxicity of emamectin benzoate on environmental organism. Pestic Sci Admin, 29: 19–24 (In Chinese)

    Xie F., Lau M. W. N., Stuart S. N., Chanson J. S., Cox N. A., Fischman D. L. 2007. Conservation needs of amphibians in China: A review. Sci Chin Series C: Life Sciences, 50(2): 265–276

    Xu H. R., Yang R. B., Fu Q., Liao H. Y. 2010. Abamectin residue in water, soil and rice. Environ Sci Manage, 35: 35–37 (In Chinese)

    Yu X. L., Cheng C. H., Zhang Q. 2007. The primary study about immune effects of 1.8 % AVM latex on mice. Acta Acad Med Zunyi, 30: 254–256 (In Chinese)

    Zhang L. L., Li Q. Y., Geng B. R. 2014. Genotoxicity of ivermectin on Polypedates megacephalus tadpoles. J Fujian Nor Univ, 30: 106–110 (In Chinese)

    *Corresponding author: Prof. Baorong GENG, from College of Life Sciences, Fujian Normal University, with his research mainly focusing on taxonomy, ecology and ecotoxicology of amphibians.

    E-mail: brgeng@fjnu.edu.cn

    Received: 10 September 2015 Accepted: 9 June 2016

    欧美成人一区二区免费高清观看| 国产美女午夜福利| 一级黄片播放器| 国产v大片淫在线免费观看| 最后的刺客免费高清国语| 免费看av在线观看网站| 午夜视频国产福利| 欧美三级亚洲精品| 免费av毛片视频| 久久精品影院6| 两个人视频免费观看高清| 亚洲精品久久国产高清桃花| 国产精品一二三区在线看| 校园春色视频在线观看| 国产成人午夜福利电影在线观看| 欧美日韩一区二区视频在线观看视频在线 | 亚洲精品影视一区二区三区av| 久久久色成人| 亚洲精品乱码久久久v下载方式| 久久久久久久久久成人| 亚洲成人av在线免费| 国产午夜福利久久久久久| 国产亚洲5aaaaa淫片| 国产不卡一卡二| 日韩成人av中文字幕在线观看| 最后的刺客免费高清国语| 人妻系列 视频| 99精品在免费线老司机午夜| 99视频精品全部免费 在线| 亚洲一区二区三区色噜噜| 成年版毛片免费区| 岛国在线免费视频观看| 国产午夜精品久久久久久一区二区三区| 国产精品一区二区三区四区免费观看| 久久久久久久久中文| 成人鲁丝片一二三区免费| 亚洲婷婷狠狠爱综合网| 99九九线精品视频在线观看视频| 3wmmmm亚洲av在线观看| 久久欧美精品欧美久久欧美| 在线观看66精品国产| 美女脱内裤让男人舔精品视频 | 99国产极品粉嫩在线观看| 亚洲精品色激情综合| 日本av手机在线免费观看| 国产精品嫩草影院av在线观看| 男人狂女人下面高潮的视频| 国产免费男女视频| 一进一出抽搐gif免费好疼| 久久精品夜夜夜夜夜久久蜜豆| 欧美一区二区国产精品久久精品| 久久精品久久久久久久性| 校园春色视频在线观看| 亚洲精品久久国产高清桃花| 亚洲国产高清在线一区二区三| 日日摸夜夜添夜夜添av毛片| 成人美女网站在线观看视频| 欧美在线一区亚洲| av国产免费在线观看| 欧美+亚洲+日韩+国产| 国产真实伦视频高清在线观看| 日本五十路高清| 91午夜精品亚洲一区二区三区| 精品一区二区三区视频在线| 日韩成人av中文字幕在线观看| 日韩强制内射视频| 久久中文看片网| 国产亚洲5aaaaa淫片| 国产成人精品久久久久久| 搞女人的毛片| 三级男女做爰猛烈吃奶摸视频| 免费一级毛片在线播放高清视频| 女人被狂操c到高潮| 最近手机中文字幕大全| 国产精品三级大全| 嘟嘟电影网在线观看| 99热这里只有是精品50| 精品久久久久久久久久免费视频| 欧美另类亚洲清纯唯美| 成年免费大片在线观看| 一边摸一边抽搐一进一小说| 久久综合国产亚洲精品| 国产一区二区亚洲精品在线观看| 国产 一区精品| eeuss影院久久| 99热只有精品国产| 一本久久精品| 男女那种视频在线观看| ponron亚洲| 久久中文看片网| 亚洲精品影视一区二区三区av| 能在线免费观看的黄片| 国产精品电影一区二区三区| 一区二区三区高清视频在线| 久久国产乱子免费精品| 噜噜噜噜噜久久久久久91| 99久久精品国产国产毛片| 亚洲精品456在线播放app| 九草在线视频观看| 中文欧美无线码| 精品久久国产蜜桃| 美女内射精品一级片tv| 久久久久久久亚洲中文字幕| 波野结衣二区三区在线| 国产精品久久久久久精品电影| 欧美性猛交黑人性爽| 美女 人体艺术 gogo| 日本一本二区三区精品| 中文亚洲av片在线观看爽| 少妇被粗大猛烈的视频| 我要搜黄色片| 国产在视频线在精品| 看免费成人av毛片| 国产三级在线视频| 舔av片在线| 特大巨黑吊av在线直播| 国产探花极品一区二区| 国产午夜精品久久久久久一区二区三区| 亚洲av成人av| a级毛色黄片| 人人妻人人看人人澡| 1000部很黄的大片| 亚洲一级一片aⅴ在线观看| 在现免费观看毛片| 日本一本二区三区精品| 亚洲欧美精品自产自拍| 国产一区二区在线观看日韩| 午夜精品在线福利| 黄色欧美视频在线观看| 成人毛片60女人毛片免费| 亚洲18禁久久av| 日韩高清综合在线| 99热这里只有精品一区| 中文亚洲av片在线观看爽| 国产高清激情床上av| 中国国产av一级| 99热6这里只有精品| 高清在线视频一区二区三区 | 久久精品夜夜夜夜夜久久蜜豆| 熟女电影av网| 黄色配什么色好看| 亚洲在线自拍视频| 午夜免费男女啪啪视频观看| 中文资源天堂在线| 天天一区二区日本电影三级| 欧美人与善性xxx| 在线国产一区二区在线| 91精品一卡2卡3卡4卡| 国产av麻豆久久久久久久| 亚洲丝袜综合中文字幕| 国产一级毛片在线| 午夜激情欧美在线| 夜夜夜夜夜久久久久| a级毛色黄片| 在线播放国产精品三级| 亚洲天堂国产精品一区在线| 国内精品美女久久久久久| 色吧在线观看| 日韩欧美精品免费久久| 欧美最黄视频在线播放免费| 国产三级在线视频| 免费搜索国产男女视频| 欧洲精品卡2卡3卡4卡5卡区| 寂寞人妻少妇视频99o| 日韩欧美三级三区| 最近2019中文字幕mv第一页| 色5月婷婷丁香| 国产精品99久久久久久久久| 狠狠狠狠99中文字幕| 成人午夜高清在线视频| 简卡轻食公司| 91精品国产九色| 天堂网av新在线| 黄色一级大片看看| 最好的美女福利视频网| 亚洲自偷自拍三级| 久久久久久大精品| 99九九线精品视频在线观看视频| 亚洲五月天丁香| 久久久久性生活片| 亚洲在线观看片| 国产伦精品一区二区三区四那| 国产精品不卡视频一区二区| 国产精品人妻久久久久久| 成人永久免费在线观看视频| 国产精品电影一区二区三区| 国产麻豆成人av免费视频| av免费在线看不卡| 国产真实伦视频高清在线观看| 国产精品一及| 中文字幕熟女人妻在线| videossex国产| 熟女人妻精品中文字幕| 日本在线视频免费播放| 欧美日本视频| 亚洲精华国产精华液的使用体验 | 可以在线观看的亚洲视频| 插阴视频在线观看视频| 午夜激情欧美在线| 久久久色成人| 久久精品国产99精品国产亚洲性色| 久久精品国产亚洲网站| 免费av毛片视频| 精品午夜福利在线看| 校园人妻丝袜中文字幕| 一本一本综合久久| 99久国产av精品| а√天堂www在线а√下载| 2022亚洲国产成人精品| av免费观看日本| 国产精品一及| 亚洲国产欧美人成| 久久午夜福利片| 免费在线观看成人毛片| a级一级毛片免费在线观看| 久久久久免费精品人妻一区二区| 国产综合懂色| 午夜精品一区二区三区免费看| 国内久久婷婷六月综合欲色啪| 极品教师在线视频| 人妻少妇偷人精品九色| 日韩精品有码人妻一区| 成人特级黄色片久久久久久久| 永久网站在线| 国产精品久久久久久亚洲av鲁大| 少妇人妻一区二区三区视频| 国产精品久久久久久亚洲av鲁大| 精品久久久久久成人av| 最近最新中文字幕大全电影3| 亚洲在久久综合| 12—13女人毛片做爰片一| 婷婷六月久久综合丁香| 亚洲国产欧美人成| 夜夜爽天天搞| 久久午夜福利片| 狂野欧美白嫩少妇大欣赏| 久久99热6这里只有精品| 国产v大片淫在线免费观看| 十八禁国产超污无遮挡网站| 婷婷亚洲欧美| av天堂中文字幕网| 日韩av不卡免费在线播放| 深爱激情五月婷婷| 国产精品永久免费网站| 三级国产精品欧美在线观看| 舔av片在线| 久久久久久久久久久丰满| 午夜福利在线观看免费完整高清在 | 2022亚洲国产成人精品| 亚洲高清免费不卡视频| 亚洲精华国产精华液的使用体验 | 国产久久久一区二区三区| 亚洲人成网站在线播放欧美日韩| 嫩草影院精品99| 欧美另类亚洲清纯唯美| 国产精品综合久久久久久久免费| 日日干狠狠操夜夜爽| 精品久久久久久成人av| 日日啪夜夜撸| 日韩欧美精品免费久久| 小蜜桃在线观看免费完整版高清| 亚洲一级一片aⅴ在线观看| 亚洲人与动物交配视频| 欧美不卡视频在线免费观看| 一级二级三级毛片免费看| 亚洲国产精品久久男人天堂| 又粗又爽又猛毛片免费看| 中文字幕熟女人妻在线| 乱码一卡2卡4卡精品| 成人毛片60女人毛片免费| 久久人人爽人人爽人人片va| 日本在线视频免费播放| 午夜福利在线在线| 午夜免费激情av| 亚洲最大成人中文| 中文精品一卡2卡3卡4更新| 日韩av在线大香蕉| 少妇熟女欧美另类| 亚洲国产欧美在线一区| 自拍偷自拍亚洲精品老妇| 色综合亚洲欧美另类图片| 久久亚洲精品不卡| av天堂中文字幕网| 日本黄大片高清| 菩萨蛮人人尽说江南好唐韦庄 | 在线观看66精品国产| 国产精品国产高清国产av| 岛国毛片在线播放| 亚洲无线观看免费| 亚洲av二区三区四区| 日本色播在线视频| 99热只有精品国产| 干丝袜人妻中文字幕| 日本成人三级电影网站| 国产一区二区三区在线臀色熟女| 99久久精品一区二区三区| 美女大奶头视频| 一本久久中文字幕| 网址你懂的国产日韩在线| 久久精品影院6| 国产单亲对白刺激| 永久网站在线| 日本一二三区视频观看| 天天一区二区日本电影三级| 免费观看人在逋| 国产成人a区在线观看| 免费看a级黄色片| 最近中文字幕高清免费大全6| 国产精品人妻久久久久久| 九九久久精品国产亚洲av麻豆| 中文字幕精品亚洲无线码一区| 亚洲av中文字字幕乱码综合| www.色视频.com| 久久人人爽人人片av| 国产女主播在线喷水免费视频网站 | 热99re8久久精品国产| 免费av不卡在线播放| 亚洲七黄色美女视频| 国产在线精品亚洲第一网站| 亚洲av免费在线观看| 国产乱人偷精品视频| 色噜噜av男人的天堂激情| 久久精品国产99精品国产亚洲性色| 此物有八面人人有两片| 给我免费播放毛片高清在线观看| 美女脱内裤让男人舔精品视频 | 免费观看a级毛片全部| 国产美女午夜福利| 亚洲中文字幕日韩| 青春草亚洲视频在线观看| 免费一级毛片在线播放高清视频| 草草在线视频免费看| 精品无人区乱码1区二区| 欧美精品一区二区大全| 嫩草影院入口| 一个人看视频在线观看www免费| 欧美性猛交╳xxx乱大交人| 日韩欧美国产在线观看| 精品久久久久久久久亚洲| 麻豆av噜噜一区二区三区| 成年女人看的毛片在线观看| 亚洲七黄色美女视频| 久久人妻av系列| 美女国产视频在线观看| 老司机影院成人| 成人高潮视频无遮挡免费网站| 国产精品一区二区三区四区久久| a级毛色黄片| 国产一级毛片七仙女欲春2| 最近中文字幕高清免费大全6| 人人妻人人看人人澡| 99热只有精品国产| 欧洲精品卡2卡3卡4卡5卡区| 大型黄色视频在线免费观看| 欧美xxxx性猛交bbbb| av天堂中文字幕网| 国产高清有码在线观看视频| 精品少妇黑人巨大在线播放 | 亚洲七黄色美女视频| 麻豆成人av视频| 一级毛片久久久久久久久女| 中国美白少妇内射xxxbb| 青春草亚洲视频在线观看| 亚洲欧美成人精品一区二区| 亚洲18禁久久av| 欧美一级a爱片免费观看看| 日本色播在线视频| 女的被弄到高潮叫床怎么办| 亚洲乱码一区二区免费版| 午夜激情福利司机影院| 成人毛片a级毛片在线播放| 国产精华一区二区三区| 精品不卡国产一区二区三区| 午夜福利视频1000在线观看| 亚洲国产高清在线一区二区三| 欧美zozozo另类| 色综合色国产| 欧美成人a在线观看| 大又大粗又爽又黄少妇毛片口| 成人三级黄色视频| 狠狠狠狠99中文字幕| 欧美激情在线99| 赤兔流量卡办理| 国产精品久久久久久精品电影| 免费人成视频x8x8入口观看| 伊人久久精品亚洲午夜| 99久久无色码亚洲精品果冻| 麻豆成人av视频| 午夜亚洲福利在线播放| 亚洲欧美成人精品一区二区| 乱人视频在线观看| 赤兔流量卡办理| 少妇被粗大猛烈的视频| 亚洲美女搞黄在线观看| 2022亚洲国产成人精品| 久99久视频精品免费| 亚洲激情五月婷婷啪啪| 麻豆成人午夜福利视频| 欧美日韩国产亚洲二区| 亚洲最大成人av| 亚洲欧美日韩高清在线视频| 我的女老师完整版在线观看| 欧美另类亚洲清纯唯美| 日韩中字成人| 国产一级毛片在线| 只有这里有精品99| 亚洲av电影不卡..在线观看| 久久国产乱子免费精品| 内地一区二区视频在线| 国产 一区精品| 亚洲精品国产av成人精品| 人人妻人人看人人澡| 亚洲一区二区三区色噜噜| 老师上课跳d突然被开到最大视频| 亚洲色图av天堂| avwww免费| 精品久久久久久久末码| 国产在线精品亚洲第一网站| 中文亚洲av片在线观看爽| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品影视一区二区三区av| 韩国av在线不卡| 日韩欧美在线乱码| 欧美精品一区二区大全| 舔av片在线| 成人亚洲精品av一区二区| 亚洲色图av天堂| 在线免费观看的www视频| 亚洲国产精品成人久久小说 | 国产精品乱码一区二三区的特点| 天堂√8在线中文| 久久精品久久久久久久性| 欧美不卡视频在线免费观看| 国产精品免费一区二区三区在线| 国产精品久久久久久久久免| 国产高潮美女av| 非洲黑人性xxxx精品又粗又长| 国产女主播在线喷水免费视频网站 | 亚洲经典国产精华液单| 一本久久中文字幕| 日韩av不卡免费在线播放| 国产69精品久久久久777片| 久久精品国产自在天天线| av黄色大香蕉| 26uuu在线亚洲综合色| 99久久成人亚洲精品观看| 最新中文字幕久久久久| 国产在线精品亚洲第一网站| 天堂网av新在线| 18禁黄网站禁片免费观看直播| 一卡2卡三卡四卡精品乱码亚洲| 久久欧美精品欧美久久欧美| av卡一久久| 永久网站在线| 女人十人毛片免费观看3o分钟| 成人永久免费在线观看视频| 国产成人a∨麻豆精品| 亚洲国产精品合色在线| а√天堂www在线а√下载| 一级黄色大片毛片| 欧美成人一区二区免费高清观看| 岛国毛片在线播放| 一区二区三区免费毛片| 国产高清不卡午夜福利| 在线免费十八禁| 久久精品人妻少妇| 在线免费观看不下载黄p国产| 精华霜和精华液先用哪个| 男人狂女人下面高潮的视频| 91av网一区二区| 中文字幕人妻熟人妻熟丝袜美| 99久久精品热视频| 99热这里只有精品一区| 亚洲国产欧美在线一区| 中文字幕久久专区| 成人漫画全彩无遮挡| 中文资源天堂在线| 免费观看人在逋| 亚洲成人av在线免费| 欧美成人一区二区免费高清观看| 国产白丝娇喘喷水9色精品| 日韩欧美精品免费久久| 在线天堂最新版资源| av女优亚洲男人天堂| 日本免费一区二区三区高清不卡| 狂野欧美白嫩少妇大欣赏| av国产免费在线观看| 欧美成人免费av一区二区三区| 久久久久国产网址| 久久6这里有精品| 亚洲国产高清在线一区二区三| 亚洲欧美清纯卡通| 成人亚洲欧美一区二区av| 国产精品美女特级片免费视频播放器| 一区二区三区高清视频在线| 最近手机中文字幕大全| 少妇熟女aⅴ在线视频| 色综合站精品国产| 色综合色国产| 国产精品久久视频播放| 22中文网久久字幕| 在线免费观看不下载黄p国产| 此物有八面人人有两片| 国产精品久久电影中文字幕| 国产伦精品一区二区三区视频9| 国产v大片淫在线免费观看| 国产精品免费一区二区三区在线| 欧美最黄视频在线播放免费| 天美传媒精品一区二区| 一个人看的www免费观看视频| 18禁在线无遮挡免费观看视频| 中文亚洲av片在线观看爽| 久久午夜亚洲精品久久| 国产成人精品久久久久久| 麻豆av噜噜一区二区三区| 成人三级黄色视频| 日韩欧美国产在线观看| АⅤ资源中文在线天堂| 国产精品久久电影中文字幕| 国产一区二区亚洲精品在线观看| kizo精华| 午夜老司机福利剧场| 此物有八面人人有两片| 99久久成人亚洲精品观看| a级毛片免费高清观看在线播放| 国产毛片a区久久久久| 国产片特级美女逼逼视频| 精华霜和精华液先用哪个| 午夜精品一区二区三区免费看| 观看美女的网站| 午夜福利在线观看免费完整高清在 | 91狼人影院| 一本久久中文字幕| 日产精品乱码卡一卡2卡三| 麻豆av噜噜一区二区三区| 亚洲成人中文字幕在线播放| 日本一本二区三区精品| 精品免费久久久久久久清纯| 人妻夜夜爽99麻豆av| 一个人观看的视频www高清免费观看| 在线天堂最新版资源| 日本黄色片子视频| 深夜精品福利| 看免费成人av毛片| 久99久视频精品免费| 亚洲欧洲国产日韩| 波多野结衣巨乳人妻| 一区二区三区免费毛片| 最好的美女福利视频网| 老师上课跳d突然被开到最大视频| 一边亲一边摸免费视频| 三级经典国产精品| 午夜老司机福利剧场| 自拍偷自拍亚洲精品老妇| 欧美成人免费av一区二区三区| 亚洲精品久久久久久婷婷小说 | 亚洲成人精品中文字幕电影| 欧美另类亚洲清纯唯美| 国产精品久久久久久精品电影| 联通29元200g的流量卡| 毛片一级片免费看久久久久| 国内精品美女久久久久久| 成人亚洲精品av一区二区| 亚洲av.av天堂| 国产精品99久久久久久久久| 99久久无色码亚洲精品果冻| 国产精品1区2区在线观看.| 韩国av在线不卡| 日韩中字成人| 亚洲人成网站在线观看播放| 免费看美女性在线毛片视频| 亚洲一区二区三区色噜噜| 国产中年淑女户外野战色| 99国产极品粉嫩在线观看| 国产高清三级在线| 欧美性猛交黑人性爽| 国产亚洲精品久久久久久毛片| 简卡轻食公司| 男女做爰动态图高潮gif福利片| 国产成人精品一,二区 | 国产综合懂色| 久久精品影院6| 伦理电影大哥的女人| 1024手机看黄色片| 看非洲黑人一级黄片| 男女那种视频在线观看| 一夜夜www| 久久久欧美国产精品| 两个人视频免费观看高清| 精品熟女少妇av免费看| 青春草国产在线视频 | 国产av不卡久久| 日韩一区二区视频免费看| 亚洲高清免费不卡视频| 1000部很黄的大片| 亚洲第一电影网av| 99在线人妻在线中文字幕| 国产精品99久久久久久久久| 国产成人a∨麻豆精品| 久久欧美精品欧美久久欧美| 亚洲国产精品久久男人天堂| 免费大片18禁| 岛国毛片在线播放| 麻豆乱淫一区二区| 黄片无遮挡物在线观看| 老女人水多毛片| 最近视频中文字幕2019在线8| 成人永久免费在线观看视频| 精品人妻熟女av久视频| 97人妻精品一区二区三区麻豆| 99精品在免费线老司机午夜| 午夜亚洲福利在线播放| 男女啪啪激烈高潮av片| 中文字幕制服av| 久久久精品欧美日韩精品|