• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Dietary Vitamins A, B2, and B6Supplementation on Growth and Feed Utilization of Juvenile Chinese Soft-shelled Turtle Pelodiscus sinensis according to an Orthogonal Array Experiment

    2017-01-20 11:06:28JunweiLIZhencaiYANGXiaolingHANQuansenXIEandHaiyanLIU
    Asian Herpetological Research 2016年4期

    Junwei LI, Zhencai YANG*, Xiaoling HAN, Quansen XIEand Haiyan LIU

    1Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization of Ministry of Agriculture of China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China

    2College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China

    Effects of Dietary Vitamins A, B2, and B6Supplementation on Growth and Feed Utilization of Juvenile Chinese Soft-shelled Turtle Pelodiscus sinensis according to an Orthogonal Array Experiment

    Junwei LI1,2, Zhencai YANG2*, Xiaoling HAN2, Quansen XIE2and Haiyan LIU2

    1Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization of Ministry of Agriculture of China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China

    2College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China

    An orthogonal experimental design OA9(33) was used to evaluate the effects of vitamins (A, B2, and B6) on the growth and digestive ability of the juvenile Chinese soft-shelled turtle, Pelodiscus sinensis (initial weight, 5.9±0.2 g). A total of 135 turtles were divided into 9 groups, which each included 15 individuals. The results revealed that vitamin A (VA) had the strongest impacts on the growth rate and feed utilization among the three vitamins; 35,000 IU kg-1VA had optimal effects on the feeding intake and specifc growth rate, and 20,000 IU kg-1VA had optimal effects on protein digestibility and the feed conversion ratio. Vitamin B2(VB2) was essential for regulating protein deposition and the energy effciency for growth of the turtles; 120 mg kg-1VB2resulted in increased protein and energy deposition, and 180 mg kg-1VB2had greater benefcial effects on the growth rate. Vitamin B6(VB6) had important effects on protein and feed efficiency; however, VB6at an excessive level (120 mg kg-1) restricted turtle growth. Based on the above growth results, dietary supplementation of VA, VB2and VB6at levels of 35,000 IU kg-1, 180 mg kg-1and 70 mg kg-1, respectively, were recommended for the juvenile soft-shelled turtle.

    Pelodiscus sinensis, vitamin, growth performance, digestion capacity, orthogonal design

    1. Introduction

    The Chinese soft-shelled turtle, Pelodiscus sinensis, is one of the most commercially important reptile species in China (Xie et al., 2012; Pu and Niu, 2013), and its total production reached 341,288 tons in 2014 (Fisheries Department of Agriculture Ministry of China, 2014). The researches on the bioenergetics and nutritional requirements of soft turtles have been reported (Nuangsaeng and Boonyaratapalin, 2001; Huang et al., 2003; Huang and Lin, 2004; Zhou et al., 2004; Hou et al., 2013; Chen and Huang, 2014); however, supplementation of the diets of these reptiles with several vitamins must be optimized for better growth performance. Vitamins play many important roles in the growth, physiology and metabolism of developing animals (Halver, 2003) and can affect the feeding and skeletal development of larval fsh (Fernández and Gisbert, 2011; Reham et al., 2013). The availability of vitamins at optimal levels is essential for normal animal growth. Previous studies have shown that vitamin A (VA) (Yutaka et al., 2011; Chen and Huang, 2014), B2(VB2) (Deng and Wilson, 2003) and B6(VB6) (Giri et al., 1997) are essential for animal growth.

    Among these vitamins, VA (retinoids) includes a group of compounds that are structurally similar and exhibit biological activity due to retinol; these compounds bind to or activate a specific receptor or group of receptors (Hemre et al., 2004; Reham et al., 2013). VA is essential for maintenance of normal vision and growth in fish (Olson, 1991; Funkenstein, 2001); in addition, it enhances development of the alimentary tract (Lahov and Regelson, 1996). Previous studies have shown thatall vertebrate species can suffer from VA defciency and/ or toxicity, and the biological consequences of both deficiency and toxicity are similar among most species. Normal growth and reproduction can only be sustained in the presence of optimal VA levels (Stéphanie et al., 2010). The requirement for VA in turtles has been shown to be approximately 2.5–3.5 mg kg-1in a single factor experiment (Chen and Huang, 2014).

    Riboflavin (VB2) is a water-soluble vitamin required by all animals (Deng and Wilson, 2003; Souto et al., 2008). It cannot be synthesized by monogastric animals, which must therefore consume foods with suffcient VB2levels to meet their metabolic demands (Kavita et al., 1996). A low VB2level, especially in fish, results in several signs of gross defciency, including high mortality, uncoordinated swimming, photophobia, cataracts, dark skin coloration, low feed conversion efficiency, cornea and eye lens opacity, and dark body pigmentation (NRC, 1993; Deng and Wilson, 2003); in addition, high dietary VB2intake is necessary to support maximum weight gain in fsh (Serrini et al., 1996).

    VB6is the precursor of the coenzyme pyridoxal phosphate, which is required for the non-oxidative degradation of amino acids through transamination, deamination, and desulfuration. VB6metabolism is related to dietary protein or amino acid metabolism in animals (Hilton, 1989; Giri et al., 1997), and the structures and functions of digestive and immune system in fsh are affected by this vitamin (He et al., 2009; Feng et al., 2010; Li et al., 2010). Due to its multiple roles in various metabolic processes, a number of potential signs are indicative a VB6defciency in animals. In fsh, these signs include anorexia, anemia, dark coloration, loss of equilibrium, poor growth, and high mortality (Albrektsen et al., 1993; Giri et al., 1997). However, little information is available on the dietary VB2and VB6requirement of the soft-shelled turtle.

    Many experiments have been conducted investigating VA, VB2and VB6requirements in aquatic animals (Halver, 1989; Serrini et al., 1996; Shiau and Chen, 2000; Lin et al., 2003; Stéphanie et al., 2010), and most studies on vitamin requirements have examined a single vitamin. However, assessments of vitamin combinations may yield a more realistic representation of vitamin requirements in animals, as appropriate combinations of VB2, VB6, niacin and pantothenic acid have been shown to improve the growth and meat quality of crucian carps (Lin et al., 2003). Tan et al. (2007) used an orthogonal design to evaluate the possible nutritional functions of vitamins A, D3, E, and C on gonadal development and the immune response of yearling eel. An orthogonal array design is a useful statistical tool for multi-factor analyses that can reflect a general condition with the fewest number of experimental trials and can be used to determine dominant contributing factors, as well as the appropriate combination of levels of each factor (Montgomery, 1991; Zheng and Jiang, 2003). Few experiments have been conducted to determine the vitamin requirements of fsh according to an orthogonal design (Rong et al., 1996; Lin et al., 2003). In previous studies, the recommended dietary VA, VB2and VB6requirements for the softshelled turtle were determined according to production experience, but limited information is available about the effects of these 3 vitamins on the growth of this reptile species.

    The present study was conducted to explore the effects of vitamins on feeding, growth and protein utilization of juvenile soft-shelled turtles using an orthogonal experimental design. The fndings may aid in providing a basis to further optimize the vitamin supplementation in turtles’ diets.

    2. Materials and Methods

    2.1 Experimental designThe study was performed in a laboratory at Hebei Normal University, Shijiazhuang, Hebei Province, China. We used an OA933experimental design to study the effects of dietary supplementation of 3 vitamins at 3 levels (VA: 5000, 20,000 and 35,000 IU kg-1; VB2: 60, 120 and 180 mg kg-1; and VB6: 20, 70 and 120 mg kg-1) on the growth and development of softshelled turtles (Table 1). An orthogonal array design was used to determine which vitamin had the strongest effects on feeding, growth and protein utilization efficiency of soft-shelled turtles. In this experiment, 135 turtles were divided into 9 groups, which each included 15 individuals.

    2.2 Experimental dietsVitamins A, B2and B6were added to the nine experimental diets (T1 to T9) as shown in Table 1. The main nutritional components of the basic experimental powder diets were measured (Table 2). To determine the nutrient digestibility, 0.1% chromium oxide, an inert marker, was added to each diet. The powder diets were blended with water (35%), formed into wet pellets and stored at –20°C.

    2.3 Experimental animals and proceduresThe turtles were acclimated to the laboratory conditions for 3 weeks in 135 aquaria [60 cm (l) × 30 cm (w) × 30 cm (h), water volume of 20 L] and fed the T1 diet. Thewater temperature was maintained at 30±0.5°C using a thermostat-controlled electric heater. The photoperiod was maintained at 14L:10D, with illumination between 07:00 and 21:00. The pH ranged from 7.5 to 8.0, and the DO content was over 6 mg L-1.

    Table 2 The ingredients and nutrient composition of the experimental diets.

    We randomly allocated 135 turtles to the aquaria, with one turtle per aquarium. The average body weight of the turtles was 5.90±0.20 g (weight±SD). The turtles were fed their respective diets at a rate of 4% body weight per day twice daily at 08:00 and 16:00. Uneaten feed was collected, and feces were removed after 30 minutes of feeding and were then dried at 60°C to a constant weight. Approximately one-third of the water in each aquarium was exchanged every day to maintain the water quality. The experiment continued for 80 days.

    2.4 Sample collection and measurementPrior to the experiment, 15 turtles were randomly collected for collecting the initial samples. At the end of the experiment, all turtles from each group were sampled. The protein contents of all turtle samples were measured. The diets, uneaten feed, feces and turtles were dried at 60°C to a constant weight and were then smashed and sieved using a sample sifter. The crude protein contents of the samples were determined using the Kjeldahl method, and their energy contents were measured using a calorimeter (DJL-9, Changsha Xingdian Instrument, Changsha, Hunan, China).

    2.5 Data calculationThe survival rate(SR), feed intake (FI), specific growth rate (SGR), feed conversion ratio (FCR), apparent digestibility coefficient of dry matter (ADC), protein digestibility coefficient (PDC), protein effciency rate (PER), protein deposition rate (PDR) and energy effciency (EGE) were calculated as follows:

    SR (%) = 100 × N2/ N1

    FI (%) = 100 × F / [T (W1 + W2) / 2],

    SGR (%d-1) = 100 (ln W2– ln W1) / T

    FCR = F / (W2– W1)

    ADC (%) = 1 – [(Cr2O3in diet / Cr2O3in feces) × 100%

    PDC (%) = 1 – [(Cr2O3in diet / Cr2O3in feces) × (protein in feces / protein in diet)] × 100%

    PER (%) = 100 (W2– W1) / Fp

    PDR (%) = 100 × Bp/ Fp

    EGE(%)= 100 × G / (C–F)

    where N1and N2are the initial and final numbers of turtles in each tank, respectively; W1and W2are the initial and fnal body weights of the turtles (g), respectively; T is the duration of the experiment (d); F is the cumulative feed intake; Fpis the protein intake; and Bpis body protein gain.

    G, C and F (kJ) are growth energy, intake energy, and faecal energy, respectively, in the energy budget equation (C = G + F + U + R); and C–F represent the energy assimilated by the turtles.

    2.6 Data calculation and statistical analysesThe importance of the three vitamins for growth was evaluated based on the effectiveness of each vitamin according to calculated ranges (R) (Roy 1990) and the difference between the mean maximum and minimum values of each index at the three vitamin levels, which indicated the most infuential factor (i.e., the factor resulting in the greatest improvement) for growth performance (Yan et al., 2009).

    The data were analyzed using Statistica 6.0 software (Statsoft Inc., Tulsa, OK, USA). One-way ANOVA was used to detect the differences among the treatment means at a 5% signifcance level, and Duncan’s multiple range test was used to evaluate the differences among the treatment means.

    3. Results

    3.1 Survival rate, feed intake and growthThere was no mortality during the 80 days of this experiment. The results revealed that the feed intake was the highest for the T3 diet, with signifcantly higher intake than the T5 or T6 diet (F = 1.46, df = 134, P3,5= 0.049, P3,6= 0.040) (Table 3). The feed intake ranges (R) for the three vitamins at the three levels varied from 0.038 to 0.083, and VA exhibited the largest range (Table 4). The order of importance of the vitamins to feed intake was VA>VB2>VB6, and the vitamin combination and levels resulting in the highest feed intake was A3, B23, and B63(Table 4).

    There were no significant differences in the SGR among the treatments (F = 0.822, df = 134, P = 0.58). The SGR ranges (R) for the 3 vitamins varied from 4.8% to 18.4%, and VA exhibited the largest range. The order of importance of the vitamins to the SGR was VA>VB2>VB6, and the optimal vitamin combination for achieving the highest SGR was A3, B23, and B62(Table 4).3.2 Dietary nutrient utilizationThe FCR, PER, PDR, ADC and PDC are listed in Table 5. There were no significant differences in the ADC or PDC among the groups analyzed (FADC= 0.63, df = 134, PADC= 0.72; FPDC= 0.85, df = 134, PPDC= 0.92). The ADC ranges (R) varied from 0.25 to 1.25, and VA exhibited the largest range. The order of importance of the 3 vitamins to the ADC and PDC was VA>VB2>VB6, and the optimal vitamin combinations were A2, B22, and B63for the ADC and A2, B21, and B63for the PDC (Table 6).

    During the experiment, no significant differences in the PER or FCR were detected among the nine treatment groups (FPER= 0.67, df = 134, PPER= 0.558; FFCR= 0.64, df = 134, PFCR= 0.74). The order of importance of the 3 vitamins to the PER and FCR was VA>VB6>VB2, and the optimal vitamin combination was A2, B22, and B61of vitamins for the PER and FCR (Tables 6 and Table 7).

    T6 yielded a higher PDR than T1, T3 and T9 (F = 1.32, df = 134, P6,1= 0.049, P6,3= 0.035, P6,9= 0.043). The order of importance of the 3 vitamins to the PDR was VB2>VA>VB6, and the optimal vitamin combination was A2, B22, and B61for the PDR (Table 7).

    3.3 Energy utilizationThere were signifcant differences in the energy intake among the nine groups (FEI= 1.06, df = 134, PEI= 0.041) (Table 8). Group T3 exhibited the greatest energy intake, which was significantly higher than those of groups T2, T5, and T6 (P3,2= 0.04, P3,5= 0.04, P3,6= 0.032). The energy intake ranges (R) for the three vitamins varied from 6.1 to 12.69, and VA exhibited the largest range. The order of importance of the vitamins with regard to energy intake was VA>VB2>VB6, and the vitamin combination resulting in the greatest energy intake was A1, B23, and B63(Table 9).

    Significant differences in the energy efficiency for growth were also observed (FEGE= 1.06, df = 134, PEGE= 0.041); that of group T6 produced was greater than those of groups T1, T3, T4, T7, T8, and T9. The order of importance of the vitamins with regard to the energy effciency for growth was VB2>VA>VB6, and the vitamin combination resulting in the greatest energy effciency for growth was A2, B22, and B61(Table 9).

    4. Discussion

    Assessment of appropriate vitamin combinations may provide a more realistic representation of the vitamin requirements of animals, as appropriate combinations of VB2, VB6, niacin and pantothenic acid have been shown to improve the growth and meat quality of crucian carps (Lin et al., 2003). In the present study, no mortality, avitaminosis or hypervitaminosis was observed during the experiment, and the results indicated that dietary supplementation with the different combinations of VA, VB2and VB6did not significantly affect the SR of the soft-shelled turtles. The results also demonstrated that the vitamin combinations clearly affected the FI, PDR and EGE of the reptiles (P<0.05).

    In the present study, VA had much greater effects on the FI, SGR, ADC, PDC, FC and PER than VB2and VB6(Tables 4, 6 and 7), indicating that VA playsimportant roles in multiple processes, including those related to digestion, nutrient utilization and growth. VA supplementation at level 2 improved digestive functions (ADC, PDC, FC, PDR and PER) more than that at level 1 or 3. Further, VA supplementation at level 3 had greater effects on the SGR than that at the other levels, indicating that a high VA level (35,000 IU kg-1) can improve the feeding and growth rate of the softshelled turtles. The above results demonstrate that VA plays a broad and important role in juvenile turtle growth. Previous studies have suggested that the VA requirements of most finfish range from 1000 to 20,000 IU kg-1(Masumoto, 2002; Mohamed et al., 2003; Moren et al., 2004; Hernandez et al., 2005). Based on the appropriate levels, dietary VA supplementation at 20,000-35,000 IU kg-1should be used for soft-shelled turtles. The differing demands for VA between these two animals may be attributed to differences in metabolic processes (Chen and Huang, 2014). In contrast with the present study, the recommended dietary VA requirement for turtles was found to be 10800-11600 IU kg-1in the aforementioned study (Chen and Huang, 2014), and the turtle growth (WG, FCR and PER) in the present study was superior to that in this previous study. The discrepant results between

    two studies may be due to the use of different ingredients, nutrient compositions and VA supplementation levels in the diets. In the present study, VA supplementation at level 3 (35,000 IU kg-1) had more benefcial effects on the turtle growth rate than that at level 2 (20,000 IU kg-1).

    Table 3 Effects of the different diets on feeding and growth of Pelodiscus sinensis.

    Table 4 Results of analysis of the effects of different vitamin levels on feed intake and growth.

    Table 5 Effects of the different diets on diet utilization in Pelodiscus sinensis.

    Table 6 Results of analysis of the effects of different vitamin levels on diet utilization.

    Table 7 Results of analysis of the effects of different vitamin levels on PDR and PER.

    Table 8 Effects of the different diets on energy intake and net energy effciency for growth.

    Table 9 Results of analysis of the effects of different vitamin levels on energy intake and energy effciency for growth.

    In this study, VB2had greater infuences on the PDR and EGE than VA and VB6based on the relative orders of importance of these vitamins, which is consistent with the fnding that the whole-body protein content in Jian carp increases with an increasing dietary ribofavin levels (Li et al., 2009). The results of this study indicate that VB2may play an important role in converting dietary protein and energy into usable protein and energy in the softshelled turtle. In previous studies, VB2at a suitable level has been shown to be conductive to the growth of some aquaculture animals (Xu et al., 1995; Souto et al., 2008; Li et al., 2010). Souto et al. (2008) have found that sea bream fed a VB2- enriched diet (17.7 mg kg-1) grew better than those fed a control diet (13.7mg kg-1). In addition, a low dietary VB2level (100 mg/kg) has been shown to result in a higher SGR than a high dietary VB2level (400mg kg-1) in shrimp (Xu et al., 1995), perhaps due to the high levels of digestive enzymes and energy necessary for separating VB2from proteins (Wang and Shan, 2007). In the present study, VB2supplementation at level 2 (120 mg kg-1) resulted in the optimal rates of absorption and conversion of protein and energy (Tables 7 and 9), and that at level 3 (180 mg kg-1) yielded an optimal growth rate compared with that at the other two levels; thus, the VB2level in the juvenile turtle diet should be approximately 120–180 mg kg-1.

    Previous experiments have demonstrated that VB6infuences the PER and feed coeffcient ratio (FCR). The metabolism of this vitamin is related to dietary protein or amino acid metabolism in animals (Hilton, 1989; Giri et al., 1997). In the present study, VB6had fewer effects on protein metabolism than VA based on the order of importance of the vitamins (Tables 6 and 7). Further, VB6had a greater influence on the FCR than VB2, and the same result has been found in a study conducted by Lin et al. (2003) showing that VB6has important effects on digestive enzyme and alkaline phosphatase activities (He et al., 2009). The bass Lateolabrax japonicus and Jian carp Cyprinus carpio exhibit optimal growth atVB6concentratons of 20 mg kg-1(Zhong and Zhang, 2001) and 6.07mg kg-1(He et al., 2009), respectively. Further, the most appropriate VB6level for shrimp is approximately 140 mg kg-1(Xu et al., 1995). In the present study, based on the PER and FCR K values, VB6supplementation at level 1 (20 mg kg-1) was optimal compared with that at the other levels, and the PER and FCR gradually worsened with increasing VB6levels (Tables 6 and 7). In addition, VB6supplementation at level 2 (70 mg kg-1) resulted in a higher SGR of the turtles (Table 4). Therefore, VB6should be kept at a low level (20–70 mg kg-1) in the juvenile turtle diet.

    The results of this study demonstrated that the order of importance of the 3 vitamins with regard to the turtle feed intake, growth and digestibility was VA>VB2>VB6and that the order of importance with regard to the conversion capacity was VB2>VA>VB6(Tables 4, 6, and 7). These findings suggest that at the levels tested, VA influenced feeding, growth, digestion and feed utilization, and had the strongest effects on the soft-shelled turtles, that VB2played an important role in growth effciency (PDR and EGE), and that VB6had greater effects on the FCR and PER than did VB2.

    The results showed that the vitamin combination A2, B22, and B61generated the highest PDR and PER and that combination A3, B23, and B62resulted in optimal growth; thus, based on the growth results, the dietary VA, VB2and VB6requirements for soft-shelled turtles were estimated to be 35,000 IU kg-1, 180 mg kg-1and 70 mg kg-1, respectively.

    AcknowledgementsThis work was fnancially supported by the National Natural Science Foundation of China (Nos. 30972261, 31172085, 31272315 and 41606137).

    Albrektsen S., Waagbo R., Sandnes K. 1993. Tissue vitamin B concentrations and aspartate aminotransferase (Asp T) activity in Atlantic salmon (Salmo salar) fed graded dietary levels of vitamin B, Fik Dir Skr Ser Ernaring, 6: 21–34

    Chen L. P., Huang C. H. 2014. Estimation of dietary vitamin A requirement of juvenile soft-shelled turtle, Pelodiscus sinensis. Aquac Nutr, Doi: 10.1111/anu. 12172

    Deng D. F., Wilson R. P. 2003. Dierary ribofavin requirement of juvenile sunshine bass (Morone chrysops♀×Morone saxatilis♂). Aquaculture, 218: 695–701

    Feng L., He W., Jiang J., Liu Y., Zhou X. Q. 2010. Effects of dietary pyridoxine on disease resistance, immune responses and intestinal microfora in juvenile Jian carp (Cyprinus carpio var. Jian). Aquac Nutr, 16: 254–261

    Fisheries Department of Agriculture Ministry of China. 2012. China Fisheries Yearbook. Beijing: China Agriculture Press (In Chinese)

    Funkenstein B. 2001. Developmental expression, tissue distribution and hormonal regulation of fish (Sparusaurata) serum retinolbinding protein. Comp Biochem Phys, 129: 613–622

    Giri N. A., Teshima S. I., Kanazawa A. 1997. Effects of dietary pyridoxine and protein levels on growth, vitamin B6 content, and free amino acid profile of juvenile Penaeus japonicus.Aquaculture, 157: 263–275

    Halver J. E. 1989. The vitamins. In Halver J. E. (Ed.), Fish Nutrition. New York: Academic Press, 32–102

    Halver J. E. 2003. The vitamins. In Halver J. E. (Ed.), Fish Nutrition, 3rd Edition. New York: Academic Press, 61–141

    He W., Zhou X. Q., Feng L., Jiang J., Liu Y. 2009. Dietary pyridoxine requirement of juvenile Jian carp (Cyprinus carpio var. Jian). Aquac Nutr, 15: 402–408

    Hemre G. I., Deng D. F., Wilson R. P., Berntssen M. H. G. 2004. VitaminA metabolism and early biological responses in juvenile sunshine bass (Moronechrysop×M.saxatilis) fed graded levels of vitaminA. Aquaculture, 235: 645–665

    Hernandez L. H. H., Teshima S. I., Ishikawa M., Alam S., Koshio S., Tanaka Y. 2005. Dietary vitamin A requirements of juvenile Japanese founder Paralichthys olivaceus. Aquac Nutr, 11: 3–9

    Hilton J. W. 1989. The interaction of vitamins, minerals and diet composition in the diet of fsh. Aquaculture, 79: 223–244

    Hou J. L., Jia Y. J., Yang Z. C., Li Y. J., Cheng F. X., Li D., Ji F. S. 2013. Effects of Taurine Supplementation on Growth Performance and Antioxidative Capacity of Chinese Soft-shelled Turtles, Pelodiscus sinensis, Fed a Diet of Low Fish Meal Content. J World Aquac Soc, 44: 786–794

    Huang C., Lin W., Wu S. 2003. Effect of dietary calcium and phosphorus supplementation in fish meal-based diets on the growth of soft-shelled turtle Pelodiscus sinensis (Wiegmann). Aquac Res, 34: 843-848

    Huang C., Lin W. 2004. Effects of dietary vitamin E level on growth and tissue lipid peroxidation of soft-shelled turtle, Pelodiscus sinensis (Wiegmann). Aquac Res, 35: 948-954

    Kavita P. P., David H. B. 1996. Supplemtantal iron, copper, zinc, ascorbate, caffeine and chlortetracycline do not affect ribofavin utilization in the chick. Nutr Res, 16: 1943–1952

    Lahov E., Regelson W. 1996. Antibacterial and immunostimulating casein-de-rived substances from milk, casecidin, isracidin peptides. Food Chem Toxicol, 34: 131–145

    Li E. C., Yu N., Chen L. Q., Zeng C., Liu L. H., Qin J. G. 2010. Dietary Vitamin B6 Requirement of the Pacifc White Shrimp, Litopenaeus vannamei, at Low Salinity. J World Aquac Soc, 41: 756–763

    Li W., Zhou X. Q., Feng L., Liu Y., Jiang J. 2010. Effect of dietary ribofavin on growth, feed utilization, body composition and intestinal enzyme activities of juvenile Jian carp (Cyprinus carpio var. Jian). Aquac Nutr, 16: 137–143

    Lin S. M., Zeng D. M., Ye Y. S., Luo L. 2003. A study on vitamin B2, B6, niacin and pantothenic acid requirements of allogenetic crucian carps. Chin J Anim Nutr, 15: 43–47

    Masumoto T. 2002. Yellowtail, Seriola quinqueradiata. In Webster C. D., Lim C. (Eds.), Nutrient Requirement and Feeding of Finfsh for Aquaculture. New York: CABI Publishing, 131–146

    Mohamed J. S., Sivaram V., Christopher R., Marian M. P., Murugardass S., Hussain M. R. 2003. Dietary vitamin A requirement of juvenile greasy grouper (Epinephelus tauvina). Aquaculture, 219: 693–701

    Montgomery D. C. 1991. Design and Analysis of Experiments, 3rd Edition. New York: John Wiley and Sons, 649

    Moren M., Opstad I., Bemtssen M. H. G., Zambonino I. J. L., Hamre K. 2004. An optimum level of vitamin A supplements for Atlantichalibut (Hippoglossus hippoglossus L.) juveniles. Aquaculture, 235: 587–599

    Nuangsaeng B., Boonyaratapalin M. 2001. Protein requirement of juvenile soft-shelled turtle Trionyx sinensis Wiegmann. Aquaculture Research, 32: 106-111

    NRC (National Research Council). 1993. Nutrient Requirements of Fish, National Academy Press, Washington, DC., 114

    Olson J. A. 1991. Vitamin A. In Machin, L. (Ed.), The Handbook of vitamins. New York: Marcel Dekker, 1–59

    Pu L. J., Niu C. J. 2013. Molecular cloning and characteristics of catalase cDNA from Chinese soft-shelled turtle (Pelodiscus sinensis). Asian Herpetol Res, 4(2): 90–99

    Reham K. N., Jennifer M. C., Malcolm R. B., Barbara F. N., Stephen C. B. 2013. The effects of dietary vitamin A in rotifers on the performance and skeletal abnormality of striped trumpeter Latris lineata larvae and post larvae. Aquaculture, 404–405: 105–115

    Rong C. K., Zhen R. L., Yue B. Y., Liang S. X. 1996. Studies on the nutritional requirements of fat-solube vitamins A, D3, E K3for shrimp Penaeus Chinensis. J Tianjin Agric Coll, 3: 1– 6

    Roy R. K. 1990. A primer on the Taguchi Method. Van Nostrand Reinhold, 7–9

    Serrini G., Zhang Z., Wilson R. P. 1996. Dietary riboflavin requirement of fngerling channel catfsh (Ictalurus punctatus). Aquaculture, 139: 285–290

    Shiau S. Y., Chen Y. 2000. Estimation of the dietary vitamin A requirement of juvenile grass Shrim P. Penaeusmondon. Nutrition, 130: 90–94

    Souto M., Saavedra M., Ferreira P. P., Herrero C. 2008. Riboflavin enrichment throughout the food chain from the marine microalgae Tetraselmis suecica to the rotifer Brachionus plicatilis and to White Sea Bream (Diplodus sargus) and Gilthead Sea bream (Sparus aurata) larvae. Aquaculture, 283: 128–133

    Stéphanie F. D., Emilie L., Anne S., Jeannine B., José-Luis Z. I., Sadasivam J. K. 2010. Effects of dietary vitamin A on broodstock performance, egg quality, early growth and retinoid nuclear receptor expression in rainbow trout (Oncorhynchus mykiss). Aquaculture, 303: 40–49

    Tan Q. S., He R. G., Xie S. Q., Xie C. X., Zhang S. P. 2007. Effect of Dietary Supplementation of Vitamins A, D3, E, and C on Yearling Rice Field Eel, Monopterus albus: Serum Indices, Gonad Development, and Metabolism of Calcium and Phosphorus. J World Aquac Soc, 38: 146–153

    Wang A., Shan A. S. 2007. Vitamin modern animal agricultural production. Beijing: Science press, 126

    Xie Q. S., Yang Z. C., Li J. W., Li Y. J. 2012. Effect of protein restriction with subsequent re-alimentation on compensatory growth of juvenile soft-shelled turtles (Pelodiscus sinensis). Aquac Int, 20: 19–27

    Xu Z. C., Liu T. B., Li A. J. 1995. Studies on the requirement for riboflavin nicotinamide and pyridoxine in the prawn Penaeus Chinensis. J Fish China, 19: 97–104

    Yan L. L., Zhang G. F., Liu Q. G., Li J. L. 2009. Optimization of culturing the freshwater pearl mussels, Hyriopsis cumingii with filter feeding Chinese carps (bighead carp and silver carp) by orthogonal array design. Aquaculture, 292: 60–66

    Yutaka H., Du S. J., Shuichi S., Tomonari K., Hiroshi F., ToshioT. 2011. Analysis of the mechanism of skeletal deformity in fish larvae using a vitamin A-induced bone deformity model. Aquaculture, 315: 26–33

    Zheng S., Jiang F. 2004. Experiment Design and Data Processing. Beijing: China architecture and industry publishing company, 60–90

    Zhong W. R., Zhang S. H. 2001. Studies on the Requirements of Lateclabrux japonicus for Vitamins at Various Growth Stages. J Zhejiang Ocean Univ (Nat Sci), 20: 98–102

    Zhou X. Q., Niu C. J., Sun R. Y. 2004. Effects of the combination of vitamin C and E on non-specifc immune function in juvenile soft-shelled turtle Trionyx Sinensis. Acta Hydrobiol Sinica, 28: 356–360

    *Corresponding authors: Dr. Zhencai YANG, from College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province, China, with his research focusing on reptiles nutrition.

    E-mail: zcyang@mail.hebtu.edu.cn

    Received: 26 January 2016 Accepted: 28 February 2016

    99久久99久久久精品蜜桃| 最近最新中文字幕大全免费视频| 99久久精品国产亚洲精品| 国产在线精品亚洲第一网站| 一级毛片精品| 777米奇影视久久| 国产免费av片在线观看野外av| 久久久久久久国产电影| 亚洲久久久国产精品| 满18在线观看网站| 亚洲国产中文字幕在线视频| 国产精品99久久99久久久不卡| 在线观看一区二区三区激情| 国产一区二区三区在线臀色熟女 | 精品一品国产午夜福利视频| 12—13女人毛片做爰片一| 亚洲精品在线美女| 侵犯人妻中文字幕一二三四区| 国产精品1区2区在线观看. | 亚洲国产毛片av蜜桃av| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利视频精品| 99久久99久久久精品蜜桃| 欧美人与性动交α欧美软件| 欧美国产精品va在线观看不卡| 久久久精品区二区三区| 蜜桃在线观看..| 色精品久久人妻99蜜桃| 久久国产精品人妻蜜桃| 国产高清视频在线播放一区| 露出奶头的视频| 精品免费久久久久久久清纯 | av一本久久久久| 下体分泌物呈黄色| 欧美黑人精品巨大| 汤姆久久久久久久影院中文字幕| 欧美大码av| 一二三四在线观看免费中文在| 精品国产一区二区三区四区第35| 亚洲精品中文字幕一二三四区 | kizo精华| 免费观看a级毛片全部| 欧美久久黑人一区二区| 国产欧美日韩一区二区三区在线| 久久国产精品大桥未久av| 国产麻豆69| 精品高清国产在线一区| 波多野结衣av一区二区av| 老司机影院毛片| 国产精品秋霞免费鲁丝片| 国产免费视频播放在线视频| 亚洲伊人色综图| 90打野战视频偷拍视频| 国产单亲对白刺激| 老司机在亚洲福利影院| 宅男免费午夜| 久久精品91无色码中文字幕| 夫妻午夜视频| 一二三四在线观看免费中文在| 午夜福利一区二区在线看| 夜夜爽天天搞| 最近最新中文字幕大全电影3 | 99久久人妻综合| 90打野战视频偷拍视频| 最新在线观看一区二区三区| 一区二区三区乱码不卡18| 国产精品影院久久| 性色av乱码一区二区三区2| 国产单亲对白刺激| 久热爱精品视频在线9| 国产高清激情床上av| 夜夜爽天天搞| 国产精品 欧美亚洲| 一边摸一边抽搐一进一出视频| 精品国产一区二区三区四区第35| 久久性视频一级片| 男男h啪啪无遮挡| 欧美+亚洲+日韩+国产| 人人妻人人澡人人爽人人夜夜| 亚洲国产av影院在线观看| 9191精品国产免费久久| 国产淫语在线视频| 91国产中文字幕| 50天的宝宝边吃奶边哭怎么回事| 久久精品国产a三级三级三级| 91成年电影在线观看| 亚洲伊人久久精品综合| 一本综合久久免费| 国产av一区二区精品久久| 久久精品91无色码中文字幕| 日日夜夜操网爽| 嫩草影视91久久| 国产精品自产拍在线观看55亚洲 | 亚洲专区字幕在线| 在线观看免费视频网站a站| 最近最新免费中文字幕在线| 亚洲精品国产色婷婷电影| 亚洲欧美激情在线| 久久精品人人爽人人爽视色| 91麻豆av在线| 国产视频一区二区在线看| 久久中文看片网| 久久午夜亚洲精品久久| 国产成人精品久久二区二区免费| 亚洲第一av免费看| 中亚洲国语对白在线视频| 国产精品一区二区在线不卡| 自线自在国产av| 亚洲性夜色夜夜综合| 国产成人欧美在线观看 | 久久狼人影院| 欧美成狂野欧美在线观看| 精品少妇久久久久久888优播| 少妇粗大呻吟视频| 精品免费久久久久久久清纯 | 一二三四在线观看免费中文在| 亚洲,欧美精品.| 男人操女人黄网站| 日韩免费高清中文字幕av| 免费少妇av软件| 日韩人妻精品一区2区三区| 亚洲精品国产色婷婷电影| 999精品在线视频| 久久精品人人爽人人爽视色| 久久久久国产一级毛片高清牌| 亚洲午夜精品一区,二区,三区| 80岁老熟妇乱子伦牲交| 黄色片一级片一级黄色片| 天天躁日日躁夜夜躁夜夜| 国产成人系列免费观看| 国产精品成人在线| 国产精品久久久久成人av| 80岁老熟妇乱子伦牲交| 国产成人一区二区三区免费视频网站| 成年版毛片免费区| 国产欧美亚洲国产| av片东京热男人的天堂| 在线观看66精品国产| 1024香蕉在线观看| 欧美黄色淫秽网站| 黄网站色视频无遮挡免费观看| 一二三四社区在线视频社区8| 久久这里只有精品19| 欧美性长视频在线观看| 久久天堂一区二区三区四区| a级毛片在线看网站| 啦啦啦 在线观看视频| 国产在线观看jvid| 少妇精品久久久久久久| av视频免费观看在线观看| 国产成人精品在线电影| 国产成人精品久久二区二区91| 欧美亚洲 丝袜 人妻 在线| 国产单亲对白刺激| 免费一级毛片在线播放高清视频 | 欧美 日韩 精品 国产| 日韩 欧美 亚洲 中文字幕| 亚洲精品国产精品久久久不卡| 电影成人av| 首页视频小说图片口味搜索| 首页视频小说图片口味搜索| 国产免费视频播放在线视频| 成人特级黄色片久久久久久久 | 极品人妻少妇av视频| 免费在线观看视频国产中文字幕亚洲| 男女床上黄色一级片免费看| 一级片'在线观看视频| 亚洲熟女毛片儿| 视频区欧美日本亚洲| 狂野欧美激情性xxxx| 精品少妇一区二区三区视频日本电影| 久久精品人人爽人人爽视色| av天堂久久9| 国产深夜福利视频在线观看| 亚洲精华国产精华精| 啦啦啦在线免费观看视频4| 国产在线观看jvid| 18禁黄网站禁片午夜丰满| 欧美精品啪啪一区二区三区| 大香蕉久久网| 男女高潮啪啪啪动态图| 国产日韩欧美亚洲二区| 后天国语完整版免费观看| 咕卡用的链子| 亚洲成av片中文字幕在线观看| 菩萨蛮人人尽说江南好唐韦庄| 国产精品一区二区精品视频观看| 天天添夜夜摸| 看免费av毛片| 久热这里只有精品99| 美女主播在线视频| 免费在线观看视频国产中文字幕亚洲| 亚洲第一青青草原| 色婷婷av一区二区三区视频| 国产成人欧美| 色精品久久人妻99蜜桃| 精品久久久精品久久久| 欧美激情 高清一区二区三区| 久久久精品国产亚洲av高清涩受| 日韩中文字幕欧美一区二区| 日本a在线网址| 久久热在线av| 精品一区二区三卡| 一区二区av电影网| 亚洲精品国产区一区二| av网站免费在线观看视频| 日日爽夜夜爽网站| 国产精品香港三级国产av潘金莲| 精品熟女少妇八av免费久了| 精品少妇一区二区三区视频日本电影| 国产精品av久久久久免费| 伦理电影免费视频| 精品亚洲成国产av| 亚洲人成电影免费在线| 建设人人有责人人尽责人人享有的| 国产一区二区三区在线臀色熟女 | 色综合欧美亚洲国产小说| 飞空精品影院首页| 这个男人来自地球电影免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 精品久久久精品久久久| 亚洲熟妇熟女久久| 成人影院久久| 波多野结衣av一区二区av| 欧美乱妇无乱码| 午夜福利影视在线免费观看| 国产午夜精品久久久久久| 免费久久久久久久精品成人欧美视频| 乱人伦中国视频| 麻豆av在线久日| 咕卡用的链子| 亚洲精品国产精品久久久不卡| 法律面前人人平等表现在哪些方面| 大型黄色视频在线免费观看| 欧美日韩视频精品一区| 手机成人av网站| 国产精品九九99| 国产精品欧美亚洲77777| 好男人电影高清在线观看| 中国美女看黄片| 成人精品一区二区免费| 一二三四社区在线视频社区8| 久久久国产一区二区| 亚洲国产成人一精品久久久| 桃红色精品国产亚洲av| 老司机深夜福利视频在线观看| 免费在线观看完整版高清| 亚洲成国产人片在线观看| 另类精品久久| 欧美在线一区亚洲| 一本大道久久a久久精品| 国产精品免费一区二区三区在线 | 亚洲黑人精品在线| 法律面前人人平等表现在哪些方面| 亚洲精品国产区一区二| 国产精品自产拍在线观看55亚洲 | 国产日韩一区二区三区精品不卡| 国产精品影院久久| 国产极品粉嫩免费观看在线| 热re99久久精品国产66热6| 久久人妻熟女aⅴ| 精品国内亚洲2022精品成人 | 一区二区日韩欧美中文字幕| 女人爽到高潮嗷嗷叫在线视频| 麻豆乱淫一区二区| 午夜福利,免费看| 久久这里只有精品19| 天堂俺去俺来也www色官网| 国产亚洲精品久久久久5区| 国产av国产精品国产| 两个人免费观看高清视频| 成人国产av品久久久| 国产男女超爽视频在线观看| 国产免费视频播放在线视频| 国产伦理片在线播放av一区| 黑人猛操日本美女一级片| 亚洲少妇的诱惑av| 人人妻人人澡人人看| 精品国产超薄肉色丝袜足j| 久久99一区二区三区| 男男h啪啪无遮挡| 99精品欧美一区二区三区四区| 精品欧美一区二区三区在线| 国产男靠女视频免费网站| 久9热在线精品视频| 亚洲专区国产一区二区| 老鸭窝网址在线观看| 一本大道久久a久久精品| 国产亚洲欧美在线一区二区| 亚洲精品av麻豆狂野| 1024香蕉在线观看| 亚洲精品国产色婷婷电影| 欧美在线黄色| 女人精品久久久久毛片| 人人妻,人人澡人人爽秒播| 久久九九热精品免费| 国产精品一区二区精品视频观看| 交换朋友夫妻互换小说| 欧美激情久久久久久爽电影 | 亚洲va日本ⅴa欧美va伊人久久| 午夜免费成人在线视频| 欧美精品一区二区大全| 国产人伦9x9x在线观看| 日韩免费av在线播放| 狠狠婷婷综合久久久久久88av| 精品国产乱码久久久久久小说| aaaaa片日本免费| 亚洲精品一卡2卡三卡4卡5卡| 免费少妇av软件| 国产精品久久久av美女十八| 黑丝袜美女国产一区| 亚洲情色 制服丝袜| videos熟女内射| 嫁个100分男人电影在线观看| 亚洲情色 制服丝袜| 美女午夜性视频免费| 成人手机av| 黑人操中国人逼视频| 一区福利在线观看| 日韩有码中文字幕| 一本大道久久a久久精品| 亚洲男人天堂网一区| 一本色道久久久久久精品综合| 建设人人有责人人尽责人人享有的| 中文字幕人妻丝袜制服| 丰满人妻熟妇乱又伦精品不卡| 嫩草影视91久久| 久久中文字幕一级| 高清在线国产一区| 久久久国产欧美日韩av| 波多野结衣一区麻豆| 激情在线观看视频在线高清 | 人妻 亚洲 视频| 国产麻豆69| 精品少妇一区二区三区视频日本电影| 90打野战视频偷拍视频| 成人国产av品久久久| 亚洲精品粉嫩美女一区| 三级毛片av免费| 香蕉久久夜色| 精品人妻1区二区| 亚洲一码二码三码区别大吗| 91精品国产国语对白视频| 男女无遮挡免费网站观看| 黄色片一级片一级黄色片| 女同久久另类99精品国产91| 女性生殖器流出的白浆| 婷婷丁香在线五月| 欧美精品亚洲一区二区| 国产成人精品在线电影| 伦理电影免费视频| 亚洲美女黄片视频| 亚洲天堂av无毛| 亚洲va日本ⅴa欧美va伊人久久| 日本黄色日本黄色录像| √禁漫天堂资源中文www| 狠狠精品人妻久久久久久综合| 69av精品久久久久久 | 1024香蕉在线观看| 国产极品粉嫩免费观看在线| 老司机在亚洲福利影院| 国产午夜精品久久久久久| 国产精品免费大片| 亚洲全国av大片| 男女免费视频国产| av国产精品久久久久影院| 久久狼人影院| bbb黄色大片| 变态另类成人亚洲欧美熟女 | 成人国产av品久久久| 亚洲中文日韩欧美视频| 亚洲国产欧美在线一区| 热99国产精品久久久久久7| 在线观看免费视频网站a站| 欧美日韩一级在线毛片| 中文字幕精品免费在线观看视频| 日韩视频一区二区在线观看| 成人永久免费在线观看视频 | 18在线观看网站| 在线观看免费高清a一片| 久久精品国产亚洲av香蕉五月 | 国产男女内射视频| 欧美+亚洲+日韩+国产| 久久久久久久久久久久大奶| 亚洲国产欧美网| 精品乱码久久久久久99久播| 精品久久蜜臀av无| 中文字幕制服av| 视频在线观看一区二区三区| 一区二区三区乱码不卡18| 久久久久精品人妻al黑| 午夜成年电影在线免费观看| 91成人精品电影| 欧美成狂野欧美在线观看| 色老头精品视频在线观看| 国产男女超爽视频在线观看| 午夜久久久在线观看| 国产精品亚洲一级av第二区| 久久久久久免费高清国产稀缺| 男女床上黄色一级片免费看| 女警被强在线播放| 国产亚洲av高清不卡| 啪啪无遮挡十八禁网站| 亚洲va日本ⅴa欧美va伊人久久| 久久中文字幕一级| 午夜日韩欧美国产| 亚洲av日韩精品久久久久久密| 国产精品 欧美亚洲| 一边摸一边做爽爽视频免费| 99精国产麻豆久久婷婷| 在线播放国产精品三级| 丝袜在线中文字幕| 99riav亚洲国产免费| 两性午夜刺激爽爽歪歪视频在线观看 | 成年人免费黄色播放视频| 精品国内亚洲2022精品成人 | 国产免费福利视频在线观看| 美国免费a级毛片| 男女免费视频国产| 黑人巨大精品欧美一区二区mp4| 日韩大码丰满熟妇| 亚洲国产成人一精品久久久| 老司机午夜十八禁免费视频| 免费看a级黄色片| 一本—道久久a久久精品蜜桃钙片| 日韩视频在线欧美| 国产片内射在线| 欧美黑人欧美精品刺激| 高潮久久久久久久久久久不卡| 久久久水蜜桃国产精品网| 99国产精品99久久久久| 久久久久久免费高清国产稀缺| av有码第一页| 大码成人一级视频| 亚洲av成人不卡在线观看播放网| 国产av又大| 亚洲国产成人一精品久久久| 操美女的视频在线观看| 欧美在线黄色| 国产日韩一区二区三区精品不卡| 成人免费观看视频高清| 久久精品亚洲精品国产色婷小说| 久久免费观看电影| 悠悠久久av| 菩萨蛮人人尽说江南好唐韦庄| 国产成人系列免费观看| 搡老乐熟女国产| 捣出白浆h1v1| 一本久久精品| 中亚洲国语对白在线视频| 精品国产亚洲在线| 国产一区二区在线观看av| 国产精品久久久av美女十八| 欧美精品av麻豆av| 亚洲中文av在线| 亚洲自偷自拍图片 自拍| 中亚洲国语对白在线视频| 超碰97精品在线观看| 无人区码免费观看不卡 | 久久ye,这里只有精品| 91精品三级在线观看| 亚洲av成人一区二区三| 99国产精品一区二区蜜桃av | 亚洲男人天堂网一区| 91精品国产国语对白视频| 免费观看av网站的网址| 欧美日韩av久久| 欧美乱妇无乱码| 国产精品影院久久| 法律面前人人平等表现在哪些方面| 午夜福利,免费看| 精品少妇内射三级| 99国产精品一区二区蜜桃av | 久久久精品免费免费高清| 精品午夜福利视频在线观看一区 | 亚洲精品中文字幕一二三四区 | 久久国产精品大桥未久av| 久久国产亚洲av麻豆专区| 国产精品二区激情视频| 操美女的视频在线观看| 天堂俺去俺来也www色官网| 免费看十八禁软件| 我要看黄色一级片免费的| 久久精品人人爽人人爽视色| 在线十欧美十亚洲十日本专区| 麻豆av在线久日| 三上悠亚av全集在线观看| 两人在一起打扑克的视频| avwww免费| 婷婷丁香在线五月| 女人被躁到高潮嗷嗷叫费观| 人人妻,人人澡人人爽秒播| 麻豆国产av国片精品| 日本黄色视频三级网站网址 | 99在线人妻在线中文字幕 | 最近最新中文字幕大全电影3 | 热re99久久国产66热| 国产精品九九99| 亚洲精品av麻豆狂野| 国产主播在线观看一区二区| 久久精品人人爽人人爽视色| 国产高清国产精品国产三级| 国产又色又爽无遮挡免费看| 亚洲国产av影院在线观看| 成人国产一区最新在线观看| 午夜精品久久久久久毛片777| 国产成人欧美| 久久久国产成人免费| 成人av一区二区三区在线看| 美女主播在线视频| 欧美 日韩 精品 国产| 男人操女人黄网站| 国产精品一区二区在线不卡| 侵犯人妻中文字幕一二三四区| 少妇裸体淫交视频免费看高清 | 女人久久www免费人成看片| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜福利欧美成人| 久久青草综合色| 精品免费久久久久久久清纯 | h视频一区二区三区| 淫妇啪啪啪对白视频| 69精品国产乱码久久久| 十八禁网站免费在线| 亚洲国产欧美一区二区综合| 中文字幕色久视频| 久久婷婷成人综合色麻豆| 十八禁人妻一区二区| 王馨瑶露胸无遮挡在线观看| 精品少妇黑人巨大在线播放| 高清在线国产一区| 亚洲第一av免费看| 久久精品国产99精品国产亚洲性色 | 久久中文字幕一级| 丰满少妇做爰视频| 中文字幕人妻丝袜一区二区| 老司机午夜福利在线观看视频 | 亚洲国产毛片av蜜桃av| 久久性视频一级片| 久久精品亚洲熟妇少妇任你| 国产精品自产拍在线观看55亚洲 | 国产精品一区二区免费欧美| 日韩三级视频一区二区三区| 午夜免费鲁丝| 男女床上黄色一级片免费看| 人人妻人人添人人爽欧美一区卜| 亚洲美女黄片视频| 精品国产乱码久久久久久小说| 在线观看免费视频日本深夜| 亚洲欧美一区二区三区黑人| netflix在线观看网站| www.999成人在线观看| 欧美久久黑人一区二区| 久久天堂一区二区三区四区| 午夜久久久在线观看| videos熟女内射| 精品久久久久久电影网| 大型黄色视频在线免费观看| 亚洲精品国产一区二区精华液| 老汉色av国产亚洲站长工具| 午夜福利影视在线免费观看| 亚洲五月婷婷丁香| 一个人免费看片子| 高潮久久久久久久久久久不卡| 香蕉丝袜av| 亚洲自偷自拍图片 自拍| 亚洲欧美一区二区三区黑人| 无限看片的www在线观看| 亚洲七黄色美女视频| 两性午夜刺激爽爽歪歪视频在线观看 | 侵犯人妻中文字幕一二三四区| 夜夜爽天天搞| 成人av一区二区三区在线看| 两人在一起打扑克的视频| 精品一区二区三卡| 国产精品免费大片| 久久国产精品男人的天堂亚洲| 亚洲免费av在线视频| 日本五十路高清| 亚洲国产av影院在线观看| 男人舔女人的私密视频| 视频在线观看一区二区三区| 中文字幕精品免费在线观看视频| 亚洲精品美女久久久久99蜜臀| 两个人看的免费小视频| 宅男免费午夜| 色播在线永久视频| 日韩大码丰满熟妇| 久久久精品区二区三区| 国产成人一区二区三区免费视频网站| 新久久久久国产一级毛片| 日本vs欧美在线观看视频| 91字幕亚洲| 国产精品美女特级片免费视频播放器 | 国产欧美日韩一区二区三| 一级片'在线观看视频| 精品亚洲成a人片在线观看| 99热网站在线观看| h视频一区二区三区| 黑人欧美特级aaaaaa片| 亚洲精品美女久久av网站| 黄色a级毛片大全视频| 19禁男女啪啪无遮挡网站| 国产成人免费无遮挡视频| 大香蕉久久网| av国产精品久久久久影院| 久久久久精品人妻al黑| 亚洲成人手机| 欧美日韩亚洲综合一区二区三区_| 我要看黄色一级片免费的| 狠狠狠狠99中文字幕| 麻豆成人av在线观看| 欧美成狂野欧美在线观看| 亚洲成人免费av在线播放| 黄色怎么调成土黄色|